Citation for published version

DOI

Link to record in KAR

http://kar.kent.ac.uk/21161/

Document Version

UNSPECIFIED

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
A Remark on Algorithm AS30 – Half-Normal Plotting
By Tim Hopkins and David Morse
Computing Laboratory, University of Kent, Canterbury, Kent CT2 7NF, UK.

Keywords: Half-normal plot; Normality of residuals; Factorial experiments; Analysis of variance.

LANGUAGE

Fortran 77.

DESCRIPTION AND PURPOSE

Given a set of root mean squares obtained from the analysis of a factorial experiment, one method of testing the significance, and/or examining for evidence of certain types of error, is to draw a half-normal plot of these values (Daniel, 1959). The subroutine takes such a set of root mean squares and plots them on a half-normal probability scale via the line printer or other device. For this sort of application the accuracy of the average line printer is more than adequate.

This routine is a Fortran 77 version of that appearing in Griffiths and Hill (1985) (originally Sparks (1970)). It uses character variables rather than storing character information in integers which was the only way of implementing such an algorithm in standard Fortran 66. Where possible data statements have been replaced by parameter statements. The code has been tidied up considerably and all output confined to a single routine to facilitate user tailoring of the final plot. A number of minor errors in a declared array length and format statements have been removed.

The only minor change to the plotting algorithm is in the range of values assigned to each line of the plot. Specifically the ith line of the plot, $0 \leq i \leq IDEPTH$, contains values in the range $(y - 0.5 \ast YSTEP, y + 0.5 \ast YSTEP]$ where $y = i \ast IDEPTH$, $YSTEP = \text{obsmax}/IDEPTH$, obsmax is the maximum value to be plotted and $IDEPTH$ defines the number of lines to be used in the plot. The original algorithm used the range $[y - 0.0001 \ast YSTEP, y + 0.999 \ast YSTEP]$ which does not give such an even distribution of points.
STRUCTURE

SUBROUTINE HNPlot(OBS, N, IWIDTH, IDEPTH, OUTPUT, IFAULT)

Formal parameters

OBS Real array (N) input: the values to be plotted, sorted such that $OBS(1) \leq OBS(2) \leq \cdots \leq OBS(N)$. Values must not be negative, or greater than 999999. There must be at least two distinct points.

N Integer input: the number of values to be plotted. Must be between 2 and 1250 inclusive.

IWIDTH Integer input: the width of the plot. Must be between 40 and 200 inclusive. See below for further details.

IDEPTH Integer input: the number of lines of the plot. Must not be less than 15. Including a horizontal axis and scaling, the total depth will be $IDEPTH + 3$.

OUTPUT External input: user provided function controlling how the plot is produced. See below for further details.
IFault Integer output: 1 for illegal value of N, Iwidth or Idepth;
2 if OBS array not correctly sorted or there are not at least two distinct points;
3 for illegal OBS value;
4 for illegal argument to PPND (this fault is probably impossible);
0 otherwise.

Auxiliary routine

STRUCTURE

SUBROUTINE OUTPUT(IDEPTH, IWIDTH, LINE, IOUT, YSTEP, RESET)

Formal parameters

IDEPTH Integer input: as routine HN PLOT.

IWIDTH Integer input: as routine HN PLOT.

LINE Integer input: 0 signifies the x-axis line is in IOUT;
 −1 IOUT contains the x-axis label markers;
 −2 IOUT contains the x-axis labels;
 [1, IDEPTH] the array IOUT contains the line of the plot at
 \(y = \text{LINE} \times YSTEP \)
 where YSTEP is defined above.
IOUT Character array (IWIDTH) **input:** contains the character DTCCHAR (see Adjustable constants section below) in elements where data values appear, blanks otherwise.

YSTEP Real **input:** the distance between successive lines on the plot in data units, may be used to label the y-axis.

RESET Logical **input:** if .FALSE. then no data values appear on the current line; may be used to reduce the amount of output performed by HNPLOT.

Auxiliary algorithm

Adjustable constants

The following values are defined in PARAMETER statements:

In routine HNPLOT

XMCHAR Character **constant:** the character used as the label marker on the x-axis.

DTCHAR Character **constant:** the character used for plotting the data points.

In routine OUTPUT

XAXCHR Character **constant:** the character used to print the x-axis of the plot.
YAXCHR Character constant: the character used to print the y-axis of the plot.

The values set are those used in Griffiths and Hill (1985).

Width of plot
Including a vertical axis and scale the total width will be $IWIDTH + 12$ if the output device is one defined by Fortran as a ‘printing’ device which takes the first character of the line as a carriage control character, or $IWIDTH + 13$ otherwise.

RESTRICTIONS
None.

PRECISION
Real precision is perfectly adequate on any computer, so the usual *Applied Statistics* devices to enable easy translation to double precision are not incorporated. If the observations are held in a double precision array, they should be copied to a single precision array to be used as the actual argument corresponding to OBS.

REFERENCES