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Abstract

A comprehensive semantics for functional programs is presented, which generalizes
the well-known call-by-value and call-by-name semantics. By permitting a separate
choice between call-by value and call-by-name for every argument position of every func-
tion and parameterizing the semantics by this choice we abstract from the parameter-
passing mechanism. Thus common and distinguishing features of all instances of the
ς-semantics, especially call-by-value and call-by-name semantics, are highlighted. Fur-
thermore, a property can be validated for all instances of the ς-semantics by a single
proof. This is employed for proving the equivalence of the given denotational (fixed-
point based) and two operational (reduction based) definitions of the ς-semantics. We
present and apply means for very simple proofs of equivalence with the denotational ς-
semantics for a large class of reduction-based ς-semantics. Our basis are simple first-order
constructor-based functional programs with patterns.

Keywords: functional programming language, denotational and operational semantics, call-
by-value, call-by-name, strictness, pattern-matching.
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1 Introduction

Two essentially different parameter-passing-mechanisms exist for the evaluation of function-
al programs: call-by-value (cbv) and call-by-name (cbn)1. Unfortunately, formal definitions
of the two arising semantics are generally rather independent of each other: Firstly, the
leftmost-innermost and the leftmost-outermost reduction strategy, which are often associat-
ed with cbv- and cbn-evaluation, respectively, look rather incomparable. Secondly, deno-
tational definitions of cbv-semantics are usually inelegant modifications of their cbn coun-
terpart ([FH88]). This independence is in contrast with the fact that many modern func-
tional programming languages even use a mixture of both parameter-passing-mechanisms,
e.g. ML is based on cbv-evaluation but includes cbn-evaluated streams (lazy lists) for in-
put/output and the cbn-language Haskell permits cbv-annotations for efficiency reasons
([MTH90, HJW+92, MH+96]).

Therefore we define one unifying, generalized semantics by permitting a separate choice
between cbv and cbn for every parameter position of every function. This semantics, named
ς-semantics2, is parameterized by this choice (ς) and thus includes the well-known cbv- and
cbn-semantics as special instances.

Hereby we see that the mentioned association with leftmost-innermost and leftmost-
outermost reduction is rather misleading. Instead we will see that the two semantics use
different instances of the program for their operational semantics and leftmost-innermost
reduction is even a kind of outermost-reduction. The ς-semantics highlights the true dif-
ferences between cbv- and cbn-evaluation. Even more important is that common features
are stressed. This ameliorates our understanding of the mentioned prevailing mixtures of
cbv- and cbn-semantics in existing languages. Furthermore, abstracting from the parameter-
passing-mechanism provides the means for stating, analysing, and proving validity of semantic
properties of functional programs in general. Here we use this to prove the well-definedness
and the equivalence of the three definitions, one denotational and two operational, which we
give for the ς-semantics (hence in particular cbv- and cbn-semantics are dealt with by the same
proofs). In the proof of equivalence we employ rather general techniques which even provide
the means for simple proofs of equivalence with the denotational semantics for operational,
reduction based ς-semantics which may be defined in the future, e.g. for increased efficiency.

1Call-by-need evaluation is just a more efficient semantic equivalent of cbn-evaluation. This efficiency aspect
will just be touched in Chapter 10.

2ς is a variation of the Greek letter sigma.



4 1 Introduction

Functional Programs and Data Types

Our basis are simple first-order constructor-based functional programs with patterns like the
following:

add(x,Zero) → x

add(x,Succ(y)) → Succ(add(x,y))

mult(x,Zero) → Zero

mult(x,Succ(y)) → add(x,mult(x,y))

We regard a program as a specification of a data type, which in the first-order case is
simply an algebra consisting of a carrier set and a set of operations. One part of the data
type is already defined by the signature and the semantics of the programming language and
not by the particular program. In the example we assume the carrier set to contain the
constructor terms Zero, Succ(Zero), . . ., and the constructor symbols to denote themselves
(free interpretation). Only the meaning of the symbols add and mult is given by the program.
Consequently, the semantics of a programming language defines a base data type BDT =
〈carrier, base operations〉, and the semantics of a particular program P is the extension of this
data type by additional operations: DT(P ) = 〈carrier, base operations ∪ defined operations〉
The ς-semantics is modular, that is extending a program does not modify but only extend its
data type.

Constructors and Pattern Matching

We use constructor-based (also called algebraic) data types, because on the one hand only
potentially non-flat data types fully expose the relationship between cbv- and cbn-parameter-
passing, and on the other hand all data types used in modern functional programming lan-
guages are covered3. These languages permit the user only to define new constructor-based
data types and also the predefined data types like lists, characters and numbers can be re-
garded as constructor-based (with some additional base operations which are not considered
here), being implemented in a special, more efficient way4.

For common functional programming languages pattern-matching is only syntactic sugar.
Priority rules for choosing a reduction rule (first-fitting in Haskell, best-fitting in Hope;
[FH88]) give complicated semantic definitions and make equational reasoning rather difficult
([Tho89, Tho95]). In contrast, precisely regarding pattern-matching as foundation leads us to
a simple definition of the ς-semantics.

Starting-Points

The denotational semantics we define is a fixed-point semantics like those for recursive applica-
tive program schemes ([Vui74a, Vui74b, Niv75, DS76, BL77, GTWW77, Cou90]). While the

3However, some non-free data types like e.g. sets cannot be completely modelled by constructor-based data
types.

4With this point of view arbitrary precision integers require an infinite signature.
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concept of a base data type is central to this field, viewing the semantics of a whole program
as a data type is inspired by algebraic specifications ([Wir90]). We define reduction semantics
as operational semantics, but due to pattern-matching we cannot use the simple reduction
semantics of recursive applicative program schemes. Instead, we apply notions and results
from term rewriting systems ([DJ90, Klo92, Hue80, HO80, HL91]), especially for proving the
equivalence of the denotational and operational ς-semantics. For proving the equivalence of
the two operational ς-semantics we generalize the proofs in [O’D77] and [BK86] that parallel-
outermost and leftmost-outermost reductions are terminating whenever possible.

Structure of the Paper

In Section 2 we introduce preliminary concepts and notations. Afterwards, the syntax of
our programs is defined in Section 3. Subsequently, we consider in Section 4 properties we
expect any semantics to possess, and, to prepare the generalization, we define the standard
cbv- and cbn-semantics for our programs in Section 5. In Section 6 the ς-semantics is defined.
Then we prove in Section 7 the equivalence of the three given definitions of the ς-semantics.
Subsequently we prove in Section 8 some properties of our ς-semantics, especially those we
consider desirable in Section 4. In Section 9 we discuss the use of ς-semantics for modelling the
mixed strictnesses of modern functional programming languages and in Section 10 we consider
more efficient reduction strategies than those given, as basis for realistic implementations. We
conclude with a summary and some remarks in Section 11.

To avoid tiresome details many proofs are only sketched. Full proofs and additional exam-
ples are given in [Chi95].

2 Basic Definitions and Properties

We denote the natural numbers by IN, the positive natural numbers by IN+ and the set
{1, 2, . . . , n} by [n] for any n ∈ IN. IB = {tt,ff} is the set of boolean values. If M is a set,
then M ∗ denotes the set of words over M with ε as empty word.

The notions partial order, mapping over partial orders, algebra, ordered algebra, and finite
and infinite term are standard and may be found in e.g. [Wec92].

Both [DJ90] and [Klo92] give comprehensive surveys of term rewriting systems, the latter
also of almost orthogonal term rewriting systems. However, our presentation is quite different
in order to introduce the concept of an instance of a term rewriting system, which will be the
basis of our operational ς-semantics, in a simple way.

2.1 Partial Orders

A partial order A = 〈A,≤A〉 consists of a non-empty set A and a reflexive, antisymmetric, and
transitive relation ≤A ⊆ A × A. We use various symbols like ≤,⊆,�,⊑, and E for different
partial order relations.

Let T be a subset of A. In case of their existence, the least element of T is denoted by
LeastA(T ) and the least upper bound of T by

⊔A T . T is an (ω-)chain iff it is non-empty,finite
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or countably infinite, and totally ordered. We often write chains as sequences T = (ai)i∈IN

such that a0 ≤ a1 ≤ a2 ≤ . . .. The partial order A is an (ω-)complete partial order (a cpo) iff
every chain T ⊆ A and the empty set have a least upper bound. Then A has the least element
⊥A :=

⊔

∅.
A subset T ⊆ A is cofinal in a subset T ′ ⊆ A iff for all t ∈ T there exists a t′ ∈ T such

that t ≤ t′. If A is a cpo, T, T ′ ⊆ A are chains, and T is cofinal in T ′, then
⊔

T ≤
⊔

T ′.
Let A be a cpo. An element a of A is ω-compact iff for every chain T ⊆ A the property

a ≤
⊔

T implies the existence of an a′ ∈ T such that a ≤ a′. A cpo A is ω-inductive iff for
every element a ∈ A there exists a chain T ⊆ A of ω-compact elements such that a =

⊔

T .

2.2 Mappings over Partial Orders

If A is a set and B = 〈B,≤B〉 a partial order, then the canonical partial order of the mapping
space, 〈(A→B),�〉, is defined by ϕ � ψ :⇐⇒ ∀a ∈ A. ϕ(a) ≤B ψ(a).

Assuming A andB are partial orders, a mapping ϕ : A→B is monotonic iff a ≤A a′ implies
ϕ(a) ≤B ϕ(a′).

Let A and B be cpos. A mapping ϕ : A→B is strict iff ϕ(⊥A) = ⊥B. A mapping ϕ is
(ω-)continuous iff for every chain T ⊆ A the least upper bound of ϕ(T ) := {ϕ(t) | t ∈ T}
exists and

⊔

ϕ(T ) = ϕ(
⊔

T ). The set of (ω-)continuous mappings is denoted by [A→B]. The
canonical partial order of (ω-)continuous mappings, 〈[A→B],�〉, is complete.

Let ϕ be a mapping from a set A to itself. A fixed-point of ϕ is an element a ∈ A such that
ϕ(a) = a. The well-known fixed-point theorem of Knaster and Tarski states that if A is a cpo
and ϕ : A→A is continuous, then ϕ has a least fixed point given by Fix(ϕ) :=

⊔

i∈IN ϕ
i(⊥A).

Until here we considered only mappings with one argument. However, for ϕ, ψ : A1× . . .×
An→A we define ϕ � ψ :⇐⇒ ∀a1 ∈ A1, . . . , an ∈ An. ϕ(a1, . . . , an) ≤A ψ(a1, . . . , an) and then
the generalization of other previously defined notions is straightforward.

2.3 Algebras

A signature Σ is a set of operation symbols. Associated with every f ∈ Σ is a natural number
denoting its arity. We write f (n) for an operation symbol f of arity n and Σn ⊆ Σ is the
subset of all such operation symbols. A constant is an operation symbol of arity 0.

A (Σ-)algebra A = 〈A,α〉 consists of a non-empty set A and a mapping α :
⋃

n∈IN Σn→(An→A) which assigns a mapping (an operation) of arity n to every operation
symbol of arity n. We generally write fA for α(f). The class of all (Σ-)algebras is denoted by
AlgΣ.

Let A and B be Σ-algebras. A mapping h : A→B is a homomorphism from A to B iff it
preserves operations, i.e. h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) for all a1, . . . , an ∈ A and
f (n) ∈ Σ. A and B are isomorphic iff such a homomorphism h and its inverse h−1 exist.

Let K be a class of Σ-algebras and X ⊆ A for an algebra A ∈ K. A is free in K relative
to X iff every mapping ϕ from X to an algebra B of K can uniquely be extended to a
homomorphism from A to B. In the case X = ∅ we say that A is initial in K. Since all
algebras relatively free in K to X are isomorphic, we do not distinguish them in the following
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and just speak of the relatively free to X and the initial algebra in K (if any exists at all).
For K = AlgΣ we speak of the absolutely free and the absolutely initial Σ-algebra.

2.4 Ordered Algebras

The triple A = 〈A,≤, α〉 is an ordered (Σ-)algebra iff 〈A,≤〉 is a partial order and 〈A,α〉 a
Σ-algebra such that all operations α(f) are monotonic w.r.t. the partial order. An ordered
algebra may be viewed both as algebra and as partial order by ignoring ≤ and α, respectively.

The set of all ordered Σ-algebras with partial order 〈A,≤〉 is denoted by AlgΣ〈A,≤〉. Its
canonical partial order 〈AlgΣ〈A,≤〉,⊑〉 is given by A ⊑ B :⇐⇒ ∀f ∈ Σ. fA � fB.

An ordered Σ-algebra 〈A,≤, α〉 is (ω-)complete iff 〈A,≤〉 is complete and the operations
fA are continuous for all f ∈ Σ. The class of all complete Σ-algebras is denoted by Alg∞

Σ,⊥.
Let A and B be complete ordered Σ-algebras. An (ω-)morphism from A to B is a strict
continuous homomorphism from A to B. For complete algebras the notions of isomorphism,
freedom and initiality are defined w.r.t. morphisms instead of homomorphisms.

2.5 Finite and Infinite Terms

In the following Σ is a signature with at least one constant and X a finite or countably infinite
set of variables with X ∨ Σ = ∅.

We define the Σ-term algebra TΣ(X) = 〈TΣ(X), τ〉 to be the absolutely free Σ-algebra
(i.e. in AlgΣ) relative to X. Hence the Σ-ground term algebra TΣ = 〈TΣ, τ〉 := TΣ(∅) is
the absolutely initial Σ-algebra. Similarly we define the algebra of infinite partial Σ-terms
T ∞

Σ,⊥(X) = 〈T∞
Σ,⊥(X),E, τ∞〉 to be the free (ω-complete) Σ-algebra in Alg∞

Σ,⊥ to X, and
T ∞

Σ,⊥ = 〈T∞
Σ,⊥,E, τ∞〉 := T ∞

Σ,⊥(∅) is the initial Σ-algebra in Alg∞
Σ,⊥ .

These abstract definitions make us independent of any concrete term representations. How-
ever, we generally write terms in the common prefix notation with parenthesis, e.g. f(g(x), a).
Infinite partial terms may be visualized as particular partial mappings IN∗

+ 9 Σ ∪̇ X ∪̇ {⊥}
(cf. positions below).

In the following we use the meta symbols t, f, x and their variations for respectively terms
(T∞

Σ,⊥(X)), signature symbols and variables. We often write tuples of terms (t1, . . . , tn) ∈

(T∞
Σ,⊥(X))n as vectors ~t, using the same meta symbol (here t) for the vector ~t and its indexed

elements ti. Moreover we abbreviate terms f(t1, . . . , tn) by f(~t).
The freeness of T ∞

Σ,⊥(X) in Alg∞
Σ,⊥ guarantees unique decomposability of terms, i.e. t = ⊥

or t = x or there exist f (n) ∈ Σ and terms t1, . . . , tn so that t = f(~t).
The order 〈T∞

Σ,⊥(X),E〉 of infinite partial terms is characterized by ⊥ E t and t′1 E
t′′1, . . . , t

′
n E t′′n =⇒ f(~t′) E f(~t′′).

Due to the existing unique homomorphism from TΣ(X) to T ∞
Σ,⊥(X) the terms TΣ(X) can

be considered as subset of T∞
Σ,⊥(X). Furthermore ⊥ can be considered as a new constant

(/∈ Σ ∪̇ X) so that T ∞
Σ,⊥(X) is a Σ ∪̇ {⊥}-algebra (it is not a free Σ ∪̇ {⊥}-algebra in AlgΣ

or Alg∞Σ ∪̇ {⊥},⊥!). Defining the set of finite partial Σ-terms TΣ,⊥(X) := TΣ ∪̇ {⊥}(X) we have
TΣ(X) ⊂ TΣ,⊥(X) ⊆ T∞

Σ,⊥(X). The terms of TΣ,⊥(X) are exactly the ω-compact elements of
T∞

Σ,⊥(X) and T ∞
Σ,⊥(X) is ω-inductive.
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Let t, t′ ∈ T∞
Σ,⊥(X) be terms. The set of variables appearing in a term t, that is the least

subset Y of X with t ∈ T∞
Σ,⊥(Y ), is denoted by Var(t). A list u ∈ IN∗

+ of positive natural
numbers is called position. The set of positions of a term t is the least subset Pos(t) of IN∗

+

with ε ∈ Pos(t) and t = f (n)(~t), u ∈ Pos(ti), i ∈ [n] =⇒ i.u ∈ Pos(t). The symbol at a
position u ∈ Pos(t) in a term t, t(u), is defined by5 ⊥(ε) := ⊥, x(ε) := x, f(~t)(ε) := f and
f(~t)(i.u) := ti.u. The subterm of a term t at a position u ∈ Pos(t), t/u, is given by t/ε := t
and f(~t)/i.u := ti/u. The term t[u ← t′], created by inserting the term t′ at the position
u ∈ IN∗

+ in t, is defined by t[ε ← t′] := t′, f (n)(~t)[i.u ← t′] := f(t1, . . . , ti[u ← t′], . . . , tn) if
i ∈ [n], and t[i.u ← t′] := t otherwise. Finally the set of positions of a term t with a symbol
g ∈ Σ ∪̇ X ∪̇ {⊥} is defined by Pos(g, t) := {u ∈ Pos(t) | t(u) = g}. A term t is linear iff it
does not contain multiple occurrences of the same variable, i.e. |Pos(x, t)| ≤ 1 for all x ∈ X.
We employ the operations just defined for tuples as well. Since Pos(~t) := {i.ui ∈ IN∗

+ | ui ∈ ti},

we have ε /∈ Pos(~t) and hence T∞
Σ,⊥(t) and (T∞

Σ,⊥(t))1 have to be distinguished.
We define two partial orders over positions: The prefix order 〈IN∗

+,≤〉 is given by u ≤
v :⇐⇒ ∃w ∈ IN∗

+. u.w = v. and the lexicographic order 〈IN∗
+,≤lex〉 by u ≤lex v :⇐⇒ u ≤

v ∨ ∃w, u′, v′ ∈ IN∗
+. ∃i, j ∈ IN+. i < j ∧ u = w.i.u′ ∧ v = w.j.v′. Two positions u and v are

independent, written u ‖ v, iff neither u ≤ v nor v ≤ u.
A mapping σ : X→TΣ(X) with σ(x) 6= x for only finitely many x ∈ X is a substitution.

We write [t1/x1, . . . , tn/xn] for σ if σ(xi) = ti for all i ∈ [n], and similarly [t/Y ] if σ(x) = t for
all x ∈ Y ⊆ X, under the condition that σ(x) = x for all other x ∈ X. Its unique extension
to a homomorphism from TΣ(X) to TΣ(X) is denoted by σ as well and we usually write tσ
for the instance σ(t) of t. If tσ is a ground term, i.e. contains no variables, it is called ground
instance of t.

With regard to operational semantics, the reader should note that we define substitutions
only for finite terms and that applying a substitution is therefore an effective operation.

2.6 Term Rewriting Systems

A rewrite rule l→r is a pair of terms with l ∈ TΣ(X) and r ∈ TΣ(Var(l)). A term rewriting
system (TRS) is a finite set of rewrite rules R. A left-hand side of a rule is called redex
scheme and the set of all redex schemes of a TRS R is denoted by RedSR. If l ∈ RedSR and
σ : Var(t)→TΣ, then lσ is a redex of the TRS R. RedR is the set of all redexes of R and
RedPos(t) := {u ∈ Pos(t) | t/u ∈ RedR} is the set of all redex positions of a term t ∈ TΣ.

A term t ∈ TΣ is rewritable at a position u ∈ Pos(t) by a rewrite rule l→r ∈ R in a
single step to a term t′ ∈ TΣ iff there exists a substitution σ : Var(l)→TΣ with t/u = lσ and
t′ = t[u ← rσ]. Both t′ and σ are uniquely determined by t, u, and l→r. Hence a (simple)
reduction is a tuple A = 〈t, u, l→r〉, written as A = (t u−−→

l→r
t′) or just A = (t u−−→

R
t′).

Let ̺ be a set of reductions, the ̺-reductions. If ̺ is a proper subset of all reductions, then
we mark ̺-reductions by ̺, that is we write A = t u−−→

l→r,̺
t′ or A = t u−−→

R,̺
t′. The ̺-reduction

relation −−→
R,̺

⊆ TΣ × TΣ is defined by t −−→
R,̺

t′ :⇐⇒ ∃u ∈ RedPosR(t).∃(l→r) ∈ R :

(t u−−→
l→r

t′ is a ̺-reduction). A sequential ̺-reduction strategy is a deterministic ̺-reduction

5This notation is inspired by the interpretation of terms as partial mappings IN∗

+ 9 Σ ∪̇ X ∪̇ {⊥}.
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relation, i.e. where for every t ∈ TΣ there is at most one t′ ∈ TΣ such that t −−→
R,̺

t′. We

write A = t1 −−→R,̺
t2 −−→R,̺

t3 −−→R,̺
. . . for a (finite or infinite) ̺-reduction sequence A =

t1 −−→R,̺
t2, t2 −−→R,̺

t3, t3 −−→R,̺
t4, . . ..

A′ := 〈t, {〈ui, li→ri〉 | i ∈ [n]}〉 is a (parallel) reduction, written as A′ = t U−−→→
R

t′, iff A =

(t = t1
u1−−→

l1→r1
t2

u2−−→
l2→r2

. . . tn = t′) is a reduction sequence and U := {u1, . . . , un} ⊆ RedPosR(t)

a set of mutually independent redex positions of t. This implies t′ = t[u1 ← r1σ1] . . . [un ←
rnσn] with the order of the replacement being irrelevant due to the independence of the redex
positions. The definitions of parallel ̺-reduction, A′ = t U−−→→

R,̺
t′, parallel ̺-reduction relation

−−→→
R,̺

, and parallel ̺-reduction sequence and strategy are straightforward.

Let −−→
̺
⊆ T × T be an arbitrary relation over a set T . The reflexive and transitive

closure of −−→
̺

is denoted by ∗−−→
̺

. The relation −−→
̺

is confluent iff for all t, t′, t′′ ∈ T

with t ∗−−→
̺

t′ and t ∗−−→
̺

t′′ there exists a t̂ ∈ T such that t′ ∗−−→
̺

t̂ and t′′ ∗−−→
̺

t̂. An

element t ∈ T is a ̺-normal form iff there is no t′ ∈ T with t′ 6= t and t −−→
̺

t′. An element

t′ ∈ T is a ̺-normal form of t ∈ T iff t ∗−−→
̺

t′ and t′ is a ̺-normal form. If −−→
̺

is confluent,

then the ̺-normal form of an element t ∈ T is unique (if it exists).

We use the properties just defined for the relations −−→
R,̺

and −−→→
R,̺

. A unique ̺-normal

form of a term t ∈ TΣ is denoted by t↓R,̺. A term t ∈ TΣ is a normal form iff RedPosR(t) = ∅.
The reader should note that we overload notation in that respect that e.g. t −−→

R,̺
t′ may

denote both a proposition concerning the relation −−→
R,̺

and a reduction (a tuple). The

respective meaning should be clear from the context.

2.7 Almost Orthogonal TRS

An almost orthogonal TRS R is a TRS which is left-linear, that is all its redex schemes are
linear, and which fulfills the following condition of uniqueness concerning overlays of redexes:

If l→r, l′→r′ ∈ R, u ∈ Pos(l) with l/u /∈ X and σ, σ′ : X→TΣ, then (l/u)σ = l′σ′

implies u = ε and rσ = r′σ′.

Almost orthogonal TRSs have the important property that in a reduction t u−−→
l→r

t′ the term

t and the position u determine uniquely — not l→r and σ, but — the rewrite rule instance
lσ→rσ and thereby t′. Let R be an almost orthogonal TRS. The following frequently used
property takes advantage of the lack of non-trivial overlays of redexes.

Lemma 2.1
Let t ∈ TΣ, u, v ∈ RedPosR(t) with u < v, and l ∈ RedSR with t/u = lσ for a substitution σ.
Then there exists a unique w ∈ IN∗

+ such that u ≤ u.w ≤ v and l/w ∈ X.

Proof idea:
Show that l/w /∈ X for all w with u ≤ u.w ≤ v contradicts the condition of uniqueness of
almost orthogonal TRSs. �
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In principal, almost orthogonal TRSs appear for the first time in [Ros73] and are treated
in detail in [O’D77]. However, both references actually do not consider TRSs but so called
subtree replacement systems which are special, generally infinite sets of rewrite rules without
variables. Nonetheless, all ground instances of all reduction rules of an almost orthogonal
TRS R together, that is all lσ→rσ with l→r ∈ R and lσ, rσ ∈ TΣ, form such a subterm
replacement system. This gives us the idea to not only consider the set of all instances of
the rewrite rules of a TRS, but also other instances of a TRS, which contain only particular
instances of the rewrite rules of the TRS.

An instance I of an almost orthogonal TRS is uniquely determined by the set of redexes
of the instance RedR,I ⊂ RedR, because variables which occur in a right-hand side occur also
in the left-hand side and because of the condition of uniqueness (cf. instance predicate Q of
rule schemata in [O’D77]). For RedR,I = RedR we obtain the commonly considered canonical
instance of a TRS. For a term t ∈ TΣ we define its I-redex positions RedPosR,I(t) := {u ∈
RedPosR(t) | t/u ∈ RedR,I}. A reduction A = t u−−→

R
t′ is an I-reduction, i.e. a reduction in

the instance I, iff u ∈ RedPosR,I(t). I-reductions are a special kind of ̺-reductions defined
in the previous subsection. Consequently we write A = t u−−→

R,I
t′ and have the notions of

sequential and parallel I-reduction relation, I-reduction strategy and I-reduction sequence.
For the study of many properties of reduction sequences it is important to follow how

redexes are rearranged in a reduction. The residual map maps a redex position v of a term t
to its residuals, i.e. redex positions of a term t′ which are copies of t/v under the rearrangement
caused by the reduction t u−−→

l→r
t′ (cf. [HL91]):

v \ (t u−−→
l→r

t′) :=











∅ , if v = u;
{v} , if v ‖ u or v < u;
{u.w′.v′ | v = u.w.v′, r/w′ = l/w ∈ X} , if v > u.

Example 2.1
Let R := {f(x, y)→x, g(x)→f(x, x), b→a} and consider the reduction A :=
f(g(b), g(a)) 1−−→ f(f(b, b), g(a)).

The redex positions of the first term are ε, 1, 1.1, 2 and those of the second term are
ε, 1, 1.1, 1.2, 2.

The rearrangement of redex positions is described by ε \ A = {ε}, 1 \ A = ∅, 1.1 \ A =
{1.1, 1.2}, 2 \A = {2}. �

Although the definition uses the rewrite rule l→r, it actually depends only on v, t and u:

Lemma 2.2
If A = t u−−→

l→r
t̂ and A′ = t u−−→

l′→r′
t̂ are reductions and v ∈ RedPosR(t), then v \A = v \ A′.

Proof idea:
Simple but tiresome, using Lemma 2.1. �

Reductions preserve the independence of redex positions:
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Lemma 2.3
If t w−−→ t′ is a reduction and u, v ∈ RedPosR(t), then u ‖ v implies (u \ t w−−→ t′) ‖ (v \
t w−−→ t′).

Proof idea:
Case analysis on the relative order of u, v and w, using lemma 2.1. �

Because of this lemma the following extension of the residual map to parallel reductions is
well-defined:

u \ t V−−→→ t′ :=

{

{u} , if for all v ∈ V either v ‖ u or u < v;
u \ t v−−→ t′′ , if v ∈ V exists such that v ≤ u.

Furthermore we define the residual map for sets of redex positions:

U \ t −−→
R,I

t′ :=
⋃

{u \ t −−→
R,I

t′ | u ∈ U},

U \ t −−→→
R,I

t′ :=
⋃

{u \ t −−→→
R,I

t′ | u ∈ U}.

A set of I-redexes RedR,I is residually closed iff for all I-reductions t −−→
R,I

t′ and all po-

sitions u ∈ RedPosR,I(t) the inclusion u \ t −−→
R,I

t′ ⊆ RedPosR,I(t
′) holds. Obviously this

property is not fulfilled for arbitrary sets of I-redexes. However, without it the notion of
residual map is rather useless.

Lemma 2.4 Residual closure of RedR
The set of all redexes of an almost orthogonal TRS R, RedR, is residually closed. In particular
we have t/v = t′/v′ for all reductions t u−−→ t′ and v ∈ RedPosR(t) with v 6< u and all
v′ ∈ v \ t u−−→ t′.

Proof idea:
Case analysis on the relative order of u and v, using lemma 2.1. �
Lemma 2.5 Parallel moves lemma
Let RedR,I be residually closed. If t U−−→→

R,I
t′ and t V−−→→

R,I
t′′ are reductions, then exists a

unique t̂ ∈ TΣ such that t′ V ′

−−→→
R,I

t̂ and t′′ U ′

−−→→
R,I

t̂ are reductions with U ′ := U \ t V−−→→
R,I

t′′ and

V ′ := V \ t U−−→→
R,I

t′, that is:

t

�� ��

U

R,I��
��

��
�

����

V

R,I >>
>>

>>
>

t′

����

V ′

R,I <<
<<

<<
< t′′

�� ��

U ′

R,I��
��

��
�

t̂

Proof:
[O’D77, Chi95]. �
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Consequently −−→
R,I

and RPR,I are confluent for residually closed redex sets RedR,I .

Finally an I-redex position of a term is innermost/outermost iff it is maximal/minimal
w.r.t. the prefix order 〈IN∗

+,≤〉 in the set of all I-redex positions of the term. The leftmost-
innermost/leftmost-outermost I-redex position of a term is its least innermost/outermost I-
redex position w.r.t. the lexicographic order 〈IN∗

+,≤lex〉. We write t −−→
R,I,li

t′, t −−→
R,I,lo

t′, t −−→
R,I,no

for a reduction t −−→
R,I

t′ where u is the leftmost-innermost, the leftmost-outermost, not an

outermost I-redex position of t, respectively, and we use corresponding notation for the asso-
ciated I-reduction relations.

3 Abstract Syntax

Here we define the syntax of simple constructor-based first-order functional programs. Since
we later define numerous different semantics for this syntax, we obtain numerous different
functional programming languages.

We use a signature which distinguishes between constructor and (definable) function sym-
bols.

Definition 3.1
Let C be a signature of constructor symbols with C0 6= ∅ and F be a signature of function
symbols so that C ∩ F = ∅. Then Σ = (C,F) is a program signature. �

We often regard the program signature plainly as signature Σ = F ∪̇ C with every operation
symbol g ∈ Σ nevertheless uniquely identifiable as constructor or function symbol. In all our
examples constructor symbols start with a capital letter and function symbols with a small
one, as in Miranda6 and Haskell. We use the same convention for meta variables denoting
signature symbols, using small letters for meta variables ranging over the whole program
signature.

Definition 3.2
Let Σ be a program signature. An ordered pair of terms

f(p1, . . . , pn) → r

with fn ∈ F , p1, . . . , pn ∈ TC(X), f(p1, . . . , pn) linear, and r ∈ TΣ(Var(~p)) is a program rule
and ~p is called a pattern. A finite set P of program rules which fulfills the condition of
uniqueness

l1→r1, l2→r2 ∈ P, l1σ1 = l2σ2 =⇒ r1σ1 = r2σ2

(σ1, σ2 : X→TΣ) is a program. The set of all programs over Σ is denoted by ProgΣ. �
6
Miranda is a trademark of Research Software Ltd.
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An example of a program was already given in the introduction. As explained there, we do
not want to use any priority rule for pattern matching. Our abstract definition of a program
as a set of rules makes the definition of a first-fitting priority rule even impossible, whereas
every program text trivially implies an order.

Under these circumstances the condition of uniqueness is needed to guarantee that a pro-
gram specifies (deterministic) functions. Its significance and that of the left-linearity condition
become fully clear in the proof of well-definedness of the semantics in Subsections 6.2 and 6.4.

The reader should notice that patterns do not need to be complete in the sense that
for all fn ∈ F and t1, . . . , tn ∈ TC there would be f(~p)→r ∈ P and a substitution σ with
f(~t) = f(~p)σ. There may even be function symbols without any program rule.

Obviously the definition of programs implies:

Corollary 3.1
A program is an almost orthogonal TRS. �

This gives us a confluent reduction relation −−→
P

for the operational semantics and enables
us to exploit many further known properties and proof methods.

In the following P is an arbitrary program over an arbitrary program signature7 Σ = (C,F).

4 Kinds of Semantics

For defining the data type DT(P ) of a program P ∈ ProgΣ we use a base data type BDTC

and the program rules.
The principal idea of a denotational fixed-point semantics is to associate a transformation

ΦP : AlgΣ→AlgΣ with the program, which fixes the function operators by doing the pattern
matching and interpreting the right-hand sides of the program rules. Due to the recursive
nature of the program rules the transformation ΦP needs an algebra as input and the data
type is defined as a fixed-point of ΦP .

As usual all operators are continuous mappings over cpos, which is justified by interpreting
the partial order as an order of information content (cf. appendix B.2 of [FH88]). Hence
all used algebras are complete. Since the data type shall be an extension of the base data
type, the transformation ΦP is actually only defined over a set of admissible data types, the
interpretations IntΣ := {A ∈ Alg∞

Σ,⊥ | A|(C,∅) = BDTC}. Together with the canonical partial
order ⊑ of complete algebras we get the cpo 〈IntΣ,⊑〉. The data type DT(P ) is defined as
the least fixed-point of the continuous transformation ΦP .

An operational reduction semantics is based on the computation on terms using a reduction
relation −−→

P
. Therefore it does not (directly) assign a data type to a program but a term

semantics [[·]]P : TΣ→A, a mapping from program terms TΣ to a computation domain A.
This computation domain is identical with the carrier set of the data type DT(P ) = 〈A,α〉.

7We sometimes write PΣ to state that P is a program over the signature Σ, since this information cannot
be deduced from the pure set of program rules.
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A data type fixes a term semantics as well: If A = 〈A,α〉 ∈ AlgΣ, Y ⊆ X, and β :
Y→A is a valuation, then the algebraic term semantics [[·]]algA,β : TΣ(Y )→A is the unique
homomorphism from TΣ(Y ) to A which extends β. Conversely, an algebra A[[·]] = 〈A,α〉 is a
data type of the term semantics [[·]] : TΣ→A, if fA[[·]] (a1, . . . an) = [[f(t1, . . . , tn)]] for all
f (n) ∈ Σ, t1, . . . , tn ∈ TΣ, and a1, . . . , an ∈ A with [[t1]] = a1, . . . , [[tn]] = an. Evidently we have
[[·]] = [[·]]algA[[·]]

.

In general there are several data types for one term semantics, because there may not be
for every a ∈ A a t ∈ TΣ with [[t]] = a. We see in Section 7 that for the ς-semantics there is
a one-to-one relationship though, i.e. the ς-data type could be defined using only the ς-term
semantics. Nonetheless, there exist many reduction semantics for one fixed-point semantics,
since many different reduction strategies fix the same term semantics.

A term semantics [[·]] : TΣ→A is compositional (or invariant) iff for all t′, t′′ ∈ TΣ and
t ∈ TΣ({�}) we have [[t′]] = [[t′′]] =⇒ [[t[t′/�]]] = [[t[t′′/�]]]. Compositionality reflects the
nature of terms as compound objects and only a compositional term semantics engenders a
semantic equality (t ≃ t′ ⇐⇒ [[t]] = [[t′]]) which is a congruence. Algebraic term-semantics
are compositional, because they are homomorphisms. Likewise, data types of term semantics
[[·]] exist only for compositional [[·]], since otherwise the fA[[·]] are not well-defined. Hence, an
operational semantics needs to be compositional so that an equivalent denotational semantics
can exist.

The following term semantics [[·]]nf
P : TΣ→TC ∪̇ {⊥}, näıvely defined on the basis of normal

forms, is not compositional:

[[t]]nf
P :=

{

t↓P , if t↓P exists and8t↓P ∈ TC;
⊥ , otherwise.

Example 4.1
Regarding the program9

list1 → []:list1

list2 → [[]]:list2

head(x:xs) → x

we see that neither list1 nor list2 have a normal form and hence [[list1]]nf
P = [[list2]]nf

P = ⊥.
Nonetheless we have

head(list1) −−→
P

head([]:list1) −−→
P

[]

head(list2) −−→
P

head([[]]:list2) −−→
P

[[]]

and hence [[head(list1)]]nf
P = [] 6= [[]] = [[head(list2)]]nf

P in contradiction to composition-
ality. �

8Necessary, because patterns may not be complete.
9We use the well-known ‘sugared’ syntax for lists instead of Nil(0) and Cons

(2).
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Finally a property deserves attention although it is guaranteed by every (reasonable) re-
duction or fixed-point semantics: modularity. Any program can be extended by new func-
tion symbols together with respective program rules. We expect the data type assigned to
the extended program to be an extension of the data type of the original program, just
as that one is an extension of the base data type (cf. hierarchical specifications in Sub-
section 5.4 of [Wir90]). We call a semantics DT : ProgΣ→AlgΣ, mapping a program to a
data type, modular iff DT(P )|(C,F ′) = DT(P(C,F ′)) for all P ∈ ProgΣ and F ′ ⊆ F with
P(C,F ′) := {f(~p)→r ∈ P | f ∈ F ′}. This also reveals the natural characterization of the base
data type as the data type of the empty program: BDTC = DT(∅C).

A compositional reduction semantics defines modular data types, because the term seman-
tics of a term is not changed by additional program rules for new function symbols.

Since a (reasonable) transformation ΦP uses only the program rules f(~p)→r ∈ P for fixing
the operation of the function symbol f , any semantics based on the least fixed-point of ΦP is
modular.

A well-known semantics which is not modular is the quotient algebra semantics
([DJ90]), which defines the data type of a program to be the free term algebra TΣ modu-
lo the equations (rules) of the program. Extending a program may even not only change the
(old) operations of the data type but also the carrier set.

5 Cbv- and Cbn-Semantics

Preparing the generalization to ς-semantics in the next section, we define here the well-known
cbv- and cbn-semantics. Some amendments are necessary due to the constructors and the
pattern-matching.

We do not give any statement about well-definedness or equivalence of the reduction and
fixed-point semantics, because that is done for the more general ς-semantics in Sections 6 and
7.

5.1 Cbv-Reduction Semantics

We start with the reduction semantics, since cbv and cbn are rather operational notions.

Definition 5.1
Let t ∈ TΣ be a term.

• An position u ∈ RedPosP (t) is an innermost� redex position of the term t iff
t/u = f(c1, . . . , cn) with c1, . . . , cn ∈ TC.

• The leftmost-innermost� (li�-) redex position of the term t is the least innermost∗

redex position of t w.r.t. the lexicographical order.

• A reduction A = t u−−→
l→r

t′ is a leftmost-innermost� reduction, written A =

t −−→
P,li∗

t′, iff u is the li∗-redex position of t. Hereby the leftmost-innermost� re-

duction strategy −−→
P,li∗

is defined as well.
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�
Definition 5.2
The li�-reduction or cbv-reduction semantics [[·]]redP,cbv : TΣ→TC ∪̇ {⊥} is defined by

[[t]]redP,cbv :=

{

t↓P,cbv , if t↓P,cbv exists and t↓P,cbv ∈ TC;
⊥ , otherwise. �

We avoid the name leftmost-innermost reduction, since the li∗-reduction strategy is not
identical with the leftmost-innermost reduction strategy. The leftmost-innermost redex posi-
tion of a term is not always a li∗-redex position (the converse is true), due to the possibility
of incomplete patterns.

Example 5.1

Let P = {f(x)→A} be a program with the function symbols f(1) and a(0). Then the term
f(a) is still reducible by leftmost-innermost reduction10: f(a) −−→

li
A, but f(a) does not

contain any li∗-redex. Hence [[f(a)]]redP,cbv = ⊥. �
In contrast to the normal form semantics the cbv-semantics is compositional:

Example 5.2
Using the program of Example 4.1 we still have [[list1]]redP,cbv = [[list2]]redP,cbv = ⊥, but also

head(list1) −−→
P,li∗

head([]:list1) −−→
P,li∗

. . .

head(list2) −−→
P,li∗

head([[]]:list2) −−→
P,li∗

. . .

and hence [[head(list1)]]redP,cbv = ⊥ = [[head(list2)]]redP,cbv �
5.2 Cbv-Fixed-Point Semantics

Definition 5.3
The ordered C-algebra BDTC,cbv := T ⊥

C := 〈T⊥
C ,E, τ〉 with τ given by 〈TC,E, τ〉 = TC and

T⊥
C := TC ∪̇ {⊥} is the cbv-base data type over the constructor symbols C. �

To distinguish syntax and semantics we underline meta-variables ranging over the carrier
set of base types11, e.g. t ∈ T⊥

C .

10We underline the redexes reduced in a reduction.
11In a few cases like the reduction cbv-semantics of Subsection 5.1 this distinction is not possible or too

awkward.
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Definition 5.4
The set IntΣ,cbv := {A ∈ Alg∞

Σ,⊥ | A|C,∅ = BDTC,cbv} is the set of cbv-interpretations and
〈IntΣ,cbv,⊑〉 is the canonical cpo of cbv-interpretations with least element ⊥cbv := ⊥IntΣ,cbv

. �
Note that ⊥cbv and BDTC,cbv are not identical but ⊥cbv|C,∅ = BDTC,cbv.

Definition 5.5
The cbv-transformation of P ∈ ProgΣ, ΦP,cbv : [IntΣ,cbv→IntΣ,cbv], is defined by

fΦP,cbv(A)(~t) :=















[[r]]algA,β , if f(~p)→r ∈ P and β : Var(~p)→TC exist

with [[p1]]
alg
BDTC,cbv,β = t1, . . . , [[pn]]alg

BDTC,cbv,β = tn;

⊥ , otherwise;

for all f (n) ∈ F , ~t ∈ (T⊥
C )n and A ∈ IntΣ,cbv. �

In the cbv-transformation pattern-matching is performed by the equations [[pi]]
alg
BDTC,cbv,β =

ti. Since patterns consist only of constructor symbols, the base data type BDTC,cbv suffices
here; using A instead is possible but would suggest a non-existing dependence. Restricting the
range of the valuation β to TC instead of T⊥

C assures that pattern-matching never succeeds if
ti = ⊥ for some i ∈ [n]. This reflects the fact that all operations are strict in the cbv-semantics.

Definition 5.6
The cbv-fixed-point data type DTfix

cbv(P ) ∈ IntΣ,cbv is defined by

DTfix
cbv(P ) := Fix(ΦP,cbv) =

⊔

i∈IN

(ΦP,cbv)
i(⊥cbv)

and the cbv-fixed-point (term) semantics [[·]]fix
P,cbv : TΣ→T⊥

C by

[[t]]fix
P,cbv := [[t]]alg

DTfix
cbv(P ) �

Example 5.3 Determining a cbv-fixed-point data type
Taking the program of Example 4.1, its cbv-fixed-point data type is determined by means of
the following table. Let Ai := (ΦP,cbv)

i(⊥cbv) for all i ∈ IN and A∞ := DTfix
cbv(P ).

i = 0 i = 1 . . . i =∞

list1Ai() ⊥ [[[]:list1]]alg
⊥cbv,(list17→⊥) = ⊥ . . . as for i = 1

list2Ai() ⊥ [[[[]]:list2]]alg
⊥cbv,(list27→⊥) = ⊥ . . . as for i = 1

headAi t 7→ ⊥







⊥ 7→ ⊥
[] 7→ ⊥

t1:t2 7→ t1





 . . . as for i = 1

with t ∈ T⊥
C and t1, t2 ∈ TC. �
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5.3 Cbn-Fixed-Point Semantics

While the cbv-semantics enforces strictness of all operations, the cbn-semantics even defines
non-strict constructor operations, thus permitting partial and infinite data structures.

Definition 5.7
The ordered C-algebra BDTC,cbn := T ∞

C,⊥ is the cbn-base data type over the constructor
symbols C. �
Definition 5.8
The set IntΣ,cbn := {A ∈ Alg∞

Σ,⊥ | A|C,∅ = BDTC,cbn} is the set of cbn-interpretations and
〈IntΣ,cbn,⊑〉 is the canonical cpo of cbv-interpretations with least element ⊥cbn := ⊥IntΣ,cbn

. �
Definition 5.9
The cbn-transformation of P ∈ ProgΣ, ΦP,cbn : [IntΣ,cbn→IntΣ,cbn], is defined by

fΦP,cbn(A)(~t) :=















[[r]]algA,β , if f(~p)→r ∈ P and β : Var(~p)→T∞
C,⊥ exist

with [[p1]]
alg
BDTC,cbn,β = t1, . . . , [[pn]]alg

BDTC,cbn,β = tn;

⊥ , otherwise;

for all f (n) ∈ F , ~t ∈ (T∞
C,⊥)n and A ∈ IntΣ,cbn. �

The valuation β of the cbn-Transformation ranges over the full computation domain T∞
C,⊥,

so that function operations can be non-strict.

Definition 5.10
The cbn-fixed-point data type DTfix

cbn(P ) ∈ IntΣ,cbn is defined by

DTfix
cbn(P ) := Fix(ΦP,cbn) =

⊔

i∈IN

(ΦP,cbn)
i(⊥cbn)

and the cbn-fixed-point (term) semantics [[·]]fix
P,cbn : TΣ→T∞

C,⊥ by

[[t]]fix
P,cbn := [[t]]alg

DTfix
cbn(P ) �

Example 5.4 Determining a cbn-fixed-point data type
Taking anew the program of Example 4.1, its cbn-fixed-point data type is determined by
means of the following table. Let Ai := (ΦP,cbn)

i(⊥cbn) for all i ∈ IN and A∞ = DTfix
cbn(P ).

i = 0 i = 1 i = 2 . . . i =∞
list1Ai() ⊥ []:⊥ []:[]:⊥ . . . [[],[], . . .]
list2Ai() ⊥ [[]]:⊥ [[]]:[[]]:⊥ . . . [[[]],[[]], . . .]

headAi t 7→ ⊥







⊥ 7→ ⊥
[] 7→ ⊥

t1:t2 7→ t1





 as for i = 1 . . . as for i = 1
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with t, t1, t2 ∈ T∞
C,⊥.

The equations [[head(list1)]]fix
P,cbn = [] and [[head(list2)]]fix

P,cbn = [[]] do not violate
compositionality, because [[list1]]fix

P,cbn and [[list2]]fix
P,cbn differ. �

5.4 Cbn-Reduction Semantics

In general the leftmost-outermost (lo-) reduction strategy is associated with cbn-semantics,
but due to the patterns and the non-flat base data type this strategy is not complete for our
cbn-semantics:

Example 5.5 Incompleteness of lo-reduction
Considering the program

and(x, False) → False

a → False

undef → undef

we have [[and(undef,a)]]fix
P,cbn = andDTfix

cbn(⊥, False) = False, but

and(undef,a) −−→
P,lo

and(undef,a) −−→
P,lo

. . . . �
Therefore we use the parallel-outermost (po-) reduction strategy.

Definition 5.11
A reduction A = t U−−→→

P
t′ is a po-reduction, written A = t −−→

P,po
t′, iff U is the set of all

outermost redex positions of t. This also defines the po-reduction strategy −−→→
P,po

. �
Example 5.6
Using the program of Example 5.5 above, we obtain

and(undef,a) −−→→
P,po

and(undef,False) −−→→
P,po

False

as desired. �
Simply using the po-normal form to define the cbn-reduction semantics — analogously

to the cbv-semantics — is not sufficient, due to the computation domain T∞
C,⊥. Obviously an

infinite constructor term can never be the result of a computation, but it can be approximated
to arbitrary precision.

Definition 5.12
The algebraic term semantics with respect to the algebra ⊥cbn,

[[·]]alg
⊥cbn

: TΣ→T∞
C,⊥,

is called semantic cbn-approximation. �
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Definition 5.13
The po-reduction or cbn-reduction semantics [[·]]po

P,cbn : TΣ→T∞
C,⊥ is defined by

[[t]]po
P,cbn :=

⊔

{[[t′]]alg
⊥cbn
| t ∗−−→

P,po
t′}. �

Example 5.7 Approximating a cbn-reduction semantics
Using the program of Example 5.5, we have the following approximation

list1 ////
P,po

��

_

[[·]]alg
⊥cbn

[]:list1 ////
P,po

��

_

[[·]]alg
⊥cbn

[]:[]:list1 ////
P,po

��

_

[[·]]alg
⊥cbn

[]:[]:[]:list1 ////
P,po

��

_

[[·]]alg
⊥cbn

. . .

⊥ []:⊥ []:[]:⊥ []:[]:[]:⊥ . . . �
The reader should notice that the semantic cbn-approximation is computable, because it

is characterized by

[[G(t1, . . . , tn)]]alg
⊥cbn

= G([[t1]]
alg
⊥cbn

, . . . , [[tn]]alg
⊥cbn

)

[[f(t1, . . . , tn)]]alg
⊥cbn

= ⊥

for all G(n) ∈ C and f (n) ∈ F .
Also, if for a t ∈ TΣ we have [[t]]po

P,cbn = t ∈ TC, then the po-normal form t↓P,po exists and
t = t↓P,po, as we prove in Section 8.

6 Definition of the ς-Semantics

Looking at the definitions of the cbv- and the cbn-fixed-point semantics the fact stands out
that both definitions consist mainly of two rather independent parts: the base data type and
the transformation. The idea to exchange these between cbv- and cbn-semantics immediately
suggests itself. The cbn-transformation can be applied to cbv-interpretations with only little
adaptions, likewise the cbv-transformation can be applied to cbn-interpretations.

The two resulting mixed semantics are not even that unusual. The first one is more closely
related to the cbn-semantics of recursive applicative program schemes than our cbn-semantics.
In the theory of recursive applicative program schemes ‘cbn’ refers just to the evaluation of
function operations. The major part of the literature ([Vui74a], [Man74], [Niv75], [DS76] and
[LS87]) considers only flatly ordered base data types (interpretations), because the flat order
permits simpler proofs.

The second mixture has even been implemented in versions of the functional programming
language Hope ([FH88]), thereby combining the expressiveness of infinite data structures with
the efficiency of cbv-evaluation.
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However, defining these additional semantics would have the unpleasant consequence that
we would have to prove all properties of semantics four times, e.g. the equivalence of fixed-
point and reduction semantics. Besides, finding reduction semantics for the two new semantics
would not be easy.

The solution is a further generalization, blurring the dividing-lines. We introduce a new pa-
rameter ς which states for every argument position of every operation symbol, if the operation
shall be strict at that argument position.

Definition 6.1
A mapping ς :

⋃

n∈IN Σn→IBn is a forced strictness for the signature Σ. For g ∈ Σ the
boolean vector ς(g) is called forced strictness of g. The symbol g(n) ∈ Σ is forcedly strict
in ~t ∈ (T∞

C,⊥)n iff there exists an i ∈ [n] with ς(g)i = tt and ti = ⊥. �
Admittedly the forced strictness ς gives us an arbitrary number of semantics, depending

on the signature, but they can be handled simultaneously in a simple, uniform way.
In all the following sections ς is an arbitrary forced strictness.

6.1 ς-Fixed-Point Semantics

The definition is completely analogous to that of the cbv- and cbn-fixed-point semantics. The
exact relationship is discussed in Subsection 6.5.

Definition 6.2
The ordered algebra BDTC,ς := TC,ς := 〈TC,ς ,E, τ〉 with

• TC,ς being the least subset of T∞
C,⊥ satisfying

– G(n) ∈ C, ~t ∈ (TC,ς )
n, G not forcedly strict for ~t =⇒ G(~t) ∈ TC,ς and

– T ⊆ TC,ς is a chain =⇒
⊔

T ∈ TC,ς , and

• τ defined by

τ(G)(~t) =

{

G(~t) , if G is not forcedly strict for ~t;
⊥ , otherwise;

for all G(n) ∈ C, ~t ∈ (TC,ς )
n

is the ς-base data type over the constructor symbols C. �
Using simply T∞

C,⊥ instead of TC,ς is an alternative but would disagree with our aim that
the cbv-semantics shall be an instance of the ς-semantics. Besides, the elements of T∞

C,⊥ \TC,ς
could never be denoted by syntactic terms.

Definition 6.3
The set IntΣ,ς := {A ∈ Alg∞

Σ,⊥ | A|C,∅ = BDTC,ς} is the set of ς-interpretations and 〈IntΣ,ς ,⊑
〉 is the canonical cpo of ς-interpretations with least element ⊥ς := ⊥IntΣ,ς . �
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Since pattern matching is more complicated in the context of forced strictness, we define
it separately.

Definition 6.4
A term tuple~t ∈ (TC,ς )

n is semantically ς-matchable with a redex scheme f (n)(~p) ∈ RedSP

by a variable mapping β : Var(~p)→TC,ς iff

(i) f is not forcedly strict for ~t,

(ii) p1[⊥/Var(p1)] E t1, . . . , pn[⊥/Var(pn)] E tn, and

(iii) [[p1]]
alg
BDTC,ς ,β

= t1, . . . , [[pn]]alg
BDTC,ς ,β

= tn. �
The necessity of the new order condition (ii) is explained in the next subsection.

Definition 6.5
The ς-transformation of P ∈ ProgΣ, ΦP,ς : [IntΣ,ς→IntΣ,ς ], is defined by

fΦP,ς(A)(~t) :=























[[r]]algA,β , if ~t is semantically ς-matchable with
the left-hand side of a program rule f(~p)→r ∈ P
by a valuation β : Var(~p)→TC,ς ;

⊥ , otherwise;

for all f (n) ∈ F , ~t ∈ (TC,ς )
n and A ∈ IntΣ,ς . �

Definition 6.6
The ς-fixed-point data type DTfix

ς (P ) ∈ IntΣ,ς is defined by

DTfix
ς (P ) := Fix(ΦP,ς) =

⊔

i∈IN

(ΦP,ς)
i(⊥ς)

and the ς-fixed-point (term) semantics [[·]]fix
P,ς : TΣ→TC,ς by

[[t]]fix
P,ς := [[t]]alg

DTfix
ς (P ) �

6.2 Well-Definedness of the ς-Fixed-Point Semantics

When proving the well-definedness of the ς-fixed-point semantics we also justify some details
of the given definition which are not straightforward or where alternatives are feasible.
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Lemma 6.1 Continuity of forced strictness
Let g(n) ∈ Σ, T = (~tj)j∈IN a chain with ti,j ∈ TC,ς and ~t =

⊔

T . The symbol g is forcedly strict

for ~t iff g is forcedly strict for all ~tj ∈ T .

Proof idea:
Case analysis on g being forcedly strict and g not being forcedly strict for ~t. �
Corollary 6.2
The constructor operations of the ς-base data type are continuous, i.e. BDTC,ς ∈ Alg∞

Σ,⊥. �
Lemma 6.3
The canonically ordered set of ς-interpretations 〈IntΣ,ς ,⊑〉 is a cpo.

Proof idea:
Every ς-interpretation is a cpo and all have the same carrier set and order. �

Now we prove that — similar to operational confluence — the function operations resulting
from an application of the ς-transformation are true mappings, i.e. exactly one result term is
respectively associated with every argument term tuple. Here the order condition of semantic
ς-matching proves to be necessary. The following example illustrates this.

Example 6.1
We regard the program

f(G(x)) → A

f(H(x)) → B

with the forced strictness ς(f) := (ff) and ς(G) := ς(H) := (tt). With β(x) := ⊥ we have

[[G(x)]]alg
BDTC,ς ,β

= GBDTC,ς(⊥) = ⊥ and [[H(x)]]alg
BDTC,ς ,β

= HBDTC,ς (⊥) = ⊥.

Since f is not forcedly strict for the argument term ⊥, we would get

A = [[A]]alg
⊥ς ,β = fΦP,ς(⊥ς)(⊥) = [[B]]alg

⊥ς ,β = B

without the order condition. �
Lemma 6.4 Semantic unification implies syntactic unification
Let p, p′ ∈ TC(X) be linear patterns with Var(p) ∩ Var(p′) = ∅, β : Var(p)→TC,ς and β′ :
Var(p′)→TC,ς valuations, and t ∈ TC,ς . If

p[⊥/Var(p)] E t, p′[⊥/Var(p′)] E t and [[p]]alg
BDTC,ς ,β = t = [[p′]]alg

BDTC,ς ,β

then exist two substitutions

σ : Var(p)→TC(Var(p) ∪̇ Var(p′)) and σ′ : Var(p′)→TC(Var(p) ∪̇ Var(p′)),
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and a valuation
β̂ : (Var(p) ∪̇ Var(p′))→TC,ς

so that

∀x ∈ Var(p). β(x) = [[xσ]]alg

BDTC,ς ,β̂

∀x ∈ Var(p′). β′(x) = [[xσ′]]alg

BDTC,ς ,β̂

pσ = p′σ′.

Proof idea:
Parallel structural induction on p and p′. �
Corollary 6.5

The function operations resulting from a ς-transformation are well-defined, i.e. if ~t ∈ (TC,ς )
n

with n ∈ IN and ~t is semantically ς-matchable with the left-hand side of a reduction
rule f (n)(~p)→r ∈ P by β : Var(~p)→TC,ς and with the left-hand side of a reduction rule

f (n)(~p′)→r′ ∈ P by β′ : Var(~p′)→TC,ς , then [[r]]algA,β = [[r′]]algA,β′ for all A ∈ IntΣ,ς . �
Finally, we have to prove that the algebras resulting from a ς-transformation are continuous,

that is they are ς-interpretations, and that the ς-transformation is continuous. First we show
the continuity of semantic ς-matching.

Lemma 6.6 Characterization of semantic ς-matching
The term tuple~t ∈ (TC,ς )

n is semantically ς-matchable with f(~p) ∈ RedSP by β : Var(~p)→TC,ς
iff conditions (i) and (ii) of semantic ς-matchability (def. 6.4) are fulfilled and β(x) = ~t/u
with u given by {u} = Pos(x, ~p) for all x ∈ Var(~p).

Proof idea:
Structural induction on the pattern. �

The reader should notice that u is only well-defined, because patterns are linear.

Lemma 6.7 Continuity of semantic ς-matching
Let f (n)(~p) ∈ RedSP , T = (~tj)j∈IN a chain with ti,j ∈ TC,ς and ~s :=

⊔

T .

• The term tuple ~s is semantically ς-matchable with f(~p) iff a tk ∈ T exists which is
semantically ς-matchable with f(~p).

• If all ~tj ∈ T are semantically ς-matchable with f(~p) by respective βj : Var(~p)→TC,ς ,
then ~s is semantically ς-matchable with f(~p) by β =

⊔

j∈IN βj.

Proof idea:
Straightforward, using the previous lemma. �

The following two rather general lemmas are the basis for the last two lemmas of this
subsection.
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Lemma 6.8 Continuity of the algebraic term semantics w.r.t. the
valuation

Let Σ be a signature, 〈A,≤〉 a cpo, A ∈ Alg∞
Σ,⊥(〈A,≤〉) and t ∈ TΣ(X). Then [[t]]algA,· :

(X→A)→A is continuous w.r.t valuations of the canonical cpo 〈(X→A),≤〉.

Proof idea:
Structural induction on t. �
Lemma 6.9 Continuity of the algebraic term semantics w.r.t the

algebra
Let Σ be a signature and 〈A,≤〉 a cpo. Let I ⊆ Alg∞

Σ,⊥(〈A,≤〉) such that the canonical partial

order 〈I,⊑〉 is continuous. Let β : X→A and t ∈ TΣ(X). Then [[t]]alg
·,β : I→A is continuous

w.r.t. algebras of I.

Proof idea:
Structural induction on t. �
Lemma 6.10 Continuity of the results of a ς-transformation
ΦP,ς(A) ∈ IntΣ,ς for all A ∈ IntΣ,ς .

Proof idea:
Show continuity of the function operations of ΦP,ς(A) by using Lemma 6.8. �
Lemma 6.11 Continuity of the ς-transformation

ΦP,ς : [IntΣ,ς→IntΣ,ς ].

Proof idea:
Show that f

⊔

ΦP,ς(T )(~t) exists and f
⊔

ΦP,ς(T )(~t) = fΦP,ς(
⊔

T )(~t) for all f (n) ∈ F , ~t ∈ (TC,ς )
n and

chains T = (Aj)j∈IN ⊆ IntΣ,ς using Lemma 6.9. �
Looking at the definition of the ς-transformation the question arises, why we set the result

of a function operation to ⊥, when the argument terms are not semantically ς-matchable with
any left-hand side. Simply leaving this value unchanged is an obvious alternative. We define
Φ∗

P,ς by

fΦ∗
P,ς

(A)(~t) :=























[[r]]algA,β , if ~t is semantically ς-matchable with
the left-hand side of a program rule f(~p)→r ∈ P
by a valuation β : Var(~p)→TC,ς ;

fA(~t) , otherwise.

It is easy to prove that
⊔

Φ∗
P,ς(⊥ς) exists and even equals the least fixed-point of ΦP,ς .

However, Φ∗
P,ς does not map ς-interpretations to ς-interpretations; the resulting algebra may

be more general. To remedy this, we can define Int∗Σ,ς just like IntΣ,ς , with the exception that
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operations do not need to be continuous. Using Int∗Σ,ς as domain and range of Φ∗
P,ς solves the

problem, but then Φ∗
P,ς is no longer continuous and we cannot apply the fixed-point theorem

of Tarski. Actually
⊔

Φ∗
P,ς(⊥ς) = Fix(ΦP,ς) exists as mentioned and can even be proved to

be the least fixed-point of Φ∗
P,ς , but simple proofs of this repeatedly refer to ΦP,ς , so that we

better persevere with it.

6.3 ς-Reduction Semantics

For the cbv- and the cbn-semantics we were able to fall back on the well-known innermost
and outermost reduction strategies. However, ς-semantics mixes the two argument evaluation
mechanisms and hence there is no obvious suitable reduction strategy. Especially the variable
strictness of the constructor operations are irritating, because there are no reduction rules for
constructor symbols.

We approach the problem by examining which kinds of reductions are sound w.r.t. the
ς-fixed-point semantics.

Definition 6.7
A reduction t u−−→

l→r
t′ is sound w.r.t. a term semantics [[·]] : TΣ→A iff [[t]] = [[t′]]. �

Example 6.2
Using the program

positive(Succ(x)) → Succ(Zero)

inf → Succ(inf)

the outermost reduction positive(Succ(inf)) −−→ Succ(Zero) is not sound w.r.t. the cbv-

fixed-point semantics: [[positive(Succ(inf))]]fix
P,cbv = ⊥ 6= Succ(Zero) = [[Succ(Zero)]]fix

P,cbv.�
The example illustrates what can easily be gained from the definition of the ς-

transformation: Only forced strictness may cause a reduction to be unsound w.r.t. a ς-
fixed-point semantics.

Obviously, reducing a redex f(~t) is sound if [[ti]]
fix
P,σ 6= ⊥ for all forcedly strict argument

positions i. Naturally this condition is sufficient but not necessary; the instantiated right-hand
side of a program rule may have the value ⊥ as well and for general reductions the context of
the redex is moreover relevant. However, considering only redexes proves to be sufficient for
our purposes.

Since the arguments ti generally comprise function symbols and its ς-fixed-point semantics
is unknown when reduction takes place, [[ti]]

fix
P,σ can only be approximated.

Definition 6.8
The algebraic term semantics with respect to the algebra ⊥ς , [[·]]alg

⊥ς
: TΣ→TC,ς , is called

semantic ς-approximation. �
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Since the semantic ς-approximation has a purely syntactic definition (cf. the cbn-
approximation in Subsection 5.4), it can be employed in an operational semantics.

Due to the monotonicity of the algebraic term semantics w.r.t. the algebra in accordance
with Lemma 6.9, t E [[t]]alg

⊥ς
implies t E [[t]]fix

P,ς . Hence we can define a meaningful notion of
syntactic ς-matching in analogy to semantic ς-matching (def. 6.4). Using that, we define the
set of ς-redexes, whose reduction is sound w.r.t. the ς-fixed-point semantics. This soundness
is proved in Subsection 7.2.

Definition 6.9
A term tuple ~t ∈ (TΣ)n is syntactically ς-matchable with a redex scheme f (n)(~p) ∈ RedSP

by a substitution σ : Var(~p)→TC,ς iff

(i) f is not forcedly strict for ([[t1]]
alg
⊥ς
. . . [[tn]]alg

⊥ς
),

(ii) p1[⊥/Var(p1)] E [[t1]]
alg
⊥ς
, . . . , pn[⊥/Var(pn)] E [[tn]]alg

⊥ς
, and

(iii) f(~t) = f(~p)σ. �
Definition 6.10 (Cf. V- and N-redexes in [Cou90])
A term f(~t) ∈ TΣ is a ς-redex of a redex scheme f(~p) ∈ RedSP iff ~t is syntactically ς-
matchable with f(~p) by some substitution σ. The set of all ς-redexes of a program P is
denoted by RedP,ς . �

The set of ς-redexes defines an instance of a program viewed as TRS. This instance is
denoted by ς as well. Thus we obtain notions like ς-redex position, ς-reduction and ς-reduction
relation.

These we employ for a very simple definition of ς-reduction semantics. We define our ς-
reduction semantics like the po-reduction semantics as least upper bound of results of finite
reduction sequences. Only, instead of po-reduction sequences all ς-reduction sequences are
considered.

Definition 6.11
The global ς-reduction semantics, [[·]]redP,ς : TΣ→TC,ς , is defined by

[[t]]redP,ς :=
⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′}. �

The global ς-reduction semantics will be of central importance in the equivalence proofs
of the next section. However, it is not suitable for practical purposes, since efficient imple-
mentations require deterministic reduction strategies. Hence we define a generalization of the
po-reduction semantics.
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Definition 6.12
The po-ς-reduction semantics, [[·]]po

P,ς : TΣ→TC,ς , is defined by

[[t]]po
P,ς :=

⊔

{[[t′]]alg
⊥ς
| t ∗−−→→

P,ς,po
t′}. �

6.4 Connection with the Previously Defined Cbv- and Cbn-
Semantics

By a simple trick of notation we can make fully explicit that the cbv- and cbn-semantics
defined in the previous section are special instances of the ς-semantics.

Definition 6.13
The forced strictnesses cbv, cbn ∈

⋃

n∈IN Σn→IBn are defined by

cbv(g)i := tt and cbn(g)i := ff

for all g(n) ∈ Σ and i ∈ [n]. �
For the fixed-point semantics it is quite clear that the definitions of Section 5 are special

instances of those given for the ς-semantics, e.g. the definition of the ς-base data type gives
BDTC,cbv = T ⊥

C and BDTC,cbn = T ∞
C,⊥. Just semantic cbv- and cbn-matching was not defined in

Section 5. Nonetheless it is simple to prove that in the special cases of ς = cbv and ς = cbn the
ς-matching conditions (i) and (iii) imply the order condition (ii), and that therefore semantic
cbv-/cbn-matching is equivalent to the conditions given in the definition of the cbv-/cbn-
transformation in Section 5.

The case of the reduction semantics is slightly more complicated. Obviously all redexes
are cbn-redexes (RedP,cbn = RedP ) and therefore the po-reduction semantics and the po-cbn-
reduction semantics are identical.

Nonetheless, there is no similar correspondence for the cbv-semantics. This is not because
of the renunciation of using semantic approximations for the li∗-reduction semantics. For all ς
such that the ς-base data type is flatly ordered, a definition of the ς-reduction semantics using
normal forms w.r.t the employed reduction relation is equivalent to a definition using semantic
approximations. Moreover, cbv-redexes, outermost cbv-redexes, and innermost∗ redexes are
the same. However, the li∗-reduction semantics reduces only the leftmost of the generally
several redexes reduced in parallel by the po-cbv-reduction semantics. Consequently, we call
the li∗-reduction also lo-cbv-reduction. A lo-ς-reduction semantics is not defined, because in
general it is not complete as was shown for ς = cbn in Example 5.5. However, for ς = cbv it
is, and we prove this in Subsection 7.7.

From the perspective of the ς-semantics we see that the difference between the reduction
semantics of the cbv- and of the cbn-semantics is only seemingly based on the positions of
redexes. Instead, the fundamental difference is the kind of redexes which are reduced.
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6.5 Well-Definedness of the ς-Reduction Semantics

We start with a property needed in the proof of the subsequent lemma.

Lemma 6.12 Commutativity of semantic approximation and re-
placement of subterms

[[t[u← t′]]]alg
⊥ς

= [[t]]alg
⊥ς

[u← [[t′]]alg
⊥ς

]

for all t, t′ ∈ TΣ and u ∈ Pos(t).

Proof idea:
Structural induction on u. �

Besides proving the well-definedness of the ς-reduction semantics, the next two lemmas are
of major importance for the ς-semantics.

Already in Subsection 5.4 we employed repeated reduction to approximate the semantic
value of a term. The next lemma proves that reduction can only lead to a gain of information
(w.r.t the cpo 〈TC,ς ,E〉) and never to a loss of it.

Lemma 6.13 Gain of information by reduction

t −−→
P

t′ =⇒ [[t]]alg
⊥ς
E [[t′]]alg

⊥ς

t −−→
P,no

t′ =⇒ [[t]]alg
⊥ς

= [[t′]]alg
⊥ς

Proof:
The existence of a reduction t u−−−−→

f(~p)→r
t′ implies t/u = f(~p)σ and t′/u = rσ for some substi-

tution σ. We have [[f(~p)σ]]alg
⊥ς

= ⊥ς E [[rσ]]alg
⊥ς

. Using the previous lemma we obtain

[[t]]alg
⊥ς

= [[t[u← f(~p)σ]]]alg
⊥ς

= [[t]]alg
⊥ς

[u← [[f(~p)σ]]alg
⊥ς

]E [[t]]alg
⊥ς

[u← [[rσ]]alg
⊥ς

] = [[t′]]alg
⊥ς
.

If u /∈ OuterP (t), then there is a position v < u with t(v) ∈ F . Hence [[t/v]]alg
⊥ς

= ⊥ς and

therefore u /∈ Pos([[t]]alg
⊥ς

). This implies

[[t]]alg
⊥ς

= [[t]]alg
⊥ς

[u← [[f(~p)σ]]alg
⊥ς

] = [[t]]alg
⊥ς

[u← [[rσ]]alg
⊥ς

] = [[t′]]alg
⊥ς
. �

This lemma is also valid for simple and parallel ς-reduction, since for example t −−→
P,ς,no

t′ implies

t −−→
P,no

t′.

Lemma 6.14
The set of ς-redexes RedP,ς is residually closed.
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Proof:
Let t u−−→ t′ be a reduction and v ∈ RedPosP,ς(t). Due to Lemma 2.4 we have v \ t u−−→ t′ ⊆
RedPosP (t′).

v ‖ u, u ≤ v: t/v = t/v̂ for all v̂ ∈ v \ t u−−→ t′ and hence v \ t u−−→ t′ ⊆ RedPosP,ς(t
′).

v < u: Then u = v.k.u′ for some k ∈ IN+ and u′ ∈ IN∗
+. Since v ∈ RedPosP,ς(t), we have t/v =

f(~t) and t′/v = f(~t′) with tk
u′

−−→ t′k and ti = t′i for all other i ∈ [n]. Hence we can deduce
from ~t being syntactically ς-matchable with some f(~p) ∈ RedSP that ~t′ is syntactically
ς-matchable with f(~p) as well. Therefore v \ t u−−→ t′ = {v} ⊆ RedPosP,ς(t

′). �
According to Section 2 this residual closure implies the confluence of the ς-reduction rela-

tions −−→
P,ς

and −−→→
P,ς

.

Lemma 6.15 Well-definedness of the ς-reduction semantics
The sets Tred := {[[t′]]alg

⊥ς
| t ∗−−→

P,ς
t′} and Tpo := {[[t′]]alg

⊥ς
| t ∗−−→→

P,ς,po
t′} have respective least upper

bounds for all t ∈ TΣ.

Proof:
Since TΣ is countable, Tred, Tpo ⊆ {[[t]]

alg
⊥ς
| t ∈ TΣ} are countable as well.

Tred: Let [[t′]]alg
⊥ς
, [[t′′]]alg

⊥ς
∈ Tred. Consequently t ∗−−→

P,ς
t′ and t ∗−−→

P,ς
t′′. Due to the confluence

of the ς-reduction relation there is a t̂ ∈ TΣ with t′ ∗−−→
P,ς

t̂ and t′′ ∗−−→
P,ς

t̂. Together

with Lemma 6.13 about the gain of information by reduction we get [[t′]]alg
⊥ς
E [[t̂]]alg

⊥ς
and

[[t′′]]alg
⊥ς
E [[t̂]]alg

⊥ς
. Hence Tred is directed.

Tpo: From the lemma about gain of information we deduce immediately that Tpo is even a
chain.

Since Tred and Tpo are countable directed subsets of TC,ς , their respective least upper bounds
exist. �
7 Equivalence of the Definitions of the ς-Semantics

We prove in this section that the three definitions of the ς-semantics, that is those of the
ς-fixed-point semantics, the global ς-reduction semantics, and the po-ς-reduction semantics,
are equivalent. We do this by proving separately soundness and completeness.

Definition 7.1
A term semantics [[·]] : TΣ→TC,ς is sound w.r.t. another term semantics [[·]]

′

: TΣ→TC,ς iff
[[·]] � [[·]]

′

and complete iff [[·]]
′

� [[·]]. �
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Subsections 7.1 and 7.2 establish basic properties which are used subsequently. Afterwards,
the soundness of the two ς-reduction semantics w.r.t. the ς-fixed-point semantics and the
soundness of the po- w.r.t. the global ς-reduction semantics are shown in Subsection 7.3.
Subsection 7.4 contains the proof of completeness of the global ς-reduction semantics w.r.t.
the ς-fixed-point semantics. In Subsection 7.5 we give a comprehensive method for proving the
completeness of any reduction semantics based on a so called Π-fair reduction strategy w.r.t.
a global reduction semantics. We apply this in Subsections 7.6 and 7.7 to show respectively
the completeness of the po- w.r.t. the global ς-reduction semantics and that of the li∗- w.r.t.
the global cbv-reduction semantics. The overall result of this section is:

Proposition 7.1 Equivalence of the definitions of the ς-semantics

[[·]]fix
P,ς = [[·]]redP,ς = [[·]]po

P,ς .

Proof:
[[·]]redP,ς � [[·]]fix

P,ς and [[·]]po
P,ς � [[·]]fix

P,ς proved by Lemma 7.8.
[[·]]fix

P,ς � [[·]]redP,ς proved by Lemma 7.10.
[[·]]redP,ς � [[·]]po

P,ς proved by Lemma 7.19. �
Hence we can define:

Definition 7.2
The ς-interpretation DTς(P ) := DTfix

ς (P ) is called ς-data type and the mapping [[·]]P,ς :=
[[·]]fix

P,ς = [[·]]redP,ς = [[·]]po
P,ς is called ς-(term-)semantics. �

7.1 Syntactic and Semantic ς-Matching

First, we need to prove some basic properties.

Lemma 7.2 Characterization of syntactic ς-matching (cf. lem. 6.6)
The term tuple ~t ∈ (TΣ)n is syntactically ς-matchable with f(~p) ∈ RedSP by a substitution

σ : Var(~p)→TΣ iff conditions (i) and (ii) of semantic ς-matchability (def. 6.4) are fulfilled for
the semantically approximated term tuple ([[t1]]

alg
⊥ς
, . . . , [[tn]]alg

⊥ς
) and xσ = ~t/ux with ux given by

{ux} := Pos(x, ~p) for all x ∈ Var(~p).

Proof idea:
Structural induction on ~p. �
The reader should notice again that the linearity of patterns is crucial for the well-definedness
of ux.

Lemma 7.3 Commutativity of term semantics and forming of sub-
terms

Let c ∈ TC(X), β : Var(c)→TC,ς and u ∈ Pos(c) ∩ Pos([[c]]alg
BDTC,ς ,β

). Then

[[c]]alg
BDTC,ς ,β

/u = [[c/u]]alg
BDTC,ς ,β.
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Proof idea:
Structural induction on u. �

The next proposition is of fundamental importance for the equality of the ς-fixed-point
and the ς-reduction semantics.

Proposition 7.4 Syntactic and semantic ς-matching

Let f (n)(~p) ∈ RedSP and ~t ∈ (TΣ)n.

1. The following three statements are equivalent.

a) ~t is syntactically ς-matchable with f(~p) (by a substitution σ : X→TΣ).

b) ([[t1]]
alg
⊥ς
, . . . , [[tn]]alg

⊥ς
) is semantically ς-matchable with f(~p).

c) For all interpretations A ∈ IntΣ,ς the tuple ([[t1]]
algA , . . . , [[tn]]algA ) is semantically ς-

matchable with f(~p) (by a respective valuation βA : X→TC,ς ).

2. If the statements above are fulfilled, then βA(x) = [[xσ]]algA for all x ∈ Var(~p) and even
[[t]]algA,βA = [[tσ]]algA for all t ∈ TΣ(Var(~p)).

Proof idea:

1. a) ⇐⇒ b) follows from the characterization of syntactic and semantic ς-matching (lem-
mas 7.2 and 6.6). b) =⇒ c) employs the monotonicity of semantics ς-matching which is
valid according to Lemma 6.7 and c) =⇒ b) is trivial.

2. Follows from lemmas 7.2 and 6.6 as well, using the previous lemma about commutativity.�
The reader should note that ~t is not necessarily syntactically ς-matchable with f(~p), if
([[t1]]

algA , . . . , [[tn]]algA ) is only semantically matchable with f(~p) for some A ∈ IntΣ,ς .

7.2 Soundness of ς-Reduction

Here we prove in several steps the soundness of ς-reduction w.r.t. the ς-fixed-point semantics
which was already claimed in Subsection 6.3.

Lemma 7.5
In fixed-points of the ς-transformation simple ς-reduction is sound, i.e. if f(~p)→r ∈ P ,
σ : X→TΣ, A = ΦP,ς(A) ∈ IntΣ,ς , and f(~p)σ is a ς-redex, then:

[[f(~p)σ]]algA = [[rσ]]algA .
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Proof:
Since f(~p)σ is a ς-redex, the term tuple (p1σ, . . . , pnσ) is syntactically ς-matchable with f(~p)
by σ.

Due to Proposition 7.4 about syntactic and semantic ς-matching we know that
([[p1σ]]algA , . . . , [[pnσ]]algA ) is semantically ς-matchable with f(~p) by βA : X→TC,ς , which is defined

by βA(x) := [[xσ]]algA for all x ∈ X; hence

fΦP,ς(A)([[p1σ]]algA , . . . , [[pnσ]]algA ) = [[r]]algA,βA (1)

and also (prop. 7.4, item 2):
[[r]]algA,βA = [[rσ]]algA . (2)

Since A is a fixed-point of ΦP,ς , we have

[[f(~p)σ]]algA = fA([[p1σ]]algA , . . . , [[pnσ]]algA ) = fΦP,ς(A)([[p1σ]]algA , . . . , [[pnσ]]algA ). (3)

Altogether:

[[f(~p)σ]]algA (3)
= fΦP,ς(A)([[p1σ]]algA , . . . , [[pnσ]]algA )

(1)
= [[r]]algA,βA (2)

= [[rσ]]algA . �
Corollary 7.6
In fixed-points of the ς-transformation ς-reduction is sound, i.e. if A = ΦP,ς(A) ∈ IntΣ,ς , then
for all t, t′ ∈ TΣ:

t ∗−−→
P,ς

t′ =⇒ [[t]]algA = [[t′]]algA .

Proof:
Follows from the preceding lemma by the invariance of algebraic term semantics. �
Corollary 7.7
ς-reduction is sound w.r.t. the ς-fixed-point semantics, i.e.

t ∗−−→
P,ς

t′ =⇒ [[t]]fix
P,ς = [[t′]]fix

P,ς . �
7.3 Soundness of the ς-Reduction Semantics

Lemma 7.8
The ς-reduction semantics are sound w.r.t. the ς-fixed-point semantics:

[[·]]redP,ς � [[·]]fix
P,ς and [[·]]po

P,ς � [[·]]fix
P,ς .
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Proof:
Let t, t′ ∈ TΣ with t ∗−−→

P,ς
t′. According to the soundness of ς-reduction sequences (cor. 7.7)

[[t]]fix
P,ς = [[t′]]fix

P,ς . Since ⊥ς ⊑ DTfix
ς (P ) and since the algebraic term semantics is monotonic

(Lemma 6.9), we have [[t′]]alg
⊥ς
E [[t′]]alg

DTfix
ς (P )

= [[t′]]fix
P,ς . Together [[t′]]alg

⊥ς
E [[t]]fix

P,ς and therefore

[[t]]redP,ς =
⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′} E [[t]]fix

P,ς

and
[[t]]po

P,ς =
⊔

{[[t′]]alg
⊥ς
| t ∗−−→→

P,ς,po
t′} E [[t]]fix

P,ς . �
Lemma 7.9
The po-ς-reduction semantics is sound w.r.t. the global ς-reduction semantics:

[[·]]po
P,ς � [[·]]redP,ς .

Proof:

{t′|t ∗−−→→
P,ς,po

t′} ⊆ {t′|t ∗−−→
P,ς

t′}

=⇒ {[[t′]]alg
⊥ς
|t ∗−−→→

P,ς,po
t′} ⊆ {[[t′]]alg

⊥ς
|t ∗−−→

P,ς
t′} =⇒ [[t]]po

P,ς E [[t]]redP,ς . �
7.4 Completeness of the Global ς-Reduction Semantics

Lemma 7.10
The global ς-reduction semantics is complete w.r.t. the ς-fixed-point semantics:

[[·]]fix
P,ς � [[·]]redP,ς

Proof:
Let t ∈ TΣ and Ai := (ΦP,ς)

i(⊥ς) ∈ IntΣ,ς for all i ∈ IN. According to the next lemma {[[t]]algAi
|

i ∈ IN} is cofinal in {[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′} which implies

⊔

i∈IN[[t]]algAi
E ⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′}. Hence

we have

[[t]]fix
P,ς = [[t]]alg

DTfix
ς (P )

= [[t]]alg
⊔

i∈IN
Ai

l. 6.9
=

⊔

i∈IN

[[t]]algAi
E ⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′} = [[t]]redP,ς .

�
The following lemma contains the heart of the completeness proof.



7 Equivalence of the Definitions of the ς-Semantics 35

Lemma 7.11
The approximations of the ς-fixed-point semantics are cofinal in those of the global ς-reduction
semantics, i.e. if t ∈ TΣ and Ai := (ΦP,ς)

i(⊥ς) ∈ IntΣ,ς for all i ∈ IN, then for every i ∈ IN

there is a t′ ∈ TΣ with t ∗−−→
P,ς

t′ and [[t]]algAi
E [[t′]]alg

⊥ς
.

Proof:

i = 0: With t′ := t we have t ∗−−→
P,ς

t′ and [[t]]algAi
= [[t]]alg

⊥ς
= [[t′]]alg

⊥ς
.

i⇒ i+ 1:

t = f(t1, . . . , tn): (f (n) ∈ F).

Case 1: ([[t1]]
algAi+1

, . . . , [[tn]]algAi+1
) is semantically ς-matchable with the left-hand side

of f(~p)→r ∈ P by β : X→TC,ς .
Then

[[t]]algAi+1
= fAi+1([[t1]]

algAi+1
, . . . , [[tn]]algAi+1

) = [[r]]algAi,β
. (1)

In accordance with the hypotheses of the structural induction there exist
t′1, . . . , t

′
n ∈ TΣ with

tl
∗−−→

P,ς
t′l (2)

and

[[tl]]
algAi+1

E [[t′l]]
alg
⊥ς

(3)

for all l ∈ [n].
Equation (2) implies

t = f(t1, . . . , tn) ∗−−→
P,ς

f(t′1, . . . , t
′
n) (4)

The monotonicity of algebraic term semantics w.r.t. the algebra (Lemma 6.9)
gives us

[[t′l]]
alg
⊥ς
E [[t′l]]

algA (5)

for all A ∈ IntΣ,ς and l ∈ [n].
From (3) and (5) and the monotonicity of semantic ς-matching (Lemma
6.7) we conclude that for all ς-interpretations A ∈ IntΣ,ς , especially Ai,

([[t′1]]
algA , . . . , [[t′n]]algA ) is semantically ς-matchable with f(~p) by respective valu-

ations βA, and

β � βA. (6)

With Proposition 7.4 about syntactic and semantic ς-matching follows, that
(t′1, . . . , t

′
n) is syntactically ς-matchable with f(~p) by a substitution σ and

[[t̂σ]]algAi
= [[t̂]]algAi,βAi

(7)

for all t̂ ∈ TΣ(Var(~p)).
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The syntactic ς-matchability implies

f(t′1, . . . , t
′
n) −−→

P,ς
rσ. (8)

Equation (7) is especially valid for t̂ = r:

[[rσ]]algAi
= [[r]]algAi,βAi

. (9)

From (6) and the monotonicity of algebraic term semantics w.r.t. the valuation
(Lemma 6.8) we deduce

[[r]]algAi,β
E [[r]]algAi,βAi

. (10)

Finally the hypotheses of the induction over i assures the existence of a t′ ∈ TΣ

with
rσ ∗−−→

P,ς
t′ (11)

and

[[rσ]]algAi
E [[t′]]alg

⊥ς
. (12)

Together (4), (8) and (11) give

t = f(t1, . . . , tn) ∗−−→
P,ς

f(t′1, . . . , t
′
n) −−→

P,ς
rσ ∗−−→

P,ς
t′ (13)

and we have

[[t]]algAi+1

(1)
= [[r]]algAi,β

(10)E [[r]]algAi,βAi

(9)
= [[rσ]]algAi

(12)E [[t′]]alg
⊥ς
. (14)

Case 2: Otherwise, i.e. there does not exist any matching reduction rule.
Let t′ := t. Then

t ∗−−→
P,ς

t′

and

[[t]]algAi+1
= fAi+1([[t1]]

algAi+1
, . . . , [[tn]]algAi+1

) = ⊥ E [[t′]]alg
⊥ς
.

t = G(t1, . . . , tn): (G(n) ∈ C).

According to the hypotheses of the structural induction there exist t′1, . . . , t
′
n ∈ TΣ

with

tl
∗−−→

P,ς
t′l (1)

and

[[tl]]
algAi+1

E [[t′l]]
alg
⊥ς

(2)

for all l ∈ [n].

Together with the monotonicity of all operations of a ς-interpretation (2) implies

GAi+1([[t1]]
algAi+1

, . . . , [[tn]]algAi+1
) E GAi+1([[t′1]]

alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
). (3)
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Furthermore, the operation of a constructor symbol is the same in all ς-
interpretations:

GAi+1 = GA0 = G⊥ς . (4)

Let t′ := G(t′1, . . . , t
′
n). Then (1) gives us

t = G(t1, . . . , tn) ∗−−→
P,ς

G(t′1, . . . , t
′
n) = t′

and (3) and (4) imply

[[t]]algAi+1
= GAi+1([[t1]]

algAi+1
, . . . , [[tn]]algAi+1

)

(3)E GAi+1([[t′1]]
alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
)

(4)
= G⊥ς ([[t′1]]

alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
)

= [[t′]]alg
⊥ς
. �

Unfortunately it is not possible to use the same proof method for the po-ς-reduction se-
mantics, since the step from (2) to (4) is not valid for po-ς-reduction.

7.5 Completeness of Π-Fair Reduction Semantics

We do not prove the completeness of the po-ς-reduction semantics directly, as has been done
in detail in [Chi95]. The proof there is based on O’Donnell’s proof that eventually outermost
sequences terminate whenever possible (lemma 10 and theorem 17 in [O’D77]). In the appendix
of [BK86] O’Donnell’s proof is extended to so called Π-fair reduction sequences. By using that
extended version we obtain a more general result, showing that any semantics based on Π-fair
reduction is complete. This is subsequently applied in Subsections 7.6 and 7.7 to the po-ς-
and the li∗-semantics, respectively.

In this and the following subsections I is an arbitrary instance of an almost orthogonal
TRS R over a signature Σ, so that RedR,I is residually closed. 〈A,E〉 is a cpo (with A 6= ∅)
and [[·]]⊥ : TΣ→A a mapping such that t −−→

R,I
t′ =⇒ [[t]]⊥ E [[t′]]⊥.

For having a concrete example, the reader may keep in mind that later R will be our
program P , I an instance ς , and [[·]]⊥ a semantic ς-approximation [[·]]⊥ς

.
Due to its complexity, the proof of [BK86] is not reproduced here but only outlined and

cited as far as necessary for our extension. Unfortunately it considers only the smaller class
of orthogonal TRSs. Nonetheless, the generalization to instances of almost orthogonal TRSs
with residually closed redex sets is straightforward, because the proof is based on a variation
of the parallel moves lemma (2.5), as already remarked in [BK86].

Definition 7.3 (Cf. Definition 7.2 in [BK86])
A predicate Π ⊆ IN∗ × TΣ with (u, t) ∈ Π =⇒ u ∈ RedPosR,I(t) is gaining iff it has the
following three properties:
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I) Preservation of a Π-redex-position.

For all I-reductions
t0 ////

u1

R,I

����

u2R,I

t1

����

V2R,I

t2 ////
V1

R,I
t3

with V1 = u1 \ t0
u2−−→
R,I

t2, V2 = u2 \ t0
u1−−→
R,I

t1, and all wi ∈ RedPosR,I(ti) (i ∈ [4]) with

w1 ∈ w0 \ t0 −−→ t1, w2 ∈ w0 \ t0 −−→ t2,
w3 ∈ w1 \ t1 −−→ t3, w3 ∈ w2 \ t2 −−→ t3,

we have
Π(w0, t0),Π(w2, t2),Π(w3, t3) =⇒ Π(w1, t1).

II) ¬Π-reductions do not create new Π-redex-positions.

For every reduction t u−−→
R,I

t′ such that ¬Π(u, t), every v′ such that Π(v′, t′) has a re-

spective predecessor, i.e. a v with v′ ∈ v \ t u−−→
R,I

t′ such that Π(v, t).

III) ¬Π-reductions do not change the semantic approximation.

For every t u−−→
R,I

t′ such that ¬Π(u, t), we have [[t]]⊥ = [[t′]]⊥.

We write t u−−→
Π

t′ and t u−−→
¬Π

t′ for a reduction t u−−→
R,I

t′ with Π(u, t) and ¬Π(u, t), respec-

tively. �
The definition of the first property is slightly different from [BK86] where the transitive-
reflexive closure ∗−−→ is used instead of the parallel −−→→ . Since that would require in-
troducing the supplementary concepts of development and diagram we use our equivalent
definition. The third property is added for our extension towards semantics.

Definition 7.4 (Def. 7.5 in [BK86])

1. Let A = t1
v1−−→
R,I

t2
v2−−→
R,I

. . . be a (finite or infinite) reduction sequence such that uj ∈

RedPosR,I(tj) and ui+1 ∈ ui \ ti
vi−−→

R,I
ti+1 for all i ≥ j as far as ui is defined. Then the

sequence uj , uj+1, uj+2, . . . is called a trace in A.

2. Let A be as in 1. and let Π ⊆ IN∗×TΣ be a predicate. Then a trace uj, uj+1, . . . in A is
a Π-trace iff for all i ≥ j we have Π(ui, ti).

3. Let A be a reduction and Π ⊆ IN∗×TΣ be a predicate. Then A is Π-fair iff A contains
no infinite Π-traces. �
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t1 ////
v1

����

∗Π

t2 ////
v2

����

∗Π

t3 ////
v3

����

∗Π

. . .

s3 ////∗

����
¬Π ∗

. . .

s2 ////∗

����

¬Π ∗

ŝ3

����

∗s1 ////∗

����

¬Π ∗

ŝ2

����

∗

t′1 ////∗ t′2 ////∗ t′3 ////∗ . . .

Figure 1: The Π-fair reduction construction.

Lemma 7.12
If Π is a gaining predicate, A = t1

v1−−→
R,I

t2
v2−−→
R,I

. . . a Π-fair reduction sequence, and t1 −−→R,I
t′1

a reduction, then there exists a Π-fair reduction construction as shown in figure 1 such
that

1. the sequence s1, ŝ2, s2, ŝ2, s3, . . . converges to A, that is there exists a j ∈ IN with ti = si

for all i ≥ j, and

2. the residual reduction sequence t′1
∗−−→

R,I
t′2

∗−−→
R,I

. . . of the Π-fair reduction construction

is Π-fair.

Proof:
Theorem 7.8 in [BK86] (see also lemma 17 in [O’D77]). �
Lemma 7.13 Semantic cofinality of Π-fair reduction sequences I
Let A = t1 −−→R,I

t2 −−→R,I
. . . be a Π-fair reduction sequence and B = t1 −−→R,I

t′1 a reduction.

Then exists an l ∈ IN+ with [[t′1]]⊥ E [[tl]]⊥.

Proof:
We consider the Π-fair reduction construction of A and B with the identifiers used in Lemma
7.12 and prove by induction that [[t′1]]⊥ E [[si]]⊥ for all i ∈ IN+.

i = 1: By property III the reduction s1
∗−−→
¬Π

t′1 implies [[t′1]]⊥ = [[s1]]⊥.

i⇒ i+ 1: We have si
∗−−→ ŝi+1 and si+1

∗−−→
¬Π

ŝi+1. Our prerequisite concerning [[·]]⊥ and

property III imply [[si]]⊥ E [[ŝi+1]]⊥ = [[si+1]]⊥. Together with the induction hypotheses
we get [[t′1]]⊥ E [[si+1]]⊥.
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Figure 2: Proof idea of Lemma 7.14

According to Lemma 7.12 there exists an l ∈ IN+ with tl = sl. Hence we have [[t′1]]⊥ E [[sl]]⊥ =
[[tl]]⊥. �
Lemma 7.14 Semantic cofinality of Π-fair reduction sequences II
Let A = t1 −−→R,I

t2 −−→R,I
. . . be a Π-fair reduction sequence and B = t1

∗−−→
R,I

t′ a reduction.

Then exists a k ∈ IN+ with [[t′]]⊥ E [[tk]]⊥.

Proof idea:
Induction over the length of B, employing the preceding lemma for the induction step; see
figure 2. �
Thus we finally obtain:

Proposition 7.15 Completeness of Π-fair reduction semantics
Let a global reduction semantics [[·]]redR,I : TΣ→A be defined by

[[t]]redR,I :=
⊔

{[[t′]]⊥ | t
∗−−→

R,I
t′}

and let a ‘successor’-function F : TΣ→TΣ, fixing a unique Π-fair reduction sequence
t ∗−−→

R,I
F (t) ∗−−→

R,I
F 2(t) ∗−−→

R,I
. . . for every term t, define a Π-fair reduction semantics

[[·]]ΠR,I : TΣ→A by

[[t]]ΠR,I :=
⊔

i∈IN

[[F n(t)]]⊥
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Then the Π-fair reduction semantics is complete w.r.t. the global reduction semantics, i.e.

[[·]]redR,I � [[·]]ΠR,I . �
7.6 Completeness of the Po-ς-Reduction Semantics

To apply the result of the last subsection we just have to prove that Πo
P,ς is a gaining predicate,

where Πo
R,I(u, t) holds iff u is an outermost I-redex position of t. Since this proof is only tedious

it was moved to the appendix.

Lemma 7.16
The predicate Πo

P,ς is gaining.

Proof:
Property I: Lemma A.1. Property II: Lemma A.4 and Lemma A.2. Property III: Lemma 6.13
(gain of information). �
Corollary 7.17
The po-ς-reduction semantics is complete w.r.t. the global ς-reduction semantics, i.e. [[·]]redP,ς �
[[·]]po

P,ς .

Proof:
The po-ς-reduction semantics is a Πo

P,ς-fair reduction semantics. �
7.7 Completeness of the Lo-Cbv-Reduction Semantics

Analogously to the previous subsection we define a predicate Πlo
R,I by Πlo

R,I(u, t) :⇐⇒ u is
the leftmost-outermost I-redex position of t. Proving Πlo

P,cbv to be gaining was moved to the
appendix as well. We finally obtain:

Lemma 7.18
The predicate Πlo

P,cbv is gaining.

Proof:
Property I: Lemma A.5. Property II: Lemma A.6. Property III: Lemma A.7. �
Corollary 7.19
The lo-cbv-reduction semantics (li∗-reduction semantics) is complete w.r.t. the global cbv-
reduction semantics, i.e. [[·]]redP,cbv � [[·]]loP,cbv. �
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8 Properties of the ς-Semantics

In Section 4 we discussed some properties which we expect our semantics to have. We record
that since [[·]]P,ς = [[·]]alg

DTς(P ) is an algebraic semantics, the ς-semantics is compositional. The
ς-semantics is modular as well; the broad reasoning of Section 4 can easily be transformed
into a formal proof for the ς-semantics.

We mentioned in Section 4 that the ς-term semantics uniquely determines the ς-data type
although the equation

fDTς(P )(~t) = [[f(~t)]]P,ς

(for all f (n) ∈ Σ, ~t ∈ (TC,ς )
n, ~t ∈ (TΣ)n with [[t1]]P,ς = t1, . . . , [[tn]]P,ς = tn) does not give a

complete definition of the ς-data type DTς(P ) by [[·]]P,ς , because there may not be for every
t ∈ TC,ς \ TC a t ∈ TΣ with [[t]]P,ς = t.

The problem can be remedied, because the ς-semantics is modular and the data type
〈TC,ς ,E〉 is ω-inductive. If there is a term t⊥ with [[t⊥]]P,ς = ⊥, then for any finite partial
data term t ∈ (TC,ς ∩ TC,⊥) \ TC a program term t ∈ TΣ with [[t]]P,ς = t is constructible by
using t⊥ and constructor symbols. If there is no such t⊥, then we extend our program P
by a new function symbol c⊥ to a program P ′, without giving a rule for c⊥. Consequently
[[c⊥]]P ′,ς = ⊥. If we can solve the problem for the infinite data terms as well, then we have
DTς(P ) = DTς(P

′)|Σ due to modularity. Since 〈TC,ς ,E〉 is ω-inductive, there exist for all
tuples of (possibly infinite) terms ~t ∈ (TC,ς )

n chains T1, . . . , Tn ⊆ TC,ς ∩ TC,⊥ of finite terms
with t1 =

⊔

T1, . . . , tn =
⊔

Tn and these finite terms can be denoted by program terms as just
observed. Since all operations are continuous we have

fDTς(P )(~t) = fDTς(P )(
⊔

T1, . . . ,
⊔

Tn)

=
⊔

fDTς(P )(T1, . . . , Tn) =
⊔

{[[f(~t)]]P,ς | ~t ∈ (T1, . . . , Tn)}

and the ς-data type is completely defined.
It should be noted that a similar reasoning using furthermore the fact that our programs

are only of first order shows, that the ς-semantics is fully abstract in the sense of Definition
2.1 of [CF92].

We noticed already w.r.t. the cbn-semantics in Subsection 5.4 that since the reduction
semantics is defined as least upper bound of semantic approximations, data terms are possibly
only approximated to arbitrary precision, but never actually reached as final results. Obviously
this is unavoidable for infinite data terms and many partial data terms, but we do expect an
operational semantics to compute all finite, total data terms.

Lemma 8.1 Computability of the ς-reduction semantics
Let t ∈ TΣ.

• If [[t]]redP,ς = t ∈ TC, then t↓P,ς exists and [[t]]redP,ς = t = t↓P,ς .

• If [[t]]po
P,ς = t ∈ TC, then t↓P,po,ς exists and [[t]]po

P,ς = t = t↓P,po,ς .
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Proof:

• Let t = [[t]]redP,ς =
⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′} ∈ TC. Since 〈TC,ς ,E〉 is ω-inductive and t is

ω-compact, there exists [[t̂]]alg
⊥ς
∈ {[[t′]]alg

⊥ς
| t ∗−−→

P,ς
t′} with t = [[t̂]]alg

⊥ς
. Then t ∈ TC implies

t̂ = t. Moreover t ∗−−→
P,ς

t̂ = t and hence t is the ς-normal form of t.

• The proof for the po-ς-reduction semantics is analogous. �
As an aside we remark that together with the equality of the general and the po-ς-reduction

semantics the equality of the ς-normal form and the po-ς-normal form of a term follows.

9 Applications of ς-Semantics

Not only do ς-semantics provide a uniform framework for cbv- and cbn-semantics, but also
the mixed strictnesses permit a natural description of real functional programming languages
which rarely have a pure cbv- or cbn-semantics.

The functional programming language Hope with its strict functions and non-strict con-
structors has already been mentioned.

All basically strict languages like (the functional subsets of) ML and Scheme have a
predefined set of non-strict functions: a form of conditional (if) is necessary to enable universal
computability, because pattern matching is not primitive, and also others like sequential logical
and and or are provided. At least non-strict lists (streams) exist to permit purely functional
input and output and often further non-strict constructors are provided for arbitrary infinite
data structures.

For non-strict functional programming languages strictness is an issue, because cbv-
evaluation proves to be more efficient than cbn-evaluation and also facilitates parallel imple-
mentations ([FH88], Chapter 13 in [PvE95]). Therefore, many modern non-strict functional
programming languages provide various kinds of strictness annotations which may be generat-
ed automatically by a strictness analysis or supplied by the user ([HJW+92],[MH+96],[PvE95]).
These annotations may be for arguments and/or results of functions and/or constructors in
type declarations and/or at individual application points.

Strictness annotations at argument positions in type declarations coincide with our forced
strictness. Hence one may prove the equivalence of the cbn-semantics and a particular ς-
semantics for a particular program and then use a ς-reduction strategy for a correct imple-
mentation.

Strictness annotations at individual application points are useful when information about
contexts is included. E.g. in the program
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even(Zero) → Succ(Zero)

even(Succ(Zero)) → Zero

even(Succ(Succ(x))) → even(x)

evenDTcbn(P )(t) is only unequal ⊥ for total terms t ∈ TC. Notions like structure strictness (our
strictness), spine strictness, and normalization strictness describe this kind of dependency on
the (non-)partiality of arguments. This information can be transferred to strictness annota-
tions at individual applications of constructors, e.g. in even(Succ(a)) the position of Succ
may be considered strict in its argument.

This kind of annotation is not expressible by ς-semantics. It is not the aim of this paper
but would even contradict a uniform presentation of cbv- and cbn-semantics, since varying
forced strictnesses of constructors would require T∞

C,⊥ as carrier set of the data type, excluding
the true cbv-semantics. However, continuing in this direction is straightforward.

10 Efficient ς-Reduction Strategies

The po-ς-reduction strategy is too costly to be used in actual implementations. Sharing
common subterms yields an improvement. Even in the case of cbv-semantics it saves space
and time of copying complex data structures. However, since this technique is orthogonal to
and at a different level than the concept of reduction strategy, it is not discussed here.

Obviously a still complete ς-reduction strategy does not need to reduce all ς-redexes which
are reduced by the po-ς-reduction strategy. Many approximations of a subset of needed ς-
redexes will spring to the reader’s mind. The concept of gaining predicates enables easy proofs
of completeness of such ς-reduction strategies.

Restricting the set of admissible patterns of a program can lead to considerably simpler
ς-reduction strategies. In Berry’s example ([Ber78])

h(True, False, x) → True

h(False, x, True) → True

h(x, True, False) → True

all three arguments in the term h(t1, t2, t3) have to be reduced in parallel (alternately)12,
since the term’s semantics may not be ⊥ even if any one argument denotes ⊥. Hence, one
may only permit sequential sets of patterns (cf. strong sequentiality in [HL91]), that is those
which are translatable into explicit tests; e.g.:

add(x, y) → caseZero,Succ(y, x, Succ(add(x, selSucc,1(y))))

The semantics of caseC1,...,Cn
and selCj ,i is given by

caseC1,...,Cn
(Cj(~t), t1, . . . , tn) → tj

selCj ,i(Cj(~t)) → ti

12Surprisingly, a complete sequential reduction strategy exists nonetheless ([AM94]). It is practically useless
due to its inefficiency though.
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with C = {C1, . . . , Cn}, C
(m)
j ∈ C, i ∈ [m].

This transfers some complexity from the reduction strategy to the case expressions which
replace the patterns. Locating a ς-redex in a term is still not trivial though, due to the possible
forced strictness of functions and constructors. Moreover, while patterns form a natural part
of the ς-semantics, case is a special function since it needs to be non-strict in all its arguments
but the first, even in the cbv-semantics.

As an aside should be noted that for programs with tests instead of patterns the lo-cbn-
reduction strategy is normalizing ([O’D77], [BK86]) but not complete: With undef → undef

reducing [A, B, undef, C] does not yield its cbn-semantics [A, B, ⊥, C] but A:B:⊥. How-
ever, this is exactly the result any interpreter of a modern non-strict functional programming
language gives. The lo-reduction strategy becomes complete, when we define the list construc-
tor Cons (:) of the output list13 to be strict in its first argument.

11 Conclusion

In this paper we defined and studied the ς-semantics, a comprehensive semantics for functional
constructor-based programs with patterns.

By introducing the forced strictness ς as parameter we obtained a single definition for
both cbv- and cbn-semantics. Thus the true common and distinguishing features of these two
standard semantics were highlighted. We established that the usual operational definition by
innermost, respectively outermost reduction is rather deceptive. Instead, a forced strictness ς
fixes an instance of the program characterized by a set of ς-redexes. Reductions in this instance
are sound w.r.t. the ς-semantics and therefore serve as basis for operational ς-semantics.

We defined a denotational ς-semantics which assigns a data type to a program in a modular
way and moreover ensures the compositionality of the ς-semantics. We defined two operational
ς-semantics. The general ς-reduction semantics is elementary and the means by which the
completeness of arbitrary Π-fair reduction semantics was proved. This result was applied to
the po-ς-semantics. Furthermore, it provides a tool for proving the soundness and completeness
of other, future ς-reduction semantics. In general, we are able to validate a property for all
instances of the ς-semantics by a single proof.

We saw that, although implementations may translate patterns into explicit tests, the ς-
semantics is naturally defined on the basis of patterns. Finally, the ς-semantics gives a simple
formal foundation for the prevailing mixed strictnesses of modern functional programming
languages.

We did not give a declarative ς-semantics, that is a semantics which views reduction rules
as equations and uses models, in which all equations are valid, as data types. The rea-
son is that generally ς-data types are not models, due to the forced strictness ς which
does not appear in the program. Only the cbn-data type is a model. That one can even
be uniquely characterized as the minimal interpretation which is a model (DTP,cbn(P ) =

13Any output of a real-world functional program is either a list of characters (string) or a list of commands
for the operating system.



46 References

Least〈IntΣ,cbn,⊑〉(IntΣ,cbn ∩Mod(P ))). For the cbv-data type an analogous characterization ex-
ists, if partial algebras (with true partial operations) are used instead of Alg∞

Σ,⊥. Nonetheless,
a simple declarative ς-semantics seems not to be attainable ([Chi95]).

We considered only first-order functional programs without sorts or types. Thus the es-
sential points were well exposed. Higher-order functional programs require more complicated
semantic domains than simple algebras, and the introduction of a type system, at least to
distinguish base data elements formed by constructors and functions of different orders, would
be unavoidable. The concept of ς-semantics should carry over to higher-order functional pro-
grams without principal difficulties. Nonetheless, it may be worthwhile to put this into effect,
since new issues may arise and further insights may be gained.

Formal semantics are not only the prerequisite for the implementation of correct interpreters
and compilers and the verification of programs, but also lead us to a continuously improving
understanding of the nature of programming languages.

Acknowledgement. The author is especially indebted to Thomas Noll for many fruitful
discussions.

References

[AM94] S. Antoy and A. Middeldorp. A sequential reduction strategy. In Proceedings
of the 4th International Conference on Algebraic and Logic Programming, LNCS
850, pages 168–185, Madrid, September 1994.

[Ber78] G. Berry. Stable models of typed λ-calculi. In Proceedings of the 5th ICALP
Conference, LNCS 62, pages 73–89, Udine, Italy, 1978.

[BK86] J.A. Bergstra and J.W. Klop. Conditional rewrite rules: Confluence and termi-
nation. Journal of Computer and System Sciences, 32:323–362, 1986.
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A Predicates Πo
P,ς and Πlo

P,cbv Are Gaining

Here we give the proofs which were omitted in Subsections 7.6 and 7.7.
As there, I is an arbitrary instance of an almost orthogonal TRS R over a signature Σ, so

that RedR,I is residually closed, 〈A,E〉 is a cpo with A 6= ∅, and [[·]]⊥ : TΣ→A a mapping with
t −−→

R,I
t′ =⇒ [[t]]⊥ E [[t′]]⊥.

A.1 Πo
P,ς Is Gaining

We show that Πo
R,I has property I and Πo

P,ς has property II of gaining redexes. Property III is
already proved for Πo

P,ς by Lemma 6.13 about gain of information.

Lemma A.1 Preservation of an outermost redex-occurrence
Πo

R,I has property I of gaining redexes.
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Proof: (Cf. Example 7.4 (ii) in [BK86])
Let (v] := {v′ ∈ IN∗

+ | v
′ ≤ v} for arbitrary v ∈ IN∗

+. We use the same identifiers as in
definition 7.3.

a) Show: (w1] ∩ V2 = ∅.

Suppose w′
1 ∈ (w1] ∩ V2. From w1 ≤ w1, w

′
1 ∈ u2 \ t0

u1−−→ t1 and w1 ∈ w0 \ t0
u1−−→ t1

the definition of residuals gives us u2 ≤ w0. However, w0 = u2 contradicts w1 ∈ w0 \
t0

u2−−→ t2 and u2 < w0 contradicts Πo
R,I(w0, t0).

b) Show: Πo
R,I(w1, t1).

Suppose ¬Πo
R,I(w1, t1). Then exists w′

1 with Πo
R,I(w

′
1, t1) and w′

1 < w1. Since (w′
1] ⊆ (w1]

property a) gives us (w′
1]∩V2 = ∅. This implies w′

1 \ t1
V2−−→→ t3 = {w′

1} ∈ RedPosR,I(t3).

Since w′
1 < w1 and by a) we know that {w3} = w1\t1

V2−−→→ t3 = {w1}, we get Πo
R,I(w3, t3)

in contradiction to the assumptions. �
Verifying property II of gaining predicates takes more effort.

Definition A.1 (Cf. def. 32 in [O’D77])
RedR,I is outer iff

t w−−→
R,I

t′ is a reduction,

u < v < w, v ∈ RedPosR,I(t), u ∈ RedPosR,I(t
′)

=⇒ u ∈ RedPosR,I(t).

�
Lemma A.2 (Lemma 14 in [O’D77])
If RedR,I is outer, then Πo

R,I satisfies property II of gaining redexes.

Proof:
Let t u−−→

R,I
t′ be a reduction with ¬Πo

R,I(u, t) and Πo
R,I(v

′, t′).

a) Show: There is no w < v′ with w ∈ RedPosR,I(t).

Suppose such a w exists. Without loss of generality Πo
R,I(w, t). Then w \ t u−−→ t′ =

{w} ⊆ RedPosR,I(t
′) in contradiction to Πo

R,I(v
′, t′).

b) Show: v′ ∈ RedPosR,I(t).

u < v′ contradicts a) and u = v′ together with a) contradicts ¬Πo
R,I(u, t), leaving:

v′ ‖ u: Then t/v′ = t′/v′ and therefore v′ ∈ RedPosR,I(t).

v′ < u: Since ¬Πo
R,I(u, t) there is a w ∈ RedPosR,I(t) with w < u, and even v′ ≤ w < u

according to a). The outer property finally gives v′ ∈ RedPosR,I(t).

Together a) and b) imply Πo
R,I(v, t) and v \ t u−−→

R,I
t′ = {v′} for v := v′. �
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It only remains to show that our redex sets are outer.

Lemma A.3 ([O’D77])
The redex set RedR is outer.

Proof:
Let t w−−→

l→r
t′ be a reduction, u < v < w, v ∈ RedPosR(t), and u ∈ RedPosR(t′). Hence exist

v′, w′ ∈ IN∗
+ with v = u.v′ and w = v.w′ = u.v′.w′. The reduction implies the existence of a

substitution σ with
t/u = t′/u[v′.w′ ← lσ] (1)

t′/u = t/u[v′.w′ ← rσ]

Since u ∈ RedPosR(t′), there exists a redex scheme l̂ ∈ RedSR and a substitution
[t1/x1, . . . , tn/xn] : Var(l̂)→TΣ with

t′/u = l̂[t1/x1, . . . , tn/xn] (2)

Since RedR is residually closed and v \ t w−−→
l→r

t′ = {v}, we have v ∈ RedPosR(t′). According

to Lemma 2.1 there exist v1, v2 ∈ IN∗
+ with v = u.v1.v2 and l̂/v1 ∈ X, i.e. l̂/v1 = xk for a

k ∈ [n].
Altogether we obtain

t/u
(1)
= t′/u[v′.w′ ← lσ]
(2)
= (l̂[t1/x1, . . . , tn/xn])[v′.w′ ← lσ]

= l̂[t1/x1, . . . , tk[v2.w
′ ← lσ]/xk, . . . , tn/xn].

Hence t/u ∈ RedR and therefore u ∈ RedPosR(t). �
Lemma A.4
The redex set RedP,ς is outer.

Proof:
Let t w−−→

l→r,ς
t′ be a ς-reduction, u < v < w, v ∈ RedPosP,ς(t), and u ∈ RedPosP,ς(t

′). Hence

exist v′, w′ ∈ IN∗
+ and k ∈ IN+ with v = u.k.v′ and w = v.w′ = u.k.v′.w′. Since RedP,ς ⊆ RedP ,

the previous lemma gives us u ∈ RedPosP (t), that is

t/u = f(t1, . . . , tn)

t′/u = f(t′1, . . . , t
′
n)

for an f (n) ∈ F and some t1, . . . , tn, t
′
1, . . . , t

′
n ∈ TΣ with

ti = t′i (1)

for all i ∈ [n] with i 6= k, and

tk
v′.w′

−−→
l→r,ς

t′k.
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Since v′ ∈ RedPosP,ς(t), we have tk
v′.w′

−−→
P,ς,no

t′k. Then by Lemma 6.13 about gain of informa-

tion
[[tk]]

alg
⊥ς

= [[t′k]]
alg
⊥ς
. (2)

Since u ∈ RedPosP,ς(t
′), the function symbol f is not forcedly strict for ([[t′1]]

alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
),

and ([[t′1]]
alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
) is semantically ς-matchable with the pattern ~p of a redex scheme f(~p) ∈

RedSP . Due to (1) and (2) this is valid for ([[t1]]
alg
⊥ς
, . . . , [[tn]]alg

⊥ς
) as well. Hence u ∈ RedPosP,ς(t).�

A.2 Πlo
P,cbv Is Gaining

We show that Πlo
R,I has property I and Πlo

P,cbv has property II and property III of gaining
redexes.

Lemma A.5 Preservation of an lo-redex occurrence
Πlo

R,I has property I of gaining redexes.

Proof:
Using the identifiers of definition 7.3 we have Πo

R,I(w1, t1) due to Lemma A.1. Let w′
1 be the

lo-I-redex position of t1 and suppose that w1 6= w′
1. Analogously to the proof of Lemma A.1

we conclude w′
1 ∈ RedPosR,I(t3) with w′

1 <lex w1 = w3 in contradiction to the assumption
Πlo

R,I(w3, t3). �
Lemma A.6
Πlo

P,cbv has property II of gaining redexes.

Proof:
Let t u−−→

P,cbv
t′ be a reduction with ¬Πlo

P,cbv(u, t). Let v and v′ be the lo-cbv-redex positions

of t and t′, respectively. Obviously t u−−→
P,cbv

t′ = {v} ⊆ RedPosP,cbv(t
′). To show that v = v′

suppose:

v <lex v
′: Contradicts v′ being lo in t′.

v′ <lex v:

v′ < v: Contradicts v′ being a cbv-redex, because cbv-redexes never contain any redexes
as proper subterms.

v′ ‖ v: v′ > u: Together with v′ <lex v this implies u <lex v in contradiction to v being
lo in t.

v′ ‖ u: Because of t/v′ = t′/v′ we have v′ ∈ RedPosP,cbv(t). Together with v′ <lex v
this contradicts v being lo in t.

v′ < u: All three ordering assumptions together imply u <lex v in contradiction to
v being lo in t. �
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Lemma A.7
Πlo

P,cbv has property III of gaining redexes.

Proof:
Let o be the lo-cbv-redex position of t. t u−−→

P,cbv
t′ with ¬Πlo

P,cbv(u, t) implies o :=

LOuterP,cbv(t) 6= u so that o \ t u−−→
P,cbv

t′ = {o} ⊆ RedPosP,cbv(t
′). Consequently t and t′

still contain redexes and we have [[t]]alg
⊥cbv

= ⊥ = [[t′]]alg
⊥cbv

. �


