
The Functional Simulation of a Simple

Microprocessor

Steve Hill

September ��� ����

Abstract

This paper documents the microprocessor simulator developed to sup�

port the teaching digital systems to undergraduate computer scientists�

The framework of the simulation is described� and two variant machines�

register�based and stack�based� are given� Finally� a more abstract version

of the register machine is detailed�

� Background

This work arose from the need to provide a platform for the simulation of
microprocessor architectures suitable for undergraduate students of computer
science� However� we believe that our experience shows that the techniques
employed could well have a wider application�

Our problem was this� in the second year of our undergraduate programme�
two groups of students study a digital systems course� The �rst group study
Computer Systems Engineering which is oriented more towards electronics than
is the Computer Science degree� Originally� the course contained a laboratory
experiment which involved a fair amount of practical electronics� We decided
that iy was an unreasonable requirement that the main stream computer sci�
entists� especially those from largely mathematical or computing backgrounds�
should have to perform this experiment� It was proposed� therefore� that these
students be o�ered a software�based project as an alternative�

The �rst part of this paper describes the main features of the simulation that
was developed for this purpose� From the outset we determined that a functional
language would be used for the assessment� There were several reasons for this�

� Functional programming is taught in the �rst year� and this exercise would
provide an opportunity for reinforcement� In particular� it would provide
an opportunity to show how functional programming could be used in an
unfamiliar role�

�

� The conciseness of the functional descriptions should help students to
understand the concepts of machine architecture without needing to worry
about the mechanics of the simulation�

� There would not be much time available 	approximately one week as it
turned out
 for the development of the project� A functional language
would support rapid and accurate program development�

� The mathematical elegance of functional language would a�ord opportu�
nities in the future for formal proofs of properties of the machines� We
intend to use them as the basis for a compiling techniques course which is
due for introduction in �����

The simulation was initially written using Gofer
��� and then manually
converted into Miranda
��� Gofer provided a convenient development language
since it can be run on a wide range of platforms� Miranda is the 	second

programming language that is taught in our �rst year� The conversion was a
simple task requiring less than an hour to complete� We are not aware of any
tools that perform the translation in this direction�

We chose to provide simulations for two architectural styles � a register ma�
chine and a stack machine� Both machines share a common core which is
extended to provide their peculiar instruction sets� The simulations are con�
structed in three levels�

� The core machine provides the basic architecture described by means of
primitive transitions of machine state�

� The micro�code provides a specialisation of the core machine by imple�
menting an instruction set in terms of the basic transitions�

� The assembly language interface is implemented by an assembler and
loader which together construct an initial machine state� This is then
run until the machine halts�

� The Core Machine

The core machine provides a characterisation of the machine architecture� It
comprises a type of �machine state� along with a set of permitted state transi�
tions� These transitions are the only ones allowed� The style is similar to that
adopted by Peyton Jones and Lester
�� for the description of abstract machines
for the implementation of functional languages�

Ideally� the type of machine state should be abstract� This would prevent
unwanted modi�cation of the core machine� In our implementation� the type
of machine state is not actually abstract� but this is for pragmatic pedagogic
reasons � there being insu�cient time available in the �rst year to cover abstract
data types in Miranda adequately�

�

ALUMAR MDR R0 R1

A−Bus

B−Bus

C−Bus

D−Bus

Memory

Figure �� Architecture of the Core Machine

��� Components

The machine� depicted in Figure � was decomposed into six parts�

� Memory � the memory is modelled as an association list between address
and contents�

� Memory Interface � the memory interface comprises two special purpose
registers � the memory address register 	MAR
 and the memory data
register 	MDR
�

� Register File � the registers are modelled as an association list between
register number and register contents� The core machine thus makes no
commitments as to the number of registers available�

� Buses � the machine has four internal buses or data highways�

� Statistics � the statistics �eld is used to accumulate measures of the ma�
chine�s performance�

� Halt Flag � this indicates if the machine has halted�

For the purposes of this simulation� we have chosen to represent machine
words and addresses as integers��

address == num
word == num

memory == assoclist address word
memory_interface == (word, word)
registers == assoclist num word
buses == (word, word, word, word)
stats == (num, num, num, num, num, [char])

�Miranda makes no type distinction between �oating point and integer types � the distinc�

tion is maintained at run time

�

machine == (memory, memory_interface, registers,
buses, stats, bool)

��� Primitive Transitions

The machine is characterised by its transitions� Most transitions involve the
movement of data from one part of the machine to another� The primitive
transitions represent the lowest level of the simulation� All machine operations
must ultimately be composed of these primitives�

transition == machine -> machine

The A�bus and B�bus are used to communicate argument values to the ALU�
Registers in the register �le or the MDR 	but not the MAR
 may be copied onto
either the A�bus or the B�bus� In addition to the data copy� the �register to
bus� statistic is incremented�

regToAbus, regToBbus :: num -> transition

regToAbus n (m, i, r, (a, b, c, d), s, h)

= (m, i, r, (a1, b, c, d), incRegBus s, h)
where
a1 = aLookup n r

mdrToAbus, mdrToBbus :: transition

mdrToAbus (m, (mar, mdr), r, (a, b, c, d), s, h)

= (m, (mar, mdr), r, (mdr, b, c, d), incRegBus s, h)

The C�bus is used to hold the result of an ALU operation� The D�bus carries
the condition codes� Data may be copied from the C�bus to the register �le�
MAR or MDR� The D�bus is more restricted� Data on the D�bus can only be
copied into the register �le�

cbusToReg, dbusToReg :: num -> transition

cbusToReg n (m, i, r, (a, b, c, d), s, h)

= (m, i, r1, (a, b, c, d), incBusReg s, h)
where
r1 = aBind n c r

cbusToMar, cbusToMdr :: transition

cbusToMar (m, (mar, mdr), r, (a, b, c, d), s, h)

= (m, (c, mdr), r, (a, b, c, d), incBusReg s, h)

�

Access to the memory is via the MAR and MDR� To read memory� the
address is placed in the MAR and a memory read cycle executed� The word
that is read is placed in the MDR�

memRead :: transition

memRead (m, (mar, mdr), r, b, s, h)

= (m, (mar, mdr1), r, b, incReads s, h)
where
mdr1 = aLookup mar m

To write data into the memory� the data is placed in the MDR and the
destination address placed in the MAR� A memory read cycle is then executed�

memWrite :: transition

memWrite (m, (mar, mdr), r, b, s, h)

= (m1, (mar, mdr), r, b, incWrites s, h)
where
m1 = aBind mar mdr m

The ALU�cycle transition performs calculations� Data is placed onto the
A�bus and possibly the B�bus� then an ALU�cycle executed The result appears
on the C�bus� The D�bus holds the condition codes which result from the
calculation� The operation of the ALU is speci�ed via an enumerated type�
although perhaps a word would be more appropriate�

aluOp ::= AluA | AluB | AluIncA | AluDecA | AluNegA | AluAbsA |
AluAdd | AluSub | AluMul | AluDiv | AluMod

aluCycle :: aluOp

aluCycle op (m, i, r, (a, b, c, d), s, h)

= (m, i, r, (a, b, c1, d1), incAluCycle s, h)
where
c1 = a, if op = AluA

= b, if op = AluB
= a+1, if op = AluIncA
|| And other unary operations
= a+b, if op = AluAdd
= a-b, if op = AluSub
|| And other binary operations

d1 = condbit (c1 = 0) aluZero +
condbit (c1 < 0) aluNeg

The calculation of the condition code bits is rather cumbersome� It would
be much simpler in a language which provided words as a primitive data type�

�

Such a type could have been de�ned in Miranda� but at the loss of the set of
familiar built�in operators associated with the datatype num� Miranda� unlike
Gofer and Haskell does not permit the de�nition of overloaded functions�

The �nal transition which deals with the simulation proper is halt�

halt :: transition

halt (m, i, r, b, s, h)

= (m, i, r, b, s, True)

A set of functions which log messages in the statistics �eld of the machine
state are also provided�

printMar, printMdr, printAbus,
printBbus, printCbus, printDbus :: transition

printString :: [char] -> transition
printReg :: num -> transition
printMem :: address -> transition

��� Compound Transitions

The operation of the machine is speci�ed as a sequence of primitive transitions�
Two transitions could be combined using functional composition but a variant�
which has its arguments reversed� is provided instead� It was thought that the
ordering of the arguments for this function would be more intuitive for students
unpractised in functional programming�

comma :: transition -> transition -> transition

(t1 $comma t2) m = t2 (t1 m)

Most machine operations require a sequence of transitions� A list of transi�
tions is performed sequentially by the following function��

do :: [transition] -> transition

do [] = id
do (t:ts) = t $comma do ts

The switch transition is more specialised� It allows a transition to be selected
from a table according to the contents of a register� Its role mimics the operation
of the mapping PROM in a micro�code engine� This de�nition would be more
concise and readable if Miranda supported the as and don�t care patterns�

�A rather more elegant de�nition in terms of foldr could be given� but the simple recursive

de�nition is preferred�

�

switch :: num -> assoclist num transition -> transition

switch reg tab (m, i, r, b, s, h)

= (aLookup (aLookup reg r) tab) (m, i, r, b, s, h)

Similarly� it is often the case that a section of micro�code is parameterised on a
register value� The following function allows for this�

passReg :: num -> (num -> transition) -> transition

passReg reg tr (m, i, r, b, s, h)

= tr (aLookup reg r) (m, i, r, b, s, h)

��� Register Transfer

We are now in a position to be able to de�ne transitions which correspond more
closely to the register transfer style� The �rst allows the contents of one register
to be copied to another and might be written as�

Rs � Rd

regToReg :: num -> num -> transition

regToReg rs rd

= do [
regToAbus rs,
aluCycle AluA,
cbusToReg rd

]

In a similar way transitions for copying data to and from the MAR and to
the MAR from the register bank are provided�

mdrToReg, regToMdr, regToMar :: num -> transition

Finally� some compound transitions for combining registers via the ALU are
provided� These might be written in the register transfer style thus�

�Rn � Rd

Rn � Rm � Rd

The second of these transitions is presented�

op2 :: num -> aluOp -> num -> num -> transition

op2 rn op rm rd

�

= do [
regToAbus rn,
regToBbus rm,
aluCycle,
cbusToReg rd

]

� A Register Machine

We have implemented two instruction sets for the machine� The �rst is a register
machine loosely based on the Motorola ������ The second is a paper stack
machine which is described in the digital systems lecture course� The register
machine is described in detail� The stack machine is rather simpler� so only
brief details of its implementation are given�

��� Registers

The machine has the following registers�

� pc � the program counter

� ir � the instruction register

� tmp�� tmp� � two temporary registers� not intended for general use

� sp � the stack pointer

� ccr � the condition code register

� r�� r�� r�� r� � four general purpose registers

��� Instruction Encoding

The instruction encoding for this machine is very simple� Each instruction is
identi�ed by a word� Any arguments are represented by two words following the
instruction� The �rst identi�es the addressing mode� and the second the actual
argument value eg� a register number or address�

|| Instruction codes
moveW = 1
addW = 2

|| Addressing modes
litW = 1
regW = 2

For example a typical move instruction might be represented by the sequence
moveW� litW� ��� regW� r� 	move literal value �� into register zero
�

�

��� Instructions and Addressing

The basic operation of this machine consists of two operations� The transition
fetch retrieves a word from the address held in the program counter� This
instruction is then executed by selecting the appropriate micro�code via a switch
and invoking it�

fetch :: transition

fetch

= do [
regToMar pc,
memRead,
mdrTo ir,
op1 pc AluIncA pc

]

execute :: transition

execute

= switch ir [
(moveW, moveI),
(addW, addI),
|| Other instructions
(haltW, haltI)

]

Each instruction is now represented as a machine transition� For example�

moveI

= do [
srcOpTo tmp1,
dbusToReg ccr,
destOpFrom tmp1

]

addI

= do [
srcOpTo tmp1,
srcOpTo tmp2,
op2 tmp1 AluAdd tmp2 tmp1,
destOpFrom tmp1

]

All these instructions make use of the functions srcOpTo and destOpFrom

which handle addressing modes for the source and destination arguments re�
spectively�

�

srcOpTo :: num -> transition

srcOpTo r

= do [
fetch,
switch ir [

(litW, do [fetch, regToReg ir r]),
(absW, do [fetch, regToMar ir, memRead, mdrToReg r]),
(regW, do [fetch, passReg ir ((flip regToReg) r)]),
(indW, do [fetch, passReg ir ((flip memToReg1) r)])

]
]

destOpFrom r

= do [
fetch,
switch ir [

(litW, halt),
(absW, do [fetch, regToMem r ir]),
(regW, do [fetch, passReg ir (regToReg r)]),
(indW, do [fetch, passReg ir (regToMem r)])

]
]

The description of the machine is now complete� The literal destination
mode� although allowed by the instruction set is clearly a nonsense and has
been implemented as a halt transition�

��� Assembler and Loader

The �nal stage of the simulation was to provide an assembly language� loader
and functions to run programs to completion� Using a functional progamming
environment was of great bene�t� Programs were represented as lists of instruc�
tions which were themselves simply elements of an algebraic datatype� There
was no need to have a concrete syntax for assembly language programs� Instead
the syntax of lists and constructors is used directly�

For simplicity� labels are not implemented� In retrospect this was probably
a mistake� Many of the errors that students encountered in their test data were
due to incorrect jumps�

program == [instruction]

instruction

::= Move operand operand |
Add operand operand operand |
|| Other instructions
Halt

��

It is also possible to provide directives or pseudo�ops� In students� version of
the simulator a de	ne constant data directive was provided� but it was hardly
used� The operand type describes the set of addressing modes�

operand

::= Lit word |
Reg word |
Abs word |
Ind word

It would have been possible to specialise the operands according to their
use� For example� two sorts of operand 	one for source operands and another
for destinations
 could be provided� The possibility of nonsenses such as a literal
destination are then excluded�

The task of the assembler is to produce a memory binding� For simplicity it
is assumed that programs always start at address zero�

assemble :: program -> memory

assemble = assemble1 0 []

The main part of the assembler creates a memory binding starting at the
speci�ed address from the given program� The memory binding is accumulated
in the second argument�

assemble1 :: word -> memory -> program -> memory

assemble1 w m [] = m
assemble1 w m (i:is) = assemble1 w1 m1 is

where
(w1, m1) = assemI w m i

Each instruction is converted into its internal representation and placed in
memory� The work of assembling an instruction is performed by assemI� It
assembles the instruction i starting at address w by augmenting the memory
bindings in m� It returns the augmented memory binding and the memory
location at which subsequent code should be placed�

assemI :: word -> memory -> instruction -> (word, memory)

assemI w m (Move src dst) = assemI2 w m moveW src dst
assemI w m (Add src1 src2 dst) = assemI3 w m addW src1 src2 dst
|| Other instructions
assemI w m Halt = (w+1, aBind w haltW m)

Instructions are assembled according to the number of operands� For exam�
ple�

��

assemI2 w m instr src dst

= (w3, m3)
where
w1 = w + 1
m1 = aBind w instr m
(w2, m2) = assemO w1 m1 src
(w3, m3) = assemO w2 m2 dst

Finally operands are themselves assembled by the function assemO�

assemO w m (Lit x) = assemO1 w m litW x
assemO w m (Reg x) = assemO1 w m regW x
assemO w m (Abs x) = assemO1 w m absW x
assemO w m (Ind x) = assemO1 w m indW x

assemO1 w m mode val

= (w2, m2)
where
w1 = w + 1
m1 = aBind w mode m
w2 = w1 + 1
m2 = aBind w1 val m1

The simulation is completed by the de�nition of a loader and a function to
execute a program to completion� The loader creates a machine in its initial
con�guration� where the memory is bound to the result of assembling a program�

load :: memory -> machine

load mem

= (mem, (0, 0), aBind pc 0 initial_regs,
(0, 0, 0, 0), initial_stats, False)

The function run assembles a program� loads it� and executes it to completion
ie� until the halt �ag becomes true� The result of the run function is a string
containing any diagnostic messages generated during the program run� followed
by a dump of the machine�s �nal state�

run = run’ . load . assemble

run’ mc

= d ++ showMachine m2, if h
= d ++ run’ m2 , otherwise

where
m1 = execute (fetch mc)
d = getDiagnostics m1
m2 = resetDiagnostics m1

��

� A Stack Machine

The core machine has also been used to implement a stack�based architecture�
In this section a brief overview of its unique features is given� This is achieved
by reprogramming it with a new set of micro�code� The new machine has only
the minimum of internal registers� pc� ir� tmp�� tmp�� sp and ccr�

��� Instructions

The stack machine has far more instructions than the register machine� but
fewer addressing modes� Most instructions work on data held in the stack�
Therefore� the following simple transitions� used in the implementation of many
other instructions� are de�ned�

push r

= do [
op1 sp AluIncA sp,
regToMar sp,
regToMdr r,
memWrite

]

pop r

= do [
regToMar sp,
memRead,
mdrToReg r,
op1 sp AluDecA sp

]

The transitions place the contents of a register onto the stack and pop the top
of the stack into a register respectively� The following machine instructions are
typical of the bulk of the implementation�

addI

= do [
pop ir,
pop tmp1,
op2 ir AluAdd tmp1 ir,
dbusToReg ccr,
push ir

]

dupI

= do [

��

pop ir,
push ir,
push ir

]

There is scope for optimisation of these instructions by careful tracking of values�
In many cases it is possible to avoid expensive memory accesses by caching the
top elements of the stack� This was set as one of the tasks in the digital systems
assignment�

In order to e�ect addressing modes� there are a number of special instructions
which push and pop data to and from the stack� In summary there are�

� pushLit � pushes a literal value onto the stack

� pushAbs� popAbs � push a value held in a speci�ed memory location and
pop the top of stack into a speci�ed memory location respectively�

� pushRel� popRel � push a value held in the stack at a speci�ed o�set from
sp� pop the top of the stack into a location at a speci�ed o�set from the
sp respectively�

This set facilitates the manipulation of constants and local and global variables�
There is no provision for indirection� although this would be simple enough to
add� An example of these instructions is�

popAbsI

= do [
fetch,
pop tmp1,
regToMar ir,
regToMdr tmp1,
memWrite

]

��� Assembler and Loader

The instruction set for the stack machine is much simpler than the register
machine� and consequently the assembler is much simpler� The implementation
has only to deal with instructions of zero or no operands� and operands when
present consist of a single item�

There are only minor di�erences between the loader for the stack machine
and that of the register machine�

� Re�nements

In the simulation described� the level of abstraction 	micro�code
 was mandated
by circumstance� The simulation was speci�cally designed at a level that coin�
cided with the teaching in the digital systems course� However� if one were to

��

simulate a microprocessor in earnest one would probably wish to start with a
high�level description and to re�ne it 	not necessarily in its entirety
�

��� A Simpli�ed Machine

Initially the internal operations of the device are not a concern� What is of
interest is its observable behaviour� The machine state is rede�ned to re�ect
this in the following manner�

machine == (memory, registers, stats, bool)

Notice that the memory interface and the internal buses have been removed�
The registers are retained since they are directly observable� A new set of tran�
sitions which describe the basic operations of the machine can now be de�ned�
Interfacing to the memory is via the following two transitions�

regToMem :: num -> address -> transition
memToReg :: address -> num -> transition

Operations to transfer data and manipulate data within the machine are
also required� They apply an ALU operation to the contents of two registers
and place the result in a destination register� The variant transition opc also
sets a condition code register�

op :: num -> num -> num -> aluOp -> transition
opc :: num -> num -> num -> num -> aluOp -> transition

There is a halt transition and a number of transitions responsible for diag�
nostics as in the micro�code machine�

As with the low�level machine� primitives to sequence transitions� select
transitions according to a register value� and to pass register contents to a
transition are provided�

comma :: transition -> transition -> transition
do :: [transition] -> transition
switch :: num -> assocList num transition -> transition
passReg :: num -> (word -> transition) -> transition

The machine is described in a similar fashion to the earlier simulation�

fetch :: transition

fetch

= passReg pc (flip memToReg ir)

execute :: transition

execute

��

= switch ir [
(moveW, moveI),
|| other instructions

]

And the individual instructions are similarly simpli�ed� for example�

moveI :: transition

moveI

= do [
srcOpTo tmp1,
opc tmp1 tmp1 tmp1 ccr,
dstOpFrom tmp1

]

The functions srcOpTo and dstOpFrom are de�ned as before�
Work is currently in progress to prove that the two machines are equivalent�

A logical framework for reasoning about Miranda programs has been constructed
under the Isabelle system
��� A paper reporting this work is in preparation�

� Conclusions and Future Work

Experience of marking the assignments based on this simulator would suggest
that the students have had little di�culty with it� Few of the questions about
the simulator related to the workings of functional languages� Some students
have not grasped the di�erence between the simulation and the device that is
being simulated� but this is not a problem con�ned to a functional implemen�
tation� However� we must be somewhat cautious� The group that attempt
this assessment are self�selecting� Any student who struggled with functional
programming in the �rst year is unlikely to want to attempt this assessment�
Between a half and a third of the CS cohort opted to avoid the simulation
exercise 	or opted for the interfacing lab
 each year�

From the point of view of the implementer� the simulator has been a great
success� During the two years of its use� we have identi�ed only a few minor
bugs which were �xed in a matter of minutes� One was due to a typographical
error and a couple of others were introduced when the simulation was modi�ed
to emulate a transputer�style architecture� Performance was not a problem for
us since the students� test programs were quite small� On the basis of our
experience� we would recommend using functional languages for the rapid and
accurate development of software�

Although this work was primarily motivated by the requirements of an un�
dergraduate course� we believe that it is possible to use functional description
techniques to design hardware� Design would start with a high�level abstract

��

description of a device� and then proceed via a number of formally veri�ed re�
�nement steps to a concrete description suitable for fabrication� for example

���

References

�� Mark P� Jones� Introduction to Gofer ����� ����� Available via ftp from
nebula�cs�yale�edu�

�� John T� O�Donnell� Generating netlists from executable circuit speci�cations
in a pure functional language� In John Launchbury and Patrick Sansom�
editors� Workshop on Functional Programming� Springer�Verlag� �����

�� Lawrence C� Paulson� The foundation of a generic theorem prover� Technical
Report ���� University of Cambridge� Computer Laboratory� �����

�� Simon L� Peyton Jones� Implementing Functional Languages� Prentice�Hall�
�����

�� D� A� Turner� An overview of Miranda� SIGPLAN Notices� December �����

��

