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Abstract

We present a collection of public�domain Fortran �� routines for the solution of sys�

tems of linear equations using a variety of iterative methods� The routines implement

methods which have been modi�ed for their e�cient use on parallel architectures with

either shared� or distributed�memory� PIM was designed to be portable across di�erent

machines� Results are presented for a variety of parallel computers�

� Introduction

The solution of systems of linear equations arises in connection with many applications�
Frequently such systems are sparse and of the order of thousands or millions of equations and
require the use of parallel computers if they are to be solved in a reasonable time�

Being sparse� direct methods� like Gaussian elimination� are not practical for two main
reasons� First� these methods often require large amounts of memory due to �ll�in which
may destroy the sparsity and second� many applications do not require a solution to machine
precision� Iterative methods like Conjugate�Gradients may then be more e�ective since the
user can control the accuracy of the solution obtained� and the sparsity pattern of the system
is not altered� thus minimizing storage requirements and� hopefully� considerably reducing
the number of �oating�point operations required�

Using iterative methods to solve such systems on parallel computers requires some care
especially on distributed�memory architectures where the problem of global operations �for
example� the sum of scalar values scattered across the processors	 is crucial to their perfor�
mance� We have addressed this problem in PIM by reducing the number of global operations
needed by an iterative method while at the same time maintaining its convergence properties�

In section 
 we provide an overview of the package and a number of examples describing the
use of PIM are given in section �� Through a case study in section � we look in some detail
at how to design ecient routines for particular parallel architectures and provide results
obtained on several parallel machines� We conclude� in section �� with some comments on
forthcoming improvements to PIM�
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� Overview of the package

PIM had its origins in a set of similar routines which were developed� in occam�� by one of
the authors �see ��� and ��� for further details	� These routines did not however o�er all the
functionality of PIM� neither were they portable�

To introduce PIM� consider the solution of a non�singular system of n linear equations

Q�AQ�x � b ��	

where A is the coecient matrix� x the solution being sought� b the independent vector and Q�

and Q� are preconditioners� To solve ��	 PIM o�ers a number of iterative methods� including

� Conjugate�Gradients �CG	 ��
��

� Bi�Conjugate�Gradients �Bi�CG	 �����

� Conjugate�Gradients Squared �CGS	 �
���

� the stabilised version of Bi�Conjugate�Gradients �Bi�CGSTAB	 �
���

� generalised minimal residual �GMRES	 �����

� generalised conjugate residual �GCR	 ����

� Conjugate�Gradients for normal equations with minimisation of the residual norm
�CGNR	 �����

� Conjugate�Gradients for normal equations with minimisation of the error norm �CGNE	
����

� transpose�free quasi�minimal residual �TFQMR	 ���� and Chebyshev acceleration �����

The coecient matrix may be either real or complex� we provide a set of the PIM routines
for each� in both single and double precision�

The user may want to use preconditioners to accelerate or obtain convergence� The
routines allow the use of left�� right� or symmetric�preconditioning� the system can also be
solved without preconditioning�

Seven di�erent stopping criteria are available� these include the usual scaled residual of the
iteration vector at the k�th iteration xk� i�e�� jj b�Axk jj � �jj b jj and the absolute di�erence
between two successive iteration vectors jj xk � xk�� jj � ��

PIM was developed with two main goals

�� to allow the user complete freedom with respect to matrix storage� access� and parti�
tioning�


� to achieve portability across a variety of parallel architectures and programming envi�
ronments�

These goals are achieved by hiding from the PIM routines the speci�c details concerning the
computation of the following three linear algebra operations

�� matrix�vector �and transpose matrix�vector	 product�







� preconditioning step�

�� inner�products and vector norm�

Routines to compute these operations need to be provided by the user� Many vendors supply
their own optimised linear algebra routines which the user may want to use� A number of
packages for the iterative solution of linear systems already exist including ITPACK ���� and
NSPCG ����� PIM di�ers from these packages in three main aspects� First� while ITPACK
and NSPCG may be used on a parallel vector supercomputer like a Cray Y�MP� there are
no versions of these packages available for distributed�memory parallel computers� Second�
there is no debugging support� this is dictated by the fact that in some multiprocessing
environments parallel I�O is not available� The third aspect is that we do not provide a
collection of preconditioners but leave the responsibility of providing the appropriate routines
to the user�

In this sense� PIM has many similarities to Ashby and Seager�s proposed standard for
iterative linear solvers �
�� In that proposal� the user supplies the matrix�vector product and
preconditioning routines� We believe that their proposed standard satis�es many of the needs
of the scienti�c community as� drawing on its concepts� we have been able to provide software
that can be used in a variety of parallel environments� However� PIM does not always follow
the proposal� speci�cally with regard to the lack of debugging support and the format of the
matrix�vector product routines�

Due to the openness of the design of PIM� it is also possible to use it on a sequential
machine� In this case� the user can take advantage of the BLAS ��� to compute the three
required linear algebra operations� This characteristic is important for testing purposes� once
the user is satis�ed that the selection of preconditioners and stopping criteria are suitable�
the computation may be accelerated by using an appropriate parallel implementation of these
operations�

PIM has already been used in a variety of applications� for example� as part of a �nite�
element code for designing gas turbines �Pratt�Whitney� Canada	� the modelling of �ux in
porous media �ARCO Oil � Gas	 and the modelling of geo�electromagnetic induction in the
Earth ����

��� Parallel programming model

PIM uses the Single Program� Multiple Data �SPMD	 programming model� The main impli�
cation of using this model is that certain scalar values are needed in each processing element
�PE	� Two of the user�supplied routines� to compute a global sum and a vector norm� must
provide for this� distributed�memory computers like the Intel Paragon XP and parallel pro�
gramming systems like p� and TCGMSG o�er routines which can be used for this purpose�

��� Data partitioning

With PIM� the iterative method routines have no knowledge of the way in which the user
has chosen to store and access either the coecient or the preconditioning matrices� We thus
restrict ourselves to partitioning the vectors�

The assumption made is that each PE knows the number of elements of each vector stored
in it and that all vector variables in a processor have the same number of elements� This is a
broad assumption that allows us to accommodate many di�erent data partitioning schemes�
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including contiguous� cyclic �or wrap�around	 and scattered partitionings� We are able to
make this assumption because the vector�vector operations used � vector accumulations�
assignments and copies � are disjoint element�wise� The other operations used� involving
matrices and vectors� which may require knowledge of the individual indices of vectors� are
the responsibility of the user�

PIM requires that the elements of vectors must be stored locally starting from position
�� thus the user has a local numbering of the variables which can be translated to a global
numbering if required� For example� if a vector of � elements is partitioned in wrap�around
fashion among 
 processors� using blocks of length �� then the �rst processor stores elements
�� �� � and � in the �rst four positions of an array� the second processor then stores elements

� �� � and � in positions � to � of its array� We stress that in most cases this translation is
not necessary or can be computed with very few operations� depending on the partitioning
scheme used�

��� Increasing the parallel scalability of iterative methods

A major cause of the poor scalability of implementations of iterative methods on distributed�
memory computers is the need to compute inner�products� � � uT v �

Pn
i�� uivi� where u

and v are vectors distributed across p processors �without loss of generality assume that each
processor holds n�p elements of each vector	� This computation can be divided in three parts

�� the local computation of partial sums of the form �j �
Pn�p

i�� uivi� within each processor�


� the accumulation of the �j values� where these values travel across the processors in
some ecient way �for instance� as if traversing a binary�tree	 and are summed during
the process� At the end� the value of � �

Pp
j�� �j is stored in a single processor�

�� the broadcast operation to send � to all processors�

Parts 
� and �� are usually implemented as a single operation called a global sum�
During parts 
� and �� a number of processors are idle for some time� A possible strategy to

reduce this idle time� and thus increase the scalability of the implementation� is to re�arrange
the operations in the algorithm so that parts 
� and �� accumulate a number of partial sums
corresponding to several inner�products� Some of the algorithms available in PIM� including
CG� CGEV� Bi�CG� CGNR and CGNE have been rewritten using the approach suggested by
D�Azevedo and Romine ���� Others� like Bi�CGSTAB� restarted GCR and restarted GMRES
have not been re�arranged but some or all of their inner�products can be computed with a
single global sum operation�

An important point to make is that we have chosen modi�cations to the iterative meth�
ods that reduce the number of synchronization points while at the same time maintaining
their convergence properties and numerical qualities� This is the case of the D�Azevedo and
Romine modi�cation� also� in the speci�c case of GMRES� which uses the Arnoldi process
�a suitable reworking of the modi�ed Gram�Schmidt procedure	 to compute a vector basis�
the computation of several inner�products with a single global sum does not compromise the
numerical stability of the Arnoldi process�

For instance� the restarted GMRES algorithm involves the computation of j inner�products
of the form V T

i Vj � i � �� 
� � � � � j� It is thus possible to arrange for each processor to compute
j partial sums using the BLAS routine DOT and store these in an array� Then in a single
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call to a global sum routine� these arrays are communicated among the processors and their
individual elements are summed� On the completion of the global sum� the array containing
the j inner�products is stored in a single processor and is then broadcast to the remainder�
The CGS and TFQMR implementations available on PIM do not bene�t from this approach�

��� Portability

One of the main driving forces behind the design of PIM was to make the package portable
across di�erent parallel architectures� As mentioned previously this was achieved by con�
centrating machine dependencies in a small number of the common operations found in the
iterative methods considered� For instance� by having an external routine to compute the
global accumulation referred to in x
�� it is possible to port the code to another parallel
machine by just replacing calls to this external routine by the appropriate calls to the native
global sum routine� Another reason for having separate routines is that� in many applications�
writing an ecient matrix�vector product routine requires exploiting the structure of either
the physical problem� or the modelling technique used to derive the linear system�

The PIM routines are almost completely portable� the only deviation from the ANSI
Fortran �� Standard is the use of routine names with more than six characters� However�
the sequential external routines� �for example� the matrix�vector product� preconditioning
step and global accumulation�vector norm	 need to be replaced by code that performs the
interprocessor communications by calls to native routines� In some cases� this process is very
simple� Pindor in ���� mentions that porting PIM to the Kendall Square Research KSR��
using the auto�parallelisation software tools available was achieved with little intervention by
the user�

� Examples

In this section� we introduce some examples which show how to use PIM� The examples all
call the double�precision version of the routines� only changes to the types of the parameters
are required to use the other implementations�

��� Calling a PIM iterative method routine

With the exception of the Bi�CG� CGNR and CGNE methods� all the implemented methods
have the same parameter list as CG� The argument list for the double�precision implementa�
tion of the CG method is

SUBROUTINE PIMDCG�A�Q��Q��X�B�WRK�IPAR�DPAR�

� MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�

and for Bi�CG �it is the same for CGNR and CGNE	

SUBROUTINE PIMDBICG�A�Q��Q��X�B�WRK�IPAR�DPAR�

� MATVEC�TMATVEC�PRECONL�PRECONR�PDSUM�PDNRM�

Note in the example above that� contrary to the proposal in �
�� PIM uses separate routines
to compute the matrix�vector and transpose matrix�vector products�
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��� External routines

As stated earlier� the user is responsible for supplying certain routines to be used internally
by the iterative method codes� One of the characteristics of PIM is that if external routines
are not required by an iterative method routine they are not called� Thus the user only needs
to provide those subroutines that will actually be called by a particular routine� Depending
on the selection of method� preconditioners and stopping criteria� dummy parameters may
be passed in place of those that are not used� Some compilers may require the presence of
all routines used in the program during the linking phase of the compilation� in this case the
user may need to provide stubs for the dummy routines�

The external routines have a �xed parameter list to which the user must adhere� Because
no knowledge about the matrix storage format and access is available to a PIM routine� the
matrices are passed both to the PIM routine and from there to the external routines using the
Fortran �� assumed�size array declaration� From these external routines the user is then able
to call routines that perform the actual computation and in which the matrices are referenced
according to their actual declaration �see �
�	�

Matrix�vector product Consider as an example a dense matrix partitioned by contiguous
columns among a number of processors� For illustrative purposes we assume that N is an
integer multiple of NPROCS� The following code may then be used

PROGRAM MATV

� SET UP PROBLEM SOLVING PARAMETERS FOR USE BY USER DEFINED ROUTINES

� LEADING DIMENSION OF A

IPAR���	LDA

� NUMBER OF ROWS
COLUMNS OF A

IPAR���	N

� NUMBER OF ELEMENTS STORED LOCALLY

IPAR���	N
NPROCS

� CALL PIM ROUTINE

CALL PIMDCG�A�Q��Q��X�B�WRK�IPAR�DPAR�MATVEC�PRECONL�PRECONR�PDSUM�PDNRM�

STOP

END

� MATRIX�VECTOR PRODUCT ROUTINE CALLED BY A PIM ROUTINE THE

� ARGUMENT LIST TO THIS ROUTINE IS FIXED

� U IS THE INPUT VECTOR� V THE RESULT OF A�U

SUBROUTINE MATVEC�A�U�V�IPAR�

DOUBLE PRECISION A����U����V���

INTEGER IPAR���

EXTERNAL USERMV

CALL USERMV�IPAR����IPAR����IPAR����A�U�V�

RETURN

END

� USER�DEFINED ROUTINE TO IMPLEMENT A MATRIX�VECTOR PRODUCT ON A

� PARTICULAR PROCESSOR

SUBROUTINE USERMV�LDA�N�LOCLEN�A�U�V�

DOUBLE PRECISION A�LDA����U����V���

INTEGER LDA�N�LOCLEN



RETURN

END
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The scheme above can be used for the transpose matrix�vector product as well� We note
that many di�erent storage schemes are available for storing sparse matrices� the reader may
�nd it useful to consult Barrett et al� ��� pp� ���� where such schemes along with algorithms
to compute matrix�vector products are discussed�

Preconditioning For the preconditioning routines� one may use the scheme outlined above
for the matrix�vector product� this may not be necessary� for instance� when there is no need
to operate with A or the preconditioner is stored as a vector� An example is the diagonal �or
Jacobi	 left�preconditioning� where Q� � diag�A	��

PROGRAM DIAGP

EXTERNAL MATVEC�PRECON�PDUMR�PDSUM�PDNRM



DO �� I	��N

Q��I�	��D�
A�I�I�

�� CONTINUE



� SET LEFT�PRECONDITIONING

IPAR���	�

CALL DINIT�IPAR������D��X���

CALL PIMDCG�A�Q��DUMMY�X�B�WRK�IPAR�DPAR�MATVEC�PRECON�PDUMR�PDSUM�PDNRM�

STOP

END



SUBROUTINE PRECON�A�Q�U�V�IPAR�

DOUBLE PRECISION A����Q����U����V���

INTEGER IPAR���

EXTERNAL DCOPY�DVPROD

CALL DCOPY�IPAR����U���V���

CALL DVPROD�IPAR����Q���V���

RETURN

END

where DVPROD is a routine based on theBLAS Level � DAXPY routine that performs an element�
by�element vector multiplication� This example also shows the use of dummy arguments�

Eigenvalues estimation and Chebyshev acceleration Consider the solution of a real
linear system using Chebyshev acceleration� We can use a few iterations of the routine
PIMDRGMRESEV to obtain estimates of the eigenvalues ofQ�A and then switch to PIMDCHEBYSHEV
following a simple transformation on the extreme values on the real axis �see the code below
for details	�

In the following example� we use the Jacobi preconditioner as shown previously� Note
that we may use the vector X� returned by PIMDRGMRESEV� as a possibly better estimate to
the solution in PIMDCHEBYSHEV�

PROGRAM CHBSOL

EXTERNAL MATVEC�PRECON�PDUMR�PDSUM�PDNRM�

� SET LEFT�PRECONDITIONING

IPAR���	�

� SET FEW ITERATIONS FOR RGMRESEV

IPAR����	�

CALL DINIT�IPAR������D��X���

CALL PIMDRGMRESV�A�Q��DUMMY�X�B�WRK�IPAR�DPAR�MATVEC�PRECON�PDUMR�

� PDSUM�PDNRM�

�



� BOX CONTAINING THE EIGENVALUES IS RETURNED IN

� DPAR���� DPAR���� DPAR���� DPAR���� THE FIRST TWO ARE THE INTERVAL

� ALONG THE REAL AXIS� THE LAST TWO ARE THE INTERVAL ALONG THE IMAGINARY

� AXIS

� MODIFY REAL INTERVAL TO REFLECT EIGENVALUES OF I�Q��A

MU�	DPAR���

MUN	DPAR���

DPAR���	��D��MUN

DPAR���	��D��MU�

� SET MAXIMUM ITERATIONS FOR CHEBYSHEV

IPAR����	N

CALL PIMDCHEBYSHEV�COEFS�Q��Q��X�B�DWRK�IPAR�DPAR�MATVEC�

� PRECON�PRECON�PDSUM�PDNRM��

STOP

END

Inner�products� vector norms and global accumulation When running PIM routines
on multiprocessor architectures� the inner�product and vector norm routines require accumu�
lation and broadcast operations� On vector processors these operations are handled directly
by the hardware while on distributed�memory architectures these operations involve the ex�
change of messages among the processors�

When a PIM iterative routine needs to compute an inner�product� it calls the BLAS
routine DDOT to compute the partial sums� The user�supplied routine PDSUM is then used
to generate the global sum of those partial sums� The following code shows the routines to
compute the global sum and the vector 
�norm jj u jj� �

p
uTu using DDOT and the global

operations provided by the TCGMSG system

SUBROUTINE PDSUM�ISIZE�X�

INTEGER ISIZE� MSGTYPE

DOUBLE PRECISION X���

EXTERNAL DGOP

� CALL TCGMSG �DGOP� ROUTINE TO PERFORM GLOBAL ACCUMULATION �A

� SUM AS INDICATED BY THE ��� IN THE CALL TO DGOP� AND BROADCAST

� OVER THE �X� ARRAY STORED IN EACH PROCESSOR

MSGTYPE	���

CALL DGOP�MSGTYPE�X�ISIZE�����

RETURN

END

FUNCTION PDNRM��LOCLEN�U�

DOUBLE PRECISION PDNRM�

INTEGER LOCLEN�MSGTYPE

DOUBLE PRECISION U����PSUM�DDOT

EXTERNAL DDOT�DGOP

PSUM	DDOT�LOCLEN�U���U���

MSGTYPE	���

CALL DGOP�MSGTYPE�PSUM�������

PDNRM�	DSQRT�PSUM�

RETURN

END

It should be noted that PDSUM is actually a wrapper to the global sum routine available on
a particular machine� Also� when executing PIM on a sequential or shared�memory parallel
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computer� these routines are stubs i�e�� the contents of the array X must not be altered since
its elements already contain the inner�product values�

Note that when using the COMPLEX�DOUBLE COMPLEX versions of the PIM routines� it may
be necessary to perform explicit type conversions before and after calling a proprietary global
sum routine if the latter does not handle complex data�

The parameter lists for these routines were decided upon after inspecting the format of
the global operations available from existing systems� including p�� TCGMSG and the Intel
Paragon NX library�

� Case study � solving a partial di�erential equation

In this section we look in detail at how to write ecient matrix�vector product and precon�
ditioning routines for a speci�c problem� the solution of a partial di�erential equation �PDE	
using a �ve�point �nite�di�erence approximation�

Suppose that the square region on which we wish to approximate the PDE is subdivided
into l � � rows and columns giving a grid containing l� internal points� each point being
numbered i� �j � �	l� i� j � �� 
� � � � � l �see Figure �	� At each point we assign �ve di�erent
values corresponding to the center� north� south� east and west points of the stencil ��i�j � �i�j�
	i�j � 
i�j � �i�j respectively	 which are derived from the PDE and the boundary conditions� The
approximate solution is then obtained by solving a linear system of order n � l��

The matrix�vector product v � Au is obtained by computing

vi�j � �i�jui�j � �i�jui���j � 	i�jui���j � 
i�jui�j�� � �i�jui�j�� �
	

where some of the �� �� 	� 
 and � may be zero according to the position of the point relative
to the grid� Note that only the neighbouring points in the vertical and horizontal directions
are needed to compute vi�j �

A parallel computation of �
	 may be organised as follows� The grid points are partitioned
by vertical panels among the processors as shown in Figure �� A processor holds at most d l�p e
columns of l grid points� To compute the matrix�vector product� each processor exchanges
with its neighbours the grid points in the �interfaces between the processors �the points
marked with white squares in Figure �	� Equation �
	 is then applied independently by each
processor on its local grid points� except at the local interfacing points� After the interfacing
grid points from the neighbouring processors have arrived at a processor� �
	 is applied using
the local interfacing points and those from the neighbouring processors�

This parallel computation o�ers the possibility of overlapping communication with the
computation� If the number of local grid points is large enough� one may expect that while
�
	 is being applied to those points� the interfacing grid points of the neighbouring processors
will have been transferred and be available for use� This means that there may be very little
overhead in the transfer of data �note such an overlap is only possible if asynchronous transfer
of messages is available	� The example below is taken from the matrix�vector product routine
using the Intel Paragon NX library

SUBROUTINE PDMVPDE�NPROCS�MYID�MYP�LDC�L�MYL�COEFS�U�V�UEAST�UWEST�

� Declarations 

� Send border U values to �myid����st processor

MSGTYPE 	 ����

�



Figure �� Matrix�vector product� PDE storage format�

Processor 0 Processor 1 Processor 2

Boundary grid points (exchanged)

Grid points

Data exchange
Five−point stencil

1

2

3

4

5

6

7

8

i

j

α

β

γ

δε

TO 	 MYID � �

SID� 	 ISEND�MSGTYPE�U�EI���MSGLEN�TO�MYP�

� Post to receive border U values from �myid����st processor

MSGTYPE 	 ����

RID� 	 IRECV�MSGTYPE�UEAST�MSGLEN�

� Send border U values to �myid����st processor

MSGTYPE 	 ����

TO 	 MYID � �

SID� 	 ISEND�MSGTYPE�U�WI���MSGLEN�TO�MYP�

� Post to receive border U values from �myid����st processor

MSGTYPE 	 ����

RID� 	 IRECV�MSGTYPE�UWEST�MSGLEN�

� Compute with local grid points 

� Needs �east� data� wait for completion of receive

CALL MSGWAIT�RID��

� Compute with local interfacing grid points in the �east� 

� Needs �west� data� wait for completion of receive

CALL MSGWAIT�RID��

� Compute with local interfacing grid points in the �west� 

��



� Release message ID from isend

CALL MSGWAIT�SID��

� Release message ID from isend

CALL MSGWAIT�SID��

RETURN

END

The computation of the transpose matrix�vector product for the PDE case may be im�
plemented in a similar fashion� Before the computation starts� each processor exchanges
with its left and right neighbouring processors the east and west coecients corresponding to
the interfacing grid points� The computation performed is then similar to the matrix�vector
product described above except that for each interfacing grid point we apply

vi�j � �i�jui�j � 	i���jui���j � �i���jui���j � �i�j��ui�j�� � 
i�j��ui�j�� ��	

Comparing ��	 to �
	 we see that the coecients are swapped in the north�south and east�west
directions� Note that due to the partitioning imposed we do not need to exchange the north
and south coecients�

��� A matrix�vector product for parallel vector architectures

For parallel vector architectures like the Cray Y�MP
E� the routines outlined above are not
ecient� because of the small vector lengths involved� A routine that entails the use of long
vectors is obtained if one uses a diagonal�wise matrix�vector product for the ��point stencil�
which can be written as a sequence of AXPYs� The use of AXPYs will also bring a better
performance because these operations are usually very ecient on such machines�

Consider the same storage scheme described before i�e�� �ve coecients ��� �� 	� 
 and �	
are stored per grid point� and numbered sequentially as i � �j � �	l� i� j � �� 
� � � � � l� If the
coecients are stored in �ve separate arrays of size n � l�� then the matrix�vector product
v � Au can be obtained by the following sequence of operations

vk � �kuk � k � �� 
� � � � � n

vk � vk � �kuk��� k � �� 
� � � � � n� �

vk � vk � 	kuk��� k � 
� �� � � � � n

vk � vk � 
kuk�l� k � �� 
� � � � � n� l

vk � vk � �kuk�l� k � l � �� l� 
� � � � � n

and the transpose matrix�vector product� v � ATu� is obtained similarly�

vk � �kuk� k � �� 
� � � � � n

vk�� � vk�� � �kuk � k � �� 
� � � � � n� �

vk�� � vk�� � 	kuk � k � 
� �� � � � � n

vk�l � vk�l � 
kuk � k � �� 
� � � � � n� l

vk�l � vk�l � �kuk � k � l� �� l� 
� � � � � n

Experiments on the Cray Y�MP
E�
�
 showed that these routines brought more than a
three�fold increase in performance� from ��MFLOPS to ���MFLOPS�

��



��� Preconditioners

We present two di�erent preconditioners for this problem� the IDLU��	 �a variant of the usual
ILU��	 preconditioner	 and polynomial preconditioners�

The IDLU��	 preconditioner This is a modi�cation of the ILU��	 preconditioner to allow
the computation of the preconditioning step without any communication being performed� To
achieve this� note that the matrices arising from the �ve�point �nite�di�erence discretisation
have the following structure

A �

�
������

B E

F B
� � �

� � �
� � � E

F B

�
������ � B �

�
������

� �

	 �
� � �

� � �
� � � �

	 �

�
������

where E and F are diagonal matrices and �� � and 	 are the central� north and south
coecients derived from the discretisation �the subscripts are dropped for clarity	� Each
matrix B approximates the unknowns in a single vertical line of the grid in Figure ��

To compute a preconditioner� Q � LU � we modify the ILU��	 algorithm in the sense that
the blocks E and F are discarded �because only the diagonal blocks are considered we refer
to this factorisation as IDLU��		� The resulting L and U factors have the following structure

L �

�
�����
X

X
� � �

X

�
����� � X �

�
�����

�
!	 �

� ��
� � �

!	 �

�
����� �

U �

�
�����
Y

Y
� � �

Y

�
����� � Y �

�
������

!� !�

!�
� � �
� � � !�

!�

�
������

where !�� !� and !	 are the modi�ed coecients arising from the ILU��	 algorithm� From
the structure of L and U it may be clearly seen that the preconditioning step reduces to the
solution of small �order l	� independent� triangular systems� Each of these systems corresponds
to a vertical line in the grid �the grid was partitioned in vertical panels	 and these systems
may be solved independently in each processor�

Polynomial preconditioners These are preconditioners that can be expressed by�
mX
i��

	m�i

	
I � �diag�A		��A


i�
�diag�A		��

which can easily be computed as a sequence of vector updates and matrix�vector products
using Horner�s algorithm� Thus� this preconditioner is available for use as soon as an ecient
matrix�vector product has been developed�

�




Note that the 	m�i coecients de�ne the kind of polynomial preconditioner being used�
The Neumann preconditioner is obtained with 	m�i � �� �i � the weighted and unweighted
least�squares polynomial preconditioners are those reported in �����

��� Results

We present some results for the solution of a system derived from the �ve�point �nite�di�erence
discretisation of the convection�di�usion equation

� �

�
��u

�x�
�
��u

�y�

�
� cos��	

�u

�x
� sin��	

�u

�y
� � ��	

on the unit square� with � � ���� � � ��� and u � x� � y� on "R� The �rst order terms
were discretised using forward di�erences �this problem was taken from �
��	� The system
derived from this discretisation is nonsymmetric� The results are given for a square region of
size l � �
� leading to a system of order n � ������

We used both the IDLU��	 and the Neumann polynomial preconditioner of degree � as left�
preconditioners to solve this problem� The stopping criterion used was jj zk jj� � �����jj b jj�
where zk is the residual obtained either by recurrence equations or approximations� using this
criterion a solution will be accepted if jj zk jj� � ����
 � ������ The maximum number of
iterations allowed was ��
 and the initial value of the solution vector was ��� �� � � � � �	T � For
the restarted GMRES and GCR the restarting value used was ��� The results are reported
for the real� double�precision versions of the routines�

Tables � and 
 show the results obtained with the PIM routines for the IDLU��	 and
Neumann preconditioners on an SGI Indy II �MIPS R���� CPU	� A status value of � indicates
convergence� and �� indicates that no convergence was obtained in the maximum number of
iterations allowed� This example is characteristic of the problems facing the user of iterative
method i�e�� not all methods converge to the solution and some preconditioner may cause an
iterative method to diverge �or converge slowly	� We stress that the methods that have failed
to converge in this example may converge for other systems�

In Table � we present the execution times obtained solving the test problem with the
PIMDRGMRES routine and the Neumann polynomial preconditioning on the Intel Paragon XP�
Kendall Square Research KSR�� SGI Challenge� Cray Y�MP
E and Cray C����E� The re�
sults for the Cray machines were obtained with the modi�ed matrix�vector product routines
described in x���� The programs running on the SGI Challenge are from the set of examples
available with the PIM distributed software using the PVM message�passing library� Note
that for both the SGI Challenge and the Intel Paragon XP superlinear e�ects occur� we be�
lieve this is due to the speci�c memory organization of those machines �hierarchic memories
and�or presence of a cache memory	�

The graphs in Figure 
 show the speed�up curves for the PIMDCG and PIMDRGMRES routines
running on the Paragon� We include in those graphs the curves for the same problem but
with a system of order n � ���� to show the e�ects of problem scaling� Almost linear
speed�ups occur for p � � for both preconditioners for n � ������ Note also that the
polynomial preconditioner has a better speed�up for p � �
 than the IDLU��	 preconditioner
for n � ������ We should point out that preliminary versions of PIM that did not include
the reduction of synchronization points in the computation of several inner�products had a
markedly inferior performance� even for the smaller problem size shown�

��



Table �� Example with IDLU��	 preconditioner�

Method k� Time�s� jjr�k
�� jj� Status

CG ��� ����	 �
 ��
CGEV ��� �
	��� �
 ��
Bi�CG ��� ���� ���� ��� ��
CGS �
� ����� ���� ����� �
Bi�CGSTAB �� �
��� 
�
� ����� �
RGMRES ��� ����� ���� ����� �
RGMRESEVy ��� ��
��� ��� ����� �
RGCR �� ��� ��� ����� �
CGNR ��� ����� ���� ���� ��
CGNE ��� �����
 ���� ��� ��
TFQMR ��� ���	� ���� ���� ��

y Interval containing eigenvalues �real axis�� �������� ��
��

Table 
� Example with Neumann polynomial preconditioner�

Method k� Time�s� jj r�k
�� jj� Status

CG ��� 
	�� ���� ��� ��
CG ��� ������ ���� ��� ��
Bi�CG ��� ������ � ��
CGS �� �	��� ��
� ����� �
Bi�CGSTAB ��� ���	� ��� ����� �
RGMRES �� ���
� ��� ����� �
RGMRESEVy �� ��	��� ��� ����� �
RGCR �� ��	��� ��� ����� �
CGNR ��� �	���� �	� ���� ��
CGNE ��� ����� ���� ��� ��
TFQMR ��� 	��� 	��� ����	 ��

y Interval containing eigenvalues �real axis�� �������� ��
��
�

Table �� Execution time �in seconds	 for test problem solved by PIMDRGMRES with Neumann
polynomial preconditioning�

Intel SGI Cray Cray
p Paragon XP Challengey KSR�z Y�MP�E C
���
� ���
� 	����� 	����
� ���
 �
��	 ����	
	 ����� �	�� 	�


� ���� �����
�� 	���
� ���

y S� Thomas� CERCA�Montr�eal
z A� Pindor� U� of Toronto ����

��



Figure 
� Speed�ups on the Intel Paragon XP �NX library	� �a	 IDLU��	 preconditioner� �b	
Neumann polynomial preconditioner�
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� Concluding remarks

We have presented the design details of the PIM package together with some practical results
which show the eciency of the implementation�

Among the future improvements we intend to make available a set of matrix�vector product
and preconditioning routines for some typical applications� using the PVM and MPI message�
passing libraries� Another is a preliminary step towards a HPF version� initially providing a
version of PIM coded in Fortran ��� We believe these improvements will reduce the e�ort of
porting the package to other machines�

Acknowledgements

We would like to thank Steve Thomas �Centre de Recherche en Calcul Apliqu#e�Montr#eal	�
Andrzej Pindor �University of Toronto	 and Paulo Tib#erio M� de Bulh$oes �Cray Research	 who
tested PIM on the SGI Challenge� the Kendall Square Research KSR� and the Cray C����E
respectively and the National Supercomputing Centre� Federal University of Rio Grande do
Sul �Brazil�� the Parallel Laboratory� University in Bergen �Norway� and Digital Equipment
Corporation �via the Internet Alpha Program	� who kindly made their facilities available for
our tests�

Obtaining PIM PIM can be obtained via anonymous FTP from unix�hensa�ac�uk� �le
�misc�netlib�pim�pim�tar�Z or from euler�mat�ufrgs�br� �le �pub�pim�pim�tar�Z�

The distribution software comes with the PIM routines for REAL� DOUBLE PRECISION�
COMPLEX and DOUBLE COMPLEX data types� and a set of examples� for sequential and parallel
shared�memory computers and distributed�memory computers� In the latter case the exam�
ples are for message�passing systems including PVM� p� and TCGMSG� and for the Intel
Paragon using NXLIB�
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