
Hopkins, Tim and da Cunha, Rudnei Dias (1994) The Parallel Iterative Methods
(PIM) package for the solution of systems of linear equations on parallel
computers. Technical report. University of Kent, Computing Laboratory,
University of Kent, Canterbury, UK

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21177/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21177/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The Parallel Iterative Methods �PIM� package for the solution

of systems of linear equations on parallel computers

Rudnei Dias da Cunha

National Supercomputing Centre and Mathematics Institute

Universidade Federal do Rio Grande do Sul� Brazil

rudnei�cesup�ufrgs�br

Tim Hopkins

Computing Laboratory

University of Kent at Canterbury� U�K�

trh�ukc�ac�uk

Abstract

We present a collection of public�domain Fortran �� routines for the solution of sys�

tems of linear equations using a variety of iterative methods� The routines implement

methods which have been modi�ed for their e�cient use on parallel architectures with

either shared� or distributed�memory� PIM was designed to be portable across di�erent

machines� Results are presented for a variety of parallel computers�

� Introduction

The solution of systems of linear equations arises in connection with many applications�
Frequently such systems are sparse and of the order of thousands or millions of equations and
require the use of parallel computers if they are to be solved in a reasonable time�

Being sparse� direct methods� like Gaussian elimination� are not practical for two main
reasons� First� these methods often require large amounts of memory due to �ll�in which
may destroy the sparsity and second� many applications do not require a solution to machine
precision� Iterative methods like Conjugate�Gradients may then be more e�ective since the
user can control the accuracy of the solution obtained� and the sparsity pattern of the system
is not altered� thus minimizing storage requirements and� hopefully� considerably reducing
the number of �oating�point operations required�

Using iterative methods to solve such systems on parallel computers requires some care
especially on distributed�memory architectures where the problem of global operations �for
example� the sum of scalar values scattered across the processors	 is crucial to their perfor�
mance� We have addressed this problem in PIM by reducing the number of global operations
needed by an iterative method while at the same time maintaining its convergence properties�

In section
 we provide an overview of the package and a number of examples describing the
use of PIM are given in section �� Through a case study in section � we look in some detail
at how to design ecient routines for particular parallel architectures and provide results
obtained on several parallel machines� We conclude� in section �� with some comments on
forthcoming improvements to PIM�

�

� Overview of the package

PIM had its origins in a set of similar routines which were developed� in occam�� by one of
the authors �see ��� and ��� for further details	� These routines did not however o�er all the
functionality of PIM� neither were they portable�

To introduce PIM� consider the solution of a non�singular system of n linear equations

Q�AQ�x � b ��	

where A is the coecient matrix� x the solution being sought� b the independent vector and Q�

and Q� are preconditioners� To solve ��	 PIM o�ers a number of iterative methods� including

� Conjugate�Gradients �CG	 ��
��

� Bi�Conjugate�Gradients �Bi�CG	 �����

� Conjugate�Gradients Squared �CGS	 �
���

� the stabilised version of Bi�Conjugate�Gradients �Bi�CGSTAB	 �
���

� generalised minimal residual �GMRES	 �����

� generalised conjugate residual �GCR	 ����

� Conjugate�Gradients for normal equations with minimisation of the residual norm
�CGNR	 �����

� Conjugate�Gradients for normal equations with minimisation of the error norm �CGNE	
����

� transpose�free quasi�minimal residual �TFQMR	 ���� and Chebyshev acceleration �����

The coecient matrix may be either real or complex� we provide a set of the PIM routines
for each� in both single and double precision�

The user may want to use preconditioners to accelerate or obtain convergence� The
routines allow the use of left�� right� or symmetric�preconditioning� the system can also be
solved without preconditioning�

Seven di�erent stopping criteria are available� these include the usual scaled residual of the
iteration vector at the k�th iteration xk� i�e�� jj b�Axk jj � �jj b jj and the absolute di�erence
between two successive iteration vectors jj xk � xk�� jj � ��

PIM was developed with two main goals

�� to allow the user complete freedom with respect to matrix storage� access� and parti�
tioning�

� to achieve portability across a variety of parallel architectures and programming envi�
ronments�

These goals are achieved by hiding from the PIM routines the speci�c details concerning the
computation of the following three linear algebra operations

�� matrix�vector �and transpose matrix�vector	 product�

� preconditioning step�

�� inner�products and vector norm�

Routines to compute these operations need to be provided by the user� Many vendors supply
their own optimised linear algebra routines which the user may want to use� A number of
packages for the iterative solution of linear systems already exist including ITPACK ���� and
NSPCG ����� PIM di�ers from these packages in three main aspects� First� while ITPACK
and NSPCG may be used on a parallel vector supercomputer like a Cray Y�MP� there are
no versions of these packages available for distributed�memory parallel computers� Second�
there is no debugging support� this is dictated by the fact that in some multiprocessing
environments parallel I�O is not available� The third aspect is that we do not provide a
collection of preconditioners but leave the responsibility of providing the appropriate routines
to the user�

In this sense� PIM has many similarities to Ashby and Seager�s proposed standard for
iterative linear solvers �
�� In that proposal� the user supplies the matrix�vector product and
preconditioning routines� We believe that their proposed standard satis�es many of the needs
of the scienti�c community as� drawing on its concepts� we have been able to provide software
that can be used in a variety of parallel environments� However� PIM does not always follow
the proposal� speci�cally with regard to the lack of debugging support and the format of the
matrix�vector product routines�

Due to the openness of the design of PIM� it is also possible to use it on a sequential
machine� In this case� the user can take advantage of the BLAS ��� to compute the three
required linear algebra operations� This characteristic is important for testing purposes� once
the user is satis�ed that the selection of preconditioners and stopping criteria are suitable�
the computation may be accelerated by using an appropriate parallel implementation of these
operations�

PIM has already been used in a variety of applications� for example� as part of a �nite�
element code for designing gas turbines �Pratt�Whitney� Canada	� the modelling of �ux in
porous media �ARCO Oil � Gas	 and the modelling of geo�electromagnetic induction in the
Earth ����

��� Parallel programming model

PIM uses the Single Program� Multiple Data �SPMD	 programming model� The main impli�
cation of using this model is that certain scalar values are needed in each processing element
�PE	� Two of the user�supplied routines� to compute a global sum and a vector norm� must
provide for this� distributed�memory computers like the Intel Paragon XP and parallel pro�
gramming systems like p� and TCGMSG o�er routines which can be used for this purpose�

��� Data partitioning

With PIM� the iterative method routines have no knowledge of the way in which the user
has chosen to store and access either the coecient or the preconditioning matrices� We thus
restrict ourselves to partitioning the vectors�

The assumption made is that each PE knows the number of elements of each vector stored
in it and that all vector variables in a processor have the same number of elements� This is a
broad assumption that allows us to accommodate many di�erent data partitioning schemes�

�

including contiguous� cyclic �or wrap�around	 and scattered partitionings� We are able to
make this assumption because the vector�vector operations used � vector accumulations�
assignments and copies � are disjoint element�wise� The other operations used� involving
matrices and vectors� which may require knowledge of the individual indices of vectors� are
the responsibility of the user�

PIM requires that the elements of vectors must be stored locally starting from position
�� thus the user has a local numbering of the variables which can be translated to a global
numbering if required� For example� if a vector of � elements is partitioned in wrap�around
fashion among
 processors� using blocks of length �� then the �rst processor stores elements
�� �� � and � in the �rst four positions of an array� the second processor then stores elements

� �� � and � in positions � to � of its array� We stress that in most cases this translation is
not necessary or can be computed with very few operations� depending on the partitioning
scheme used�

��� Increasing the parallel scalability of iterative methods

A major cause of the poor scalability of implementations of iterative methods on distributed�
memory computers is the need to compute inner�products� � � uT v �

Pn
i�� uivi� where u

and v are vectors distributed across p processors �without loss of generality assume that each
processor holds n�p elements of each vector	� This computation can be divided in three parts

�� the local computation of partial sums of the form �j �
Pn�p

i�� uivi� within each processor�

� the accumulation of the �j values� where these values travel across the processors in
some ecient way �for instance� as if traversing a binary�tree	 and are summed during
the process� At the end� the value of � �

Pp
j�� �j is stored in a single processor�

�� the broadcast operation to send � to all processors�

Parts
� and �� are usually implemented as a single operation called a global sum�
During parts
� and �� a number of processors are idle for some time� A possible strategy to

reduce this idle time� and thus increase the scalability of the implementation� is to re�arrange
the operations in the algorithm so that parts
� and �� accumulate a number of partial sums
corresponding to several inner�products� Some of the algorithms available in PIM� including
CG� CGEV� Bi�CG� CGNR and CGNE have been rewritten using the approach suggested by
D�Azevedo and Romine ���� Others� like Bi�CGSTAB� restarted GCR and restarted GMRES
have not been re�arranged but some or all of their inner�products can be computed with a
single global sum operation�

An important point to make is that we have chosen modi�cations to the iterative meth�
ods that reduce the number of synchronization points while at the same time maintaining
their convergence properties and numerical qualities� This is the case of the D�Azevedo and
Romine modi�cation� also� in the speci�c case of GMRES� which uses the Arnoldi process
�a suitable reworking of the modi�ed Gram�Schmidt procedure	 to compute a vector basis�
the computation of several inner�products with a single global sum does not compromise the
numerical stability of the Arnoldi process�

For instance� the restarted GMRES algorithm involves the computation of j inner�products
of the form V T

i Vj � i � ��
� � � � � j� It is thus possible to arrange for each processor to compute
j partial sums using the BLAS routine DOT and store these in an array� Then in a single

�

call to a global sum routine� these arrays are communicated among the processors and their
individual elements are summed� On the completion of the global sum� the array containing
the j inner�products is stored in a single processor and is then broadcast to the remainder�
The CGS and TFQMR implementations available on PIM do not bene�t from this approach�

��� Portability

One of the main driving forces behind the design of PIM was to make the package portable
across di�erent parallel architectures� As mentioned previously this was achieved by con�
centrating machine dependencies in a small number of the common operations found in the
iterative methods considered� For instance� by having an external routine to compute the
global accumulation referred to in x
�� it is possible to port the code to another parallel
machine by just replacing calls to this external routine by the appropriate calls to the native
global sum routine� Another reason for having separate routines is that� in many applications�
writing an ecient matrix�vector product routine requires exploiting the structure of either
the physical problem� or the modelling technique used to derive the linear system�

The PIM routines are almost completely portable� the only deviation from the ANSI
Fortran �� Standard is the use of routine names with more than six characters� However�
the sequential external routines� �for example� the matrix�vector product� preconditioning
step and global accumulation�vector norm	 need to be replaced by code that performs the
interprocessor communications by calls to native routines� In some cases� this process is very
simple� Pindor in ���� mentions that porting PIM to the Kendall Square Research KSR��
using the auto�parallelisation software tools available was achieved with little intervention by
the user�

� Examples

In this section� we introduce some examples which show how to use PIM� The examples all
call the double�precision version of the routines� only changes to the types of the parameters
are required to use the other implementations�

��� Calling a PIM iterative method routine

With the exception of the Bi�CG� CGNR and CGNE methods� all the implemented methods
have the same parameter list as CG� The argument list for the double�precision implementa�
tion of the CG method is

SUBROUTINE PIMDCG�A�Q��Q��X�B�WRK�IPAR�DPAR�

� MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�

and for Bi�CG �it is the same for CGNR and CGNE	

SUBROUTINE PIMDBICG�A�Q��Q��X�B�WRK�IPAR�DPAR�

� MATVEC�TMATVEC�PRECONL�PRECONR�PDSUM�PDNRM�

Note in the example above that� contrary to the proposal in �
�� PIM uses separate routines
to compute the matrix�vector and transpose matrix�vector products�

�

��� External routines

As stated earlier� the user is responsible for supplying certain routines to be used internally
by the iterative method codes� One of the characteristics of PIM is that if external routines
are not required by an iterative method routine they are not called� Thus the user only needs
to provide those subroutines that will actually be called by a particular routine� Depending
on the selection of method� preconditioners and stopping criteria� dummy parameters may
be passed in place of those that are not used� Some compilers may require the presence of
all routines used in the program during the linking phase of the compilation� in this case the
user may need to provide stubs for the dummy routines�

The external routines have a �xed parameter list to which the user must adhere� Because
no knowledge about the matrix storage format and access is available to a PIM routine� the
matrices are passed both to the PIM routine and from there to the external routines using the
Fortran �� assumed�size array declaration� From these external routines the user is then able
to call routines that perform the actual computation and in which the matrices are referenced
according to their actual declaration �see �
�	�

Matrix�vector product Consider as an example a dense matrix partitioned by contiguous
columns among a number of processors� For illustrative purposes we assume that N is an
integer multiple of NPROCS� The following code may then be used

PROGRAM MATV

� SET UP PROBLEM SOLVING PARAMETERS FOR USE BY USER DEFINED ROUTINES

� LEADING DIMENSION OF A

IPAR���	LDA

� NUMBER OF ROWS
COLUMNS OF A

IPAR���	N

� NUMBER OF ELEMENTS STORED LOCALLY

IPAR���	N
NPROCS

� CALL PIM ROUTINE

CALL PIMDCG�A�Q��Q��X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�

STOP

END

� MATRIX�VECTOR PRODUCT ROUTINE CALLED BY A PIM ROUTINE THE

� ARGUMENT LIST TO THIS ROUTINE IS FIXED

� U IS THE INPUT VECTOR� V THE RESULT OF A�U

SUBROUTINE MATVEC�A�U�V�IPAR�

DOUBLE PRECISION A����U����V���

INTEGER IPAR���

EXTERNAL USERMV

CALL USERMV�IPAR����IPAR����IPAR����A�U�V�

RETURN

END

� USER�DEFINED ROUTINE TO IMPLEMENT A MATRIX�VECTOR PRODUCT ON A

� PARTICULAR PROCESSOR

SUBROUTINE USERMV�LDA�N�LOCLEN�A�U�V�

DOUBLE PRECISION A�LDA����U����V���

INTEGER LDA�N�LOCLEN

RETURN

END

�

The scheme above can be used for the transpose matrix�vector product as well� We note
that many di�erent storage schemes are available for storing sparse matrices� the reader may
�nd it useful to consult Barrett et al� ��� pp� ���� where such schemes along with algorithms
to compute matrix�vector products are discussed�

Preconditioning For the preconditioning routines� one may use the scheme outlined above
for the matrix�vector product� this may not be necessary� for instance� when there is no need
to operate with A or the preconditioner is stored as a vector� An example is the diagonal �or
Jacobi	 left�preconditioning� where Q� � diag�A	��

PROGRAM DIAGP

EXTERNAL MATVEC�PRECON�PDUMR�PDSUM�PDNRM

DO �� I	��N

Q��I�	��D�
A�I�I�

�� CONTINUE

� SET LEFT�PRECONDITIONING

IPAR���	�

CALL DINIT�IPAR������D��X���

CALL PIMDCG�A�Q��DUMMY�X�B�WRK�IPAR�DPAR�MATVEC�PRECON�PDUMR�PDSUM�PDNRM�

STOP

END

SUBROUTINE PRECON�A�Q�U�V�IPAR�

DOUBLE PRECISION A����Q����U����V���

INTEGER IPAR���

EXTERNAL DCOPY�DVPROD

CALL DCOPY�IPAR����U���V���

CALL DVPROD�IPAR����Q���V���

RETURN

END

where DVPROD is a routine based on theBLAS Level � DAXPY routine that performs an element�
by�element vector multiplication� This example also shows the use of dummy arguments�

Eigenvalues estimation and Chebyshev acceleration Consider the solution of a real
linear system using Chebyshev acceleration� We can use a few iterations of the routine
PIMDRGMRESEV to obtain estimates of the eigenvalues ofQ�A and then switch to PIMDCHEBYSHEV
following a simple transformation on the extreme values on the real axis �see the code below
for details	�

In the following example� we use the Jacobi preconditioner as shown previously� Note
that we may use the vector X� returned by PIMDRGMRESEV� as a possibly better estimate to
the solution in PIMDCHEBYSHEV�

PROGRAM CHBSOL

EXTERNAL MATVEC�PRECON�PDUMR�PDSUM�PDNRM�

� SET LEFT�PRECONDITIONING

IPAR���	�

� SET FEW ITERATIONS FOR RGMRESEV

IPAR����	�

CALL DINIT�IPAR������D��X���

CALL PIMDRGMRESV�A�Q��DUMMY�X�B�WRK�IPAR�DPAR�MATVEC�PRECON�PDUMR�

� PDSUM�PDNRM�

�

� BOX CONTAINING THE EIGENVALUES IS RETURNED IN

� DPAR���� DPAR���� DPAR���� DPAR���� THE FIRST TWO ARE THE INTERVAL

� ALONG THE REAL AXIS� THE LAST TWO ARE THE INTERVAL ALONG THE IMAGINARY

� AXIS

� MODIFY REAL INTERVAL TO REFLECT EIGENVALUES OF I�Q��A

MU�	DPAR���

MUN	DPAR���

DPAR���	��D��MUN

DPAR���	��D��MU�

� SET MAXIMUM ITERATIONS FOR CHEBYSHEV

IPAR����	N

CALL PIMDCHEBYSHEV�COEFS�Q��Q��X�B�DWRK�IPAR�DPAR�MATVEC�

� PRECON�PRECON�PDSUM�PDNRM��

STOP

END

Inner�products� vector norms and global accumulation When running PIM routines
on multiprocessor architectures� the inner�product and vector norm routines require accumu�
lation and broadcast operations� On vector processors these operations are handled directly
by the hardware while on distributed�memory architectures these operations involve the ex�
change of messages among the processors�

When a PIM iterative routine needs to compute an inner�product� it calls the BLAS
routine DDOT to compute the partial sums� The user�supplied routine PDSUM is then used
to generate the global sum of those partial sums� The following code shows the routines to
compute the global sum and the vector
�norm jj u jj� �

p
uTu using DDOT and the global

operations provided by the TCGMSG system

SUBROUTINE PDSUM�ISIZE�X�

INTEGER ISIZE� MSGTYPE

DOUBLE PRECISION X���

EXTERNAL DGOP

� CALL TCGMSG �DGOP� ROUTINE TO PERFORM GLOBAL ACCUMULATION �A

� SUM AS INDICATED BY THE ��� IN THE CALL TO DGOP� AND BROADCAST

� OVER THE �X� ARRAY STORED IN EACH PROCESSOR

MSGTYPE	���

CALL DGOP�MSGTYPE�X�ISIZE�����

RETURN

END

FUNCTION PDNRM��LOCLEN�U�

DOUBLE PRECISION PDNRM�

INTEGER LOCLEN�MSGTYPE

DOUBLE PRECISION U����PSUM�DDOT

EXTERNAL DDOT�DGOP

PSUM	DDOT�LOCLEN�U���U���

MSGTYPE	���

CALL DGOP�MSGTYPE�PSUM�������

PDNRM�	DSQRT�PSUM�

RETURN

END

It should be noted that PDSUM is actually a wrapper to the global sum routine available on
a particular machine� Also� when executing PIM on a sequential or shared�memory parallel

�

computer� these routines are stubs i�e�� the contents of the array X must not be altered since
its elements already contain the inner�product values�

Note that when using the COMPLEX�DOUBLE COMPLEX versions of the PIM routines� it may
be necessary to perform explicit type conversions before and after calling a proprietary global
sum routine if the latter does not handle complex data�

The parameter lists for these routines were decided upon after inspecting the format of
the global operations available from existing systems� including p�� TCGMSG and the Intel
Paragon NX library�

� Case study � solving a partial di�erential equation

In this section we look in detail at how to write ecient matrix�vector product and precon�
ditioning routines for a speci�c problem� the solution of a partial di�erential equation �PDE	
using a �ve�point �nite�di�erence approximation�

Suppose that the square region on which we wish to approximate the PDE is subdivided
into l � � rows and columns giving a grid containing l� internal points� each point being
numbered i� �j � �	l� i� j � ��
� � � � � l �see Figure �	� At each point we assign �ve di�erent
values corresponding to the center� north� south� east and west points of the stencil ��i�j � �i�j�
	i�j �
i�j � �i�j respectively	 which are derived from the PDE and the boundary conditions� The
approximate solution is then obtained by solving a linear system of order n � l��

The matrix�vector product v � Au is obtained by computing

vi�j � �i�jui�j � �i�jui���j � 	i�jui���j �
i�jui�j�� � �i�jui�j�� �
	

where some of the �� �� 	�
 and � may be zero according to the position of the point relative
to the grid� Note that only the neighbouring points in the vertical and horizontal directions
are needed to compute vi�j �

A parallel computation of �
	 may be organised as follows� The grid points are partitioned
by vertical panels among the processors as shown in Figure �� A processor holds at most d l�p e
columns of l grid points� To compute the matrix�vector product� each processor exchanges
with its neighbours the grid points in the �interfaces between the processors �the points
marked with white squares in Figure �	� Equation �
	 is then applied independently by each
processor on its local grid points� except at the local interfacing points� After the interfacing
grid points from the neighbouring processors have arrived at a processor� �
	 is applied using
the local interfacing points and those from the neighbouring processors�

This parallel computation o�ers the possibility of overlapping communication with the
computation� If the number of local grid points is large enough� one may expect that while
�
	 is being applied to those points� the interfacing grid points of the neighbouring processors
will have been transferred and be available for use� This means that there may be very little
overhead in the transfer of data �note such an overlap is only possible if asynchronous transfer
of messages is available	� The example below is taken from the matrix�vector product routine
using the Intel Paragon NX library

SUBROUTINE PDMVPDE�NPROCS�MYID�MYP�LDC�L�MYL�COEFS�U�V�UEAST�UWEST�

� Declarations

� Send border U values to �myid����st processor

MSGTYPE 	 ����

�

Figure �� Matrix�vector product� PDE storage format�

Processor 0 Processor 1 Processor 2

Boundary grid points (exchanged)

Grid points

Data exchange
Five−point stencil

1

2

3

4

5

6

7

8

i

j

α

β

γ

δε

TO 	 MYID � �

SID� 	 ISEND�MSGTYPE�U�EI���MSGLEN�TO�MYP�

� Post to receive border U values from �myid����st processor

MSGTYPE 	 ����

RID� 	 IRECV�MSGTYPE�UEAST�MSGLEN�

� Send border U values to �myid����st processor

MSGTYPE 	 ����

TO 	 MYID � �

SID� 	 ISEND�MSGTYPE�U�WI���MSGLEN�TO�MYP�

� Post to receive border U values from �myid����st processor

MSGTYPE 	 ����

RID� 	 IRECV�MSGTYPE�UWEST�MSGLEN�

� Compute with local grid points

� Needs �east� data� wait for completion of receive

CALL MSGWAIT�RID��

� Compute with local interfacing grid points in the �east�

� Needs �west� data� wait for completion of receive

CALL MSGWAIT�RID��

� Compute with local interfacing grid points in the �west�

��

� Release message ID from isend

CALL MSGWAIT�SID��

� Release message ID from isend

CALL MSGWAIT�SID��

RETURN

END

The computation of the transpose matrix�vector product for the PDE case may be im�
plemented in a similar fashion� Before the computation starts� each processor exchanges
with its left and right neighbouring processors the east and west coecients corresponding to
the interfacing grid points� The computation performed is then similar to the matrix�vector
product described above except that for each interfacing grid point we apply

vi�j � �i�jui�j � 	i���jui���j � �i���jui���j � �i�j��ui�j�� �
i�j��ui�j�� ��	

Comparing ��	 to �
	 we see that the coecients are swapped in the north�south and east�west
directions� Note that due to the partitioning imposed we do not need to exchange the north
and south coecients�

��� A matrix�vector product for parallel vector architectures

For parallel vector architectures like the Cray Y�MP
E� the routines outlined above are not
ecient� because of the small vector lengths involved� A routine that entails the use of long
vectors is obtained if one uses a diagonal�wise matrix�vector product for the ��point stencil�
which can be written as a sequence of AXPYs� The use of AXPYs will also bring a better
performance because these operations are usually very ecient on such machines�

Consider the same storage scheme described before i�e�� �ve coecients ��� �� 	�
 and �	
are stored per grid point� and numbered sequentially as i � �j � �	l� i� j � ��
� � � � � l� If the
coecients are stored in �ve separate arrays of size n � l�� then the matrix�vector product
v � Au can be obtained by the following sequence of operations

vk � �kuk � k � ��
� � � � � n

vk � vk � �kuk��� k � ��
� � � � � n� �

vk � vk � 	kuk��� k �
� �� � � � � n

vk � vk �
kuk�l� k � ��
� � � � � n� l

vk � vk � �kuk�l� k � l � �� l�
� � � � � n

and the transpose matrix�vector product� v � ATu� is obtained similarly�

vk � �kuk� k � ��
� � � � � n

vk�� � vk�� � �kuk � k � ��
� � � � � n� �

vk�� � vk�� � 	kuk � k �
� �� � � � � n

vk�l � vk�l �
kuk � k � ��
� � � � � n� l

vk�l � vk�l � �kuk � k � l� �� l�
� � � � � n

Experiments on the Cray Y�MP
E�
�
 showed that these routines brought more than a
three�fold increase in performance� from ��MFLOPS to ���MFLOPS�

��

��� Preconditioners

We present two di�erent preconditioners for this problem� the IDLU��	 �a variant of the usual
ILU��	 preconditioner	 and polynomial preconditioners�

The IDLU��	 preconditioner This is a modi�cation of the ILU��	 preconditioner to allow
the computation of the preconditioning step without any communication being performed� To
achieve this� note that the matrices arising from the �ve�point �nite�di�erence discretisation
have the following structure

A �

�
������

B E

F B
� � �

� � �
� � � E

F B

�
������ � B �

�
������

� �

	 �
� � �

� � �
� � � �

	 �

�
������

where E and F are diagonal matrices and �� � and 	 are the central� north and south
coecients derived from the discretisation �the subscripts are dropped for clarity	� Each
matrix B approximates the unknowns in a single vertical line of the grid in Figure ��

To compute a preconditioner� Q � LU � we modify the ILU��	 algorithm in the sense that
the blocks E and F are discarded �because only the diagonal blocks are considered we refer
to this factorisation as IDLU��		� The resulting L and U factors have the following structure

L �

�
�����
X

X
� � �

X

�
����� � X �

�
�����

�
!	 �

� ��
� � �

!	 �

�
����� �

U �

�
�����
Y

Y
� � �

Y

�
����� � Y �

�
������

!� !�

!�
� � �
� � � !�

!�

�
������

where !�� !� and !	 are the modi�ed coecients arising from the ILU��	 algorithm� From
the structure of L and U it may be clearly seen that the preconditioning step reduces to the
solution of small �order l	� independent� triangular systems� Each of these systems corresponds
to a vertical line in the grid �the grid was partitioned in vertical panels	 and these systems
may be solved independently in each processor�

Polynomial preconditioners These are preconditioners that can be expressed by�
mX
i��

	m�i

	
I � �diag�A		��A

i�
�diag�A		��

which can easily be computed as a sequence of vector updates and matrix�vector products
using Horner�s algorithm� Thus� this preconditioner is available for use as soon as an ecient
matrix�vector product has been developed�

�

Note that the 	m�i coecients de�ne the kind of polynomial preconditioner being used�
The Neumann preconditioner is obtained with 	m�i � �� �i � the weighted and unweighted
least�squares polynomial preconditioners are those reported in �����

��� Results

We present some results for the solution of a system derived from the �ve�point �nite�di�erence
discretisation of the convection�di�usion equation

� �

�
��u

�x�
�
��u

�y�

�
� cos��	

�u

�x
� sin��	

�u

�y
� � ��	

on the unit square� with � � ���� � � ��� and u � x� � y� on "R� The �rst order terms
were discretised using forward di�erences �this problem was taken from �
��	� The system
derived from this discretisation is nonsymmetric� The results are given for a square region of
size l � �
� leading to a system of order n � ������

We used both the IDLU��	 and the Neumann polynomial preconditioner of degree � as left�
preconditioners to solve this problem� The stopping criterion used was jj zk jj� � �����jj b jj�
where zk is the residual obtained either by recurrence equations or approximations� using this
criterion a solution will be accepted if jj zk jj� � ����
 � ������ The maximum number of
iterations allowed was ��
 and the initial value of the solution vector was ��� �� � � � � �	T � For
the restarted GMRES and GCR the restarting value used was ��� The results are reported
for the real� double�precision versions of the routines�

Tables � and
 show the results obtained with the PIM routines for the IDLU��	 and
Neumann preconditioners on an SGI Indy II �MIPS R���� CPU	� A status value of � indicates
convergence� and �� indicates that no convergence was obtained in the maximum number of
iterations allowed� This example is characteristic of the problems facing the user of iterative
method i�e�� not all methods converge to the solution and some preconditioner may cause an
iterative method to diverge �or converge slowly	� We stress that the methods that have failed
to converge in this example may converge for other systems�

In Table � we present the execution times obtained solving the test problem with the
PIMDRGMRES routine and the Neumann polynomial preconditioning on the Intel Paragon XP�
Kendall Square Research KSR�� SGI Challenge� Cray Y�MP
E and Cray C����E� The re�
sults for the Cray machines were obtained with the modi�ed matrix�vector product routines
described in x���� The programs running on the SGI Challenge are from the set of examples
available with the PIM distributed software using the PVM message�passing library� Note
that for both the SGI Challenge and the Intel Paragon XP superlinear e�ects occur� we be�
lieve this is due to the speci�c memory organization of those machines �hierarchic memories
and�or presence of a cache memory	�

The graphs in Figure
 show the speed�up curves for the PIMDCG and PIMDRGMRES routines
running on the Paragon� We include in those graphs the curves for the same problem but
with a system of order n � ���� to show the e�ects of problem scaling� Almost linear
speed�ups occur for p � � for both preconditioners for n � ������ Note also that the
polynomial preconditioner has a better speed�up for p � �
 than the IDLU��	 preconditioner
for n � ������ We should point out that preliminary versions of PIM that did not include
the reduction of synchronization points in the computation of several inner�products had a
markedly inferior performance� even for the smaller problem size shown�

��

Table �� Example with IDLU��	 preconditioner�

Method k� Time�s� jjr�k
�� jj� Status

CG ��� ����	 �
 ��
CGEV ��� �
	��� �
 ��
Bi�CG ��� ���� ���� ��� ��
CGS �
� ����� ���� ����� �
Bi�CGSTAB �� �
���
�
� ����� �
RGMRES ��� ����� ���� ����� �
RGMRESEVy ��� ��
��� ��� ����� �
RGCR �� ��� ��� ����� �
CGNR ��� ����� ���� ���� ��
CGNE ��� �����
 ���� ��� ��
TFQMR ��� ���	� ���� ���� ��

y Interval containing eigenvalues �real axis�� �������� ��
��

Table
� Example with Neumann polynomial preconditioner�

Method k� Time�s� jj r�k
�� jj� Status

CG ���
	�� ���� ��� ��
CG ��� ������ ���� ��� ��
Bi�CG ��� ������ � ��
CGS �� �	��� ��
� ����� �
Bi�CGSTAB ��� ���	� ��� ����� �
RGMRES �� ���
� ��� ����� �
RGMRESEVy �� ��	��� ��� ����� �
RGCR �� ��	��� ��� ����� �
CGNR ��� �	���� �	� ���� ��
CGNE ��� ����� ���� ��� ��
TFQMR ��� 	��� 	��� ����	 ��

y Interval containing eigenvalues �real axis�� �������� ��
��
�

Table �� Execution time �in seconds	 for test problem solved by PIMDRGMRES with Neumann
polynomial preconditioning�

Intel SGI Cray Cray
p Paragon XP Challengey KSR�z Y�MP�E C
���
� ���
� 	����� 	����
� ���
 �
��	 ����	
	 ����� �	�� 	�

� ���� �����
�� 	���
� ���

y S� Thomas� CERCA�Montr�eal
z A� Pindor� U� of Toronto ����

��

Figure
� Speed�ups on the Intel Paragon XP �NX library	� �a	 IDLU��	 preconditioner� �b	
Neumann polynomial preconditioner�

5

10

15

20

25

30

5 10 15 20 25 30

Sp

p

(a)

Sp=p
Sp=p/2

CG, n=4096
RGMRES, n=4096

CG, n=16384
RGMRES, n=16384

5

10

15

20

25

30

5 10 15 20 25 30

Sp

p

(b)

Sp=p
Sp=p/2

CG, n=4096
RGMRES, n=4096

CG, n=16384
RGMRES, n=16384

� Concluding remarks

We have presented the design details of the PIM package together with some practical results
which show the eciency of the implementation�

Among the future improvements we intend to make available a set of matrix�vector product
and preconditioning routines for some typical applications� using the PVM and MPI message�
passing libraries� Another is a preliminary step towards a HPF version� initially providing a
version of PIM coded in Fortran ��� We believe these improvements will reduce the e�ort of
porting the package to other machines�

Acknowledgements

We would like to thank Steve Thomas �Centre de Recherche en Calcul Apliqu#e�Montr#eal	�
Andrzej Pindor �University of Toronto	 and Paulo Tib#erio M� de Bulh$oes �Cray Research	 who
tested PIM on the SGI Challenge� the Kendall Square Research KSR� and the Cray C����E
respectively and the National Supercomputing Centre� Federal University of Rio Grande do
Sul �Brazil�� the Parallel Laboratory� University in Bergen �Norway� and Digital Equipment
Corporation �via the Internet Alpha Program	� who kindly made their facilities available for
our tests�

Obtaining PIM PIM can be obtained via anonymous FTP from unix�hensa�ac�uk� �le
�misc�netlib�pim�pim�tar�Z or from euler�mat�ufrgs�br� �le �pub�pim�pim�tar�Z�

The distribution software comes with the PIM routines for REAL� DOUBLE PRECISION�
COMPLEX and DOUBLE COMPLEX data types� and a set of examples� for sequential and parallel
shared�memory computers and distributed�memory computers� In the latter case the exam�
ples are for message�passing systems including PVM� p� and TCGMSG� and for the Intel
Paragon using NXLIB�

References

��� A� Agarwal� An application of conjugate gradient methods in electromagnetic induction
studies� Private communication�

��

�
� S�F� Ashby and M�K� Seager� A proposed standard for iterative linear solvers �version
���	� Report UCRL���
���� Numerical Mathematics Group� Computing � Mathematics
Research Division� Lawrence Livermore National Laboratory� January �����

��� R� Barrett� M� Berry� T� Chan� J� Demmel� J� Donald� J� Dongarra� V� Eijkhout� R� Pozo�
C� Romine� and H� van der Vorst� Templates for the solution of linear systems� building
blocks for iterative methods� SIAM� Philadelphia� �����

��� E�J� Craig� The N�step iteration procedures� Journal of Mathematical Physics� ���������
�����

��� R�D� da Cunha� A Study on Iterative Methods for the Solution of Systems of Linear
Equations on Transputer Networks� PhD thesis� Computing Laboratory� University of
Kent at Canterbury� July ���
�

��� R�D� da Cunha and T�R� Hopkins� Parallel preconditioned Conjugate�Gradients methods
on transputer networks� Transputer Communications� ��
	������
�� ����� Also as TR�
����� Computing Laboratory� University of Kent at Canterbury� U�K�

��� E�F� D�Azevedo and C�H� Romine� Reducing communication costs in the Conjugate Gra�
dient algorithm on distributed memory multiprocessors� Research Report ORNL�TM�
�
��
� Oak Ridge National Laboratory� ���
�

��� J�J� Dongarra� J� Du Croz� S� Hammarling� and R�J� Hanson� An extended set of FOR�
TRAN Basic Linear Algebra Subprograms� ACM Transactions on Mathematical Soft�
ware� ����	������ �����

��� S�C� Eisenstat� A note on the generalized Conjugate Gradient method� SIAM Journal
of Numerical Analysis�
���������� �����

���� R� Fletcher� Conjugate Gradient Methods for Inde�nite Systems� volume ��� of Lecture
Notes in Mathematics� pages ������ Spring�Verlag� Heidelberg� �����

���� R�W� Freund� A transpose�free quasi�minimal residual algorithm for non�Hermitian linear
systems� Submitted to SIAM Journal of Scienti�c and Statistical Computing�

��
� G�H� Golub and C�F� Van Loan� Matrix Computations� Johns Hopkins University Press�
Baltimore�
nd edition� �����

���� R�G� Grimes� D�R� Kincaid� and D�M� Young� ITPACK
�� user�s guide� Report No�
CNA����� Center for Numerical Analysis� University of Texas at Austin� August �����

���� L�A� Hageman and D�M� Young� Applied Iterative Methods� Academic Press� New York�
�����

���� M�R� Hestenes and E�L� Stiefel� Method of Conjugate Gradients for solving linear sys�
tems� Journal of Research National Bureau of Standards� ����������� ���
�

���� W�H� Holter� I�M� Navon� and T�C� Oppe� Parallelizable preconditioned Conjugate Gra�
dient methods for the Cray Y�MP and the TMC CM�
� Technical report� Supercomputer
Computations Research Institute� Florida State University� December �����

��

���� T�C� Oppe� W�D� Joubert� and D�R� Kincaid� NSPCG user�s guide � version ���� Report
No� CNA�
��� Center for Numerical Analysis� University of Texas at Austin� April �����

���� A� Pindor� Experiences with implementing PIM �Parallel Iterative Methods	 package on
KSR�� In Supercomputing Symposium 	
�� Toronto� June �����

���� Y� Saad and M�H� Schultz� GMRES� a generalized minimal residual algorithm for solving
nonsymmetric linear systems� SIAM Journal of Scienti�c and Statistical Computing�
���������� �����

�
�� P� Sonneveld� CGS� a fast Lanczos�type solver for nonsymmetric linear systems� SIAM
Journal of Scienti�c and Statistical Computing� �������
� �����

�
�� H�A� van der Vorst� Bi�CGSTAB� A fast and smoothly converging variant of Bi�CG for
the solution of nonsymmetric linear systems� SIAM Journal of Scienti�c and Statisti�
cal Computing� ����������� ���
� Also as Report No� ������ Mathematical Institute�
University of Utrecht�

��

