
Thompson, Simon (1995) Programming Language Semantics using Miranda.
 Technical report. UKC, University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21257/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21257/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Programming Language
Semantics using Miranda

Simon Thompson

ABSTRACT

This paper explains the use of the functional programming language Miranda
as a vehicle for describing the semantics of imperative programming languages. In
particular we give a Miranda denotational description of a substantial subset of a
Pascal-like language, describing a number of variants of the semantics, including
parameter passing by value-result, dynamic binding of values to names and a simple
semantics of jumps.

We also give an executable operational semantics of our basic language, as well as a
compiler for this language into a simple stack machine, which is itself modelled in
Miranda.

Introduction
This paper gives a concise description of various semantic features of Pascal-like languages (Pascal,
Modula-2, Modula-3, Ada and so on) written using functions described in the Miranda1 programming
language. Further details about Miranda can be found in [Thompson]. The paper is intended to pro-
vide a reference document for the Miranda semantics we have implemented, rather than a general
introduction to programming language semantics. We expect that the material here would be used as
a part of a course in which the principles of semantics were explained.

The approach we adopt to semantics is best described by [Tennent] which gives an excellent overview
of the way in which programming languages work. In particular we use the following ideas.

• Tennent discusses two kinds of value for a variable name: the l-value and the r-value. The l-value
of a variable is the storage location denoted by the variable, in other words the interpretation of
the variable when it appears on the left-hand side of an assignment. The r-value is the value
stored in that location — the value the variable has when it appears on the right of an assign-
ment.

• He also makes a separation of the model of values into two parts: an environment which associ-
ates names with their values — in particular associating a location with a variable name — and a
store which associates each location with the value stored therein. (In the rest of the paper we
will use the terms ‘store’ and ‘state’ interchangeably.)

The paper is structured as follows. In Section 1 we give an introduction to the syntax of our simple
‘basic’ language, and we follow this with its semantics in Section 2. Section 3 extends the language
to include definitions and block structure, whilst in Section 4 we treat some variants of the language,
including a number of parameter passing mechanisms, a semantics for jumps and an explanation of
side-effects.

Section 5 gives a description of an operational semantics of the basic language, and Section 6
shows how the language can be compiled and executed on a simple stack-based abstract machine
which is itself described in Miranda.

1 Miranda is a trademark of Research Software Limited.

1

We make some observations about the approach of the paper in Section 7, and in an Appendix we
give an informal explanation of the foundations of a domain-theoretic explanation of recursion.

The code for the functions is to be found under the URL

http://www.ukc.ac.uk/computer_science/Miranda_craft/semantics.html

This code is divided into a number of directories, within which a uniform naming convention is
observed; for instance, the file named

command_values.ins

will always contain the function(s) interpreting commands.

I am very grateful to Howard Bowman and Steve Hill for their comments on a draft of this paper.

1 Abstract Syntax in Miranda
Before we can give a formal description of the semantics of various languages, we need some way of
representing the parsed form of sentences in a formal way. As we hav e chosen Miranda as our formal
language, we need to represent parse trees, or the ‘abstract syntax’ of our languages in Miranda.

Our first example language is a simple single-typed language with global integer variables. The con-
trol constructs are those of most Pascal-like languages, with a null command (skip) added.

skip
if .. then .. else ..
while .. do ..
repeat .. until ..
.. ; .. ; ..
.. := ..

Parse trees can be represented using algebraic types — our type of commands will be

command ::= Skip |
If_Then_Else b_expr command command |
While_Do b_expr command |
Repeat_Until command b_expr |
Sequence [command] |
Assignment ident expr

Looking at a While_Do node, for instance, we see that it has two sub-trees, the first a boolean
expression (b_expr) and the second a command. Observe that we have used a Miranda list type in
our abstract syntax for a sequence of commands.

The representation we use bears a strong resemblance to BNF — we use ::= as a symbol, but more
significantly the general form of the expressions mirrors BNF, | delimiting alternatives and [..]
indicating ‘0 or more occurrences of’. In effect, we can go mechanically from BNF to Miranda.

Our language contains integer and boolean expressions (expr, b_expr), which are built from
unary and binary operations and binary relations, in the standard way. For completeness we list their
formal representation now.

expr ::= Var ident |
Num num |
Apply_nop nop expr expr |
Apply_monop monop expr

2

b_expr ::= Bool bool |
Apply_rel rel expr expr |
Apply_bop bop b_expr b_expr |
Apply_monbop monbop b_expr

nop ::= Add | Subtract | Multiply
monop ::= Abs | Minus
rel ::= Greater | Greater_eq | Equal
bop ::= And | Or
monbop ::= Not
ident ::= Name [char]

It is simple to define pretty printing functions for this syntax. The functions are defined by recursion
over the structure of the expressions in the way that we would expect, and show in a graphic way how
the algebraic types contain the parsing information. For example, in printing an expr in fully paren-
thesised form we write

e_pretty (Num n) = show n
e_pretty (Apply_nop op e1 e2)
= "("++ e_pretty e1 ++ nop_pretty op ++ e_pretty e2 ++ ")"

among the equations of the definition of e_pretty.

In the distribution, the syntactic types are to be found in the files

abstract_syntax.m

2 The denotational semantics of commands

2.1 Introduction

This section starts our elucidation of the denotational semantics of various linguistic features. We are
ev entually aiming to provide a full description in Miranda, but we shall try to reach this gradually,
concentrating on the main features of the semantics, and ignoring some of the more mundane opera-
tions. The files containing the Miranda sources for the functions here are contained in the directory

basic

which forms part of the distribution.

In the discussion of each semantic feature we shall go through three stages:

• Identify the data types upon which the semantics is based, such as stores and env.

• Identify the types of the semantic functions we shall define.

• Define the semantic functions themselves.

This separation of concerns is as important here as it is in programming — it gives us some control
over how we perform a complex task.

2.2 The data types

We are looking at an extremely simple language here. In particular, names or identifiers are bound to
the same locations for the whole of a program, as there are no local variable declarations, or indeed
any definitions at all. Because of this we don’t need an environment to describe bindings, so we can
think of stores thus:

stores == ident -> values

where values == num. A member of the type stores associates values with identifiers

3

directly. Note that this circumstance is only temporary; for the more complex languages we see
below we shall use an environment and store respectively to model definitions and storage. In the dis-
tribution, the types listed here are to be found in the file

semantic_types.m

2.3 The types of the semantic functions

The main function of interest is that which interprets commands. The crux of the denotational
approach is that we see the effect of a command as a function, which takes the store before the com-
mand is performed as input and which returns the store after the command is performed. This means
that we interpret each command as being of type stores -> stores, and the function which
gives commands values will be

command_value :: command -> stores -> stores

The values of expressions depend on the values held in the store, and so their interpretation functions
will be:

expr_value :: expr -> stores -> values
b_expr_value :: b_expr -> stores -> bool

We shall want to manipulate stores, and in particular to perform two operations. First, in evaluating
expressions we shall need to lookup values of identifiers:

lookup :: ident -> stores -> values

In interpreting assignment commands (and indeed all commands, indirectly) we need to be able to
update the value stored in a particular variable:

update :: stores -> ident -> values -> stores

Another approach to modelling the store would declare the type as an abstype carrying the opera-
tions to lookup, update and initialise a store.

These are the major functions that we shall use — others we need give meaning to operations, rela-
tions etc. Their types can be found in the file

sem_fun_types.ins

This file is inserted (textually) rather than included as a module; this is because it it not possible to
separate type declarations from their corresponding function definitions in Miranda.

2.4 The function definitions themselves

The major definition is that of

command_value :: command -> stores -> stores

The definition is written using a case analysis over the type command; the definition is found in the
file command_values.ins We go through this definition now, case by case.

command_value Skip st = st

The effect of the command Skip is to leave the state st unchanged.

command_value (If_Then_Else e c1 c2) st
= command_value c1 st , if b_expr_value e st
= command_value c2 st , otherwise

In interpreting (If_Then_Else e c1 c2) first evaluate e in the state st. If its value is
True, then output the state resulting from performing c1 in state st, that is command_value
c1 st; otherwise perform c2, that is output command_value c2 st.

4

command_value (While_Do e c) st
= command_value (While_Do e c) (command_value c st)

, if b_expr_value e st
= st , otherwise

The while-loop is modelled thus: first evaluate the condition e in state st, that is, find
b_expr_value e st. If the result is False then do not modify the store, so we return st as
result. Otherwise, we find the result of performing c in st, that is evaluate

command_value c st

and pass the result back to the function which interprets the loop, i.e.

command_value (While_Do e c)

Note that we have used recursion to explain the (iterative) while-loop. In a similar way we explain
the repeat-loop:

command_value (Repeat_Until c e) st
= command_value (Repeat_Until c e) st’

, if ˜ (b_expr_value e st’)
= st’ , otherwise
where
st’ = command_value c st

Observe that the condition is evaluated in the state st’, the state resulting from performing com-
mand c in state st: we perform the command before making the first test, in other words.
How are we to explain the effect of a sequence of commands c1;c2;..;ck? There are two cases,
depending whether the list is empty or not. An empty list has the effect of a null command,

command_value (Sequence []) st = st

while the effect of the list Sequence (c:cs) is that of c followed by Sequence cs.

command_value (Sequence (c:cs)) st
= command_value (Sequence cs) (command_value c st)

The point comes when we have to explain our primitive command, that of assignment. Using the
update function and expr_value this is easily done:

command_value (Assignment i e) st
= update st i (expr_value e st)

In our definitions we have used the expression evaluation functions and the two store manipulation
functions. Now is the time to define them. First we define the latter. Recall that

stores == ident -> values

so that to look up the value of an identifier in a store we simply apply the store to the identifier:

lookup :: ident -> stores -> values
lookup i st = st i

The result of updating a store, update st i val should yield the same values as st, except
when evaluated on i, when the value val is to be returned:

update :: stores -> ident -> values -> stores
update st i val j = st j , if i ˜= j

= val , otherwise

Note that in this definition we are defining the function update st i val by saying how it
behaves when applied (to j).

5

2.5 Definition of the other functions

Now we explain how expressions are evaluated. The values of variables are given by lookup, num-
ber literals are interpreted in the obvious way, and in composite expressions we apply the operator to
the values of the subexpressions which form its arguments:

expr_value :: expr -> stores -> values
expr_value (Var i) st = lookup i st
expr_value (Num n) st = n
expr_value (Apply_nop f e1 e2) st

= (nop_value f) (expr_value e1 st) (expr_value e2 st)
expr_value (Apply_monop g e) st

= (monop_value g) (expr_value e st)

Boolean expressions are interpreted in the same way as expressions, using the usual recursive algo-
rithm.

b_expr_value :: b_expr -> stores -> bool
b_expr_value (Bool tv) st = tv
b_expr_value (Apply_rel re e1 e2) st

= (rel_value re) (expr_value e1 st) (expr_value e2 st)
b_expr_value (Apply_bop bo b1 b2) st

= (bop_value bo) (b_expr_value b1 st) (b_expr_value b2 st)
b_expr_value (Apply_monbop mbo b) st

= (monbop_value mbo) (b_expr_value b st)

Finally the operators have to be giv en values. Note that since nop_value takes no argument of type
stores, their values are independent of the machine state, as we would hope! We show the function
nop_value as an example; the others are similar.

nop_value :: nop -> (values -> values -> values)
nop_value Add = (+)
nop_value Subtract = (-)
nop_value Multiply = (*)

The file containing these definitions is

expr_values.ins

2.6 Conclusion

We hav e shown how to model commands as store transformation functions. To re-iterate, a command
can be thought of as a function which takes the store before execution as input and produces as output
the store after execution. We showed how to model various primitive, alternative and iterative con-
structs.

It is interesting to review the dependencies between the major semantic functions. In interpreting pro-
grams (which are commands) by means of the function command_value, we need to interpret
expressions and boolean expressions, so we call expr_value and b_expr_value which itself
calls expr_value.

The reader might like to think about how in this semantics to interpret

if .. then ..
for <ident> := <expr> to <expr> do <command>

and the parallel assignment command

v1,v2,..,vk := e1,e2,..,ek

which is intended to assign the values of e1,e2,..,ek to the variables v1,v2,..,vk

6

simultaneously.

In the distribution directory, basic, can be found the file putting together the various semantic files:

semantics.m

The top-level file

top_level.m

also includes an examples file and the pretty printing functions. It is this file which should be loaded
into Miranda for the semantics to be executed.

3 Definitions and abstractions

3.1 Introduction

In Section 2 we discussed the semantics of commands and expressions, or at least that part of expres-
sion semantics which deals with side-effect-free expressions. Here we consider two more categories
of program component; we investigate how to model definitions of constants, variables and proce-
dures, and how to treat the abstraction implicit in a procedure definition. (We shall mention the final
category of sequencers in Section 4.6.) The directory containing the sources of this material is

full

We can first get an informal idea of what we shall be doing by explaining how we are going to aug-
ment our language to include these features. We shall keep the single data type of numbers, so as not
to complicate the semantics overmuch.

Definitions will take the forms:

const c (27+32) ;
var eric ;
procedure fred (x , joe , jack) ;
.. procedure_body ..

Procedures are called in the standard way, by naming them and listing their actual parameters. For
instance, a valid procedure call is given by:

fred (27 , jack , eric + sid) ;

We treat parameters as value parameters; we shall discuss other approaches in a subsequent section.
Our final new control construct is the block which is the means by which we introduce local defini-
tions:

begin block
const c 17 ;
procedure fred (y);
.. body of fred ..

const d (33.3+c) ;
<command>

end block

The <command> is the body of the block, and the definitions in the list of definitions are local to the
block. The Pascal scoping discipline says roughly that an identifier is in scope after its definition, so
that it can be used both in subsequent definitions and (recursively) within the definition itself. In the
model we discuss here we adopt this, except that we don’t allow recursive definitions. A later section
studies recursive procedures.

How do we add to our abstract syntax? We augment the definition of command thus:

7

command ::= .. | .. | ..
Block [def] command |
Call ident [expr]

The first addition is the syntax for a command block, and the second for procedure call — it includes
the procedure identifier and the list of actual parameters. We describe the type def for definitions so:

def ::= Const ident expr |
Variable ident |
Procedure ident [ident] command

A definition can take one of three forms, a constant, variable or procedure definition. Note that the
variable definition does not explicitly mention the location bound to the name; the location will be
supplied by the storage allocation mechanism of the implementation. The procedure definition has
three components — the name of the procedure, the list of names of the formal parameters and the
command which is the body of the procedure.

Linked to our discussion of scopes above we can point out a highly desirable property of denotational
semantics. This property is completeness. Because we write a function which describes the input-
output relation, there is no room for ambiguity to creep in, as could easily happen in an informal
description. What we get in our case is a particular, well-defined, action which may not be that action
we (implicitly) expected, but which does at least prescribe the language in a definite way. This must
be better than a system where a feature may be un- or under-defined.

3.2 The types

As we now hav e local definitions, we shall have to keep track of both how names are bound to loca-
tions (using the environment) and how values are associated with locations (using the store). The val-
ues associated with constants will be numbers and the values associated with variables will be loca-
tions. What will be the value associated with a procedure name?

We conceive of procedures as functions which take as input both the starting state and the parameter
values, and which return the termination state. In other words, the type of procedures, proc will be
given by

proc == (stores , [values]) -> stores

Our type of values will be

values ::= Number num |
Loc locations |
Abstract proc

The type of locations – the storage locations in memory – is modelled by num.

What will be the types of stores and environments? Remember that we want these to constitute a
record of associations between names or locations and values. How this is done is irrelevant. For
instance, environments are (or should be) defined by the action of the operations

find :: ident -> env -> values

which finds the value associated with an identifier in an environment;

bind :: ident -> values -> env -> env

which updates an environment with a new name-value binding, and

free :: env -> locations

which returns location which is unused in the environment. This function is used when interpreting
variable declarations, at which point a name is associated with a ‘new’ piece of storage. We want to
conceive environments as an abstract data type, in fact. It is clear that we can implement the

8

environment type using lists (rather than the functions we used in Section 2 to model stores)

env == [(ident,values)]

the binding of a value v to an identifier i being registered by the presence of the pair (i,v) in the
list.

Arguing similarly, we can implement stores as

stores == [(locations,values)]

(We could equally well use the implementation of Section 2, in fact.) These definitions are in the file

semantic_types.m

3.3 The types of the semantic functions

In giving a value to an expression containing, for instance, both constants, whose values are held in
an environment, and variables, whose r-values are located in a store, we need to supply information
about both environment and store. We must modify the types of the expression evaluation functions
thus:

expr_value :: expr -> env -> stores -> values
b_expr_value :: b_expr -> env -> stores -> bool

In a similar way, a command yields a store transformation function only after we have interpreted the
names used by the command. We must interpret commands in an environment:

command_value :: command -> env -> stores -> stores

What is the effect of performing a definition? We keep a record of definitions in the environment, and
so,

def_value :: def -> env -> stores -> env

(We need the stores parameter to interpret the expressions which may lie on the right hand sides of
definitions, e.g.:

const c (x+9.76) ;

where x is a variable. Note that we only resolve our constant definitions at run-time, unlike Pascal
and related languages for which the evaluation is done at compile-time.)

As an abstract type, how does the store appear? We retain the functions

update :: stores -> locations -> values -> stores
lookup :: locations -> stores -> values

Our final semantic task is to interpret procedures like

procedure joe(y) ;
x := y + x ;

It is usual to interpret the free names in a procedure, like x, in the environment in which the proce-
dure is defined. This is called static binding; in contrast we can resolve the names in the prevailing
environment when the procedure is called; this is called dynamic binding, and is discussed in Section
4.4. If x is a variable we only resolve its l-value in the definition environment, we find its r-value
from the state in which the procedure is invoked. To re-iterate, state information is passed to the pro-
cedure body on call, and so no state information is needed in giving the procedure a value, as a state
transition function:

proc_value :: [ident] -> command -> env -> values

9

In conclusion, note that we now interpret constructs relative to (at most) two objects, the state and the
environment. We hav e had to modify our storage model to include an explicit allocation function. We
introduced two new major semantic functions, def_value and proc_value, with the obvious
intention. The declarations are found in

sem_fun_types.m

3.4 The definition of the semantic functions.

Here we define the new semantic functions, and explain how we extend command_value to inter-
pret our new commands Call and Block. Finally we explain how the definitions of Section 2 are
modified to accommodate our change from the simple store model to the store/environment model.

Perhaps this is a good place at which to make an aside. One useful way of looking at denotational
semantics is simply as a translation from a general (in this case imperative) programming language to
a functional one. Some of the novelties (peculiarities?) which appear in the semantics can be
explained by this. For example, because we don’t hav e a state in a functional language, we have to
pass explicit state (and environment) information to command, expressions etc. If we want to repeat
a particular operation, this will be done by composing functions, recursion or iteration along a list.
The functions map and foldr, foldl are iterators of this sort. Once we see that many of the
definitions are standard functional ‘idioms’ it should be a lot easier to see the precise effect of the
semantics.

3.4.1 Definitions

Definitions are intended to bind and we see that happening in the definition of

def_value :: def -> env -> stores -> env

which proceeds by cases over the form of definition.

def_value (Const id ex) en st
= en’
where
en’ = bind id val en
val = (expr_value ex en st)

In a constant definition, we evaluate the right hand side, giving val and then bind the result to the
identifier. Note that we do not affect the state.

def_value (Variable id) en st
= en’
where
en’ = bind id (Loc (free en)) en

In interpereting a variable declaration we allocate a new location, free en and bind the variable
name to it.
Finally,

def_value (Procedure id l c) en st
= en’
where
en’ = bind id val en
val = Abstract (proc_value l c en)

Find the value of the procedure using proc_value and bind it to the procedure name. We return the
updated environment together with the unmodified store. Note that the procedure body is itself inter-
preted relative to the environment en in which the procedure under definition does not itself appear.
This means that, as we mentioned earlier, our procedures are not recursive.

10

3.4.2 Commands

There is a strong correspondence between block entry and procedure invocation. As the former is
simpler it seems sensible to look at how we interpret our new commands before we look at proce-
dures. In the following we are going to omit some of the details of the definitions so that we get a
clear view of the important points. The full (executable) details can be found in the directory full of
the distribution. Recall that the function interpreting commands has the type

command_value :: command -> env -> stores -> stores

We look at the cases not covered earlier.

command_value (Call id elist) en st
= val (st , elist_value)
where
Abstract val = find id en
elist_value = ...

We first find the value of id in en. This is of the form Abstract val, with val :: proc.
We apply val to the current state, st, together with the values of the actual parameters,
elist_value. We use expr_value in finding these values — essentially we map it along the
list of actual parameters.

command_value (Block dlis c) en st
= command_value c en’ st

where
en’=def_list_value dlis en st

The function def_list_value is used to successively update the environment en by the list of
definitions dlist. We therefore interpret the command c in an environment which includes all the
definitions in dlist, as intended.

def_list_value :: [def] -> env -> stores -> env

def_list_value [] en st = en
def_list_value (d:ds) en st

= def_list_value ds (def_value d en st) st

This function is defined so as to add definitions one at a time, so that the right hand side of the second
definition is interpreted in an environment already containing the first definition.

3.4.3 Procedures

At last we can return to procedure values. The function we concentrate on is

proc_value :: [ident] -> command -> env -> proc

The function proc_value returns a proc, that is a function, and we define the effect of a func-
tion by looking at how it behaves on an argument, (st,alist):

proc_value flist c en (st,alist)
= command_value c en’ st’
where
en’ = def_list_value dlist en st
st’ = ...

We can see this definition as having two stages. First we treat the formal parameter list (flist) as a
list of definitions (dlist) and incorporate these into the environment en. We then initialise these
new variables to the values of the actuals, alist, resulting in the state st’; this shows that we are
indeed passing parameters by value. It is in the state st’ that we execute the command c.

11

The full definition reads

proc_value flist c en (st,alist)
= command_value c en’ st’
where

dlist = map Variable flist
en’ = def_list_value dlist en st

st’ = initialise st flist_vals alist

flist_vals
= map (get en’) flist

where
get x y = loc

where (Loc loc) = find y x

initialise st [] [] = st
initialise st (f:fs) (a:as)

= initialise (update st f a) fs as

3.5 Defining the rest of the functions.

In this section we give definitions of expr_value and the store manipulation functions. The defini-
tions of b_expr_value, find, bind etc. should present no difficulties for the reader (who
could find them in the full directory if desperate!) We define expr_value from the auxiliary
function

expr_value0 :: expr -> env -> stores -> num

which returns a num rather than the Number num returned by expr_value.

Constants are evaluated by finding them in the environment en:

expr_value0 (Con i) en st
= val
where
Number val = (find i en)

Variables are evaluated by first finding their l-value,loc, in the environment and then looking up the
value stored in loc by the store st.

expr_value0 (Var i) en st
= val
where
Loc loc = (find i en)
Number val = (lookup loc st)

Operators and literals are evaluated exactly as before, except for the extra env parameter which has
to be passed inwards.

How are the store and environment manipulated? The definitions are standard. update , lookup
have the obvious definitions:

update x i val = (i,val):x
lookup i [] = error "lookup"
lookup i ((j,val):x) = val , i=j

= lookup i x

free finds the first location not mentioned in the list, and outputs this as the new location.

12

3.6 Conclusion

This section has shown how we treat the semantics of block-structuring and abstraction in a Pascal-
like language. Although there is some overhead in learning a functional programming language like
Miranda, once we have made the investment we can quickly write a concise, unambiguous and
executable version of a programming language of substantial power.

Again it is interesting to review the dependencies between the major semantic functions. As before in
interpreting programs (which are commands) by means of the function command_value, we need
to interpret expressions and boolean expressions, so we call expr_value and b_expr_value
which itself calls expr_value. We also need to interpret definitions, through def_value which
in turn requires us to call expr_value (to interpret constants) and command_value (to interpret
procedures); we therefore have a set of functions defined by mutual recursion.

In the following section we shall discuss the semantics of other features in a rather more discursive
way.

4 Fur ther Denotational Semantics
In this section we look at the semantics of some rather more complex constructs. An implementation
of the functions in the first two sub-sections can be found in full.

4.1 Parameter passing by reference

When we pass parameters by reference, we bind the names of the formals to the l-values (locations
bound to) the actuals. This is, in fact, a simpler mechanism than that for value, as we don’t need to
perform any allocation — all we do is bind:

ref_proc_value :: [ident] -> command -> env -> proc
ref_proc_value flist c en (st,alist)

= command_value c en’ st
where
en’ = list_bind en flist alist

list_bind en [] [] = en
list_bind en (f:fs) (a:as)

= list_bind (bind f a en) fs as

On procedure call, that is when ref_proc_value flist c en is presented with the argument
(st,alist), we form an environment en’ from en by binding the formals to the l-values of the
actuals — the list_bind function achieves this. We then execute the body in this environment,
together with the state from the call. An example of a swap procedure can be found in the distribu-
tion.

4.2 Recursive procedures (with reference parameters)

We interpret these exactly as we interpret reference procedures, except that in the environment in
which we evaluate the body we want the procedure name already to be bound to its value — a clear
case for a recursive description.

In interpreting non-recursive procedures we don’t need to know the name to which the procedure is to
be bound. Clearly we do in the recursive case, so we need to change the type of our interpretation
function so that it takes this name as its first argument.

rec_proc_value :: ident -> [ident] -> command -> env -> proc
rec_proc_value id flist c en

= val

val is a function, which itself is defined thus:

13

val (st,alist)
= command_value c en’’ st
where
en’ = list_bind en flist alist
en’’ = bind id (Abstract val) en’

en’ is defined in exactly the same way as for reference procedures — it is the result of binding the
formals to the l-values of the actuals. en’’ results from it by binding the procedure name id to its
value val, exactly as the informal description.

How would we interpret a collection of mutually recursive procedures? The same technique will
work, except that in the interpretation of the body of each procedure, all the names have to be bound
to their ultimate values.

4.3 Parameter passing by value-result

A variant of the reference parameter passing mechanism is value-result, in which we use the value
mechanism, but assign the final values of the local variables to the l-values of the actuals on proce-
dure termination. This variant is found in the directory value_result.

4.4 Dynamic binding

Recall the example procedure from Section 3

procedure joe(y) ;
x := y + x ;

We mentioned there that the l-value of x is found in the environment in which joe is defined; we
could alternatively find its l-value in the prevailing environment when joe is called. This is called
dynamic binding; details are to be found in the directory dynamic.

4.5 Expressions with side-effects

One feature which necessitates us rebuilding our semantics is the function mechanism for Pascal-
like languages. We can handle its abstraction aspect in exactly the same way as we handled proce-
dures, but a difficulty arises because these functions, which in general cause state changes, are
invoked by expression evaluation. This means that all expressions can potentially change machine
state, so that we have to revise our evaluation function to one of type:

expr_value :: expr -> env -> stores -> (values,stores)

Even if we had avoided storage allocation in the last section we would now hav e to allow definitions
to affect the state, as definitions usually involve expression evaluation.

Let us return to the simple store model of Section 2 for this discussion — we lose nothing (except
notational complexity!) by so doing.

expr_value :: expr -> stores -> (values,stores)

What happens when we evaluate an expression with two subexpressions, like

(Apply_nop op e1 e2)

in st?
Given that evaluating either expression e1,e2 will potentially change st we can’t evaluate both in
st, as we would then not know how to modify st. We must decide to do one before the other, and
we have to realise that this choice will have an effect, as evaluating an expression in two different
orders will often give two different results. Left to right order is given by:

14

expr_value (Apply_nop op e1 e2) st
= (val , st’’)
where
val = nop_value op v1 v2
(v1,st’) = expr_value e1 st
(v2,st’’) = expr_value e2 st’

More details can be found in the directory dirty.

4.6 Jumps

In the directory jump we model a simple language containing gotos by taking a program to be a
list of labelled commands,

program == [(label,command)]

where to the type of commands we add a jump thus

command ::= ... as earlier ... | Goto label

A command can now produce one of two outcomes. It can terminate normally, or it can jump to a
label, so we define,

outcomes ::= Ok stores | Jump label stores

We then define the semantic functions; first for commands:

command_value :: command -> stores -> outcomes

We work as in Section 2, more or less. Example equations from the definition include

command_value Skip st = Ok st

command_value (While_Do e c) st
= sq (command_value c) (command_value (While_Do e c)) st

, if b_expr_value e st
= Ok st , otherwise

command_value (Goto l) st = Jump l st

The top-level function in the semantics is

program_value :: program -> stores -> stores

where

program_value p = label_value p (first_label p)

It is only at the level of a program that we can describe a simple transition from stores to
stores — we giv e a meaning to each label by giving a meaning to the command associated with it.
A mutual recursion ensures that if the command terminates normally, we pass control to the next
label, whilst if it terminates with a jump, we jump to that label. The crucial definition is, therefore

label_value :: program -> label -> stores -> stores

and

15

label_value p l st
= follow (command_value (command_for p l) st) l
where
follow (Jump l’ st’) l
= label_value p l’ st’

follow (Ok st’) l
= st’ , if last l labels
= label_value p (next l labels) st’ , otherwise

where various auxiliary functions manipulate labels in the obvious way.

This semantics shows the complexity of using jumps — we can only resolve the meaning of a whole
program as a single unit, since from any point we can jump to any other.

4.7 Errors

Some programming errors, like division by zero, can only be detected at run-time, and we should
explain how these are to be handled. There are really two approaches.

The first, simpler, technique is to abort on error. This can be modelled using the Miranda error
function which causes a Miranda error. If we think about this more carefully, what this implies is that
all calculations and computations containing errors are formally undefined. We can actually do better
than that, and return an explicit error value. For instance we can define a type of numbers with an
error value thus:

enum ::= OK num |
Error

and redefine division on enum.

ediv n m = Error , n = Error \/
m = Error \/
m’ = 0

= OK (n’/m’)
where n = OK n’

m = OK m’

We output Error if either of the inputs is erroneous or if division by zero is attempted, otherwise we
perform the ordinary division.

Because Error is a proper value, we can trap and handle it. Such a facility is going to be necessary
in describing most languages, which use more sophisticated approaches than the ‘‘dump and run’’ of
error.

5 Operational semantics
An alternative way of explaining the semantics of the simple language described in

basic/abstract_syntax.m

is to think of the effect of a command as a sequence of transitions between machine states. (The
details for this section are found in the basic_opr directory.) We can think of the configuration of
a machine as either having halted in a particular state, or as being in a particular state with a com-
mand to be executed. In Miranda,

config ::= Inter command stores | Final stores

Expressions are interpreted just as in Section 2. The function interpreting commands is

computation :: config -> [config]

16

and we get a computation by repeatedly taking the next step in the machine:

computation con
= [con] , if isFinal con
= con : computation (step con) , otherwise

So, we have to define the function

step :: config -> config

The most important cases follow.

A skip command terminates immediately:

step (Inter Skip st)
= Final st

In performing an alternative command, we choose the appropriate command to continue with:

step (Inter (If_Then_Else e c1 c2) st)
= (Inter c1 st) , if b_expr_value e st
= (Inter c2 st) , otherwise

In interpreting a loop, we say:

step (Inter (While_Do e c) st)
= (Inter (If_Then_Else e (Sequence [c,While_Do e c]) Skip) st)

What is happening here? We explain one command in terms of another — an alternative between the
two cases. In the first we do the command, followed again by the while loop; in the other case, we
skip.

In interpreting a sequence of commands we have three cases:

step (Inter (Sequence (c:rest)) st)
= Final stf , if isFinal con’ & rest = []
= (Inter (Sequence rest) stf) , if isFinal con’
= (Inter (Sequence (c’:rest)) st’) , otherwise
where
con’ = step (Inter c st)
(Final stf) = con’
(Inter c’ st’) = con’

In the first case we have one command which terminates in one step; in the second the first command
terminates in one step, so we move to the remainder in the next step. In the final case, the first com-
mand gives rise to the configuration

(Inter c’ st’)

in one step, so we continue to execute c’ from state st’ before executing the commands in rest.

An assignment terminates in one step:

step (Inter (Assignment i e) st)
= Final (update st i (expr_value e st))

The other cases of the function are straightforwardly defined.

6 Compiling
A simple stack machine and compiler for the basic language are given in the machine directory.
The machine uses a stack of values — numbers, booleans and locations (addresses of positions in the
store) — to calculate values of expressions, and has a store in which to record values.

17

The description in the directory consists of three components.

6.1 The code

The code for the machine is given by an algebraic data type in Miranda, contained in the file
code.m.

m_code
::= Push_num num |

Do_nop nop |
Do_monop monop |
Contents ident |
Push_bool bool |
Do_rel rel |
Do_bop bop |
Do_monbop monbop |
Lval ident |
Pop |
Assign |
Copy |
Label label |
Goto label |
Gofalse label |
Gotrue label |
Halt

The Push_num places a number at the top of the stack. To ‘do’ an operator, the appropriate number
of arguments are taken from the stack, the operator is applied to them and the result returned to the
stack. The Lval instruction places a location at the top of the stack, and Pop removes the top item
of the stack. The Assign instruction removes a location and value from the stack, and performs the
appropriate assignment. The various jump operations replace the code to be executed by the code
found by jumping to the appropriate label.

A formal version of this brief explanation is found in the next section, where we give a Miranda
description of the machine.

6.2 The machine

The machine is described in machine.m. The stack of the machine is modelled as a list of items,

stack == [item]

where each item is either a number, a Boolean or a location:

item ::= N num | B bool | L ident

All the instructions, bar the jumps and halt, pass control to the next instruction in the instruction
sequence. We can therefore explain their behaviour simply by explaining their effect on the stack and
store. This is the purpose of the

execute_one :: (m_code , stack , stores) -> (stack , stores)

function. In our definition, we follow the ordering of the algebraic type definition. To push a num-
ber, we say

execute_one (Push_num n , sta , sto)
= (N n : sta , sto)

whilst a typical ‘do’ operation works thus, taking its arguments from the stack and returning the result
there

18

execute_one (Do_nop f , N v2 : N v1 : sta , sto)
= (N (nop_value f v1 v2) : sta , sto)

We get the contents of a location thus:

execute_one (Contents ide , sta , sto)
= (N (lookup ide sto) : sta , sto)

and we assign to a variable as follows:

execute_one (Assign , L ide : N n : sta , sto)
= (sta , update sto ide n)

A label is simply treated as a ‘null’ operation,

execute_one (Label l , sta , sto)
= (sta , sto)

The other cases can easily be reconstructed by the reader, who can also find them in the file.

Program execution is modelled by

execute :: [m_code] -> ([m_code] , stack , stores) ->
([m_code] , stack , stores)

The triple ([m_code] , stack , stores) represents an intermediate configuration of the
machine, consisting of

• a code sequence to be executed;

• a stack of values; and

• a state of the store.

The effect of executing the program is to give a final such configuration.

The interesting cases are given by the jumps. For instance,

execute pro ((Gotrue l) : re , B b : sta , sto)
= execute pro (re’ , sta , sto) , if b
= execute pro (re , sta , sto) , otherwise
where
re’ = follow l pro

In the case that the top of the stack is True, we make the jump; the function follow finds the target
of the jump, and execution resumes there; in the other case, execution continues from the point after
the jump instruction. Goto and Gofalse are modelled in a similar way. The Halt instruction
halts execution, and any other instruction causes a single step of execution:

execute pro (ins : re , sta , sto)
= execute pro (re , sta’ , sto’)
where
(sta’ , sto’) = execute_one (ins, sta , sto)

Now we hav e a formal model of our machine, we can give the compilation algorithm for the basic
language.

6.3 Compiling the language

To compile an expression we give the function

compile_expr :: expr -> [m_code]

A variable has its contents placed on the stack,

19

compile_expr (Var ide) = [Contents ide]

and a number is pushed:

compile_expr (Num n) = [Push_num n]

The substantial case is of an operator; for instance, a binary operator gives the code:

compile_expr (Apply_nop f e1 e2)
= compile_expr e1 ++ compile_expr e2 ++ [Do_nop f]

which we can see corresponds to the way we executed a numeric operator above. Compiling the
other numeric and boolean expressions is similar.

The code for a skip instruction is null,

compile_command Skip = []

and for an assignment

compile_command (Assignment ide e)
= compile_expr e ++ [Lval ide , Assign]

In compiling structured commands such as If_Then_Else we produce code containing jumps. For
example,

compile_command (If_Then_Else be c1 c2)
= compile_b_expr be ++ [Gofalse newlab] ++
compile_command c1 ++ [Goto newlab’ , Label newlab]
++ compile_command c2 ++ [Label newlab’]

We first evaluate the condition, hence the code

compile_b_expr be

If the result is false, we jump to the code for the ‘else’ case , c2 — hence the Gofalse; otherwise,
we do the code for the ‘then’ case, and jump over the c2 code to newlab’.

For the While_Do we have

compile_command (While_Do be c)
= [Label newlab] ++ compile_b_expr be ++ [Gofalse newlab’] ++
compile_command c ++ [Goto newlab , Label newlab’]

and a similar translation gives the code for the Repeat_Until command.

We hav e glossed over exactly how the new labels newlab etc. are supplied to the compiler. In fact
our function is of type

compile_command :: command -> labeltree -> [m_code]

where the second argument is a tree of labels, generated separately to provide the appropriate labels.
In the case of the If_Then_Else command, the labeltree will be

Iftree newlab newlab’ tree1 tree2

providing the two new labels and the trees to be used in the component commands. The definition
then reads

compile_command (If_Then_Else be c1 c2)
(Iftree newlab newlab’ tree1 tree2)

= compile_b_expr be ++ [Gofalse newlab] ++
compile_command c1 tree1 ++ [Goto newlab’ , Label newlab] ++
compile_command c2 tree2 ++ [Label newlab’]

in which it can be seen how the labels are distributed. Full details are to be found in the compile.m

20

file.

6.4 Conclusion

Putting the three files together, we hav e a machine to compile and execute our programs. We can
compare this with the semantics given earlier, and indeed we can prove that the implementation is
correct. For example, we can prove that executing the code for an expression results in a stack with
the value of the expression at the top — the proof is by structural induction over the complexity of the
expressions.

In a similar way we can prove that our commands are implemented correctly; in this case fixed-point
induction has to be used.

7 On the approach of this work
The approach to explaining semantics which we have introduced here has a number of advantages.

• The semantics is presented in a familiar language. In presenting the operational semantics
given in Section 5 I was surprised to find that students were happier with the Miranda
description rather than the more abstract and less cluttered rule-based version. Each different
type of formal language imposes a learning overhead, and so it can be more effective to use a
familiar language, even at some cost in elegance.

• The semantics is type checked and executable – we can interact with it and can therefore be
sure that it works as we wish. We can validate it, in other words. Again, for students, it is a
bonus to be able to experiment with the semantics as well as to read it. From another point of
view, the approach allows us to prototype language features.

• The semantics makes a clear distinction between the functional description of the imperative
(which this semantics gives) and a domain-theoretic description of recursion. Other
approaches can tend to conflate the two, leading to confusion.

Clearly there are disadvantages here too. The approach leaves some issues implicit – what the exact
form that product (tuple) types take is a case in point – and it can also make it difficult to specify
clearly or abstractly certain parts of languages. Notwithstanding this, we feel that it provides a useful
learning tool in explaining abstract ideas in an approachable way.

Appendix – Explaining Recursion
The aim of this appendix is to show how recursion can be given a sensible, mathematical

explanation. The essence of a recursive description is that it uses the object being defined within the
description itself: it is self-referential and self-referential definitions can be troublesome.

In a certain town every man is clean shaven. Some men shave themselves and others
are shaved by (male) barbers. One barber is special, in that he shaves every man who
does not shave himself (and no others). Who shaves the barber?

If the barber shaves himself, then by his description he must be someone who does not shave himself,
yet if he is such a person, then he must, by his description, shave himself! This is one form of Rus-
sell’s paradox, and it illustrates the problems that self-reference can generate.

The way that we interpret recursion is by producing a system of approximations to the object
defined. We are familiar with this technique from the numerical solution of equations, and so we first
recall what we do there.

We look at equations of the form

21

x = f(x) (1)

such equations form a larger class than might be imagined at first sight; we can rewrite

x2 = 2

as

x = (x2 + 2)/2x (2)

for example. Note the similarity of this to a recursion equation. It defines a solution(x)in terms of
itself ((x2 + 2)/2x) — the only difference is in the kind of object that we are defining: here we
define a number , or collection of numbers, whereas a recursion equation usually defines a function.

How do we solve something like (2)? As we said, we use (2) to give us a sequence of approxi-
mations, thus:

x0 = start
xn+1 = (xn

2 + 2)/2xn
and in general for an equation like (1),

x0 = start
xn+1 = f(xn)

The solution we generate is given by the limit of the sequence <xn>n . The equation (2) gives a
sequence of approximations to the square root of 2. The solution itself is none of these approxima-
tions — it is an infinite decimal.

Now, how are we to ‘‘solve’’ or explain a recursive definition like

fac p = 1 , p <= 0
= p * fac (p-1)

or

qsort [] = []
qsort (a:x) = qsort (less a x) ++

[a] ++
qsort (more a x)

where less,more are auxiliary functions with the obvious definitions?
We do it in exactly the same way that we did for our square root. We take fac0 qsort0 to be suit-
able starting values (more below) and generate successive approximations thus:

facn+1 p = 1 , p <= 0
= p * facn (p-1)

qsortn+1 [] = []
qsortn+1 (a:x) = qsortn (less a x) ++

[a] ++
qsortn (more a x)

We use the definition to generate the next approximation from the previous one, and we hope that the
sequence takes us to a solution of the equations. What should our starting functions be? The obvious
choice is to start out with nothing, in other words we take fac0 qsort0 to be completely unde-
fined: whenever we try to find one of their values, our computation does not terminate, (we go into a
‘‘black hole’’, as it were.)
What do the approximations look like?

fac0 p = undef

22

fac1 p = 1 , p <= 0
= p * fac0 (p-1)

so

fac1 p = 1 , p <= 0
= undef

fac2 p = 1 , p <= 0
= p * fac1 (p-1)

so

fac2 p = 1 , p <= 0
= 1 , p = 1
= undef

Similarly,

fac3 p = 1 , p <= 1
= 2 , p = 2
= undef

and so on.
We can see that

• The approximations never disagree on the values that they do define — it is only that some
approximations may give a value and others not.

• The further we go along our approximation sequence, the more information we derive. (Strictly,
we should make the weaker claim that we never lose information.)

These properties can be proved to hold of any sequence of approximations thus generated, and the
properties are sufficient to imply that there is a unique smallest function defined by a recursion equa-
tion. Formally we define it by saying

fac k = l

if and only if for some n ,

facn k = l

In our analogy of equation solving we were led to the view of a real number, like the square root of 2,
being given by a sequence of approximations. Based on this idea, we build the model of the real num-
bers given by Cauchy or Dedekind. In a similar way, we can build a mathematical structure of func-
tions, called a domain, out of our function approximations and their ‘‘limits’’, which we obtain from
sequences like <facn>n . A gentle introduction to this work is provided by [Schmidt] or [Winskel].

We hav e show that there is a sensible way for us to give meaning to the recursion equations which
form the heart of Miranda and therefore of our semantics. The techniques we have used are based on
numerical techniques, and make sense of ‘‘nonsensical’’ definitions like

f x = f (x+1)

or our ‘definition’ of the barber — the objects in question are simply undefined, a situation which
we are used to in computing.

Bibliography
Schmidt, D.A., Denotational Semantics, Allyn and Bacon, 1986.

23

Tennent, R.D., Principles of Programming Languages, Prentice-Hall, 1981.

Thompson, S.J., Miranda The Craft of Functional Programming, Addison-Wesley, 1995.

Winskel, G., The Formal Semantics of Programming Languages, MIT Press, 1993.

24

