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AbstractMany of the services envisaged for high speed networks, such as B-ISDN/ATM, will support real-time applications with large numbers of users. Examples of these types of application range fromthose used by closed groups, such as private video meetings or conferences, where all participantsmust be known to the sender, to applications used by open groups, such as video lectures, wherepartcipants need not be known by the sender. These types of application will require high volumesof network resources in addition to the real-time delay constraints on data delivery. For thesereasons, several multicast routing heuristics have been proposed to support both interactive anddistribution multimedia services, in high speed networks. The objective of such heuristics is tominimise the multicast tree cost while maintaining a real-time bound on delay.Previous evaluation work has compared the relative average performance of some of these heuristicsand concludes that they are generally e�cient, although some perform better for small multicastgroups and others perform better for larger groups.Firstly, we present a detailed analysis and evaluation of some of these heuristics which illustratesthat in some situations their average performance is reversed; a heuristic that in general producese�cient solutions for small multicasts may sometimes produce a more e�cient solution for a par-ticular large multicast, in a speci�c network. Also, in a limited number of cases using Dijkstra'salgorithm produces the best result. We conclude that the e�ciency of a heuristic solution dependson the topology of both the network and the multicast, and that it is di�cult to predict.Because of this unpredictability we propose the integration of two heuristics with Dijkstra's shortestpath tree algorithm to produce a hybrid that consistently generates e�cient multicast solutions forall possible multicast groups in any network. These heuristics are based on Dijkstra's algorithmwhich maintains acceptable time complexity for the hybrid, and they rarely produce ine�cientsolutions for the same network/multicast. The resulting performance attained is generally goodand in the rare worst cases is that of the shortest path tree. The performance of our hybrid issupported by our evaluation results.Secondly, we examine the stability of multicast trees where multicast group membership is dynamic.We conclude that, in general, the more e�cient the solution of a heuristic is, the less stable themulticast tree will be as multicast group membership changes. For this reason, while the hybridsolution we propose might be suitable for use with closed user group multicasts, which are likely tobe stable, we need a di�erent approach for open user group multicasting, where group membershipmay be highly volatile.We propose an extension to an existing heuristic that ensures multicast tree stability where multi-cast group membership is dynamic. Although this extension decreases the e�ciency of the heuristicssolutions, its performance is signi�cantly better than that of the worst case, a shortest path tree.Finally, we consider how we might apply the hybrid and the extended heuristic in current andfuture multicast routing protocols for the Internet and for ATM Networks..
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Chapter 1IntroductionMany of the new services envisaged for B-ISDN/ATM high speed networks will require point tomultipoint routing. Some of these services, such as interactive multimedia communications, willrequire real-time bounded delays on data delivery and will consume high bandwidths. Calculationof multicast routes for these types of applications must take account of their conicting requirementsfor e�cient network usage and real-time delay bounds on data delivery.The problem of �nding arbitrary delay bound low cost multicast routes in networks, where linkcost and link delay are di�erent functions, was �rst published by Kompella, Pasquale and Polyzosin [32]. Since then there have been a number of other proposals for solutions to this problem.Previous evaluation work [46][57][11][58] shows that, on average, these heuristics perform well.However, further detailed analysis and evaluation of some of these heuristics has shown that thereis a wide variance in the e�ciency of their solutions. Whilst on average one heuristic may be moree�cient than another, either for all multicast group sizes or for a particular range of multicast groupsizes, there are some multicast group and network combinations where this position is reversed.In particular, we have found that as a multicast group membership changes the heuristic thatprovides the most e�cient multicast solution also changes. The results of our evaluation workindicates that it is di�cult to predicit which heuristic provides the most e�cient solution for anyparticular multicast/network combination. The variance in the e�ciency of the heuristic solutionsis wide enough that on occasions Dijkstra's shortest path algorithm (SPT) calculated on delay ismore e�cient. By selecting two such heuristics that can be e�cently integrated with each otherand the SPT algorithm, we propose a hybrid heuristic that produces reasonably consistent ande�cient solutions to the multicasting problem, with an acceptable order of time complexity for allpossible multicast groups in any network.Another important characteristic of delay bound low cost multicast routing algorithms is the sta-bility of their solutions, where multicast group membership is dynamic. We have found that, ingeneral, the more e�cient the solutions of an heuristic are, the less stable their solutions will bewhen multicast group membership is dynamic. While this may be an acceptable charactersitic forclosed multicast groups, such as a private video meeting, which is likely to have stable multicastgroup membership, it will not be acceptable for open multicast groups, such as a public videolecture where the multicast group membership may be quite volatile. For this reason we propose1



an extension to an existing heuristic, so that the solutions it generates are stable, when multicastgroup membership is dynamic. This extension reduces the cost e�ciency of the heuristic, but itsperformance is still a signi�cant improvement over that of a shortest delay path tree solution.The rest of this report is organised as follows :-� Chapter 2 provides an overview of networks, routing and resource reservation. We identifydi�erent types of multicast groups and their characteristics, and then describe the multicastingand resource reservation methods used, or proposed for use, in the Internet and B-ISDN/ATMnetworks.� In Chapter 3 we de�ne the Bounded Delay, Minimum Cost Multicast Routing Problem. Wefollow this with explanations of how the heuristics we have evaluated work, and describe theirbehaviour. We then describe our evaluation method, and introduce a new network model wehave used for some of our work. The results of the evaluation of the heuristics is presented.The chapter ends with the introduction of an extension to Sun's heuristic [50] that calculatesstable multicast solutions of reasonable e�ciency, for dynamic multicast groups. the resultsof our evaluation of the heuristics we have described.� Chapter 4 introduces the Hybrid solution to the Low Cost, Bounded Delay Multicast Routingproblem. We present the results of the Hybrid evaluation.� Chapter 5 addresses how the Hybrid heuristic, and the extended \stable" heuristic for dynamicmulticast groups, might be applied in networks.� In Chapter 6 we conclude our work and identify further research that needs to be undertakenin this �eld.
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Chapter 2Multicast Routing2.1 Networks, Routing and Resource ReservationThere are two major classes of routing methods to which routing algorithms can be applied: �xedand dynamic. Fixed routing assumes that the topology of the network and tra�c requirements areknown in advance, and remain constant, so that paths through the network can be calculated anddownloaded into the network before they are used. Dynamic routing assumes that the networktopology and tra�c load are likely to change and may not be globally known throughout thenetwork, and that route calculations have to be performed regularly to accommodate dynamicchanges within the network.Routes through a network can either be calculated at the data source, or by a route server or in adistributed manner by each of the nodes along the path. The process that calculates a path throughthe network is also responsible for establishing the path in the network. Source based dynamicrouting methods require full knowledge of the network topology, and possibly that of tra�c loadingas well, to perform route calculations. In distributed dynamic routing, paths through the networkare calculated at multiple points along the path between the source and destination as data isforwarded. As the topology of the network and the tra�c load varies, paths through the networkmay change. The topology and tra�c load information required by each routing point in thenetwork varies depending on the routing algorithm used. Distributed dynamic routing algorithmsvary from those that require only local information to those that require global knowledge of thenetwork [51].All routing methods have advantages and disadvantages. For example, in reliable networks thatsupport permanent connections between end points, route calculation can be performed \o�-line"and installed in the network prior to use. There is no necessity for the network iteslf to supporteither route calculation or maintenance of the information required to calculate routes. In suchnetworks the switches have low functionality and tra�c load for each communication is guaranteed.A disadvantage of such a network and routing method is that all changes to network load andend-to-end connections have to be made \o�-line". The network cannot dynamically adapt tochanging usage. At the other extreme networks that support distributed dynamic routing may have3



considerable functionality in their routers and require regular exchanges between routers of largevolumes of topological and tra�c loading information. While such a scheme enables the networkto adapt to changes in network usage it requires additional capacity and processing capability tomanage its dynamic nature, irrespective of the volume of tra�c it is carrying at any time. Sourcebased dynamic routing methods are a compromise between the extremes of �xed routing anddistributed dymanic routing. Not all switching points in the network need to know the topology orloading of the entire network, but the route calculating points are responsible for establishing pathsthrough the network. How often this is done depends on the type of network. It would not be verypractical method for routing in a datagram network, but would be for a virtual circuit network.Introducing multicasting to any routing scheme brings additional complexity to the routing method.In the most simple case this may be the extraction and combination of paths between the multicastsource and it's destinations to form the multicast tree. In the most complex cases it may involvethe exchange of multicast destination location data, in addition to link state data, between allrouting points in the network, as is the case with MOSPF [35] which oods link state advertise-ments and multicast group membership throughout the network. The introduction of multicastrouting heuristics to dynamic routing methods may also bring with it the problem of multicast treerecon�guration as destinations join and leave the multicast group. The resource savings made byusing a near optimal minimum cost solution may outweigh the multicast tree recon�guration costs,particularly if the multicast group membership changes frequently.The main characteristics of networks that have an inuence on the choice of multicast routingalgorithm to be used by their routing protocols are :-� Connectionless networks use distributed route calculations, performed by every router in thenetwork, to forward user data across a network. This allows routers to alter paths taken byuser data as changes in the network topology or tra�c conditions occur, but incurs the cost ofpath calculation by each router along the path. User data is either carried across the networkaccording to the \best e�orts" of the network, or along paths that are maintained using \softstate"[10].� Supporting resource reservation for user data ows in connectionless networks requires theestablishment of \pseudo" paths between the source and destination routers. In order tomaintain the ability of the network to re-route user data while \in-transit" these paths aremaintained using soft-state. That is, reservations for resources along a user data path haveto be maintained by the regular transmission of resource reservation messages along the userpath. If these messages cease to be received by intermediate routers along the user path, thenthe resources allocated to the path are relinquished. Resource reservation messages use thesame paths as the user data, so as paths change due to link congestion or failure the resourcereservations also change paths.� Connection oriented networks use source based route calculations, performed at the networkingress router or by a route server, to �nd paths across the network for user data. These pathsare established in the network as \hard state" connections between the source and destinationsbefore any user data is transmitted. This enables switches along the user data path toquickly and e�ciently pass incoming data onto the appropriate outgoing links with minimalprocessing. If links in the network become congested or fail then the source/destination pathhas to be torn down and a new path calculated and established in the network.4



� Resource reservation for user data paths in connection oriented networks is an integral partof the path calculation and establishment process. Once established, user data paths are heldin place by hard-state. That is, the path resources remain intact until they are explicitlyremoved by the user.� Fixed networks require user data paths to be pre-calculated and downloaded into the networkbefore they are used. The network does not adapt to changes in topology or load variance.� Resource reservation in �xed networks also needs to be pre-calculated and downloaded intothe network.2.2 Multicast Group TypesMulticasting protocols that are currently implemented or are in the process of development, providesupport for two types of group communication.� Heavyweight: The sender knows who the receivers are and is responsible for adding them tothe multicast. Applications such as video conferencing and distributed gaming might requirethis type of service, since it may be important that the sender know who is participating inthe multicast. Heavyweight multicasting protocols are likely to use considerable state data toestablish and maintain multicast trees [48], but may su�er little dynamic behaviour by theirmembership.� Lightweight: The sender is unaware of who the receivers are. Applications that may requirethis type of service are multimedia lectures and other distribution services, where the senderdoes not need to know the identities of receivers or where they are located. Lightweightmulticast trees require little state data for their establishment and maintenence, and theirgroup membership is likely to be volatile.These contrasting requirements result in di�erent methods of multicast tree construction.� For a heavyweight multicasts, where all the recipients are known to the sender, the completemulticast tree can be constructed once. Thereafter it should remain fairly stable, providedthe group membership is static.� If a lightweight multicast has all its membership established before a sender starts trans-mitting, then a complete multicast tree can be constructed as soon as transmission starts.However, the multicast tree is likely to be less stable than a heavyweight multicast, since themulticast group membership is likely to change.� For both heavyweight and lightweight multicasting the delivery tree may have to be calculatedin a piecemeal fashion as receivers join the multicast group one at a time. This may happenin a heavyweight multicast where receivers are required to register with the source beforethey are allowed to join the multicast, or in a lightweight multicast where a receiver joins thegroup after the sender has started transmitting user data.5



2.3 Internet Multicast Routing ProtocolsWhile multicasting within local area networks (LANs) is generally available the ability to multicastacross store-and-forward networks that interconnect LANs has not been available until recently, andis still being developed through the working groups (WGs) of the Internet Engineering Task Force(IETF). Much of the initial multicast development has been based on the original work of Deeringand Cheriton [16] who proposed protocols that construct multicast trees rooted at a sending source.However, these source speci�c multicast solutions do not scale well for large internetworks becauseof the network resources they consume. For this reason multicast protocols that construct treesshared between a number of sources have been proposed by Ballardie et al [4] and by Jacobson etal [17].Internet Protocol (IP) Multicasting is the delivery of an IP datagram to a group of hosts, wherea host group is identi�ed by a unique IP multicast address. Multicast group addresses are eitherpersistent and well-known administratively assigned IP addresses or transient IP addresses whichare assigned to multicast groups for as long as they have members. Delivery of datagrams is \beste�orts", as is the case with unicast IP datagrams. Datagrams are not guaranteed to reach allmembers of the multicast group, nor is the order of datagram arrival guaranteed.Membership of a host group is dynamic; hosts may join and leave a group at any time. A hostthat is not a member of a multicast group may send datagrams to a group and may have no ideawhich hosts belong to the group. A host group can have no members. IP multicasting is receiverinitiated; it is the host receivers that join and leave a multicast group. The sender may be unawareof who the receivers are, or where they are located.2.3.1 Internet Group Management Protocol (IGMP)The Internet Group Management Protocol [15] is used by IP hosts and their local routers to joinand leave multicast groups. Support for the protocol is a prerequisite for all hosts and routers thatsupport IP multicasting.The protocol uses two message types:-1. Host Membership Query (Queries).2. Host Membership Report (Reports).Multicast routers use these IGMP messages to �nd out which multicast groups have host memberson the subnetworks to which they are directly attached. Periodically, multicast routers broadcast\Queries" on each of their locally attached subnetworks. Hosts on the subnetworks then reply to themulticast router using \Reports" to indicate to which multicast groups they belong. The protocoluses timers to spread the sending of \Reports" from hosts on an attached subnetwork over shorttime intervals to avoid implosions of concurrent messages on the subnetwork. This mechanism alsoreduces the volume of \Reports" returned to the multicast router as hosts that receive a report fora group to which they belong need not send a report themselves. Multicast routers then forward6



remotely originated multicast group datagrams onto the subnetworks for which hosts have beenregistered as group members. If, after several periodic query transmissions on any subnetwork, nohost replies are received for a multicast group previously active on the subnetwork, the multicastrouter assumes that there are no longer any host members for the group on the subnetwork andceases to forward multicast datagrams to it. When hosts join multicast groups they send a reportfor the group to the multicast router rather than waiting for a \Query" �rst. This enables hoststo join groups immediately, rather than waiting for the multicast router to discover that the hostwishes to join the group.There is no explicit message from a host to indicate that it no longer wishes to recieve data fora multicast group. The consequence of this is that a multicast router will continue to forwardmulticast data onto a subnetwork that has no hosts wanting to receive the data. Forwarding willcontinue until the timers used by the multicast router to wait for Host Membership Reports expire.The router will then know that there are no longer any hosts on the subnetwork that belong to themulticast group and so cease forwarding multicast datagrams. The IETF Inter-Domain MulticastRouting WG is developing future versions of the IGMP that will enable routers to immediatelycease forwarding multicast datagrams when there are no longer any hosts on attached subnetworksbelonging to the multicast group [6].2.3.2 Multicast Shortest Open Path First (MOSPF)The Open Shortest Path First (OSPF) [36] routing protocol is based on the proposal for a newARPAnet routing protocol, by McQuillan in [34]. The protocol uses Dijkstra's shortest path al-gorithm (SPT) to calculate routes in the network to which it is applied. Also know as Link StateRouting, protocols based on Dijkstra's SPT are used in, or have been proposed for use in bothconnection oriented, e.g. [54], and connectionless networks, e.g. [36] and [39].The SPT calculation requires complete topological knowledge of the network to which it is applied.In dynamic connectionless networks, routers must periodically ood the state of their incident linksto all the other routers in the network so that every router can maintain complete knowledge ofthe networks topology. To forward unicast data, a router that receives a datagram uses the linkstate data and the SPT algorithm to calculate the shortest path, from the router to the datagram'sdestination, on which to send the data. The router does not need to know the source of the data itforwards since the path it calculates is rooted at itself. The calculation requires only the destinationidentity and the network topology to �nd the forward path for the datagram.The OSPF protocol is a link state routing protocol that has been designed to run between groupsof routers that exchange routing information using a common protocol. Such a group of routers istermed an Autonomous System (AS) and OSPF is classi�ed as an Interior Gateway Protocol (IGP)because it runs within an AS. To reduce the volume of link state data that must be ooded andmaintained by routers throughout an AS, OSPF allows the grouping of contiguous networks andhosts into areas, each of which runs a copy of the basic OSPF protocol. Routers inside an OSPFarea each maintain their own topological database of the area, which is not visible to routers inother areas. This means that the topological view a router has depends on the area it resides in, andis di�erent from the topological views routers in other areas have. Areas are interconected either byrouters that are present in two or more areas (Area Border Routers) or by networks that are not in7



any area, but which are connected to two or more areas by attached routers. The \network" thatinterconnects areas, which can be either contiguous or virtual, is termed the backbone network.A datagram routed between hosts in di�erent areas will travel along an inter-area path from thelocal router to the area's Border Router. It then follows a backbone path between the source anddestination areas and �nally reaches the destination router along a path from the destination area'sBorder Router. Because the SPT calculation is rooted at each router along a path, all paths willbe the shortest. Link state data from within each area is summarised and ooded throughout thebackbone by the Area Border Routers. These summaries are also advertised internally to areasattached to the Border Routers, thus enabling routers within one area to calculate forwarding pathsto destinations in other areas. As we shall see, this hierarchical routing structure impacts multicastroute calculation.For multicast data forwarding, the SPT must be rooted at the multicast source rather than atthe forwarding router. To perform route calculation every multicast router in the network musttherefore know, in addition to the networks link state data, the location of both the multicastsources and destinations for all multicast groups.The Multicast Extensions to OSPF (MOSPF) [35] extend the capabilities of OSPF to providesource speci�c multicasting.The MOSPF protocol registers multicast destination host group memberships with their localMOSPF router(s) by using the IGMP. The local MOSPF routers then ood the identities of hoststhat have registered as receivers of the multicast group on their attached subnetworks to all otherMOSPF routers in the area. This ooding process is periodically repeated for all multicast grouphosts that remain registered with a local MOSPF router. This mechanism provides every multicastrouter with the identities of all the destinations for all multicast groups active within an area.MOSPF routers calculate multicast routes "on-demand" when the �rst datagram is received for amulticast group. This datagram contains the identity of the multicast source; the MOSPF routeralready has the identities of the multicast destinations and the topology of the network area. Fromthese data the MOSPF router is able to calculate the forwarding path(s) for the multicast datagram,which may be cached for future use as the forwarding path will only need to be re-calculated ifmulticast destinations either join or leave the multicast group or if there are changes in the networktopology. MOSPF supports calculation of multicast trees for each type of Internet Protocol Typeof Service (TOS) [2]. However, it should be noted that the TOS feature has been removed fromlater editions of OSPF [37], and it will be removed from MOSPF [38]. Proposals for QoS OSPFare divided as to whether or not the TOS �eld should be used to specify QoS requirements [24][64].Because of this interest TOS may continue to be developed.Multicasting between MOSPF areas is managed in a di�erent way to OSPF unicast routing. Eacharea in an AS will ood summaries of multicast group membership into the backbone. However,unlike OSPF, the backbone will not ood these data, nor will it advertise it's own group member-ships, into attached MOSPF areas. This procedure has been adopted to prevent the broadcastingof the locations of all members of all multicast groups throughout the AS, thus avoiding seriousproblems with multicast scaling. In order to reach multicast destinations that are outside a source'sarea, multicast area border routers are designated as \wildcard" multicast routers. This means thatthey belong to all multicast groups, and so receive user data for all multicast groups. Since theborder routers know which multicast groups have members in the areas attached to the backbonethey are able to forward user data appropriately.8



If a multicast is between a source in one area and a destination in another area, then the multicasttree no longer uses shortest paths, as it would if the user data were unicast. The reason for this isthat a router performing the multicast tree calculation needs to know the distance from the sourceto itself. If the source is in an area remote to a multicast router this distance is not available, asthe router only has the OSPF summary link state data describing the distance from the router tothe source [35]. MOSPF therefore has to use the reverse path distance to the source for the SPTcalculation across a network backbone. All additional forward links used in the tree calculation arealso selected on the basis of their reverse path cost.The distribution to, and storage of multicast source and destination data at every router in thenetwork, coupled with the processing and storage costs of the SPT at each forwarding router for eachmulticast, impacts the scalability of link state multicasting. For this reason MOSPF is consideredto be suitable for intradomain use only.Some proposals have been made through the Internet-drafts mechanism of the IETF to extendboth OSPF and MOSPF to include Quality of Service Routing (QoSR) for data ows. Best e�ortstra�c would be handled in the same manner as it is currently, since it requires no QoSR. Theseproposals have no authority, and the lifetime of such documents is limited to six months. However,the general direction these proposals are taking is of interest here.In their proposed extentions to OSPF and MOSPF [64], Zhang et al suggest that the link state dataexchanged between OSPF and MOSPF routers might include information about a link's availableresources. and that data ows would request that speci�ed quantities of these resources be allocatedto them. The proposals include ideas on what metrics might be used in route calculations, suchas link delay and token bucket depth and rate. There is also a suggestion, that because of thesigni�cant increase these extensions would make to the volume of link state data maintained byrouters, that explicit route calculation by the data source router might be used instead of hop-by-hop calculation, and that routes should be �xed (pinned) once established. These proposalsindicate a move towards a connection oriented approach for QoSR.2.3.3 Distance Vector Multicast Routing Protocol (DVMRP)The DVMRP [55] is based on re�nements by Deering and Cheriton [16] of Dalal and Metcalfe'sReverse Path Broadcasting (RPB) [13] method. It is an Interior Gateway Protocol for use withinan Autonomous System, based on distance-vector routing [26].In reverse path broadcasting a router forwards a data packet if, and only if, it arrives on the shortestpath from the router to the data source. The router forwards the data packet on all it's outgoinglinks except the link on which it arrived. By this means all routers in the network receive a copy ofthe data. For multicast delivery this is a waste of network and router resources since not all routersrequire the data. DVMRP uses a modi�ed form of RPB (Truncated RPB) in which routers areable to identify attached \child" and \leaf" routers, and to know which \child" and \leaf" routersare members of multicast groups.\Child" routers are relative to a multicast source and are identi�ed by their distance from thesource. In �gure 2.1, routers A and B have to decide which will forward multicast data from S9
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EFigure 2.1:towards C. All the routers periodically exchange distance-vector data indicating their distancesfrom each other. From this data, routers A and B each discover that router A is the closest to themulticast source S and is therefore the \parent" of router C, and hence responsible for forwardingmulticast data to C from S. On discovering that router A is the \parent" of C, router B will nolonger forward multicast data received from S towards router C. Router D is a \child" of B androuter E is a \child" of C. By this method routers will receive only one copy of a data packet,rather than multiple copies as in RPB.A \leaf" router is a \child" router that no other routers use to reach the multicast source. In �gure2.1, router C is a \child" of A, but it is not a \leaf" router because the attached router E uses itto reach the source S. Routers D and E are \leaf" routers. \Leaf" routers only forward multicastdata onto subnetworks that belong to appropriate multicast groups. By this means the multicasttree is truncated at the \leaf" routers.Later versions of DVMRP have been proposed and implemented and are documented in IETF draftdocuments [42]. These are \work in progress" documents which it is inappropriate to cite. However,it is appropriate to state that the later versions of DVMRP implement the Reverse Path Multicastmethod which allows \leaf" and up-stream \child" routers to be periodically pruned from themulticast tree provided that they have no dependent subnetworks belonging to multicast groups.The multicast tree periodically re-grows to discover if non-member subnetworks have subsequentlyjoined a multicast group. The reader is referred to [16] for an expanation of this method.The DVMRP only calculates a shortest path multicast delivery tree if the delay on all links is thesame in both directions; otherwise some or all of the paths in the tree may not be the shortest.DVMRP routers do not need to know the topology of the network, but only the distances betweenthemselves and all other routers in the network.The periodic pruning and re-growing of multicast tree branches by DVMRP, irrespective of whetheror not a branch has multicast group members attached, renders the protocol unsuitable for largescale internetwork multicasting. 10



2.3.4 Core Based Trees (CBT)CBT is an architecture, proposed by Ballardie et al [4], for scalable internet multicasting and isbased on the work of Wall [56]. The primary motivation for the development of CBT was tosigni�cantly improve the scaling factor for a multicasting method over that of the existing IPsource rooted multicasting methods. Source rooted multicasting protocols, such as DVMRP andMOSPF, either use high volumes of bandwidth or require the exchange of large amounts of statedata, irrespective of the number or distribution of multicast group members. For source rootedmulticasting the scaling factor for each method is the product of the number of sources and thenumber of receivers in the multicast group, since each sender requires a source rooted multicastdelivery tree. The objective of CBT is to reduce this factor to the number of receivers in themulticast.A CBT consists of a primary core router and an ordered list of additional core routers, which areincluded for robustness, for each multicast group. At group initiation time the additional cores jointhe primary core to form a central hub of the CBT. The protocol does not de�ne how cores areselected and placed in a network.
Non-CORE Router
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Multicast SourceFigure 2.2: Multicast user data route in a CBTHosts wishing to join a multicast group will use a directory service, such as X.500 [25], to obtain amulticast group's identity and the list of the group's core unicast addresses. Using IGMP the hostinforms its local CBT capable multicast router that it wishes to join a multicast group, and providesit with the group identity and core list obtained from the directory service. The local multicastrouter then sends a join request towards a core router for the group. The join request is forwardedat each intermediate router along the path towards the core until it either reaches the core, orreaches an intermediate CBT capable router that is already a member of the CBT for the group.In general the CBT router will reply to the join request by sending a join acknowledgement backalong the path towards the hosts local CBT router, thus establishing a branch in the multicast tree.All the CBT routers along the path become non-core routers for the CBT. There are exceptions tothis action which occur for a variety of reasons, such as in loop detection. The reader is referredto [3] for a detailed description of CBT.Sources wishing to send to a particular multicast group address their user data to the CBT corerouter for the group, and include the multicast group identity in the option �eld of the IP datagram.11



When the user data reaches any of the CBT routers for the multicast group (core or non-core),the core address in the IP datagram destination �eld is replaced by the multicast group identityfrom the option �eld, and the data is multicast across the CBT. Each CBT router will forward themulticast data across all interfaces it has for the group tree (including the path towards the core),except across that on which the data arrived. Figure 2.2 illustrates how user data is sent towardsa CBT for a multicast group, and is then multicast to all the group recipients.The CBT for any multicast group is maintained by the exchange of \keep alive" messages betweenadjacent routers along tree branches. If a subtree becomes detached from the main tree it caneither clear itself down, in which case each router in the subtree will attempt to re-attach itself tothe main tree, or the router that became disconnected from it's parent may attempt to re-attachthe subtree to the main tree via an alternative core router.The bene�ts of this multicasting method are that it utilises the underlying unicast routing protocolfor the network, and only requires multicast state data to be maintained by the CBT routers foreach tree to which they belong. Also, the exchange of \keep alive" messages is limited to only thoserouters that are in the multicast tree. Unlike DVMRP and MOSPF, CBT uses \hard-state" tomaintain the multicast tree. This means that branches in the tree have to be explicitly torn downwhen they are no longer required. The costs of using CBT are that :-� All user data tra�c has to pass through the core router for a multicast group, thus forminga potential bottleneck.� As Wall shows [56], the bound on the maximum delay of an optimal centre based tree is twicethe shortest path delay. In other words, the delays experienced by CBT multicast deliveriescould be up to two times that of an SPT based multicast.� Because the multicast branch to a receiver is established by sending a join acknowledgementfrom the existing CBT back along the path along which the join request was received, CBTbranches are reverse shortest paths. In networks with asymmetric links the CBT shared treeis therefore not a shortest path delivery tree. This characteristic may add additional delay tothe already increased delay incurred by using a shared tree.2.3.5 Protocol Independent Multicasting (PIM)The Protocol Independent Multicast method was proposed to address the problems of multicastingto group members that might be sparsely distributed across wide area internets [17]. Like CBT,it was a design goal of PIM to use less resources than those used by source rooted multicastingprotocols such as MOSPF and DVMRP. The PIM design also recognised that :-� High data, rate low latency applications could only be served by source rooted multicasting(which CBT does not support),� Low data rate, high latency applications with high numbers of sources would save networkresources if supported by shared multicast trees,12



� Traditional shared trees, such as CBT, may have a problem with multicast tra�c concentra-tion at their cores.PIM supports two modes of multicasting. Dense mode is designed to support applications thathave either low latency requirements or where the number of simultaneous senders is such thatnetwork performance would be unacceptably degraded by the concentration of tra�c on a sharedtree. Sparse mode is designed to multicast to a group whose membership is considerably smallerthan the number of routers in the network, and which may be widely distributed over a large areaand for which high latency is acceptable.A PIM multicast tree initially consists of a set of rendezvous points (RPs), the addresses of whichare associated with a multicast group. How RPs locations are decided has not been speci�ed, butit will either be a con�guration responsibility or their addresses may be obtained by hosts anddistributed to PIM routers in much the same manner as envisaged for core lists in CBT. A host willjoin a multicast group by sending an IGMP report message to it's local PIM router containing themulticast group identity and RP address. The PIM router will then send a join request towardsthe RP indicating that it wants to receive user data for the multicast, via a shared tree. As thejoin message travels towards the RP, intermediate PIM routers establish a path from themselvesback towards the host's PIM router using a soft state mechanism and forward the join requestto the next PIM router on a path to the RP. This process is repeated at each intermediate PIMrouter until the RP is reached. At the RP the join request is dropped and a path from the RPto the receiving host has been established. The RP maintains the path to the receiving host byperiodically sending it reachability messages down the established path. Sources wishing to sendto a particular multicast group address the user data to their local PIM router. The local PIMrouter then sends a register message (and user data) to all the RPs for the multicast group. TheRPs reply to the source using join messages to set up user data delivery paths from the source tothe RPs.If a receiver requires source-speci�c tree delivery of user data, it �rst joins the shared tree for themulticast group. After receiving user data from the source the receivers local PIM router can switchto the source rooted tree. The local PIM router recognises user data for the multicast group fromwhich it obtains the source address, to which it sends a join request. Once the local PIM routerstarts receiving user data on the source rooted path, it send a PIM prune towards the RP for theshared tree indicating that it no longer wants to receive user data from the source via the sharedtree.PIM o�ers much the same bene�ts as CBT, with the addition of the option to use a source rootedmulticast tree if required. PIM, however, maintains the multicast tree using \soft-state". That is,PIM periodically sends refresh messages upstream towards each source to maintain the tree.
13



2.4 Internet Resource Reservation Protocols2.4.1 Resource Reservation Protocol (RSVP)All of the multicast routing protocols described above provide only \best-e�orts" delivery of userdata to receivers. With the advent of distributed applications such as multimedia conferencing,audio/video multicast delivery and distributed visualisation, \best-e�orts" delivery is becominguntenable for some applications. Networks must be able to guarantee a requested quality of servicefor user data delivery, if the needs of these kinds of applications are to be met. To achieve thisobjective the Resource Reservation Protocol (RSVP) [63] has been proposed.Strictly speaking, RSVP does not reserve any network resources for a communication. Rather it isa protocol used to establish router resource reservation state along a communication path betweena source and receiver of a \ow" of user data. Sources can always send user data into the networkwithout regard to the resources available for it's delivery. This is the primary quality of the InternetProtocol. On the other hand, receivers know what they are capable of receiving and can thereforerequest the quality of service they want. In a multicast environment, di�erent receivers may beeither incapable of receiving, or not require, the same quality of service as other receivers. Forthese reasons RSVP is a receiver initiated protocol.In order to reserve network resources, receivers need to know the path that user data takes fromthe source to reach them, and the transmission characteristics of the data ow that the sourcewill send. The source therefore periodically sends path messages to the receivers that contains aspeci�cation of the data ow [41][9] that the source will send into the network. Path messagesare carried towards the destinations by whichever routing protocol the network uses. They arenot routed by RSVP. As the path messages pass through intermediate RSVP capable routers,they establish soft-state that describes the incoming and outgoing links for the multicast. A pathmessage is then forwarded to the next-hop router for the multicast, and the process is repeated untilthe receivers router is reached. Intermediate routers along the path do not reserve any resourcesat this stage, they just establish path state between the source and receiver(s). On the basis of theow speci�cation contained in the path message and the resources avaiable to a receiver, it repliesto a path message by sending a reservation message back along the route the path message arrivedon. This reservation message contains the description of the resources the receiver wants reservedalong the path. As the reserve messages passes through routers on the return path resources areeither reserved for the user data ow, or the reservation is rejected. The reserve messages establishthe resource reservation state along the path established by the path messages.RSVP is much more complex than described here. The protocol supports di�erent styles of reser-vation requests and the merging of requests where paths for the same group meet. The use ofsoft-state to maintain reservations allows paths to be re-routed to adapt to changes in topology ofthe newtork. The reader is refered to [63] for a detailed description of the protocol.In addition to a resource reservation mechanism (for example see [9][18][41]) the protocol requiresadmission control to manage network resources and routing protocols that will select data pathson the basis of requested quality of service [27] [30]. None of the routing protocols decribed aboveuse admission control or quality of service path selection.14



2.4.2 Internet Stream Protocol, Version 2 plus (ST2+)The Internet Stream Protocol, version 2+, is an experimental protocol that enables applicationsto establish end-to-end paths, with specifed reserved resources, for real-time data ows (streams)between a source and one or more destinations, across an internet [48]. The resource reservationsare for single direction data ows, between a sender and any number of destinations, i.e multicast.Like IP, ST2+ is a network layer protocol and is independent of underlying subnetworks. It usesthe same addressing schemes as IP to identify hosts and may coexist with IP in network routers.ST2+ has the facility to encapsulate it's messages within IP packets so that they can be transportedtransparently through IP routers that do not support the protocol.Unlike IP and the multicasting protocols DVMRP and MOSPF, ST2+ is explicitly connectionoriented. User data ows cannot be transmitted between a sender and receiver until a path, withthe speci�ed resources allocated, has been explicitly set up between them. The protocol has twocomponents :-� Path management.� Real-time data transfer.ST2+ path management is responsible for setting up, modifying and tearing down the paths usedfor transmitting data ows. To do this it uses two distinct services :-� Routing; to select paths from the source to the destination(s).� Resource Management; to reserve the appropriate resources for the data ow(s).The ST2+ protocol speci�cation does not de�ne either of these services since they are consideredto be external to the protocol, but it does assume their existence. ST2+ also makes assumptionsabout how these services are provided. The ST2+ setup protocol assumes that the external routingmethod it uses calculates unicast routes, on a hop-by-hop basis, as paths are constructed. Howthe routing method calculates which router is the next hop along any path is not de�ned byST2+, but it could be by either a simple shortest path next-hop selection process, or by a morecomplex method based on network resources and a data ows quality of service requirements, suchas proposed by Zheng and Crowcroft [65]. The calculation of complete data ow paths by thesenders router (source routing), which was supported by earlier versions of the protocol, has beenremoved from ST2+. Resource management is invoked at each router along a data ow path, asit is constructed, to allocate local resources to the ow. The local resource manager is suppliedwith a speci�cation which describes the resources required by the data ow. This it checks againstthe resources available, e.g. bu�er space, bandwidth, and rejects the request if enough resourcesare not available or accepts it otherwise. Once a path is established, ST2+ path management hasmechanisms at each router to e�ciently switch data ow packets to the next router(s) along thepath(s) and to monitor the status of routes. Data ow paths persist for either the lifetime of thedata ow or until a transmission failure occurs. 15



ST2+ supports construction of multicast trees by either senders or receivers or by both sendersand receivers.� For sender construction of data ow paths (or multicast), the source knows the addressesof all the receivers. This information is sent to each ST2+ router along paths, as they areconstructed. Hence all ST2+ routers know which receivers they have downstream. Senderinitiated multicast can be considered heavy weight because of the potentially large destinationlists used during path set up, and because this information is maintained by ST2+ routerswithin a multicast tree.� For receiver initiated path construction, the sender sets up a data ow with no receivers.That is, the ST2+ router local to the data ow source creates entries in it's database for thedata ow, but does not setup any paths. For a destination to initiate receipt of a data ow, itmust obtain the identity of the data ow (stream ID) and the IP address of the source. Howthis information is obtained is not within the scope of the ST2+ protocol speci�cation, but itmight be via a directory service, for example. With this information the ST2+ router local toa destination sends a join request towards the data ow source. The join message traversesST2+ routers on a path back towards the source, until it reaches one that is receiving thespeci�ed data ow. This ST2+ router can then set up a path between itself and the destinationon which to send the data ow. Receiver initiated multicasts are light weight in comparisonto sender initiated ones. Less state data is held at each ST2+ router, since not all routerswill necessarilly know all of the downstream destinations they are forwarding data ows to.� Sender and receiver construction of multicast trees is achieved through a combination of bothof the sender method and the receiver join method.The ST2+ protocol is far more complex than the overview given above. The protocol has to dealwith a variety of problems that may occur during path set up, such as admission failure. It also hasmechanisms to deal with failures in the network. The protocol supports groups of streams (dataows) and has the facility for an application to request modi�cation to the resource requirementsof a data ow. The characteristics of the ST2+ protocol that are important to our work are :-� Multicast trees can be constructed either \en masse" by a single protocol message being sentinto the network from the data ow source.� Multicast trees can be built in a piecemeal fashion by receivers joining a data ow arbitrarilly.� Multicast trees are held in place by \hard state", that is, they are connection oriented. Pathconstruction is therefore a relatively expensive and time consuming process.The reader is referred to [48] for a detailed description of the protocol.2.4.3 Tag or Label Switching MulticastIt is recognised that the growing demand for increasing bandwidth in the Internet can, in some part,be achieved by improving the forwarding performance of routers. In IP networks, each router uses16



a network layer routing calculation and data from a packet's header to determine the path on whichto forward the packet. The packet header contains far more data than required to calculate thenext hop towards it's desination, particularly where a stream or ow of data is being transmitted.Working groups within the Internet community are developing Label Swapping (or Tag Switching)architectures to reduce the complexity of the current next hop IP routing method [43][44], and thusimprove the forwarding e�ciency of network routers.In essence, label or tag switching is quite similar to cell switching in ATM networks, in that eachswitch (or router, in this case) maintains a table of incoming labels (or VPI/VCIs, in ATM) whichare mapped to outgoing labels. Both architectures consist of two components :-� Control; the mechanism used to bind network layer routes to tags. For example, in tagswitching [43], a switch uses the routing method to identify the next hop router for a packetand requests a tag binding, from the next hop router, for the path. In label swapping [44],upstream and down stream routers agree bindings between labels and streams sent betweenthem.� Forwarding; the mechanism used to switch tags or swap labels and hence forward packets.A packet destination address is mapped to a tag or label as the packet enters the network.From then on, as the packet passes through the network, each router recognises the tag, orlabel, on an incoming packet, which it maps with the corresponding entry in it's tag or labeldatabase. From this mapping the tag or label and forwarding information to the next routeris obtained. In the case of multicast, an incoming tag may map to several outgoing tags.These architectures also support explicit routing, where the entire route is chosen by a singlerouter. The reader is refered to [43] and [44] as a starting point for further explanations of howthese architectures might might work, and for references to other work in this area. One observationmade in [43] that is worth noting is the applicability of these architectures to ATM networks bythe implementation of the Tag Switching Control component.Like ST2+, neither architecture speci�es how routes are calculated (for the binding mechanism),nor what routing information needs to be exchanged between routers in order to perform routecalculations.2.5 B-ISDN/ATM Routing ProtocolsAsynchronous Transfer Mode (ATM) networks will o�er signi�cant improvements over existinglocal area and wide area network technologies [1]. In particluar, they will support the integrationof a wide variety of applictions that use both voice, moving image video and other high bandwidthcommunications. The primary features of ATM networks are that they will o�er users a guaranteedquality of service based on a collection of addative and non-additive route metrics (e.g. bandwidthand delay) while remaining scalable over wide areas. For these reasons, among others, ATM will bethe underlying network technology for Broadband Integrated Services Digital Networks (B-ISDN)Unlike IP networks, ATM is connection oriented and so requires both a signalling system and17



routing methods to establish user calls. To support the features of ATM networks, signalling androuting will be far more complex than those that currently support IP networks.2.5.1 Private Network/Network Interface (PNNI)
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Figure 2.3: A PNNI hierarchyThe PNNI protocol [54] has been speci�ed by the ATM Forum for use between private ATMswitches and groups of private ATM switches. The protocol has two parts :-� Signalling.� Routing.PNNI signalling is based on ATM UNI signalling [52][53] and is used to establish both unicastand multicast connections across an ATM network. Version 1.0 of PNNI does not support all theservices de�ned for ATM UNI version 4.0 [53]. In particular, it does not support leaf initiated joinsto multicast groups. Multicast destinations can only be added to a multicast group at the explicitrequest of the sender.The PNNI routing protocol calculates the paths connections take across a network, and also main-tains the data necessary to perform these calculations. Both of these protocols have an inuenceon the algorithms that can be used by PNNI to calculate multicast delivery trees.PNNI routing speci�es a hierarchical addressing scheme for routing. Within a PNNI switchingsystem, starting from the lowest level (i.e. the switch level), logical nodes are organised as ahierarchy of peer groups. There may be one or more peer groups at each level of the hierarchy.18



Within each peer group, one logical node is designated the peer group leader. Peer groups maythen become logical nodes within the next higher level peer group of the hierarchy. A higher levelpeer group may also be a logical node of yet a higher level peer group. This structure, which maybe of as many levels as deemed necessary for any particular switching system, is illustrated in �gure2.3.Each logical node has an identity, which contains the nodes peer group identity. The peer groupidentity indicates the level of the peer group in the hierarchy and its parentage. Parent peeridentities are always shorter than those of their children and the child peer group identity alwayscontains the peer group identity of its parent.PNNI is a link state routing protocol, where the link state data consists of topology state data andaddress reachability state data. Logical nodes exchange this data so that they can build databasesof the network topology and tables of address reachability. Logical nodes only exchange link statedata within their own peer group.Peer group leaders aggregate and summarise the topology and reachability information of theirpeer group into a complex node description and ood it as link state data within the next higherlayer peer group. Peer group leaders also pass link state data they recieve at a parent level downto their child level and ood it to the other child logical nodes in their peer group. By this meansdestination reachability data and (a virtual) network topology permeates the entire network withoutthe necessity of all link state data being ooded to all nodes in the network.To set up a user call in an ATM network, PNNI has to perform two tasks :-� path selection,� establish call state along the selected path.ATM users are able to specify a Quality of Service (QoS) and bandwidth requirement for each callthey request. For this reason, path selection in PNNI is based on both the users requirements andthe resources available within the network. Paths are calculated by the connection source node andestablished across the network using designated transit lists (DTLs). A DTL is essentially a stackof next node identities used by each node along the path to �nd out where the next forward nodeis. DTLs are removed from the stack and replaced by other DTLs as the path moves across peergroups. So, although the source node calculates the entire path, parts of the path are virtual in thatthey traverse complex nodes in higher level peer groups. The sections of the path that cross higherlevel peer groups have to be mapped onto the underlying lowest level peer groups (at switch level)as peer group boundaries are crossed. Using call admission control, the process of establishing callstate along a selected path con�rms whether or not the requested resources are available. If duringthis second step of the call set-up process, the required resources are not actually available alongpart of the selected path, the route is unwound to a point at which a new path can be calculated. Tominimise the likelyhood of happening, the path selection procedure may use a generic call admissioncontrol procedure to predict which links are likely to have su�cient resources available, and to useonly these links in the path. The PNNI speci�cation does not mandate any particular algorithmfor path selection, although it provides an example of an acceptable one. The example algorithmuses a single additive metric to optimize the route it calculates.19



User bandwidth and QoS requirements are speci�ed using the UNI SETUP message ATM tra�cdescriptor and QoS parameter[52][53]. The tra�c parameters specify Peak, Sustainable and BurstCell rates for the communication, while the QoS parameters specify which class of service is required.For each QoS class of service values can be speci�ed for a variety of performance parameters suchas Cell Transfer Delay and Variation.UNI version 3.1 signalling [52] speci�es that multicast connections are set up by establishing aninitial unicast path between the source node and a destination node. Further destination nodesare then included in the multicast delivery tree by means of \add party" requests. The sourcenode can either wait for each add party request to be acknowledged (serial join) or it may havemultiple requests outstanding at the same time (parallel join). The UNI 4.0 speci�cation [53] addsthe ability of a receiver to join the multicast group directly.2.5.2 Broadband Integrated Services Digital Network (B-ISDN)The origins of Integrated Service Digital Networks (ISDNs) are in the services provided by telephonecompanies, who recognised the need to integrate their separate voice, data and dedicated networkservices into a single network. The Broadband ISDN (B-ISDN) recommendations of the Interna-tional Telecommunications Union (ITU) are being developed to further this aim by supporting awider range of audio, video and data transfer services within the same network[8].The original, or Narrowband, ISDN provides the subscriber with a \digital pipe" into an ISDNswitch. Connections between ISDN switches are made using either packet switching (data), circuitswitching (voice) or non-switched (dedicated) capablities. The B-ISDN will maintain the concept ofa \digital pipe", but will integrate the packet switching, circuit switching and dedicated capabilitiesof N-ISDN into one broadband network, B-ISDN. The transfer mode to be used for the B-ISDN isthe Asynchronous Transfer Mode (ATM). The B-ISDN architecture will be described in functionalterms and so is implementation independent [7].Telephone networks from which ISDN has grown, in general, use one of three routing architectures:- � Direct routing; where routes are �xed and pre-established.� Alternate hierarchical routing; where routes are organised into hierarchies, from local o�ces,through toll centres and so on, up to regional centres. Trunk routes are provided, beyond thetree structure, as alternative routes to be used when network loading dictates.� Dynamic two hop alternate routing; where routes are calculated dynamically through morecomplex network architectures, at call set-up time. Routes are selected on the basis of networkloading.In alternate hierarchical routing, a path between two subscribers follows the lowest level of con-nectivity in the hierarchy that has the necessary resources available for the call. As resources areconsumed on trunks at lower levels, the path is selected from trunks higher up in the networkhierarchy. In dynamic two hop alternate routing, networks have a logical link between each pair of20



switches, and all switches are equally responsible for routing calls. If a call cannot be establishedalong a direct link between a pair of switches, then an alternative, two link route is used, if one isavailable. Otherwise the call is blocked. Examples of networks that use dynamic two hop alternaterouting include AT&T's DNHR scheme, and DAR which is planned for BT's domestic network.Each of these systems uses a di�erent mechanism for the selection of alternative routes [45]. Recentwork has addressed mechanisms for dynamic two hop alternate routing in ATM networks [5].The implementation of such routing schemes does not preclude the use of arbitrarilly connected,multi-hop dynamically routed networks as the transfer scheme for B-ISDN. The ITU recommenda-tions for B-ISDN do not specify, nor imply, the network architecture or how a provider of B-ISDNservices should route calls through a network, although as Stallings points out [49], ISDN is evolvingfrom the circuit switching technology of the telephone networks to the packet (or cell) switchingtechnology of broadband networks (such as ATM), as it takes on broadband services. How archi-tectures for B-ISDN/ATM networks evolve compared to ATM networks in the Internet remains tobe seen.Multicast connections in B-ISDN are set up in a manner similar to that of PNNI. A path is �rstestablished between a sender and one receiver, whilst indicating that the connection is to be point-to-multipoint. Once this connection set up has become alerting or active, additional receivers canbe joined to the connection using \add party" requests. Multiple receivers can be pending at anyone time. That is, the sender does not need to wait for the response to any other add party requestbefore issuing another [29]. B-ISDN does not currently support receiver initiated joins.Like PNNI, the sender's ATM tra�c descriptor, broadband bearer capability and QoS parametersare speci�ed using the User/Network Interface SETUP message [28].There are signi�cant di�erences between the way B-ISDN and PNNI use their underlying ATMnetworks. For example, in PNNI networks the user data path is the same as the call controlpath, which is not the case for B-ISDN. The reader is referred to both the ATM Forum and ITURecommendations for detailed descriptions of these methods (which are beyond the scope of thisreport).
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Chapter 3Low Cost Quality of ServiceMulticasting3.1 The Bounded Delay, MinimumCost Multicast Routing Prob-lemThe bounded delay minimum cost multicast routing problem can be stated as follows.� Given a connected graph G = hV;Ei where V is the set of its vertices and E the set of itsedges, and the two functions: cost c(i; j) of using edge (i; j) 2 E and delay d(i; j) along edge(i; j) 2 E.� Find the tree T = hVT ; ETi, where T � G, joining the vertices s and Mk;k=1;n 2 V suchthat P(i;j)2ET c(i; j) is minimised and 8k; k = 1; n; D(s;Mk) � �, the delay bound, whereD(s;Mk) =P(i;j) d(i; j) for all (i; j) on the path from s to Mk in T .Note that, if the delay is unimportant, the problem reduces to the Steiner tree problem. Theaddition of the �nite delay bound makes the problem harder, and it is still NP-complete, as anypotential Steiner solution can be checked in polynomial time to see if it meets the delay bound.3.2 Heuristics with an arbitrary delay boundSeveral heuristics have been proposed that use arbitrary delay bounds to constrain multicast trees.Kompella, Pasquale, and Polyzos [32] propose a Constrained Steiner Tree (CST c) heuristic whichuses a constrained application of Floyd's algorithm. Widyono [62] proposed four heuristics based ona constrained application of the Bellman-Ford algorithm. Zhu, Parsa and Garcia-Luna-Aceves [66]based their technique on a feasible search optimisation method to �nd the lowest cost tree in the setof all delay bound Steiner trees for the multicast. Evaluation work carried out by Salama, Reeves,22



Vinitos and Sheu [46] indicate that Constrained Steiner Tree heuristics have good performance,but are inhibited by high time complexity.The proposals for Constrained Shortest Path Trees by Sun and Langendoerfer [50], which weabbrieviate as CSPT and by Waters [59], which we abbreiviate as CCET (Constrained CheapestEdge Tree), generally have a lower time complexity than Constrained Steiner Tree's but theirsolutions are not as e�cient. In this evaluation work we compare our heuristics against the solutions
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3. Now construct the multicast tree T . Start by setting T = hfsg; ;i.4. Take v 2 VT , with the maximum dbv, that is less than �, and join this to T . Where there isa choice of paths which still o�er a solution within the delay bound, choose at each stage thecheapest edge leading to a connection to the tree.5. Include in ET all the edges on the path (s; v) not already in ET and include in VT all thenodes on the path (s; v) not already in VT .6. Repeat steps 4 and 5 until VT = V , when the broadcast tree will have been built.7. Prune any unnecessary branches of the tree beyond the multicast recipients.3.3.1 A Worked Example
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graph.In the second stage, building the multicast tree, requires a depth �rst search from each leaf node to�nd a path to the source. As the multicast tree grows the search space for each leaf to source nodepath becomes smaller. The time complexity of the depth �rst search is O(max(N; jEj) [22] whereN is the number of nodes, and E is the set of edges, in the leaf node to source tree. The values ofN and jEj depend on the topology of the network, the position of the multicast source node andthe arbitrary delay bound. As the network edge density or the arbitrary delay bound increase sodo the values of N and jEj. In practice, an optimal upper bound can be placed on the arbitrarydelay to limit the values of N and jEj.3.3.3 Pathological Behaviour of the CCET Heuristic
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3.3.4 When CCET costs increaseThe CCET heuristic selects return paths on the basis of the \cheapest" exits from each node, backtowards the source, that do not violate the arbitrary delay bound �. In some networks this rulecan cause multicast trees found by the heuristic to be more expensive than might otherwise beexpected.
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3.3.5 Multicast Tree Stability and Dynamic GroupsThe broadcast tree constructed by the CCET heuristic will be the same for all multicast groups withthe same multicast source and arbitrary delay bound. This occurs because the heuristic constructsthe broadcast tree using only the multicast source and the arbitrary delay bound. The multicasttree is extracted from the broadcast tree by removing unwanted branches. This means that in adynamic environment where the multicast trees grows and dies, the broadcast tree only need berecalculated if the topology of the underlying network changes.3.4 The CST c HeuristicThe algorithm has three main stages.1. A closure graph (complete graph) of the constrained cheapest paths between all pairs ofmembers of the multicast group is found. The method to do this involves stepping throughall the values of delay from 1 to � (assuming � takes an integer value) and, for each of thesevalue s, using a similar technique to Floyd's all-pairs shortest path algorithm (see [21]).2. A constrained spanning tree of the closure graph is found using a greedy algorithm. Twoalternative selection mechanisms are proposed, one based solely on cost, the other on costand delay. In our evaluation we use the most e�cient of these (cost only) which selects edgesfor the spanning tree using the function :-fC = ( C(v; w) if P (v) +D(v; w) < �1 otherwisewhere C(v; w) is the cost of a constrained path from node v to node w, P (v) is the delay fromthe multicast source to node v and D(v; w) is the delay on the path (v; w).3. The edges of the spanning tree are then mapped back onto their paths in the original graph.Finally any loops are removed by using a shortest paths algorithm on the expanded con-strained spanning tree [31].3.4.1 A Worked ExampleApplying the �rst stage of the heuristic to the network in Figure 3.1 produces the constrainedclosure graph illustrated in Figure 3.8A. Note that this graph need not be a complete graph solong as there are paths between every multicast node and the source. Path AF includes node G,path HF includes E and path EF includes G. There is a conict between the paths HF and EFwhich will result in a loop occuring in the constrained spanning tree. The other paths have nointermediate nodes.Figure 3.8B shows the spanning tree obtained from the closure graph using the edge selectionfunction fC . Expansion of the spanning tree into their original paths results in a graph with a loop28
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3.5.2 Time Complexity of the CSPT HeuristicEach of the �rst two steps of the heuristic have the time complexity of Dijkstra's algorithm, whichis at most O(n2). Because these two steps are independent of each other they can be performed inparallel. The last step has a time complexity of O(n).3.5.3 When CSPT costs more than the SPT.
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Salama chose this algorithm because in his simulations with small networks the solutions it producedwere the closest to the optimal.Sun used Kompella et al's most e�cient algorithm as his benchmark, in much the same way asKompella used it.We have chosen two di�erent benchmarks for following reasons. Firstly we use the MST heuristic[23]. The solutions provided by this heuristic are not bound by any arbitrary delay, but we recordtheir delays and use them in the evaluation. Our reasons for this choice is that we can computelarge \minimum" cost trees within a reasonable amount of time (O(n3)) and that the solutions ofthe Kompella et al algorithm which are the most e�cient of all the heuristics under evaluation, tendtowards the MST solution as the arbitrary delay increases. The MST heuristic works as follows :-1. Use Floyd's all pairs shortest paths algorithm to construct a complete graph, T , of all thenodes in the multicast group, including the source node, from the original graph, G.2. Use Prim's minimum cost spanning tree algorithm to construct a minimum cost spanningtree, T 0 of the closure graph, T .3. Map the minimum cost spanning tree T 0 back onto the edges they represent in the originalgraph G, removing any loops that may occur.The MST heuristic applied to the graph in Figure 3.1 results in the tree in Figure 3.15B.Secondly we use Dijkstra's shortest path tree as a benchmark to evaluate the cost savings made byusing the various heuristics. We do this for the pragmatic reason that there is no optimal (or nearoptimal) solution to the problem that can be credibly used in real networks. We consider it morerealistic to look at the savings a multicasting heurisitic can make in comparison to the shortestpath multicasts currently in use [15]. Dijkstra's shortest paths algorithm applied to the graph inFigure 3.1 results in the tree in Figure 3.15A.
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3.6.2 Network ModelsThree models were used for the evaluation of the heuristics. The �rst is attributed to Waxman[60] and is used to generate single cluster networks such as backbones or autonomous systems.Doar's model [19] produces network clusters interconnected via a central core network. Althoughthis model is intended to represent hierarchical networks the interconnection between clusters andthe network core is rudimentary. It has been retained because it's use lead to the discovery ofrare but extreme behaviour in our heuristics. The third model extends Doars ideas by generatinga random backbone network to interconnect the network clusters. This model is a more realisticrepresentation of real networks. We have not yet considered hierarchical networks with more thantwo levels nor interconnected adjacent area networks as models for our evaluations, although thesehave been proposed in both unicast and multicast routing protocols for the Internet [36] [35].The Waxman model randomly distributes nodes over a rectangular coordinate grid. The Euclideanmetric is then used to determine the distance between each pair of nodes. Edges are introducedwith a probabilty that depends on their length. The edge probability is given by:P (fu; vg) = � exp�d(u; v)L� (3:1)where d(u; v) is the distance from node u to u, L is the maximum distance between two nodesand � and � are parameters in the range (0,1). Small values of � increase the density of shortedges relative to longer edges, while larger values of � produces higher node degrees. Edge lengthsare used to represent delays. This implies that node queue processing delay can be ignored. Edgecosts are selected at random from the range [1::L]. Figures 3.16 and 3.17 are examples of networksgenerated using Waxmans model.
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Doar goes further by introducing hierarchical graphs as networks models. These are generated usingthe modi�ed probability function to generate clusters of networks that can then be connected to acentral core network using a �xed number of links. Figure 3.18 is an example of such a network.
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Figure 3.19: Crawford model networkThe cluster interconnection mechanism proposed by Doar means that the number of links con-necting each cluster to the core is prede�ned and static. We modi�ed this rudimentary methodto obtain the third network model. Our network model uses the modi�ed probability function togenerate cluster networks. We then use the same function to generate a network with as manynodes as there are clusters. Each node in this network represents one of the cluster networks andit's edge lengths are scaled to represent interconnection distances between the cluster networks.This 'backbone' network is then mapped onto the clusters by connecting together nodes selectedat random from each cluster. Figure 3.19 illustrates a backbone interconnecting network clusters.In some clusters internet links terminate at di�erent nodes, as illustrated by nodes A,B and D. Inother clusters some nodes at as terminators to more than link, as in clusters C and E. The internalstructure of each cluster will otherwise be similar to that in Figures 3.16 and 3.17.3.6.3 Link MetricsArbitrary Delay BoundsIn our network models we use Euclidean edge lengths to represent link delays. These delays haveno units of time associated with them. Node queue processing delay is assumed to be negligible,as implied by the network models.In his simulations of multicasting algorithms Salama [46] uses a similar network model, but assignsdelay on the basis of a propagation speed of two-thirds the speed of light in networks distributedover a 3000 by 2400 Km2 grid. He further assumes that each network node is a non-blockingATM switch and that node queue processing delay can be ignored when calculating link delay. Hissimulations use an arbitrary delay bound of 0.03 seconds, as might be required by interactive videoand voice applications. This delay was chosen to allow enough time for higher level end-to-endprotocols to process transmissions without degrading the required quality of service.In Distributed Interactive Simulation applications human reaction times may require delay bounds37



of 200-300ms. Tightly coupled applications may require bounds as low as 100ms. If these delay areapplied over networks of typically 50ms diameter then the range of arbitrary delay bounds requiredby applications may vary from being very close to the multicast bound up to several times thenetwork diameter.We choose three arbitrary delay bounds to evaluate the multicast algorithms. The tightest delaybound is the multicast delay. Evaluations using this arbitrary delay bound will indicate the min-imum improvement in network utilisation achievable by each heuristic. Our second chioce is touse the network diameter as the arbitrary delay bound. This purely arbitrary choice provides anevaluation \mid-point". As the arbitrary delay bound increases in relation to the network diameterso the maximum improvement in network utilisation for each heuristic will be achieved. Our thirddelay bound is that of the MST, the lowest cost tree that can reasonably be calculated.Interpretation of the evaluation results can be adapted to time based link delays by scaling networkedge lengths appropriately.CostsIf a provider charges by data units then only the link cost is required in the heuristics. On theother hand if the provider charges for duration (such as might be with a CBR call) then the linkcost might be \link speed (or bandwidth) * duration used". This has implications for the metricswe use in our evaluations. See the evaluation.3.7 Evaluation of the Candidate Heuristics3.7.1 Performance Averages
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at the soonest possible point. If link costs are all the same the heuristic will choose the �rst returnlink from each node on a path back to the source, without minimising the number of links in thepath. In this case path cost is a product of the number of it's links and so this is not minimised.Figure 3.25 illustrates the improvement in solution e�ciency of the CCET heuristic, as the arbitrarydelay bound is increased. We have observed that as the delay bound approaches the MST delay,improvements in solution e�ciency become negligible. Figure 3.25 shows how the costs of multicasttrees with delays of three times the network diameter (D3), three times the broadcast delay (B3)and the MST delay almost coincide.Up to these delay bound limits the number of nodes visited during the tree search in the heuristic'ssecond stage is of O(< 2n), by observation. If the delay bound goes much beyond these limits theheuristic is occasionally prone to very long execution periods which suggests that either N or jEj(or both) can become unacceptably large.3.7.2 Speci�c Multicast Comparisons
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3.8 sCSPT, Multicast Tree Stability and Dynamic GroupsAs discussed previously, the CST c and CSPT heuristics recon�gure their multicast tree topologyas nodes join and leave the multicast group. This behaviour is also true for the benchmark MSTalgorithm. Table 3.30 gives the percentage of multicast tree recon�gurations that occured duringthe tree growth, and the average percentage of path changes per recon�guration. These resultswere obtained by growing a sample of 20 multicasts per network from group size 1 to group size34 over 200 single cluster 35 node networks. The arbitrary delay bound was set to the networkdiameter. CSPT and CST c can be modi�ed, as described previously, to extract their multicastHeuristic MST CST c CSPT% multicast trees recon�gured 89.22 100 67.53Average % of paths changed per recon�guration 23.98 20.66 11.56Figure 3.30:
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Figure 3.32:trees from static broadcast trees, although this change a�ects the cost performance of the multicastsolutions. We label the modi�ed versions of these two heuristics sCSPT and sCST c, respectively.Figure 3.31 illustrates the cost performance for CSPT and sCSPT . The cost di�erence between thevariants is greater for smaller multicasts than larger ones, as would be expected. The actual costdi�erence, as opposed to the di�erence in percentage excess over the cost of an MST solution, is onaverage less than 1%, making the sCSPT an acceptable alternative to CSPT where required. Figure3.32 illustrates the cost performance for CST c and sCST c. In this case, for smaller multicasts,the percentage excess cost over the MST solution is markedly di�erent for each of the heuristicvariants. In fact the sCST c cost performance tends towards that of CCET, as illustrated in �gure3.33. By using a cheapest cost path algorithm to attach nodes to the multicast tree the CSPT andsCSPT heuristics �nd cheaper multicast trees for sparce multicasts. As the multicast tree growspaths to additional nodes are included in the multicast tree on the basis of either their cost ordelay from the source. There is no direct attempt to aggregate routes and so the tree cost steadilyincreases. Both sCST c and CCET aggregate cheapest paths to produce e�cient solutions for thebroadcast case. This means that paths to many nodes are not the cheapest in themselves. The costsaving of the multicast occurs because expensive paths are aggregated to reach more destinations.Consequently, as the broadcast tree is pruned to �nd solutions for multicast groups of reducing42
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Chapter 4Hybrid Approach4.1 Hybrid Multicast HeuristicWe conclude from our analysis and evaluation work that none of the heuristics we have consideredcan provide the \cheapest" multicast solutions in all networks for all sizes of multicast groups. Theyeither take too long to �nd their solutions or are vunerable to generating unacceptable solutionsthat depend on the network topology and/or the multicast topology. We propose that by combiningheuristics of acceptable time complexity that can be e�ciently integrated, the resulting Hybrid [12]will generate solutions that are predominantly cheaper than SPTs for all network topologies, forall multicast group sizes.Kompella et al generates good solutions but has a high order of time complexity. As suggested byWidyono [62] this can be ameliorated by reducing the granularity of the arbitrary delay bound, butat the cost of compromising the algorithms accuracy. The Crawford variant generates poor solutionsoverall. We discard the Crawford heuristic because of its poor performance and the Kompella etal algorithm because its time complexity may be too high for practical.Because the Waters and Sun heuristics generate their most e�cient solutions at opposite ends of themulticast group size range their combination as a Hybrid might result in a heuristic of acceptabletime complexity that produces solutions of signi�cantly improved e�ciency over shortest path trees.The absolute guarantee of minimal e�ciency can be made if Dijkstra's algorithm is included in theHybrid to cater for the rare instances where both Sun and Waters produce solutions that are moreexpensive than the shortest path tree.Integration of the three heuristics is simple. All three calculate Dijkstra's shortest path tree fordelay which is extended for the second stage of the Waters heuristic. The Sun heuristic calculatesDijkstra's shortest path tree for cost, a task which can be conducted simultaneously with the delaycalculation. Once the trees have been obtained for each method their costs can be easily calculatedand the cheapest tree selected as the solution.The Hybrid heuristic procedure is as follows :- 44



� Execute a modi�ed version of the Waters heuritsic that returns the Water's solution andDijkstra's SPT for the multicast (which is calculated in the heuristics �rst step).� Execute the �rst step of Sun's heuristic to obtain a lowest cost spanning tree to as manydestination nodes in the multicast as is possible without any path breaking the arbitrarydelay bound.� If not all of the multicast nodes have been reached in the previous step combine the shortestpaths to these nodes from Dijkstra's SPT with the lowest cost spanning tree, making surethat the delay to any destination node does not break the delay bound. This is the last stepof Sun's heuristic.� Calculate the cost of the Waters solution.� Calculate the cost of Dijkstra's SPT.� Calculate the cost of the lowest cost spanning tree, with additional SPT paths.� Select the cheapest tree from the above three steps as the multicast solution.4.2 Evaluation of Hybrid Heuristic4.2.1 Performance Averages
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In all examples the Hybrid outperforms or equals both CCET and CSPT; the improvement isparticularly noticable in smaller networks or where the multicast group size is small. This occursbecause both CCET and CSPT are their most volatile in these cases whereas the Hybrid is ableto select the better solution of either heuristic. As the network size increases there is a greatercoincidence between the Hybrid and its constituent heuristics. Figure 4.8 illustrates the percentageof times the Hybrid is cheaper than CCET, CSPT and SPT. The SPT function in the Hybrid onlyachieves cheaper solutions in 0:33% of the cases.4.2.3 Network Load and Multicast Failures
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CSPTFigure 4.10: Network load and multicast failuresAs noted in section 3.7.3 the SPT uses up network resources faster than CCET or CSPT. Wesee, in �gure 4.10 that as we would expect the Hybrid consumes much the same resources as itsconstituent heuristics.4.2.4 Multicast Tree Stability and Dynamic GroupsHeuristic Hybrid Hybrid using sCSPT% multicast tree recon�gurations 85.13 93.74Average % of paths changed per recon�guration 28.79 37.9Figure 4.11:The Hybrid heuristic is prone to recon�gure the multicast tree as nodes join and leave the multicastgroup. This happens for either of the following reasons. The Hybrid may switch the heuristic usedfor the solution when a node joins or leaves the multicast group, thus calculating an entirely \new"solution for the \new" multicast group. On the other hand, the Hybrid may not need to switchheuristics, but might already be using CSPT which is prone to recon�guration as the multicasttree grows. Table 4.11 gives the percentage of multicast trees that were recon�gured at least onceduring their growth, and the average number of path changes per recon�guration. We also includeresults for a variant of the Hybrid that uses the sCSPT heuristic (the static version of CSPT),which reduces the number of recon�gurations due solely to the use of CSPT. These results wereobtained using the save evaluation networks and multicast groups used in Section 3.8.47



Chapter 5Application of the Heuristics5.1 Characteristics Required of an HeuristicTo be of practical use for multimedia applications in high speed networks, a bounded delay low-costmulticast routing algorithm should aim to have :-� Low time complexity, since route calculation may have to be performed in \real-time" at callset-up or as part of a distributed route calculation as user data crosses a network.� Narrow variance in the e�ciency of its solutions to minimise the occurence of expensivemulticast solutions being calculated.� Uniformity of performance over all possible multicast groups.� Minimal or no recon�guration of a multicast tree caused by receivers joining or leaving amulticast group, because of the impact it may have on established user data ows. Switchingpaths in a multicast delivery tree may increase transmission jitter or cause user data packetsin ows, temporarilly, to arrive out of sequence. The degree of disruption to existing owswill depend on the scale of any recon�guration. In this case, recon�guration does not includethe addition of links required to join the new receiver to the multicast tree. It only refers tolinks that are dropped from an existing solution and replaced by other links, because moree�cient paths are to be found as a consequence of a receiver joining or leaving the multicastgroup.Heuristics that do not satisfy all of these criteria may still have limited application.5.2 Characteristics of the Heuristics EvaluatedOur work has identi�ed a number of characteristics that appear to be generally applicable to thelow-cost multicast heuristics we evaluated in Chapter 3. These characteristics, which do not apply48



to the Hybrid, are :-� The closer to the optimal, the solution of an heuristic is, the higher its time complexity.� Single metric shortest path algorithms, such as Dijkstra's SPT, add paths to multicast des-tinations as delivery trees grow. This is not the case for delay constrained multiple metricalgorithms, such as those we have evaluated here. The CCET heuristic, for instance, con-structs a broadcast tree which it then prunes back to the multicast tree. The CSPT and CSTheuristics have to remove any forward loops from their delivery trees before they can be usedas multicast solutions. This characteristic of constructing the complete multicast tree beforeany path can be used, needs to be taken into account if any of the heuristics evaluated is be-ing considered for implementation in connectionless networks. Unlike routers that use singlemetric path calculations, routers that construct delay constrained multiple metric paths willnot be able to update their user data forwarding tables until the entire multicast tree hasbeen calculated.� The solutions of the heuristics studied are prone to wide variance. This variance can be solarge that, sometimes, the solution provided by a shortest delay path tree is more e�cientthan that found by using an heuristic. Further, it is not possible to easily predict for whichmulticast/network combinations this extreme variance occurs.� The e�ciency of each heuristic solution is not uniform across the range of all multicast groupsizes. In general some heuristics �nd e�cient multicast solutions for small multicast groups,while others �nd better solutions for large groups.� The heuristics we have evaluated select their solutions from search spaces that contain eitherbroadcast trees or multicast trees. Broadcast trees include all nodes in the network. Onceselected, a broadcast tree is pruned back so that its leaves are the multcast group. Multicasttrees include only those nodes in the multicast group, and the intermediate nodes on thepaths from the source to the multicast destinations.{ Once calculated, heuristics that use broadcast tree based solutions are able to join newreceivers to the multicast tree without having to recalculate their solution. Heuristicsthat use only multicast trees either have to recalculate their solutions to include thenew reciever or use some other method to perform the join. Mechanisms for joining newdestinations to multicast trees vary from those that use simple shortest delay paths, butignore cost [33] to genetic algorithms that attempt to �nd joining paths which balancecost and delay [47].{ Heuristics that select their solutions from a search space based on multicast trees producemore uniform results over the range of possible multicast group sizes than those that usebroadcast trees.{ Heuristics that select their solutions from a search space based on broadcast trees, that�nd very e�cient solutions for large multicast groups appear to do badly for smallmulticast groups.� Combining several heuristics into a hybrid reduces the occurence of ine�cient multicast solu-tions, which are limited to the worse case performance of a shortest delay path tree. However,the hybrid approach means that the multicast solution often requires recon�guration as nodesjoin or leave the multicast group, because there may be jumps from one to another of theconstituent heuristics. 49



� All the heuristics evaluated require up-to-date knowledge of the entire topology of the networkto which they are applied. For this reason implementation of the heuristics will require the useof \link-state" routing protocols, such as PNNI. When implementing a protocol to support aparticular multicast tree calculation, consideration should be given to the cost of constructingand maintaining the tree in comparison to the network resources the chosen heuristic maysave by its use[61].5.3 Combining Heuristics, Multicast Types and Network TypesAs discussed in Chapter 2, we identi�ed two extreme types of multicast groups and three types ofnetwork :-� Multicast group types.{ Heavyweight; which will tend to have little or no changes of group membership. Closedmulticast user groups are heavyweight.{ Lightweight; which may have considerable changes of group membership. Open multicastuser groups are lightweight.� Network types.{ Static: connections are recon�gured within the network.{ Hard state: connections are expensive to recon�gure.{ Soft state: paths recon�gure themselves at releatively low cost.We also note that multicast tree recon�guration will be minimised or eliminated where multicastgroup membership is (almost) static or a single, broadcast tree based, heuristic is used for thetree calculation. From our observations we conclude that the heuristics evaluated might satisfy anumber of di�erent low cost delay bound multicast routing scenarios, as summarised in �gure 5.1.� Heavyweight multicasts are (almost) static and so might best be supported by a hybrid heuris-tic, since this will calculate the lowest cost solution for the multicast tree. Recon�gurationis only likely to occur if the multicast group membership changes. The level of disruption touser data ows due to any rare recon�guration caused by nodes joining or leaving multicastgroups would need to be assessed.� A lightweight multicast may have extremely dynamic membership behaviour. For this reason,in a hard state network the hybrid heuristic approach is inappropriate. A single heuristic,based on a broadcast search space, might be the best solution because it will not recon�gurethe multicast tree as receivers join or leave the multicast group. The level of risk associatedwith the occurence of ine�ciency spikes of a single heuristic would need to be assessed.� A lightweight multicast in a soft state network could be supported by a hybrid heuristic.Although the multicast tree will probably require recon�guration quite often, the costs ofdoing so are unlikely to be high. 50



network type hard state soft state static(e.g. connection oriented) (e.g. connectionless) (e.g. pre-con�gured)multicast typeheavyweight Hybrid Hybrid Hybrid(sender join) or SuperHybridlightweight sCSPT sCSPT not applicable(receiver join) or HybridFigure 5.1: Combining heuristics, network types and multicast types� In the case of static routing or the calculation of permanent connections, such as permanentvirtual circuits in ATM networks, we would propose the extension of the hybrid to a superhybrid that includes a larger variety of multicasting heuristics than we have in the hybriddiscussed here. It is unlikely that time complexity would be a predominent considerationwhere multicast solutions are calculated \o�-line" and downloaded into the network. If timecomplexity were a signi�cant contribution to the process of creating or modifying multicasttrees, then the hybrid heuristic as previously proposed would su�ce.For the hybrid we would choose the Hybrid, described in Chapter 4, as it generates e�cient multicasttrees and has an acceptable time complexity. The choice of a single, broadcast tree based heuristicwould be sCSPT. This is because it generates fairly uniform solutions of reasonable e�ciency, acrossthe entire range of multicasts, and it has an acceptable time complexity. Although sCSPT, like allthe single heuristic solutions, is prone to generating spikes of ine�cent solutions, the percentage oftimes it does so s fairly low. The other heuristics have not been chosen either because of their timecomplexity or because their performance is not su�ciently uniform across all possible multicasts.5.4 Application of the chosen Heuristics in Multicast RoutingProtocolsClearly, neither of the chosen heuristics will be applicable to routing protocols that do not usesome form of link state data for route calculation. The heuristics need to know the topologyof the network, even if it is aggregated in places, to calculate their solutions. For this reasonimplementation of either heuristic in protocols such as DVMRP is not possible. The heuristicscannot be implemented in the shared tree protocols CBT and PIM either, because both theseprotocols use their underlying unicast routing methods, irrespective of what types they may be,to establish a shared multicast tree. PIM and CBT do not perform any multicast tree calculation;their primary purpose is the reduction of the volume of state data and route computation incomparison to protocols such as DVMRP and MOSPF. However, PIM and CBT could provide thebasic framework for shared low-cost multicast trees. Using our techniqes would require the cores orRPs to calculate the paths to the receivers (once they have received the join request). Although thisis a signi�cant departure from the philosophy of PIM and CBT, we believe it is worth considering.If explicit routing from the cores/RPs were also introduced, the scaling properties of MOSPF andDVMRP would, to some extent, be avoided. The other protocols discussed in Chapter 2, with the51



exception of ST2+, Tag Switching and Label Swopping, are all based on link state protocols andso are candidates that, subject to any necessary modi�cations, might be able to use the Hybridand sCSPT heuristics. The ST2+ protocol,Tag Switching and Label Swopping, like PIM and CBT,depend on an external unicast route calculation mechanism. However, unlike PIM and CBT, thepurpose of these methods is not, primarilly, to minimise the volume of state data used by multicastprotocols, and so they might also be able to use an external multicast route calculation, such asthe Hybrid or sCSPT heuristics.MOSPF as a single link metric routing protocol, may reserve networks resources, if used with aprotocol, such as RSVP. If the protocol were to be extended to cater for QoSR, as has been pro-posed by Zhang et al in [64], then both of the chosen heuristics could be used within MOSPFareas. Although the heuristics could also be applied across the inter-area backbone of MOSPFAutonomous Systems, the calculation of remotely sourced multicast trees would need to be alteredto use forward path link state data, rather than the reverse path data currently used. This problemcould be overcome by modifying MOSPF to include \come from" link metrics in backbone adver-tisements, rather than relying on the OSPF backbone summary link state advertisements [36], orby means of explicit route calculation. However, the current multicast paradigm used by MOSPFis receiver initiated, in which destinations may join and leave the multicast group arbitrarilly. Ifthe Hybrid heuristic is used under these circumstances, then the multicast tree may be continuallyrecon�gured, which could have a serious impact on the data ow it is carrying. On the otherhand, the sCSPT heuristic maintains a stable multicast tree irrespective of the multicast groupsjoin/leave behaviour. For this reason it would be suitable as a route calculation method for a QoSRMOSPF network. The Hybrid heuristic might be used in a QoSR MOSPF network if features suchas explicit routing and pinning [64] were introduced in conjuction with heavyweight multicasting.The ST2+ protocol speci�es both source initiated, desination initiated and source and destinationintiated multicast tree construction. Although the protocol does not mandate the routing calcula-tion it uses to construct paths, since it relies on an external unicast route calculation, it could do so.The support of ST2+ for both heavyweight and lightweight multicasting means that it could use aroute calculation based on either the Hybrid heuristic (heavyweight, source initiated) or the sCSPTheuristic (lightweight, source or destination initiated). This argument applies to Tag Switching andLabel Swopping architectures, although as these support explicit routing, and hence heavyweightmulticasting, the Hybrid might be a more appropriate choice. This would be particularly so if thearchitectures were applied to ATM networks.The PNNI speci�cation does not mandate how routes through ATM networks are to be calculated,although it does illustrate how they might be by giving a sample route generation algorithm.Route calculation is multiple metric and based on the exchange of link state data, both of whichare requirements for delay bound low-cost multicast routing algorithms. However, PNNI (andUNI) speci�es that multicast connections are established by �rst connecting the source to a singledestination and then joining additional destinations to the connection by means of an \add party"request. This mechanism is in direct conict with the characteristics of some delay bound low-costmulticast routing algorithms which recon�gure multicast trees as they grow. They can only avoidthis recon�guration if all the multicast destinations are known when the multicast tree is calculated.For this reason the more e�cient of the heuristics we have evaluated are unsuitable for use byPNNI in its current form. This argument applies to B-ISDNs which also construct their multicastconnections using an add party mechanism. Given the evolutionary nature of ISDN architecturesneither of the heuristics proposed may, initially be of use, particularly if B-ISDN uses dynamic52



two-hop alternate routing. On the other hand, if evolving ATM networks use dynamic routingfor arbitrarilly connected switches, and support for both heavyweight and lightweight multicastingbecomes necessary (as is likely), then both the Hybrid and sCSPT heuristics provide an e�centmeans of calculating low-cost delay bound multicast trees. In the interim, while PNNI and B-ISDNuse add party mechanisms for receivers to join multicast trees, if the group membership is knownby the sending router prior to the establishment of a multicast tree, the join paths could be takenfrom a pre-calculated multicast tree. Such a procedure would enable the use of heuristics, such asthe Hybrid, in B-ISDN and PNNI networks.A potential application of the Hybrid in any link state network is in the construction of \permenent"multicast trees for closed user groups, where the sender wants the resources in the network to bereserved, for all receivers, even if they are not active. Receivers may join and leave the multicastas they wish, but their paths from the sender would remain intact.The Hybrid and sCSPT heuristics could be used in a shared tree protocol, but the savings in statedata, required to construct and maintain the tree, would not be as great as that achieved by PIMor CBT. The heuristics require multicast group membership link state data to be maintained by allrouters that perform tree calculation, as is the case with both MOSPF and PNNI but not the casefor CBT and PIM. However, with an appropriate explicit routing or centre based route calculation, shared tress using either the Hybrid or the sCSPT heuristics need not require as much state datato be used as is required by MOSPF or DVMRP. Where either of the heuristics is used in a sharedtree protocol, the arbitrary delay bound, �, has to span the diameter of the multicast group ratherthan the height, as is the case for source based multicast trees. This is because all user data goesvia the centre of the tree. Some evaluation work has been carried out to assess the savings thatthe CEPT heuristic used in a shared tree might have over CBT, which is documented in [40]. Thiswork remains to be carried out for the Hybrid and sCSPT.In summary, the Hybrid heuristic is more applicable to heavyweight multicasting protocols thatsupport closed multicast user groups. The sCSPT heuristic is better suited to lightweight multi-casting protocols, that support ope multicast user groups.
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Chapter 6Conclusions and Further ResearchWe have evaluated the heuristics using both at networks and networks constructed from clustersinterconnected via backbone networks. These have been both densely and sparsely connected, largeand small. The multicast groups used range in size from small to large, across the networks. Wechose the network diameter as our primary arbitrary delay bound.We have compared the average excess cost performance of the heuristics against a benchmark(MST). We have also compared the performance for individual multicasts against each other. Thevariance in the e�ciency of the heuristics solutions has also been examined. Finally, we haveassessed the e�ciency of the heuristics as network load increases, and how often and how much thetopology of multicast trees changes as they grow.Through our evaluation work we have identi�ed problems of time complexity and performancevariability in heuristics that have been proposed to calculate low-cost multicast trees that arebound by an arbitrary delay. By combining appropriate heuristics we propose a hybrid (which wecall the Hybrid) that produces e�cient solutions within an acceptable order of time complexity, forall multicast group sizes. Our evaluations indicate that the Hybrid performs well for both singlecluster and hierarchical networks.An important result of this work, and a departure from current routing solutions, is the integrationof several heuristics which are indivdually prone to \spikes" of ine�ciency (as might be expectedin an heuristic approach) into a hybrid that generates e�cent solutions for all multicast groups.We have also identi�ed the need to develop multicast heuristics that calculate stable multicast solu-tions, where multicast group membership is dynamic. We have found that very e�cient heuristicssu�er more multicast tree recon�guration than less e�cient heuristics, as receivers join or leavea multicast group. If the e�cient heuristics are restrained, so that they do not recon�gure theirmulticast trees, then they produce very ine�cient solutions for small multicast groups. In orderto provide a reasonably e�cient heuristic we constrain Sun's heuristic [50], to obtain the sCSPTheuristic, that will not recon�gure multicast trees as members join or leave the multicast group.Both heuristics require full knowledge of the network topology, which makes them more amenable54



for implementation in connection oriented networks, where they can be implemented as extensionsto a unicast SPT route calculation. However, connection orientation is likely to be the communi-cation paradigm required for reliable quality of service routing.In assessing how the heuristics can be applied, we have identi�ed two classes of multicast types;heavyweight and lightweight. We have also examined existing and proposed multicasting protocolsin order to identify where the Hybrid and sCSPT heuristics can be best applied. The Hybrid heuris-tic is applicable to heavyweight multicasting for closed user groups, in robust networks, whereas thesCSPT heuristic is suitable for lightweight multicasting for open groups, in less robust networks.With appropriate extensions, the Hybrid is more suited to architectures such as PNNI (and, possi-bly, B-ISDN and ST2+), and the emerging Internet tag switching and label swapping architectures.The sCPST heuristic is applicable to most multiple metric link state routing protocols, includingthe potential QoSR MOSPF.Finally we have considered how the heuristics could be used in shared tree routing protocols, andconsider this a viable application area.6.1 Further Research IssuesThe work to date leads into the more practical issues of implementing the heuristics in real networks,such as QoSR MOSPF, etc, which is for further study as QoSR protocols are evolved through theworking groups of the IETF.The application of the heuristics to shared trees is a second area of more practical work. Whilethe use of the heuristics in protocols such as CBT and PIM is precluded, these protocols providea basic framework from which low-cost delay bound shared trees might evolve. There is a need, inthis area, to study how the heuristics might construct shared trees with multiple centres.A further area of continued research is the study of join/leave mechanisms for the Hybrid such thatmulticast tree recon�guration is minimised. Since the problem the Hybrid is attempting to solve isNP-complete, work has been undertaken by Salmon [47] to investigate the use of non-deterministicalgorithms to �nd join paths to existing multicast trees. This approach, which is based on geneticalgorithms, may use the search space of an existing Hybrid solution as a starting inwhich to �ndjoin paths.Other application areas that may bene�t from this work are the calculation of load sharing pathsin networks, and shared trees. These are areas for further research.
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