
Lins, Rafael D., Thompson, Simon and Jones, Simon L. Peyton (1994) On
the Equivalence Between CMC and TIM. Journal of Functional Programming,
1 (4).

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/21166/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1017/S0956796800000939

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/21166/
https://doi.org/10.1017/S0956796800000939
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

On The Equivalence Between CM�C and TIM

Rafael D�Lins � Simon J�Thompson
Dept� de Inform�atica � Universidade Federal de Pernambuco � Recife � Brazil

Computing Laboratory � The University of Kent � Canterbury � England�

Abstract

In this paper we present the equivalence between TIM� a machine developed to implement lazy

functional programming languages� and the set of Categorical Multi�Combinators� a rewriting

system developed with similar aims�

Keywords� Categorical Multi�Combinators� lambda calculus� functional programming�

Introduction

A number of di�erent abstract machines for the implementation of lazy functional languages have been
developed in the last few years� Many of these machines were developed using di�erent principles or
even based on di�erent theories of functions and seem to be unrelated� In our opinion� it is important
to examine the similarities and di�erences between these machines� because this will provide a better
understanding of their features� In this paper� we investigate the relationship between TIM and
the system of Categorical Multi�Combinators� Although these two abstract machines seem to be
completely unrelated we prove their equivalence�
The method of compilation of functional languages into combinators� �rst explored by Turner

in��	
� provides a way of removing the variables from a program� transforming it into an applicative
combination of constant functions or combinators� Turner used a set of combinators based on
Curry�s Combinatory Logic� To each combinator there is associated a rewriting law� In rewriting a
combinator expression� Turner rewrites the leftmost�outermost reducible subexpression �or redex at
each stage� When no further rewriting can take place the expression is said to be in normal form�
Another theory of functions is provided by Category Theory ��
� and we can see the notation used

herein as providing an alternative set of combinators� The original system of Categorical Combinators
was developed by Curien ��
� This work was inspired by the equivalence of the theories of typed ��
calculus and Cartesian Closed Categories as shown by Lambek ��
 and Scott ���
�
Aiming to implement lazy functional languages in an e�cient way using rewriting of Categorical

Combinators we developed a number of optimisations ��� �
 of the na��ve system� the most re�ned of
which was the system of Linear Categorical Combinators ��
� The modi�cations introduced reduce
the number of rewriting laws and increase the e�ciency of the system by reducing the number of
rewriting steps involved in taking an expression to normal form� whilst leaving the complexity of the
pattern matching algorithm unchanged�
Categorical Multi�Combinators are a generalisation of Linear Categorical Combinators� Each

rewriting step of the Multi�Combinator code is equivalent to several rewritings of Linear Categorical
Combinators� since an application of a function to several arguments can be reduced in a single step�
The core of the system of Categorical Multi�Combinators consists only of two rewriting laws with a
very low pattern�matching complexity and avoids the generation of trivially reducible sub�expressions�
Independently� there has been much interest in compiled versions of functional languages which

run much more quickly on von Neumann machines than do interpreters� Johnsson� with his imple�
mentation of Lazy ML ��
� showed that it is possible to get fast implementations of lazy functional
languages� Johnsson�s implementation model was described as the G�Machine ���� �
� The basic

�

principle of the G�Machine is to avoid generating graph nodes when it is unnecessary� Several optimi�
sations to the G�Machine are suggested in ���� �
� In ���
 there is an analysis of these optimisations
and their performance �gures obtained with several di�erent benchmark programs�
Categorical Multi�Combinators served as basis for two compiled machines� GMC ���
 and CM�

CM ���� ��
� GMC is inspired by the G�Machine� in the sense that it generates graph lazily� The
implementation of GMC has shown performance close� but slower� than the G�machine� CM�CM is
a stack based machine which served as a basis for �CMC� a lower level abstract machine suitable
for e�cient implementation of functional languages on RISC architectures� The implementation of
�CMC� still in progress has shown performance �gures which in the best case is several times faster
and in the worst case it is ��� slower than Chalmers LML compiler based on the G�machine�
At the same time� independent work on the Ponder abstract machine by Fairbairn and Wray

developed into a more sophisticated system� the Three Instruction Machine� or TIM ��
 which can be
thought of as a lazy SECD machine�
In this paper we investigate the relationship between TIM and the system of Categorical Multi�

Combinators� The �rst section presents the source language for generating CategoricalMulti�Combinator
expressions and TIM code� To make presentation easier we adopted a slightly di�erent notation for
Categorical Multi�Combinators from the one presented in �	
� The multi�pair combinator is repre�
sented by a tuple �x�� � � � � xn� we use the empty tuple � to denote identity� and angle brackets stand
for closures ha� bi �which we previously wrote � a b� We follow this by explaining the evaluation
mechanism in Categorical Multi�Combinators �	
 and TIM ��
� For further details on TIM� and indeed
on other machines we refer readers to ���
� The core of the paper is section �� in which we present
two functions C and T translating from TIM to CMC and vice versa� We show in ��� and ��� that
each of the translation functions respects rewriting� in a sense which we explain� and in ��� we show
that T is a left inverse of C� and that C is a left inverse of T modulo rewriting�

� The Source Language

A program is taken to be a sequence of combinator de�nitions together with an expression to be
evaluated� which will involve these combinators�

c� �def combinator�

� � �

cn �def combinatorn

main�expression

A program when compiled will generate a script which is formed by a sequence of combinators linked
to their code thus�

� �

�
��

c� �� ��combinator�

���

cn �� ��combinatorn

�
��

In order to �atten the source code the compilation algorithms for Categorical Multi�Combinators and
TIM will extract right�parenthesised expressions and replace each of them by a unique label� These
labels will also be part of the script� and as with combinators they have their name linked to their
code�

� �

�
���������

c� �� ��combinator�

���

cn �� ��combinatorn

l� �� ��expression�

���
lm �� ��expressionm

�
���������

�

The main�expression is compiled separately as�

��main�expression

�

In order properly to interpret recursion� we assume that the environment � contains the de�nition of
all combinators� so that recursive combinators produce recursive references through the environment�
The notation we use is� with each label l there is associated code lr and with each combinator c there
is associated code cr� we supress the environment � when no confusion is possible�

��� Compiling into Categorical Multi�Combinators

In Categorical Multi�Combinators function application is denoted by juxtaposition� taken to be
left�associative� The compilation algorithm for translating ��expressions into Categorical Multi�
Combinators is given by the function Rx����xj where each xi is a variable and the corresponding i

its depth in the environment� i�e� the corresponding DeBruijn number� Top level expressions are
translated using an empty environment� so by R� �� For a matter of uniformity combinators will be
represented as composed with a dummy frame� �� which can be seen as the identity frame�

�T ��� R� � �xk � � ��xl� �z 	
m

�a � hLm��� �i�Rxk���xla

�T ��� Rx����xja � � � b � Rx����xja � � �Rx����xjb

�T ���� Rx����xj �a � � � b � li
where li is a new unique label in the script� such that
li �� �Rxi���xja � � � �Rxi���xj b

�T ��� Rx����xjb � b � if b is a constant

�T �	� Rx����xjxi � i

Combinator names and labels are treated as constants�

����� Example of Compilation

The script�

S � �a��b��c�ac�bc

K � �k��l�k

I � �i�i

SKKI

forms the following environment�

S �� R� ����a��b��c�acl�

K �� R� ����k��l�k

I �� R� ����i�i

which by application of the compilation rules above translates to�

S �� hL��� � l�� �i

K �� hL���� �i

I �� hL���� �i

l� �� � �

�

The expression to be evaluated is translated as

R� ���SKKI

which generates SKKI as compiled code�

��� Generating TIM Code

Now we present the compilation algorithm for TIM�
The script� �

����

c� �� ��combinator�

���

cn �� ��combinatorn

main�expression

�
����

Compiles into TIM code as�

� �

�
����

c� �� B��combinator�

���

cn �� B��combinatorn

C��main�expression

�
����

where compilation schemes B and C are given below�

�C��� B���a�� � � �an�body

� �Take n�C��body

�a�� � � � � an

�C��� C��e� e�

�a�� � � � � an
� �P ��e�

�a�� � � � � an
�C��e�

�a�� � � � � an

�C��� C��atom

�a�� � � � � an
� E��atom

�a�� � � � � an

�C�	� P ��am

�a�� � � � � an
� �Push arg m

�C�
� P ��ci

�a�� � � � � an
� �Push combinator ci

�C��� P ��e

�a�� � � � � an
 � �Push label l
� where l is a new �unique label and the rule side�e�ects �
thus � �� ��e� �� �C��e

 means � with entry �e� �� �C��e

�

�C��� E��am

�a�� � � � � an
� �Enter arg m

�C�� E��ci

�a�� � � � � an
� �Enter combinator ci

The ��� used in rules �C�� and �C�� is overloaded� In rule �C�� semi�colon is equivalent to cons ��
in a functional language� while in rule �C�� semi�colon stands for append � � Compilation of an
expression into TIM generates a �at sequence of code� always� In rules C�� and C�� a variable am is
replaced by m� its position in the list of variables �a�� � � � � an
�

����� Example of Compilation

The script�

S � �a��b��c�ac�bc

K � �k��l�k

I � �i�i

SKKI

�

forms the following environment�

S �� B���a��b��c�acl�

K �� B���k��l�k

I �� B���i�i

which by application of the compilation rules above translates as�

S �� �Take �� Push label l�� Push arg �� Enter arg �

K �� �Take �� Enter arg �

I �� �Take �� Enter arg �

l� �� �Push arg �� Enter arg �

The expression to be evaluated generates the following TIM�code�

C��SKKI

� �� Push Combinator I� Push Combinator K� Push Combinator K� Enter Combinator S�

� Executing the Code

In this section we show how Categorical Multi�Combinators and TIM execute the code compiled by
the compliation schemes above�

��� Categorical Multi�Combinator Rewriting Laws

The core of the Categorical Multi�Combinator machine is presented on page �� of �	
� For a matter
of convenience we will represent the multi�pair combinator� which forms evaluation environments as
�x�� � � � � xn and compositions� which represent closures� will be written as ha� bi� Using this notation
the kernel of the Categorical Multi�Combinator rewriting laws is�

�M���� hn� �xm� � � � � x�� x�i � xn

�M���� hx�x�x� � � � xn� yi � hx�� yi � � � hxn� yi

�M���� hLn�y� �w�� � � � � wmix�x� � � �xnxn�� � � �xz � hy� �x�� � � � � xni xn�� � � �xz

The state of computation of a Categorical Multi�Combinator expression is represented by the
expression itself� Rule �M!�� performs environment look�up� this is the mechanism by which a variable
fetches its value in the corresponding environment� �M!�� is responsible for environment distribution�
The rule �M!�� performs environment formation� if during rewriting a label or a combinator reaches
the leftmost position of the code we proceed a script look�up and enter the corresponding code in the
de�nition environment� This can be expressed as

hl� yi � hlr� yi

��� TIM states

The state of a TIM computation is a tuple

hCode�Current Frame�Argument Stack �Framesi

The Code part is a sequence of TIM instructions� The Current Frame is the label �pointer to a
frame in Frames� which will be used for the evaluation of the Code� Speci�cally it is used to hold the

�

values of free variables in the code� These values might be literal values� or closures represented by
code�frame pairs� The Argument Stack is a stack of values� which are arguments to functions� Frames
is a heap in which frames are stored� We use Miranda list notation to represent stacks�
The initial state of the machine is

hCode� �� �
� �
i

The state transition laws for TIM presented on page �� of ��
 are�

�s��� h�Take n� I
� f�� �a� � � � � � an � A� F i � hI� f� A� F �f �� �a�� � � � � an
i�
where f selects an unused frame

�s��� h�Push arg n� I
� f� A� F �f �� �� � � � an� � � �
i � hI� f� �an � A� F �f �� �� � � � an� � � �
i

�s��� h�Push label l� I
� f� A� F i � hI� f� �hl� fi � A� F i

�s�	� h�Push combinator c� I
� f� A� F i � hI� f� �hc� �i � A� F i

�s�
� h�Enter arg n
� f� A� F �f �� �� � � � hc� fi� � � �
i � hcr � fn� A� F �f �� �� � � � hc� fni� � � �
i

�s��� h�Enter combinator c
� f� A� F i � hcr � �� A� F i

Note that in law �s�� above we use the notation F �f �� �a�� � � � � an
 to represent the heap F updated
with a new frame f � consisting of a� to an� In all other rules F �f �� �a�� � � � � an
 means the heap F

contains a particular frame f � The empty tuple� �� represents the empty frame�

� C�M�C � TIM

The close relationship between TIM ��
 and the original set of Categorical Multi�Combinators ��� 	

has been known to the �rst author for a long time� and has also been mentioned by other people ��"
�
This equivalence was also outlined in ���
�
Our aim in this section is to make clear the relationship between TIM ��
 and the original set of

Categorical Multi�Combinators ��� 	
� We present two functions C� translating from TIM to CMC and
T going in the reverse direction� The translation functions and equivalence proofs we supply depend
upon a number of simple properties of the form of the state and expressions produced by rewriting or
executing compiled lambda expressions�

� All lambda expressions rewritten are of ground �non�functional type� This is implicit in the
rewriting rule for Take in TIM where it is assumed that there are always su�cient arguments
upon the stack to perform a function application when required�

� All lambda expressions are assumed to be lambda�lifted before compilation �c�f� ��
� since this
is intrinsic to the rewriting rules for Categorical Multi�Combinators� Examining the form of
rewritten lambda expressions in CMC� it is safe to assume that in any composition hl� ri� l is
not a composition and that r is a multi�pair or tuple �x�� � � � � xn�

We then show that the translations given commute with rewriting� First we show that if a TIM
state T� rewrites in one step to state T� then C�T�� the Categorical Multi�Combinator equivalent
rewrites in a sequence of zero or more steps to C�T� # �Property I�� We then show that if a CMC
expression M� rewrites in one step to M� then T �M�� the TIM equivalent rewrites in a sequence of
zero or more steps to T �M� # �Property II��

Property I Property II
T� �� C�T�
	 	

T� �� C�T�

M� �� T �M�
	 	

M� �� T �M�

Finally we show that T is a left inverse of C� i�e� $C then T � is the identity on TIM states� The other
inverse relationship does not hold� We exhibit an example to show this� but we also show that it is
an inverse modulo rewriting�

�

��� Translating TIM into C�M�C

The translation from TIM states to Categorical Multi�Combinator expressions is performed by the
following functions�

�t��� C�hI� f� �x�� � � � � xz
� F �f �� �y�� y�� � � � yn
i � h�F I� ��F y�� �Fy�� � � � � �Fyni �Fx� � � � �Fxz

�t��� �F �hcn� fi
 � h�F cn� ��F y�� � � � � �F ymi�where f �� �y�� � � � � ym in F

�t��� �F �Take n� I
 � Ln����F I

�t�	� �F �Push arg n� I
 � �F I �n � �

�t�
� �F �Push label l� I
 � �F I l
�

r

�t��� �F �Push combinator c� I
 � �F I c
�

r

�t��� �F �Enter arg n
 � �n� �

�t�� �F �Enter combinator c
 � c�r

As we can observe �F in rules �t�� to �t�	 is recursively invoked only on code sequences without
any need for heap information� which is carried by F � For notational simplicity the subscript F �
such as in �F � which stands for the heap of frames in TIM states� will be omitted in the sequel� if
no misunderstanding can arise� Rule t�� above translates a TIM state into a top�level Categorical
Multi�Combinator expression it is used to translate the expression under evaluation� In this case �F
is ancillary to C and translates a code sequence into Categorical Multi�Combinator sub�expressions�
We also apply �F to each entry in the TIM script in order to generate the corresponding C�M�C script
thus�

�F

�
�����

c �� ��combinator�

���

l �� ��label�

���

�
����� �

�
�����

c� �� �F ��combinator�

���

l� �� �F ��label�

���

�
�����

��� Proof of Property I

We show that if a state T� rewrites to a state T� then C�T�� the Categorical Multi�Combinator
equivalent expression to T�� rewrites in a sequence of zero or more steps to C�T�� The translation
between TIM states and C�M�C� expressions is performed by the algorithm above� The following
sub�sections prove the result clause by clause�

����� Multi ��Reduction

Let us start analysing the most important state transition law of both machines� the one which
corresponds to ��reduction in the ��Calculus� We can see that

h�Take n� I
� f�� �a� � � � � � an � A� F i � hI� f� A� F �f �� �a�� � � � � an
i�

where f selects an unused frame

and

hLn�y� �w�� � � � � wjix�x� � � �xnxn�� � � �xz � hy� �x�� � � � � xnixn�� � � �xz

�

perform exactly the same transformation to the code� This equivalence can be shown formally as
follows�

C�h�Take n� I
� f� �x�� � � � � xz
� F �f �� �y�� � � � � yi
i
t��
� h� �Take n� I
� ��y�� � � � � �yii �x� � � � �xz

	 s�� k t��

C�hI� f�� �xn� � � � � xz
� F �f� �� �x�� � � � � xn��
i hLn����I� ��y�� � � � � �yii �x� � � � �xz

k t�� 	M���

h�I� ��x�� � � � � �xn��i �xn � � � �xz h�I� ��x�� � � � � �xn��i �xn � � � �xz

����� Push arg as Environment Look�up

The operation which allows a variable to fetch its value from its corresponding environment is expressed
in TIM and C�M�C� as�

h�Push arg n� I
� f� A� F �f �� �� � � � an� � � �
i � hI� f� an� A� F �f �� �� � � � an� � � �
i

hn� �xm� � � � � x�� x�i � xn

Consider the behaviour of the two rules�

C�h�Push arg n� I
� f� �x� � � � �� F �f �� �am� � � �
i
t��
� h� �Push arg n� I
� ��am� � � �i �x� � � �

	 s�� k t��

C�hI� f� �an � x� � � �� F �f �� �am� � � �
i h�I �n � �� ��am� � � �i �x� � � �

k t�� 	M���

h�I� ��am� � � �i �an �x� � � � h�I� ��am� � � �i h�n � �� ��am� � � �i �x� � � �

	M���

h�I� ��am� � � �i �an �x� � � �

����� Push label as Environment Distribution

This operation is performed by the following laws in TIM and C�M�C� respectively�

h�Push label l� I
� f� A� F i � hI� f� hl� fi � A�F i

hx�x�x� � � �xn� yi � hx�� yihx�� yi � � � hxn��� yihxn� yi

Right associated applications are removed from the TIM code and replaced by a label� Push label l
builds a closure of the current frame and the label l�
Let us prove the operational equivalence between the laws above�

C�h�Push label l� I
� f� �x�� � � �
� F �f �� �am � � �
i
t��
� h� �Push label l� I
� ��am� � � �i �x� � � �

	 s�� k t��

C�hI� f� �hl� fi� x� � � �
� F �f �� �am � � �
i h�I l�� ��am� � � �i �x� � � �

k t�� 	M���

h�I� ��am� � � �i � hl� fi �x� � � � h�I� ��am� � � �ihl
�� ��am� � � �i�x� � � �

k t��

h�I� ��am� � � �ih� l� ��am� � � �i�x� � � �

k

h�I� ��am� � � �ihl
�� ��am� � � �i�x� � � �

We recall that l� is the TIM label corresponding to l�

	

����	 Push combinator as Script Look�up

In TIM and C�M�C functions are lambda lifted during compilation� so that each function corresponds
to a closed ��expression or a combinator� Whenever a combinator is applied it will generate its
own evaluation environment� binding actual parameters to formal parameters� In C�M�C whenever
a combinator name reaches the leftmost outermost position in the code we enter the corresponding
code�

h�Push combinator c� I
� f� A� F i � hI� f� hc� �i � A�F i

Let us prove the operational equivalence between the laws above�

C�h�Push combinator c� I
� f� �x�� � � �
� F �f �� �am� � � �
i
t��
� h� �Push combinator c� I
� ��am� � � �i �x� � � �

	 s�� k t��

C�hI� f� �hc� �i� x�� � � �
� F �f �� �am� � � �
i h�I c�� ��am� � � �i �x� � � �

k t�� 	M���

h�I� ��am� � � �i � hc� �i �x� � � � h�I� ��am� � � �i hc
�� ��am� � � �i �x� � � �

k t��

h�I� ��am� � � �i h�c� � �i �x� � � �

k

h�I� ��am� � � �i hc
�� � �i �x� � � �

where c� is the TIM combinator corresponding to c� As combinators discharge the environments they
are composed with we have both sides above operationally equal�

����
 Enter arg as Environment Look�up

In the law�

h�Enter arg n
� f� A� F �f �� �� � � � hc� f �i� � � �
i � hcr� f
�� A� F �f �� �� � � � hc� f �i� � � �
i

Enter performs a similar transformation to the code as Push arg n above� i�e� an environment look�up�
Let us see the state transition this law performs in C�M�C�

C�h�Enter arg n
� f� �x�� � � �
� F �f �� �� � � hc� f �i � � �
i
t��
� h� �Enter arg n
� �� � � � � hc� f �i� � � �i �x� � � �

	 s�� k t��

C�hcr � f
�� �x�� � � �
� F �f

� �� �y�� � � � � yn
i h�n� �� �� � � � � hc� f �i� � � �i �x� � � �

k t�� 	 M���

h�cr� ��y�� � � � � �ymi �x� � � � � hc� f �i �x� � � �

k k t��

hc�r� ��y�� � � � � �ymi �x� � � � h�c� ��y�� � � � � �ymi �x� � � �

k

hc�� ��y�� � � � � �ymi �x� � � �

k

hc�r � ��y�� � � � � �ymi �x� � � �

"

����� Enter combinator as Script Look�up

The other role of the Enter combinator is simply to read the code for a function de�nition from the
script� performing a lazy linking of the code� by the following law�

h�Enter combinator c
� f� A� F i � hcr � �� A� F i

This law is equivalent to the following state transformation in C�M�C�

C�h�Enter combinator c
� f� �x�� � � �
� F �f �� �am� � � �
i
t��
� h� �Enter combinator c
� ��am� � � �i �x� � � �

	 s�� k t�	

C�hcr � �� �x�� � � �
� F �f �� �am� � � �
i hc�r � ��am� � � �i �x� � � �

k t��

h�cr� ��am� � � �i �x� � � �

k

hc�r � ��am� � � �i �x� � � �

where c�r is the TIM code associated with combinator c��

��� Translating C�M�C into TIM

The translation between Categorical Multi�Combinator expressions and TIM states is performed by
the following functions�

�r��� T �he� �y�� � � � � ymi w� � � �wk � h�e� f� ��w�� � � � � �wk
� F �f �� ��y�� � � � � �ym
i

�r��� �Ln���x � �Take n� �x

�r��� �n � Enter arg �n �

�r�	� �c�r � Enter combinator c

�r�
� ��e�e� � � � em � %em� � � � � %e�� �e�

�r��� �hn� �y�� � � � � ymi � �yn

�r��� �hx� �y�� � � � � ymi � h�x� fi�where f �� ��y�� � � � � �ym

�r�� %n � Push arg �n �� if n is a variable

�r��� %c�r � Push combinator c� if c is a combinator

�r���� %l�r � Push label l

T translates a top�level Categorical Multi�Combinator expression into a TIM state� � and % are
ancillary functions which translate the code of a Categorical Multi�Combinator sub�expression into
TIM�code� As we can observe in rule �C�� above for compiling TIM code each subterm in an
application is translated depending on its position in the term� % is needed to re�ect this di�erence�
which does not exist in Categorical Multi�Combinators� into TIM� F appears as an unbound variable in
rule �r�� � the meaning of this is �the heap built by the recursive invocation of � on the subexpressions
to which it is applied�� When �r�� is applied a new frame in the heap is generated� and we can see
that the traversal of the Categorical Multi�Combinator expression gives rise to a collection of frames
�F in the heap�

��

The corresponding TIM script is generated by applying � to each of the entries of the C�M�C
script� thus

�

�
�����

c� �� ��combinator�

���

l� �� ��label�

���

�
����� �

�
�����

c �� ���combinator�

���

l �� ���label�

���

�
�����

The syntax of Categorical Multi�Combinator expressions which can arise from compilation or rewriting
of compiled expressions shows us that in rule �r�� e can either be a variable� an application� or an
abstraction �Ln�a or ci� We use this in proving property II below�

��� Proof of Property II

We show here that if a Categorical Multi�Combinator expressionM� rewrites in one step to expression
M� then the TIM state T �M� rewrites in a sequence of one or more steps to T �M�� The translation
between C�M�C� expressions and TIM states is performed by the algorithm above�

��	�� Environment Look�up

T �hn� �� � � � hy� �xj � � � � � xli� � � �iw� � � �wk
r��
� h�n� f� ��w�� � � � � �wk
� F �f �� �� � � � h�y� f �i� � � �
i

	 M��� k r��

T �hy� �xj � � � � � xliw� � � �wk hEnter arg �n �� f� ��w�� � � � � �wk
� F �f �� �� � � � h�y� f �i� � � �
i

k r�� 	 s��

h�y� f �� ��w�� � � � � �wk
� F i h�y� f �� ��w�� � � � � �wk
� F �f �� �� � � � h�y� f �i� � � �
i

The translation rules give rise to di�erent heaps on the left and right hand sides� Note� however that
the only di�erence is the presence of an additional frame� f � on the right hand side� As rewriting is not
a�ected by the presence of this extra frame we can say that the two expressions above are equivalent�

��	�� Environment Distribution

T �hx� � � � xn� �ym� � � �iw� � � �
r��
� h��x� � � �xn� f� ��w�� � � �
� F �f �� ��ym� � � �
i

	 M��� k r��

T �hx�� �ym� � � �i � � � hxn� �ym� � � �iw� � � � h%xn � � � �x�� f� ��w�� � � �
� F �f �� ��ym� � � �
i

k r��

h�x�� f� ��hx�� �ym� � � �i� � � � � �w�� � � �
� F �f �� ��ym � � � �
i

There are three cases to be considered depending on the form of the expression xn�
xn is a combinator c��

k r�� k r���

h�x�� f� �� � � � h�c
�� �i� �w�� � � �
� F i hPush combinator c � � � �x�� f� ��w�� � � �
� F �f �� ��ym � � � �
i

k 	 s��

h�x�� f� �� � � � hc� �i� �w�� � � �
� F i h%xn�� � � � �x�� f� �hc� �i� �w�� � � �
� F �f �� ��ym� � � �
i

	
�s��� s��� or s��

h�x�� f� �� � � � hc� �i� �w�� � � �
� F �f �� ��ym � � � �
i

��

xn is a variable a�

k r�� k r��

h�x�� f� �� � � � �ya� �w�� � � �
� F i hPush arg �a � � � � �x�� f� ��w�� � � �
� F �f �� ��ym� � � �
i

	 s��

h%xn�� � � � �x�� f� ��ya � �w�� � � �
� F �f �� ��ym� � � �
i

	
�s��� s��� or s��

h�x�� f� �� � � � �ya � �w�� � � �
� F �f �� ��ym � � � �
i

xn is a label l��

k r�� k r���

h�x�� f� �� � � � h�l
�

r � fi� �w�� � � �
� F �f �� ��ym � � � �
i hPush label l � � � �x�� f� ��w�� � � �
� F �f �� ��� ym � � �
i

k 	 s��

h�x�� f� �� � � � hlr� fi� �w�� � � �
� F �f �� ��ym � � � �
i h%xn�� � � � �x�� f� �hlr� fi� �w�� � � �
� F �f �� ��ym � � � �
i

	
�s��� s��� or s��

h�x�� f� �� � � � hlr � fi� �w�� � � �
� F �f �� ��ym� � � �
i

��	�� Multi ��Reduction

T �hLn���y� �w�� � � � � wjix� � � �xz
r��
� h�Ln���y� f �� ��x�� � � � � �xz
� F �f

� �� ��w�� � � � � wj
i

	M��� k r��

T �hy� �x�� � � � � xn��i xn � � �xz h�Take n� �y
� f �� ��x�� � � � � �xz
� F �f
� �� ��w�� � � � � wj
i

k r�� 	 s��

h�y� f� ��xn� � � � � �xz
� F �f �� ��x�� � � � � �xn��
 h�y� f� ��xn� � � � � �xz
� F �f �� ��x�� � � � � �xn��
i

The heap in the right hand side has an additional frame� f �� if compared with the heap in the left
hand side� As this does not a�ect rewriting we can say that the two expressions above are equivalent�

��� C and T

We show that the two translation functions C and T are related to each other� In particular we show
that T is a left inverse of C� but the reverse is not true� However� it is an inverse modulo expression
rewriting� as explained in section ������

��
�� T � C � Identity

Here we prove that T �Cx � x� when x is a TIM state by structural induction over the structure of x�

T �ChI� f� �x�� � � � � xz
� F �f �� �y�� � � � � yn
i
t��
� T �h�I� ��y�� � � � � �yni �x� � � � �xz
r��
� h���I� f� ����x�� � � � � ���xz
� F �f �� ����y�� � � � � ���yn
i

Assuming that ���x � x� this equals
��
� T �ChI� f� �x�� � � � � xz
� F �f �� �y�� � � � � yn
i

��

Now we prove that ���x � x by induction over the structure of x�

��� �Take n� I

t��
� ��Ln����I
r��
� �Take n� ���I

by induction ���I � I� so
��
� �Take n� I

��� �Push arg n� I

t��
� ���I� �n � �
r�	
� �%�n� �� ���I

r�

� �Push arg n� ���I

by induction ���I � I� so
��
� �Push arg n� I

��� �Push combinator c� I

t��
� ���I� c�r
r�	
� �%c�r� ���I

r�

� �Push combinator c� ���I

by induction ���I � I� so
��
� �Push combinator c� I

��� �Push label l� I

t�	
� ���I� l�r
r�	
� �%l�r � ���I

r�

� �Push label l� ���I

by induction ���I � I� so
��
� �Push label l� I

��� �Enter arg n

t��
� ��n � �
r��
� �Enter arg n

��� �Enter combinator c

t�

� �c�r
r��
� �Enter combinator c

��� �hcn� fi

t��
� �h�cn� ��y�� � � � � �ymi�where f �� �y�� � � � � ym
r��
� ����cn� f�where f �� ����y�� � � � � ���ym

by induction ���cn � cn� so
��
� hcn� fi

��

��
�� C � T � Identity

We will show that C�T x � x� where x is a Categorical Multi�Combinator expression does not hold�
but if C�T x � x� then x rewrites to x� in a �nite sequence of steps�
Firstly let us try to prove that C�T x � x�

C�T �he� �y�� � � � � ymiw� � � �wk
r��
� Ch�e� f� ��w�� � � � � �wk
� F �f �� ��y�� � � � � �ym
i
t��
� �h� ��e
� �� ��y�
� � � � � � ��ym
i � ��w�
 � � � � ��wm

If � ��x
 � x� then
��
� �he� �y�� � � � � ymi w� � � �wk

Now we will try to prove that � ��x
 � x� where x is a Categorical Multi�Combinator expression by
induction over the structure of x�

� ��Ln���I

r��
� � �Take n� �I

t��
� Ln���� ��I

by induction � ��I
 � I

��
� Ln���I

� ��n

r��
� � �Enter arg �n �

t��
� �n �� �

� n

� ���e�e� � � � em

r�	
� � �%em� � � � � %e�� �e�

if em is a variable n
r�

� � �Push arg �n �� � � � � %e�� �e�

t��
� � �� � � � %e�� �e�
n

t����
� e�e� � � � em

if em is the code linked to a label l�
r���
� � �Push label l� � � � � %e�� �e�

t�	
� � �� � � � %e�� �e�
l

�

r

t����
� e�e� � � � em

if em is the code linked to a combinator c�
r�
� � �Push combinator c� � � � � %e�� �e�

t��
� � �� � � � %e�� �e�
c

�

r

t����
� e�e� � � � em

� ���hx� �y�� � � � � ymi

r��
� � �h�x� fi

t��
� h� ��f
� �� ��y�
� � � � � � ��ym
i
��
� hx� �y�� � � � � ymi

��

� ���hn� �y�� � � � � ymi

r��
� � ��yn

��
� yn

In the last case we saw that � ��x
 �� x� However� we can see that if � ��x
 � x� then x rewrites to x�

in a �nite sequence of rewriting steps� so we have ��x � x� and CT x � x� as required�

� Conclusions

In this paper we have shown the equivalence between the operational semantics of the TIM ma�
chine and rewriting of Categorical Multi�Combinator expressions� every TIM state is equivalent to a
Categorical Multi�Combinator expression and vice versa� equivalent expressions are transformed into
equivalent expressions by rewriting�
The point of similarity of the two systems which distinguishes them from others is their coarse

granularity of computation # a number of ��reductions can be performed in a single step in both
systems� Both perform formation� distribution� look�up and deletion of multi�element environments
as single computation steps�
The result shows that we can see Categorical Multi�Combinators as describing machine computa�

tions at a high level of abstraction� and also indicates that e�cient implementations of this system
are feasible� The authors are currently investigating a novel abstract machine� �CMC �"
� based on
Categorical Multi�Combinators and CM�CM ���� ��
�

Acknowledgements

The authors are most grateful to Simon Peyton Jones for several corrections to and comments on
earlier versions of this paper�
Research reported herein has been sponsored jointly by the British Council� C�N�Pq� �Brazil

grants No ���"���&		��� and �����	�&	"��� and CAPES �Brazil grant ��	�&"���	�

References

��
 P�L�Curien� Categorical Combinators� Sequential Algorithms and Functional Programming� Re�
search Notes in Theoretical Computer Science� Pitman Publishing Ltd�� �"	��

��
 J�Fairbairn and S�Wray� Tim� A simple� lazy abstract machine to execute supercombinators�
In Proceedings of Third International Conference on Functional Programming and Computer

Architecture� pages ��#��� LNCS ���� Springer Verlag� �"	��

��
 T�Johnsson� Compiling Lazy Functional Languages� PhD thesis� Chalmers Tekniska H�ogskola�
G�oteborg� Sweden� January �"	��

��
 J�Lambek� From lambda�calculus to cartesian closed categories� In J�P�Seldin and J�R�Hindley�
editors� in To H�B�Curry� Essays on Combinatory Logic� Lambda�Calculus and Formalism� Aca�
demic Press� �"	��

��
 R�D�Lins� A new formula for the execution of categorical combinators� In Proceedings of �th�

International Conference on Automated Deduction� pages 	"#"	� Springer Verlag� July �"	��
LNCS ����

��
 R�D�Lins� On the E�ciency of Categorical Combinators in Applicative Languages� PhD thesis�
The University of Kent at Canterbury� October �"	��

��

��
 R� D� Lins� On the e�ciency of categorial combinators as a rewriting system� Software � Practice

and Experience� ���	����#��"� August �"	��

�	
 R�D�Lins� Categorical multi�combinators� In Gilles Kahn� editor� Functional Programming Lan�
guages and Computer Architecture� pages ��#�"� Springer�Verlag� September �"	�� LNCS ����

�"
 R�D�Lins ' B�O�Lira� �CMC� A Novel Way to Implement Functional Languages� in preparation

���
 R�D�Lins ' S�J�Thompson� Implementing SASL using categorical multi�combinators� Software
� Practice and Experience� ����������#����� November �""��

���
 R�D�Lins ' S�J�Thompson� CM�CM� A categorical multi�combinator machine� In Proceedings of
XVI LatinoAmerican Conference on Informatics� vol�� � pages �	���"	� Assunsion � Paraguay�
September �""��

���
 M�A�Musicante ' R�D�Lins� GMC � a graph multi�combinator machine� � Euromicro Journal �

Microprocessing and Microprogramming� �������	�#	�� North�Holland� April �""��

���
 S�Peyton Jones� The Implementation of Functional Languages� Prentice Hall� �"	��

���
 S�Peyton Jones ' D�Lester� Implementing Functional Languages� A Tutorial� Prentice Hall�
�""��

���
 D�Scott� Relating theories of the lambda�calculus� In J�P�Seldin and J�R�Hindley� editors� in To

H�B�Curry� Essays on Combinatory Logic� Lambda�Calculus and Formalism� Academic Press�
�"	��

���
 P�G�Soares ' R�D�Lins� Implementing the G�machine� Technical Report ��� UKC Computing
Lab� Report� The University of Kent at Canterbury� August �"	"�

���
 S�J�Thompson ' R�D�Lins� The Categorical Multi�Combinator Machine� CM�CM� to appear in
The Programming Journal� April "��

��	
 D�A�Turner� A new implementation technique for applicative languages� Software � Practice

and Experience� "� �"�"�

��"
 G�Wraith and D�Bosley� November �"		� private communication�

��

