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An ATM Interface with facilities for Traffic
Generation and Monitoring.

Technical Report

Gerald Tripp

The Computing Laboratory
The University of Kent at Canterbury

1. Introduction

This paper describes an ATM interface with additional facilities to also allow it to act as both a traffic
monitor and traffic source.  High resolution timing is provided to enable all received cells to be time
stamped on arrival and the information passed back to the user.  For transmission, a cell has an
associated target transmission time and the transmit hardware will block the head of the transmit
queue until the target transmit time is reached.

This interface is intended to serve two purposes: as a conventional interface for ATM based projects
and also as a piece of test equipment to act as a traffic source or monitor (or both) for use in
experiments on ATM network performance.  As a conventional interface, the control over transmit
time for individual cells gives facilities for implementation of traffic shaping schemes.  As a piece of
test equipment, the control over precise transmit times and the recording of cell receive times allow
accurate measurements to be made on network performance which would not be possible with a
conventional interface.

2. Hardware Description

This ATM interface has been designed as a TRAnsputer Module (or TRAM) [1].  This module can be
used as part of a set of TRAMs out of which a multi-transputer system can be constructed or it can be
mounted as a single module on a transputer motherboard just to act as an interface for a particular
system.  Data connections off board are via the four transputer links, which can each run at up to 20
Mbits/sec.  Adapting this design to produce a card that is specific to a particular I/O bus would be
possible without much additional work.
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This interface card is constructed as a size 8 TRAM which has dimensions of 8.75" x 3.66".  ATM
input and output connections are provided on board as 50Ω SMB coaxial connectors.  Local
processing on the card is provided by a single transputer - a 20 MHz T.805 [2].
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The local memory for the transputer is provided using 512 KBytes of VRAM (Video DRAM).  The
VRAM serial port is used for I/O, as will be described later.  FIFO buffers are provided for both
transmit and receive cell streams - the FIFO buffering in each direction is provided as a large data
FIFO and a small control FIFO.  The bulk of the logic is implemented as FPGAs (Xilinx ™ [3] chips).
The physical layer ATM interface is provided using the AMD TAXIchip™ set [4] which provides
4B/5B coding - the physical media is 50Ω coax.

2.1 Transputer and memory map

The transputer used in this interface is a T.805.  The current version uses a 20 MHz part, although this
could be upgraded later subject to the memory timing being adjusted accordingly. The transputer
memory is provided as VRAM - being implemented as 4 off (128K x 8) memory chips - Toshiba
TC528128BZ-80 [5].  With the current transputer part, the memory is accessed by selecting a 4 clock
period memory cycle (i.e. 200ns).

This configuration of memory, provides a 32 bit Random Access port to the transputer.  This memory
appears in two places in the transputer memory map: one is the conventional location for transputer
memory and the other is a shadow copy that is used for data transfer cycles - which are described later
in this paper.  The serial access ports of each chip are commoned together to give a multiplexed 8 bit
wide serial port to the I/O system - thus giving a byte stream.  The serial access and data transfer
cycles are described later.

™Xilinx is a trademark of Xilinx, Inc.
™TAXIchip is a trademark of Advanced Micro Devices, Inc.
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#80000000 - #8007FFFF main memory

#C0000000 - #C007FFFF main memory - access for data transfer cycles

#40000040 Xilinx boot: Control Register - CSR

#40000000 Xilinx boot: BOOT & Xilinx status

#40-#7C Xilinx I/O Registers

To enable the transputer to access the Xilinx chips for simple I/O, these chips appear in the transputer
memory map and have 16 word addresses shared between them.  This is currently decoded as 4 word
addresses each.  Xilinx chips 2 & 3 have an 8 bit wide port which appears as the bottom 8 bits of the
32 bit word.  Xilinx chip 1 has a 16 bit wide port - although currently only the bottom 8 bits of this is
used.  The Xilinx chips are un-programmed when the card is first switched on, and need to be loaded
by the transputer at run time.  As at this time there will be very little control logic operating on the
circuit board, a small piece of logic is provided to bootstrap the Xilinx chips - this is also memory
mapped and has a simple interface.

2.2 Video Memory

The main transputer memory for this interface is provided using Video DRAM (or VRAM).  This
type of memory is intended primarily for use in video display cards.  Unlike ordinary DRAM, this
memory is dual ported - it has a conventional Random Access port similar to that found on DRAM,
and also has a high speed serial port.

SAM - 256 bytes

RAM

512 rows

256 columns

1 row - 256 bytes

Random
Access
Port

Serial
Access
Port

Video RAM

The serial port is connected to a small area of Serial Access Memory (SAM) which can be read or
written sequentially. Each of the memory chips used in this interface has an area of RAM which is
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organised as 512 rows of 256 bytes.  The SAM is also 256 bytes and can be copied to or from any of
the rows in the RAM.

Once set-up, the Serial Access port can be operated independently from the Random Access port.
This is commonly used in video displays, where a row of pixels is loaded into the SAM and then
output via the Serial Access port in real time during the line scan.  This type of memory is also useful
for high speed interfaces, as it gives a method of performing a type of high speed direct memory
access - the serial port can operate at clock rates of up to 33 MHz.

Set-up of the serial port is done via the Random Access port.  As well as the standard read/write
operations, it is possible to perform data transfer cycles which move data between the SAM and a
row of the RAM.  This operation also selects whether the Serial Access port is to be left in input or
output mode.  The selection of a data transfer cycle is done by asserting the DT signal3 - the various
operations possible are shown below.

DT Memory Cycle SE- Operation Name Transfer Serial Port mode
0 READ X Normal Read  -  -
0 WRITE X Normal Write  -  -
1 READ X Read Transfer RAM -> SAM Output
1 WRITE 1 Psuedo Write  - Input
1 WRITE 0 Write Transfer SAM -> RAM Input

In terms of this interface, the DT signal is generated by accessing the memory in its shadow locations
as shown in the memory map above.  The SE- signal is generated by the FPGA - Xilinx 1.  Some parts
of the contents of the address and data busses are also used during some of these three special
memory cycles, as shown below:

Operation Name MD[0-7] MA[0-7] MA[8-16]
Read Transfer  - Set SAM pointer Select row
Psuedo Write  - Set SAM pointer  -
Write Transfer Write Mask Set SAM pointer Select row

The write mask selects which bits of the words in RAM to update - this is useful when the VRAM is
used for graphical displays, but for this system the write-mask is set to all 1's so that all the bits in a
word are updated.  The SAM pointer selects the next location to read/write in the SAM.  During a
read or write transfer, a row in RAM is selected for transfer to/from the SAM.  Access to the SAM
from the serial port will start at the address specified by the SAM pointer.  When this address reaches
255, it wraps around to 0.  Hence the SAM can be read/written many times if required.

In this particular interface, four of these chips are used to give 32 bit wide memory.  Because of this, a
32 bit wide write mask is used across the four chips, and the addresses referred to above become word
addresses and are derived from the Transputer byte address shifted right by 2 bit positions.

As four of these chips are used, there are actually 1024 bytes of SAM available for transfers.  The
serial access ports for these four chips have the data busses commoned together, hence giving a byte
wide data path - the control signals for the serial port are kept separate and need to be accessed in turn
to read or write the SAM(s) in byte address order.

3This is multiplexed with the OE enable signal and picked up during the early part of the memory cycle.
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2.2.1 Use of Video RAM serial port

The first point to note is that the serial mode needs to operate within a single 1024 byte page of
memory4 - if a transfer reaches the end of the 1024 byte page, it simply wraps around to the start.
Subject to this constraint, transfers of any length within a page can take place.  However, care needs
to be taken when using this interface especially on input, when the current ownership of any page
needs to be considered.

Output mode

The serial port is very easy to use in output (or read) mode.  The first word of the buffer that you wish
to output is read in its shadow location in memory.  This will copy the appropriate 1024 byte page
into the SAM and set the SAM pointer to the location specified in the read.  Xilinx 1 can now read
data from the SAM starting at the given address.

Read Transfer from start of buffer
<data output via serial port>

Input mode

The serial port is more difficult to use in input (or write) mode, as this has a side effect on the main
memory.  The serial port itself will default to output mode, so the direction of the serial port needs to
be reversed before data can be read in.  Another point to note, is that the write transfer will update the
whole of the 1024 byte page of memory, even if only a few bytes have been read into the SAM.
Because of this, the standard method of access is first to perform a read transfer cycle to pre-load the
SAM with the existing RAM contents, then change the serial port to input mode, update the SAM
with input and finally put the updated page in place.

Read Transfer from start of buffer
Pseudo Write transfer to start of buffer
<data input via serial port>
Write Transfer to start of buffer (value = write-mask).

Another important point to note, is that between the Read Transfer and the final Write Transfer, the
page of memory effectively belongs to the I/O system.  Any updates to this page made by the
processor will be overwritten by the write transfer.  The choice between Write Transfer and Pseudo
Write Transfer is determined by the value placed on the SE- signal by Xilinx 1 - see later.

2.3 FIFO Buffers

Hardware FIFO buffers are provided in the transmit and receive cell streams.  In this implementation
there are two buffers in each direction: a 512 byte control FIFO and a 4096 byte data FIFO.  The data
FIFO is used to hold the contents of the cells, including the header and the control FIFO is used to
pass any other information such as length and timing information.  The ATM ends of these FIFOs are
controlled by the byte clocks generated for each of transmit and receive - by having separate control
and data FIFOs, the cell contents can be passed as required without any delays being caused by the

4The memory chip used for this interface has a number of features to allow split page transfers to take place, but
access to these features is not available in this design.
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passing of control information.  A second advantage is that the use of two FIFOs in each direction
allows for a certain amount of reordering of data: the length of a cell is only known at the end of its
reception, but this can be passed via the control stream and read by Xilinx 1 ahead of the cell
contents.

2.4 Line Input/Output

The physical layer is implemented using the AMD TAXI chips [4].  This is one of the many standards
currently in use for ATM and was chosen because of its current use in the academic community for
ATM research.  The TAXI chips use the 4B/5B line encoding scheme as used by FDDI - where a 5 bit
symbol is used to carry 4 bit data items or various control symbols.  The channel itself runs at a raw
data rate of 125 Mbit/sec - therefore giving a maximum user data rate of 100 Mbit/sec.

The TAXI chips provide the user with a parallel port, which allows the transfer of pairs of 5 bit
symbols - either 8 bits of data or 1 of 16 different control symbol pairs.  This allows the
interconnected ATM hardware to run as a byte wide data path with a clock rate of 12.5 MHz.

The external interface provided by this card is 50Ω unbalanced, via on board SMB coaxial
connectors.
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3 Xilinx One

The current version of this design is X1E.

This chip provides an interface between the video memory and the FIFO buffers.  Transfers take place
to/from 64 byte records in video memory - the length of 64 being chosen as it divides into 1024 -
giving 16 records per 1024 byte page.  On transmit, these records are read from video memory and the
appropriate parts loaded into the transmit FIFOs.  On receive, these records are written into video
memory, with the record contents being generated from data read from the Receive FIFOs - unused
fields being written as 0.

Up to 16 records can be transferred in either direction in a single burst - with the transfer halting at
appropriate points such as transfer complete or receive FIFO empty.

3.1 Data Format

Data will normally be transferred in 64 byte records5.  In the tables below, the lowest address is
shown on the right hand side - hence Timer byte 0 will be at byte offset 0 and Body 48 will be at byte
offset 63 (from the start of this 64 byte block).

A standard format for the 64 byte record has been devised and is shown below; although many of the
fields in this record are currently unused.  The layout of the block is such that both the header and the
cell body start on word boundaries - thus making software access to these fields faster.  This requires
the cell to be transferred as a 52 byte quantity - this is quite valid as the HEC field is created on
transmission automatically and checked on reception to generate a syndrome value.  The syndrome
should be 0 if there are no errors in (header) transmission - some non-zero values should allow error
correction to take place but this is of doubtful value after the cell has been through 4B/5B encoding.

Standard format:

Timer byte 3 Timer byte 2 Timer byte 1 Timer byte 0Timer byte 0
Hard Status Length Syndrome Soft StatusSoft Status
AAL5 CRC 3 AAL5 CRC 2 AAL5 CRC 1 AAL5 CRC 0AAL5 CRC 0

Header 4 Header 3 Header 2 Header 1Header 1
Body 4 Body 3 Body 2 Body 1Body 1
Body 8 Body 7 Body 6 Body 5Body 5

etc

Body 48 Body 47 Body 46 Body 45 Body 45 

5Assuming a 53 byte cell.
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3.1.1 Transmitter Format

The transmit logic (X2C), has the advantage of being designed after the standard block format had
been defined.  Hence this operates with a subset of the standard format as follows:

0 0 Timer byte 1 Timer byte 0Timer byte 0
Status Length 0 0 

0 0 0 0 
Header 4 Header 3 Header 2 Header 1Header 1
Body 4 Body 3 Body 2 Body 1Body 1
Body 8 Body 7 Body 6 Body 5Body 5

etc

Body 48 Body 47 Body 46 Body 45 Body 45 

Note: the Length field does not include the HEC field which is generated by the ATM Tx logic.  The
length of a standard cell is therefore given as 52.

3.1.2 Receiver format

The current cell receive logic (X3C) provides blocks in an old format.  This currently requires some
of the fields to be swapped in software to maintain compatibility with the standard format.

0 0 Timer byte 1 Timer byte 0Timer byte 0
Status (0) Length Syndrome (0) 0 
Header 1 0 0 0 
Syndrome Header 4 Header 3 Header 2Header 2

Body 4 Body 3 Body 2 Body 1Body 1
Body 8 Body 7 Body 6 Body 5Body 5

etc

Body 48 Body 47 Body 46 Body 45 Body 45 

The length of a cell is given as 53 as this currently includes the syndrome.
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3.2 Operation

This chip acts as a half duplex, fast interface to the FIFOs.  At any time that transmit or receive are
ready, a transfer of up to 16 cells can be initiated in the appropriate direction.  On transmit this will
normally continue until completion - unless it is cancelled.  On receive the transfer can terminate for a
number of different reasons - with the reason for termination given in the status register. As the
received cell stream is liable to corruption if the receive FIFOs overflow, the first byte in each FIFO
for a cell is flagged6 with bit 8 set to 1 and this checked on transfer - if this bit is incorrect then this
indicates that the receive FIFO contents may be corrupt and the transfer will terminate.

One of the problems that slows the receive transfer is the possibility of hitting Receive FIFO empty.
It is always possible to read the receive data FIFO without checking as the transfer of the cell contents
will only begin after the cell length field is received via the control FIFO.  For the control FIFO
however, it is possible that the cell may still be arriving as the transfer of that cell is in progress -
because of this the status of the control FIFO will normally require checking before each read.  This
can cause delay as due to pipeline delays in and out of the chip, it is necessary to wait for a number of
cycles after a FIFO read in case the status changes.  Because of this a option called X1FAST has been
implemented, where if during a transfer the receive data FIFO is detected as being over half full, then
the control FIFO will be read without checking status for the rest of the current transfer.   This option
should only be used if the size of the receive data FIFO is at least 2048 bytes (it is currently 4096
bytes) to ensure that there are already enough cells in the receive FIFOs to allow the transfer to
complete.

Interrupts can be generated on completion of transfers and also to indicate that transfers can take
place.  Receive is deemed to be ready if there is data in the receive FIFOs; transmit is ready if both the
transmit FIFOs are less than half full - hence enabling a full length burst to take place without the
FIFOs becoming full.  Once an interrupt has been generated, then all interrupts will be disabled.

3.2.1 Specification of Internal Interface to FIFOs

The data written into the transmit FIFOs for each cell transferred is as follows:

Item Size (bytes) FIFO Bit 8 set?
Timer byte 0 1 Control No
Timer byte 1 1 Control No
Length 1 Control No
Cell <Length> Data No
Status 1 Control No

The data read from the receive FIFOs for each cell transferred is as follows:

Item Size (bytes) FIFO Bit 8 expected to be set?
Timer byte 0 1 Control Yes
Timer byte 1 1 Control No
Length 1 Control No
Cell <Length> Data First byte only

6The FIFOs are actually 9 bits wide.
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3.3 Performance

Below, is the estimated performance of this chip, based on the expected operation of the hardware7.
This is quite straight forward to calculate for transmit, as it will normally run to completion without
having to wait for any other part of the system.  For receive, the performance is affected by the state
of the receive FIFOs, as these can become empty during a transfer and hence cause the hardware to
wait (or terminate the transfer).  As mentioned above, there is also the problem that immediately after
reading from a FIFO, the hardware is unsure of the FIFO status because of the heavy pipelining used
in the hardware design.

Estimated Performance
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When the Receive data FIFOs are already half full, then the Rx transfer will take the same period of
time as a Tx transfer of the same length.  When the Receive data FIFOs is less than half full, then the
performance will be slightly slower - due to the extra checking required.  The figures quoted above
are the times taken from first setting the GO bit on the interface to it being cleared by the chip to
indicate end of transfer.  Transmit and Receive done interrupts are generated during the processing of
the final cell transferred and will typically be 4.0 µs earlier8 - this is provided to give some overlap
with the transputer interrupt latency.  The receive FIFOs are assumed to never become empty.

It can be seen from the graph above, that the transfer rate is quite close to the maximum cell rate
(100% cells) - the transfer rate being slower than cell rate for slow receive and faster for fast receive
and for transmit.  The transfer rate is limited mainly by the clock rate of Xilinx 1.  This is currently
running at 16 MHz, which is limited by the speed of asynchronous interfaces to the FIFOs and the
Video Memory.  A cell can arrive from the network every 4.4 µs, and Xilinx 1 has to go through a
minimum of 64 clock cycles just to traverse a block in VRAM - even if the field is not used and just
set to 0.

7These figures need to be verified by measurement.
8Except for the case when the transfer length is 0.
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As a more illustrative example, below are the average effects on the FIFO length (as measured in
cells) after performing transfers of various lengths.  Both slow and fast receive are shown at 100%
cell arrival rate, also shown is fast receive with 90% cell arrival rate.
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For interest only, the fourth plot shows fast receive operating at 100% arrival rate, but with the Xilinx
1 clock rate increased to 20 MHz.  It is hoped that this increase in speed may be possible with a re-
design of the interfaces to the VRAM and FIFOs.

The performance figures shown above, only show the performance of receive when the receive FIFOs
stay non empty.  If the receive logic detects that the receive control FIFO is empty at the start of a
possible cell transfer, then the transfer will normally be terminated with a status report of empty FIFO
(X1EMPTY).  It is possible however for the transfer of a cell to start at a point at which the first (and
only) cell in the FIFO has not yet been fully received - in this case the cell transfer will wait on each
item from the control FIFO and hence not start the data transfer until the <length> field has been read.
Whereas the wait on each byte from the control will normally be negligible - as both ends are running
at similar speeds - the delay in waiting for the length byte can be quite long as this will not be placed
into the control FIFO until all of the cell contents have been written into the data FIFO - in this case
giving an extra delay of about 4 µs.  In theory, this could happen for consecutive cells and give an
unusually long transfer time.  A 16 cell transfer time of the order of 135 µs is probably possible in
extreme cases - although an exact cell rate would need to be sustained to keep the receiver in this
state.  Although this doesn't really cause any problems with receive - as the receive FIFOs have to
consistently contain only part of a cell - it could tie up resources which could be require for transmit.
If this proves to be a problem, then an option to terminate the current transfer after such an event
could be provided - so only one cell is transferred piecemeal.
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4. Xilinx Two

Xilinx two is the ATM cell transmission logic.  This reads cells and their control information from the
transmit FIFOs and formats these for transmission on the ATM output.  A rough schematic of this is
shown below.
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An unusual feature about this ATM cell transmitter, is that it allows the transmission time of cells to
be controlled.  The required transmit time for a cell is placed in the 64 byte record for that cell and
transmission will be delayed by the transmitter until that time is reached.

4.1 Timed Transmission scheme.

The transmit logic contains a free running clock.  This is a 16 bit counter which is clocked from the
transmit byte clock from the TAXI chip.  This clock has a period of 80 ns, so the repeat time for the
clock is about 5 ms.  This clock can be read by software running on the transputer and reset to 0 if
required.

The timed transmission scheme operates by subtracting the current time (from the local clock) from
the target transmit time (for the cell).  The result of this subtraction is loaded into a second counter
which is also clocked from the transmit byte clock.  The value in the counter is decremented on each
clock tick, and when the value becomes negative, this is used as an signal to transmit the cell.  In some
cases, this will cause the cell to be transmitted immediately as the target transmit time for the cell has
already passed; if this is not the case then the cell will be delayed until the target time is reached9.

9To be exact, transmit time is actually target time + k.  The value of the constant k is small but has not yet been
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It is easy to visualise this by thinking of the current time as the hour hand on a clock - target times of
up to 6 `hours' ahead will be waited for.  Times greater than 6 hours ahead look as if they are in the
period of up to 6 hours ago and are already late - so send immediately.

0

Wait

Send
now

until
target

time
current
time

8000

C000 4000

Using this timed transmission scheme, it is possible to have a transmit queue of cells, sorted in
transmit order and with each cell flagged with its target transmit time.

4.2 Implementation.

The control function that this chip needs to perform is quite complex, as it has to deal with both cell
transmission and timing.  To simplify the implementation, the control logic is constructed as two
separate state machines: the cell transmitter and the cell timer.  These operate independently with the
cell transmitter reading cells from the data FIFO and formatting these for transmission and the cell
timer reading the control information for a cell and waiting for the correct time to transmit.  These
two state machines will rendezvous at a point where the cell timer decides it is time for the next cell
to be transmitted and the cell transmitter is idle.  This means that whilst the current cell is being
transmitted, the cell timer can be pre-fetching the control information for the next cell and start the
process of running the timer for deciding the time of its transmission.

calculated.
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Simplified state transition diagram

The transmitter can achieve 100% of the channel, with a 53 byte cell10 so long as there are always
enough cells in the transmit FIFO to allow for the 1 cell look ahead.  With the transmission of back to
back cells, there will be 1 cell transmitted every 55 clock periods - this is made up of  the cell start
flag (TT),  53 data tokens for the cell itself and the minimum of 1 sync flag (JK) before the next cell

4.3 Empty transmit FIFOs.

As with Xilinx 1, this chip also has to cope with the problem of possibly empty FIFOs.  To avoid
problems with the data FIFO, Xilinx 1 will not write the last byte (Status) into the control FIFO until
the whole cell has been written into the data FIFO.  This means that when all four bytes of control
information have been read from the control FIFO, then the specified number of bytes for that cell
must already be in the data FIFO.  Using this `bracketing' system means that the only FIFO that needs
to have its status checked is the control FIFO - this is beneficial as only four bytes need to be read
from this FIFO during one cell time and hence delays in checking status don't delay transmission.

As mentioned in the section on Xilinx 1, checking the status of a FIFO (for empty/not empty etc.) can
be difficult as the pipelined interface between the Xilinx chips and the FIFOs cause the FIFO status to
be delayed by several cycles and hence not immediately available after performing a FIFO read.  To
avoid the cell timing logic from having to cope with these FIFO status problems, the control FIFO
read operation is split off into a third state machine that is responsible only for holding the first item

10Xilinx 2 can create cells of any length specified in the 8 bit length field.  However, Xilinx 1 only supports the
lower 6 bits of the length field.  Any cell of length 4 or greater will have a HEC field inserted and hence gain 1 in
length.
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from the control FIFO.  This state machine generates a ready signal to the cell timing logic to indicate
that it currently holds the head item from the control FIFO: the cell timing logic can produce an
acknowledgement which will dismiss this item and cause the head of queue logic to fetch the next
item from the control FIFO.

4.4 Ideas for Future Work

One of the values which is not currently used is the status byte, which Xilinx 1 generates from the
hard status field in the 64 byte record.  At present this is only used as an indicator from Xilinx 1 that
all the data for a cell have been written into the transmit data FIFO.  Xilinx 2 reads this byte only as a
flag to tell it that it can proceed with transmission of the cell.

The real  purpose of this field for is to allow per cell control information to be passed to the
transmitter.  No control bits have been implemented yet, and the transmitter currently just ignores its
contents.  One suggestion for future use of this field is to have a transmit enable/disable bit.  This
would be used to indicate whether any 64 byte record actually required a cell to be transmitted or
whether it was currently unused.  If the transmitter received a disabled (or dummy) cell, then timing
and control would proceed as usual, but nothing would be output on the ATM channel.

4.4.1 Use of dummy cells

One use of such a facility would be so that a template of cells with a fixed overall cell rate could be
created which could be used if required by any of a number of streams.  A second use is associated
with the repeat period of the transmitter clock.  If the gap between consecutive cells is greater than
half the repeat period of the transmit clock then extra work would be required in software to delay the
transfer of the cells into the transmit FIFOs, as the cells would otherwise be transmitted before the
required time.  To avoid this, dummy cells could be inserted into the transmit stream that activated the
cell timing logic but caused nothing to be transmitted.  Using this scheme, about 40 dummy cells per
second would be required for a completely idle stream.
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5. Xilinx Three

The current version of this chip is X3C.

The function of this chip is to receive cells from the ATM input and save them in the receive FIFOs.
A rough schematic of this is shown below:

Rx.
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Control
Rx.

FIFO

mux

CRC

Control Logic

Rx
TAXI

I/F

I/F

I/F

cell
length clock

decode

pipeline

Rough schematic of Xilinx Three

A significant point about this implementation of an ATM cell receiver, is that it keeps a record of the
arrival time of each cell, which is saved along with the cell contents.

5.1 Receive Process

The receive process consists of waiting for a start of cell delimiter (TT)  to arrive from the line and
then to take up to the next 53 data items as cell contents.  The sync symbol (JK) may be present
within the cell if required11 and will be ignored.  Cells are normally expected to be 53 bytes long and
will be truncated if of greater length.  Although cells should be transmitted with at least one sync
symbol between adjacent cells, this constraint is not required by the receiver which can accept cells
back to back.  On reception, the cell contents will be saved in the receive data FIFO.  The HEC CRC
is calculated on the cell header and the syndrome generated is saved in place of the HEC field.  The
syndrome should be 0 for a correctly received header.

11These may be generated by slow cell transmitters.
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5.2 Time Stamps and Control Information

As well as copying the cell contents into the receive data FIFO, some control information is also
saved in the receive control FIFO.  To enable the reception of short or `runt' cells, each cell has an
associated length field - this should normally be 53.  As well as this, the receiver has a local 16 bit
clock running (like the transmitter) which is clocked from the TAXI receive byte clock.  This clock
has an 80 ns period and hence gives a clock repeat period of about 5ms.   At the start of the reception
of each cell, a copy is made of the clock  and this is written into the receive control FIFO.  At the end
of the cell reception, the cell length is written into the control FIFO.   A second benefit of transferring
the cell length is that this acts as a marker to indicate that the whole of the cell has been written into
the data FIFO and thus enables Xilinx 1 to read the cell in a single burst without any waiting.

5.3 Implementation

The receiver is implemented as a simple state machine which is event driven from the ATM input.
The control logic is kept simple by pre-processing the ATM input with a decode pipeline.  This `input
pipeline' performs some simple pre-processing and presents the control logic with a token to indicate
what has arrived: DATA, TT, NOP or ERROR - the DATA token being accompanied by 1 byte of
data.

5.4 Performance

The ATM cell receiver should run at 100% cell rate, with 53 byte cells.  Any problems will be caused
by the FIFOs overflowing due to the cells not being transferred fast enough by Xilinx 1.  At present
the interface is rather simple in its operation - the FIFOs are always assumed to be ready (i.e. not full)
and data is written into these receive FIFOs without checking the status.  This will of course cause
problems when the FIFOs are full, as some or all parts of a cell will be lost.  As the FIFOs are actually
9 bits wide, a simple confidence check on the data integrity is performed by using the top bit to
indicate the first byte of transfer.  This is used on both receive FIFOs, so the control FIFO will have
the top bit set for the first timing byte for a cell and the data FIFO will have the top bit set for the first
byte of cell contents.  This top bit is checked by Xilinx 1, which will abort the transfer if the bit
appears to have the wrong value.

Ideas for solving problems with FIFO overrun are covered in section 5.5.4

5.5 Ideas for Future Work

The receiver was the first of these chips to be designed, and early experience of using this chip have
enabled improvements to be introduced to the later chips before the designs were complete.  As the
first chip designed, the receiver has probably got the largest `wish list' for improvements!

5.5.1 Dummy cells

As with the transmitter, the 5ms clock repeat period causes problems for the software.  To ensure that
it is able to uniquely identify the arrival time for a cell, the software device driver would need to run
its own clock.  This would be needed to determine which 5ms period the cell arrived in.  With the
transmitter, it is proposed that this problem be addressed by the queuing of dummy cells which will
never be transmitted.  It is possible to use this same approach with the receiver and have the receive
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logic generate dummy cells when the receiver is idle.  These could be generated each time the clock
wraps around to 0, and used by the software to increment the more significant part of a software
clock.

As with the transmitter, it is only possible to pass dummy cells around if these can be distinguished
from the normal cells.  By following the same model as the transmitter, a status byte could be returned
from the receiver through the control FIFO to indicate what is being passed.  This has several uses as
it enables the receiver to pass back other status information about the cell.

5.5.2 Changes to FIFO Data Format

The format of the data in the receive FIFOs doesn't fit in too well with the 64 byte record that has now
been standardised for use by Xilinx 1.  In particular, passing the syndrome in place of the HEC gives
this value too late to fill into its required field in the 12 byte header.  The solution to this is to pass the
syndrome via the control FIFO rather than the data FIFO.  The other new value to pass via the control
FIFO is the status byte that is mentioned in the previous section.  This would give the format of the
data in the receive FIFOs as follows:

Control FIFO Data FIFO
Timing byte 0 Cell Header bytes 1-4
Timing byte 1 Cell Body bytes 1-48
Syndrome
Length
Status

5.5.3 Changes to Implementation

The implementation of this chip would probably follow the model of the transmitter and have separate
control and data state machines which rendezvous at appropriate points.

5.5.4 Coping with FIFO overrun

Half full

Ideally, it would be best to only write a cell into the FIFOs if it was known that enough room was
available - unfortunately, the only status available from the FIFOs is Empty, half Full & Full.
Although full may not be set before a cell is saved in the FIFOs, there may less space than that
required for a complete cell - it is likely therefore, that only part of the last cell is saved in the FIFOs.
One sure way of solving this problem is to use the half full indication as a full flag, as if the FIFOs are
less than half full at the start of a cell then there will easily be enough space for the rest of a cell.
Unfortunately, using the half full indication means that only just over half the buffer space is available
for use and also means that the fast block transfer by Xilinx 1 on FIFO half full is no longer used so
regularly.

Several other schemes are possible for coping with overflowing FIFOs - two of which are detailed
below.
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Halt on FIFO overflow

With the proposed new format, the data FIFO will hold 78 cells and the control FIFO, information
about 102 cells12.  Because of this, when it is detected that the data FIFO has overflowed, there will
still be space in the control FIFO for that cell's control information.  The last piece of information to
be written into the control FIFO is the status field - which could have a status bit that indicates
whether all the cell was correctly written into the data FIFO.  If reception was halted at this point,
then the cell would be removed from the FIFO later by Xilinx 1 leaving the FIFOs empty.  In this
case, as there were 1 or more bytes short in the data FIFO then the final byte saved would be read 2 or
more times.  The software would be able to tell that the cell had possibly been corrupted by the value
in the status field.  Hence after all data had been removed from the FIFOs, the FIFOs would be in a
clean state to accept new cells.

When the device driver detects a corrupted cell - as indicated by the status field - it would know that
FIFO overrun had occurred which had caused reception to be suspended.  At this point, the device
driver could start reception again into the empty FIFO.

Suspend until less than half full

The problem with the last method is that it still requires processor intervention and all incoming cells
are ignored for the time it takes Xilinx 1 to transfer 78 cells.  A compromise solution could be for the
receiver to suspend cell reception until the data FIFO is half full.  This would block reception for only
half the period of time and also would not require intervention by the processor13 to start cell
reception again.  The only problem with this method is that it would leave a cell in the data FIFO that
had some of its data missing.  This could be fixed by Xilinx 1 - by checking the status flags and
stopping the read from the data FIFO when the FIFO was empty or when the head of the next cell was
found - as indicated by the top bit being set.  The missing contents of the cell could be padded with 0
or copies of the last valid data byte.  This would make more work for Xilinx 1, in that it would need to
perform this reframing operation and sometimes save the head of the next cell for future use.

This method would be a good compromise solution, although it would tend to lose bursts of cells
under heavy load.  Its possible implementation will depend on the availability of space in Xilinx 1.

5.5.5  Problems with `runt' cells

The reception of `runt' cells causes a few problems for the receiver.  These are cells that are shorter
than the standard cell length of 53 bytes.  The receiver can normally handle short cells with no lasting
problems - as the cell will just be associated with a non standard length field.  One problem however
is caused by the ability to have sync symbols within a cell, as when a short cell is received, the
receiver will continue to wait for the remainder of the cell - which could legally arrive some time
later.  The end of the cell is only known for certain when the start delimiter for the next cell arrives,
which means that a short cell will be left incomplete until this point.    A time-out on cell arrival could
be implemented, but this would probably be in breach of the transmission standard.

12The FIFOs are 9 bits wide, with the data FIFO holding 4096 words and the control FIFO 512 words.
13The cell receive chip doesn't have access to the rx FIFO empty flags.
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A second problem that exists with the current release is that receiving a very short cell (0-2 bytes
long) causes only part of the control information for that cell to be saved and hence corrupts the
format of the contents of the control FIFO.  This would cause Xilinx 1 to abort on a format error.
This problem should be fixed with the next release although this will cause loss of a complete cell if
more control information needs to be handled than there is time for (cell lengths 0-4 bytes).

20



6 Conclusions

The initial version of this ATM interface is now complete and (as of January 1995) two of these cards
are currently in operation.  Current software for traffic generation and traffic monitoring can sustain
cell transfer between two cards (without an intermediate switch) at rates of up to about 140,000
cells/second with 0 cell loss and up to about 180,000 cells/second before cell loss becomes
significant.

6.1 Performance

As a standard ATM interface, the current performance figure should give no problems.  As a piece of
test equipment, it would be useful if it could handle sustained bursts of 100% channel utilisation for
both traffic generation and monitoring.  At present, it will be able to handle 100% channel utilisation
but only for short bursts of cells.  Determining the maximum length of cell burst possible would
actually make both an interesting calculation and experiment - this is likely to be quite a lot larger
than the number of cells that can be stored in the FIFO.

6.1.1 Performance Improvements

Limits in performance are caused by the combined effect of the software and Xilinx 1.  Although
Xilinx 1 is capable of operating faster than 100% cell rate14, it is only slightly faster than this and
would present the software with a crisis time of about 3 µs between 16 cell transfers.  As the speed of
Xilinx 1 is very close to the cell rate, small changes in the time taken by Xilinx 1 make a significant
difference to the overall performance. Part of this problem is caused by the use of 64 byte records for
specifying cells in transputer memory.  As the video memory is read via a serial access port, unused
locations in the record need to be accessed even if there is no need to read or write that location

The time taken to read the unused fields in the record adds 8µs to the transfer time - it is difficult to
know how to avoid this, without changing to a different arrangement of cell records in memory -
which might create significant extra software overheads in address calculation.  The 64 byte record
also allows for future improvements to be made to the hardware without radical software changes.

There is a small amount of per cell overhead in Xilinx 1 which might be reduced, but a more
significant improvement would be to increase the clock rate of Xilinx 1.  The clock rate is currently
16 MHz and it may be possible to increase this to 20 MHz by modifying Xilinx 1 to improve the
timing on the interfaces to the FIFOs and the VRAM.  This would reduce the 16 cell Tx transfer to
53.85µs, which would increase the software crisis time (to keep up with 100% cell rate) from 3.09 µs
to 16.55 µs.  Experiments with increasing the Xilinx 1 clock rate to 20 MHz (and thus currently
running the hardware slightly out of spec.) show that it is possible to run the traffic generation and
monitoring systems described above at 100% cell rate with no cell loss.

14With receive, only if the receive FIFOs are at least half full.
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6.2 Upgrades to Xilinx designs

A number of changes to the Xilinx designs have been proposed in sections 3-5.  The most important
of these is the rework of Xilinx 3 to provide a status field for each cell and to pass the syndrome via
the control FIFO.  This in turn will allow the receive record format to be updated to match that of the
transmitter and hence provide word alignment for the cell header.  This will require a rework of
Xilinx three and minor updates to Xilinx 1 to utilise the new FIFO and record formats.
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Appendix A
Standard Bootstrap interface

This interface is provided directly by a logic array on the TRAM card itself and is therefore available
before the rest of the Xilinx chips have been programmed.  This interface allows the three Xilinx
chips to be booted and also allows all I/O circuitry on the TRAM card to be reset - including the
Xilinx chips.  In the latter case, this reset can be used to perform a soft reset of the Xilinx chips
without causing a reboot.

A.1 Control register

Name: csr
Address: #40000040

The control register is a read/write register that sets the output of two on board control lines.

R/W - - - - - 1 XIRESET XIPROGRAMXIPROGRAM

The XIPROGRAM bit is active high.  If this is set to 1 it will force the done signal on the card to a 0
state.  This signal is a wired-and signal that connects to all three Xilinx chips and is locally pulled up
by a resistor.

The XIRESET bit is also active high.  This will activate the reset signal on the card, which will reset
the various I/O chips and FIFOs and will also give a reset signal to the Xilinx chips.  The effect on the
Xilinx chips will depend on their current state and will be explained later.

Bit 2 of the control register will always read back as 1.  The top 5 bits of the register are undefined.

A.2 Status Register

Name: xistatus
Address: #40000000

The status register is read only and will give the current status of three status bits from the Xilinx
chips.  There are no side effects of reading from the status register.

R - - - - - XIREADY XIINI T XIDONEXIDONE

The XIREADY bit gives the value of the rdy signal which indicates that the first Xilinx chip is ready
to accept a byte of data on the Xilinx boot port.

The XIINIT bit gives the value of the init signal which shows that one or more of the Xilinx chips is
currently going through an initialisation phase and no boot information should be sent yet.  The
initialisation phase takes between 11 and 33ms.  The main part of the initialisation phase is only
entered after a power on reset to allow the power supply time to stabilise.

The XIDONE bit gives the value of the done signal which is high when the all the Xilinx chips have
been successfully loaded.
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A.3 The Boot port

Name: xiboot
Address: #40000000

This port is used to write configuration data into the Xilinx chips.  This port is only ready to take a
new byte of data when the XIRDY bit of the status register is set to 1.

A.4 Xilinx boot sequence.

On power on, the Xilinx chips will first go through a 11 to 33 ms initialisation phase, followed by a
195 to 580 us memory clear phase.  After this, the Xilinx chips will first wait for the reset signal to go
inactive and then the init bit in the status register will go to 0 to indicate that the Xilinx chips are
ready for loading.

The Xilinx chips are now in the configuration mode and are ready to be loaded with the Xilinx
configuration information.  Asserting reset at this point will take the Xilinx chips back to the memory
clear phase.

Whilst in the configuration mode, the Xilinx chips will accept data on the boot port.  After receiving
each byte of data, the rdy bit of the status register will go to 0 for an undefined period, whilst the byte
is being loaded.  During configuration mode, the done bit of the status register is 0.

After all the data has been loaded into a Xilinx chip, it will go into an operational state and stop
pulling the done signal to 0.  After all three chips have been loaded, the done signal will be pulled to
a 1 by an on board pull-up resister.

When the Xilinx chips are in an operational state, they can be reset, by taking the reset signal to 1
for a short while (>6µs).  This will just reset the user logic and not cause a reprogram cycle.  While in
the operational state, the chips can be reprogrammed by pulling done to 0 by setting the prog bit in
the control register.  The documentation is ambiguous at this point.  The 1->0 transition on done is
indicated as initiating a reprogram sequence - whereas elsewhere it states that a reset and a taking
done to 0 are required.  The latter looks to be a more conservative approach as the extra reset is
unlikely to cause any problems.
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The recommended boot sequence at any time is as follows:

#define XIDONE 1
#define XIINIT 2
#define XIREADY 4

#define XIPROGRAM 1
#define XIRESET 2

csr = XIPROGRAM | XIRESET;
wait a minimum of 6µs
csr=0;
wait until not xistatus&XIINIT

repeat
Note: (xistatus&XIDONE) should be false
wait until (xistatus&XIREADY) is true;
write byte of config. data to: xiboot

until all data sent

(xistatus&XIDONE) should now go to true - may be a slight delay.

csr = XIRESET /* reset all three Xilinx chips, FIFOs and taxi chips */
wait for 6µs
csr=0
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Appendix B
Register Interfaces to Xilinx chips

B.1 Xilinx One - X1E (VRAM-FIFO Interface)

B.1.1 Control/Status Register

Name: x1csr
Address: #40

W X1GO X1WAIT X1FAST X1INPUT X1IETXR X1IETXD X1IERXR X1IERXD

R X1TXR X1TXD X1RXR X1RXD

X1GO - Start transfer.  This bit is cleared at the end of a transfer.

X1WAIT - Don't terminate a read transfer on the Rx. control FIFO being empty.

X1FAST - For receive: if the data FIFO is half full at the start of or during the transfer
then stop checking the FIFO status bits.

X1INPUT - Set to 0 for transmit, or 1 for receive.  Setting this bit to 1 will forces all SE-
inputs to the video memory to 0 - as is required during Write Transfer
cycles.  This bit should not be set if the video memory is currently in
output mode as this will cause all four memory chips to enable data
onto the serial data bus.

X1TXR - Transmit Ready - both data and control FIFOs are less than half full

X1TXD - Transmit Done - a Transmit transfer has completed

X1RXR - Receive Ready - both data and control FIFOs are non empty

X1RXD - Receive Done - a Receive transfer has completed

X1IExxx - Interrupt enable for status bit X1<xxx>.

Notes: The interrupt enable bits are all cleared on an interrupt acknowledge from the Transputer.

The X1TXD and X1RXD bits are both generated from a single DONE bit which is used
to generate X1TXD and X1RXD depending on the value of the bit `Input'.  If the value of
the bit ̀ X1INPUT' is changed after a transfer, then this will change which of X1TXD or
X1RXD is set.

The control bits: X1INPUT, X1WAIT and X1FAST should be set before the X1GO bit.
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B.1.2 Counter Register

Name: x1cell
Address: #44

R/W 0 0 0 X1CC4 X1CC3 X1CC2 X1CC1 X1CC0

Count of the number of cells required to be transferred from FIFO to VRAM (max 16).  If the transfer
runs to completion, then the transfer will end with this register set to 0.

Writing to this register will also clear the Rx/Tx Status register and the DONE bits X1RXD and
X1TXD.

B.1.3 Tx/Rx. Status Register

Name: x1txrxs
Address: #4C

R X1ABORT X1HALF X1RES1 X1FORM X1HALT X1NOT53 X1EMPTY X1COUNT

X1COUNT - Transfer ends on x1cell = 0.

X1EMPTY - Transfer ends on Control FIFO empty and X1WAIT not set.

X1NOT53 - Transfer ends on cell length not 53 bytes.

X1HALT - Transfer halted by software - by clearing X1GO bit.

X1FORM - Format error in data from Rx FIFOs: Expected D8=0, got D8=1 OR
expected D8=1, got D8=0.

X1RES1 - Reserved.

X1HALF - Rx Data FIFO was half full at some point during the transfer.

X1ABORT - Stopped part way through transfer.  Either on one of the format errors or by
user abort generated by writing to this register.
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B.2 Xilinx Two - X2C (cell transmit)

This Xilinx chip (X2C) handles ATM transmit.  This version reads ATM cells from the Tx FIFOs and
transmits these over the TAXI output at the specified time.

B.2.1 Command and Status Register

Name: x2csr
Address: #60

R X2TXCEF X2TXDEF X2MK X2CN X2T1 X2WT X2IDLE X2GO

W _ _ _ _ _ _ _

This status register enables the transmitter and also gives an indication of its internal state.

X2GO - Enable Transmit

The following are provided for hardware debugging.

X2IDLE - Transmitter is idle, waiting at rendezvous for timer logic

X2WT - Timer logic waiting for first time byte

X2T1 - Timer logic waiting for second time byte

X2CN - Timer logic waiting for cell length

X2WT - Timer logic waiting for status byte

X2TXCEF - Tx control FIFO empty flag (active low)

X2TXDEF - Tx data FIFO empty flag (active low)

X2C should idle with X2IDLE and X2WT

B.2.2 Counter Clear

Name: x2txcclr
Address: #68

Writing to this address clears the Transmit counter
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B.2.3 Counter Save

Name: x2txcsave
Address: #6C

Writing to this address, saves a copy of the Transmit Counter in an I/O register

B.2.4 Counter low byte

Name: x2txclow
Address: #68

Reading from this address, gives the low byte of the transmit counter as saved above

B.2.5 Counter high byte

Name: x2txchigh
Address: #6C

Reading from this address, gives the high byte of the transmit counter as saved above
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B.3 Xilinx Three - X3C (ATM cell receive)

This version decodes ATM cells from the receive TAXI interface and writes them into FIFOs.  The
complete cell  is written into the data FIFO - with the HEC field being replaced by the syndrome.  The
control FIFO will contain 3 bytes:

- Time stamp (low byte)
- Time stamp (high byte)
- cell length

The cell length field is written after the complete cell has been written to the data FIFO.

To aid synchronisation, the first byte of the cell contents and the first byte of control information will
have the top bit (bit 8) set to 1 - all others will have this bit set to 0.

B.3.1 Command Register

Name: x3csr
Address: #70 (Read/Write)

R/W X3GO

GO - Bit controlling ATM Rx.  0 for idle, 1 to enable.

B.3.2 Machine State

Name: x3state
Address: #74 (Read only)

R X3RES X3BODY X3H5 X3H4 X3H3 X3H2 X3H1 X3IDLE

Of bits 0-6, one bit should contain 1, the others 0.  This shows the current internal state.  Should read
as X3IDLE unless within a cell.  Provided for hardware debugging.

B.3.3 FIFO status

Name: x3fifostate
Address: #78 (Read only)

R 0 0 0 0 X3RXCFF X3RXCHF X3RXDFF X3RXDHFX3RXDHF

Values of receive FIFO status flags. Provided for hardware debugging.

X3RXCFF - Rx control FIFO full (active low)

X3RXCHF - Rx control FIFO half full (active low)

X3RXDFF - Rx data FIFO full (active low)

X3RXDHF - Rx data FIFO half full (active low)
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