High-Level Paradigms for Deadlock-Free High-Performance Systems

Peter Welch, George Justo and Colin Willcock
Computing Laboratory, The University, Canterbury, Kent, CT2 7NF

Abstract. This paper reviews the general notion of deadlock (and livelock) in parallel systems based upon synchronised message passing and relates them to the much worse problem of undetected data-loss in asynchronous or shared-memory communications. Two design paradigms (\textsc{I/O-Par} and \textsc{Client-Server}) are presented that guarantee freedom from deadlock for synchronised communication regimes (both continuous and irregular data-flow). The paradigms are based upon the notion of ‘synchronisation classes’ for processes that are closed under certain forms of parallel composition. Checking for deadlock-freeness devolves to checking that the base processes belong to the correct classes and that the composition rules are observed. The complexity of this checking is at worst $O(n^2)$, where n is the number of processes in the system, as opposed to $O(sn)$, where s is the (average) number of states in each process. The latter would be required for an arbitrary parallel design. The automated checking of these design rules is therefore highly practical.

High-performance applications (e.g. physical system modelling, embedded real-time systems, ...) generally consist of two components: the computationally intensive part (which is usually logically simple and can exploit the \textsc{I/O-Par} paradigm) and its controlling apparatus (which can be highly complex but can exploit the \textsc{Client-Server} paradigm). This paper reports on the design rules for hybrid combinations of the two paradigms that preserve their deadlock-free properties. Examples will be presented. The classic ‘Dining Philosopher’ system is shown to illustrate an \textsc{I/O-Par} \textsc{Client-Server} hybrid that breaks these rules.

Finally, the \textsc{Client-Server} paradigm will be looked at from the point of view of the special language support provided by \textsc{occam3}.

1 Introduction

The real-world is a demanding and complex environment in which to embed computer systems. If the latter are to be of any use to the former, we must find ways of designing them that can safely manage both the performance and complexity issues. In general, parallel methods lead to implementations that are simpler than their serial equivalents, since they build up their complex behaviours in the same way as the real-world (i.e. through the simple interaction of independent and simple entities). They also lend themselves to high-performance execution since their parallel components offer many possibilities for parallel execution on multi-processors.

However, understanding and controlling the global properties of networks of ‘simple interactions’ between processes requires an additional set of skills from the parallel system engineer. The most subtle of these skills lies in guarding against accidental data-loss during process interaction and partial (or global) deadlock/livelock. For an arbitrary

\footnote{\textsc{occam} is a registered trademark of INMOS Limited.}
parallel design, there is no mechanical way to induce, from a complete knowledge of the
local process interactions, the overall behaviour of the network. Many designs give rise
to these problems in ways that are non-deterministic – i.e. dependent on the scheduling
order of processes or the relative speed of processors. When this happens, the benefits
claimed earlier for the relative simplicity of parallel design will have been lost and
parallelism will appear to be a very difficult and dangerous tool to master.

Fortunately, there are disciplines of parallel design that result in systems whose
deadlock/data-loss properties can be analysed, although not necessarily in a completely
systematic manner (i.e. human assistance may still be needed). Foremost of these are
the occam/CSP rules: process interaction only via synchronised message passing and no
shared variables! These eliminate accidental data-loss because data is only transferred
when space has been allocated to receive it and data cannot get zapped behind your
back. Asynchronous communication requires either infinite buffering or a high-level
error-recovery protocol to guarantee its security, both of which imply serious run-time
penalties. A shared ‘variable’ does not have the simple engineering semantics of a
variable (e.g. consecutive readings of its value ought to produce the same result) and
requires very careful management. This management (e.g. semaphores) operates at too
low a level and badly compromises the overall simplicity and, therefore, security of the
parallel approach.

Synchronised message-passing leaves us only with deadlock/livelock and some special
efficiency issues to resolve before the distributed functionality of a simple parallel design
can be accepted. The efficiency problems relate to processes being unable to continue
with useful work whilst awaiting synchronisation and the actual message-transfer costs.
The first is avoided by having sufficient ‘Parallel Slackness’ [1] in the design (i.e. always
having other processes waiting to run whenever a currently executing process becomes
blocked) combined with a very low context-switch overhead (less than a micro-second
on a transputer). The second can be avoided by not having too much ‘Parallel Slackness’
in the design (e.g. by using systematic ways of reducing parallelism [2]) and hardware
support for simultaneous data-transfer and computation (e.g. as provided by a transputer
network[3]).

This paper concentrates on paradigms for parallel design that yield systems whose
operations are automatically free from deadlock.

2 Verifying the Absence of Deadlock

The choices made in the design of the occam multi-processing language mean that avoidance
of deadlock (and livelock) is the responsibility of the occam engineer. In safety-
critical applications, this responsibility must not be evaded since the consequences of
a broken system are intolerable. occam does not allow the run-time detection of (and,
hence, recovery from) arbitrary deadlock/livelock conditions, since the necessary run-
time checks would require global information on the state of the network and would,
therefore, be inefficient and unscalable. Instead, we must verify as formally as possible

\[\text{In general, we should err on the side of too much parallelism in our design - removing parallelism is much easier than adding it!}\]

\[\text{The T9000/C104 architecture provides a dramatic increase in this support compared with the earlier T2/T4/T8 series. The proposed Chameleon design from INMOS takes this considerably further.}\]
that our system is free from such errors as a normal part of the design process – an ‘off-line’ activity with no run-time cost!

To ensure deadlock-freedom, we must show that there is no state into which the system can get from which no further action (i.e. communication or, perhaps, termination) is possible. Livelock-freedom is a little stronger: there must be no state from which all external communications may be refused, even though internal activity may continue indefinitely.

The number of states in a multi-process network is bounded by the product of the numbers of the states in each component process. Even for quite modest systems (e.g. a 10 process network, where each process has 10 states), we can have the order of a billion states to check out! For almost all practical systems, exhaustive testing by generating each possible state is impossible.

Instead, our verification must consist of an exhaustive reasoning through all possible ‘categories’ of state, where the number of different categories is small. The choice of categories will depend upon the nature of the system being analysed and, in general, will require intelligent insight into its behaviour (a classical example of this being the proof of deadlock-freedom in the ‘Dining Philosophers’ problem [3]). This type of verification cannot be automated!

This paper reviews some restricted sets of rules for parallel design that have the happy property of guaranteeing deadlock-freedom (because general theorems about their properties can be proved). In this case, verifying the absence of deadlock devolves to checking that the design rules have been followed – a mechanical process that can be automated with low computational cost. We claim that these design rules are suitable for most high-performance high-complexity applications.

3 Know Your Enemy

Whilst occam cannot prevent its systems being mis-programmed and reaching a deadlocked state, it does make us well aware of the danger. It even goes so far as to provide a language primitive that explicitly generates it – STOP!

\begin{figure}[h]
\centering
\begin{tabular}{|c|}
\hline
SEQ \\
... compute \\
STOP \\
... anything \\
\hline
\end{tabular}
\caption{A Deadlocked Process}
\end{figure}

Consider the process in Figure 1, where the compute fold contains no communication. It performs no useful function, since there is no way for its environment to obtain the results of any of its internal computations. Nothing it was programmed to do in its anything fold, which may have included external communication, will ever take place. Worse than this, it is a danger to its environment since any committed attempt to communicate with it will deadlock the process that makes the attempt!

The process in Figure 2 cannot be distinguished by its environment from the process of Figure 1, even if the internal computations are completely different. The Figure 1
and Figure 2 processes are semantically identical – both represent deadlock and are useless and dangerous to their environments.

The processes in Figure 3 and Figure 4 represent livelock. To their environments, they behave in just the same way as the earlier deadlocked ones: they refuse all communications and compute nothing that can be accessed! From the point of view of processor resource, they are slightly worse. At least, the deadlocking processes eventually stop executing and just sit upon some memory resource – the livelocking processes continue to burn up computation resource as well!

All these processes offer the same semantic threat to their environments. They are entities that will not respond to any external enquiry and will deadlock any external agent that carelessly makes one – spreading the area of contamination. High-performance applications cannot tolerate such dangers. At best, time on a very expensive machine will have been wasted. At worst, people will be killed.

This may seem like a good reason to drop parallel algorithms altogether – or, at least, the occam model of it. Unfortunately, the alternatives are so much worse! Our ability to manage serial algorithms does not scale with their complexity. Mis-programmed parallel systems based upon asynchronous communication primitives or shared variables simply
become corrupt, but appear to carry on ‘working’! It is much better for erroneous systems or sub-systems to jam or chatter away harmlessly to themselves – at least we know that those parts of our application with which we are in touch are inviolate.

For safety-critical applications, we can build logical ‘fire-walls’ between physically separate sub-systems (that can independently fail for hardware or software reasons), so that failure in one will not bring down its neighbours [4][5]. Such fire-walls will contain an explicitly programmed asynchronous communication (constructed from synchronised ones), but for which the necessary data-loss is deliberate and controlled.

occam gives us excellent visibility of its communications and guarantees that each of them individually is secure. That makes a pretty good place from which to start looking for general results about deadlock/livelock.

4 Client-Server Networks

The problem with the deadlocked process in Figure 2 is that each of its sub-processes committed themselves to different communications with each other. The opposed directions of these communications is irrelevant – deadlock would still result even if both internal channels flowed the same way (one process trying to speak down one channel and the other listening on the wrong one). If we are going to allow multiple channels between processes (and, in general, we must), we need to impose some discipline on the way they are used. Two such regimes are the client-server principle (this section) and I/O-PAR (next section).

![Figure 5: Client-Server Communications](image)

The client-server principle relates to the pattern of communications across a collection of channels joining two processes. It is an attribute of this channel bundle, rather than the processes, and defines an ordering on the connection that is independent of the direction of the data-flows within it. One end is labelled the client and the other is called the server. The processes attached to these ends much conform to certain behaviour patterns when using the connection. Figure 5 shows a simple example.

4.1 Client Behaviour

A client-server transaction is always initiated by the process at the client end (process A in Figure 5). This will be a communication (that may be just a signal carrying no data) down a distinguished channel in the connection, called the claim-channel. (In Figure 5, request is the claim-channel and may well carry some data.)

We assume that this claim will always be accepted within a finite time (see 4.2 below). If we are in a time-critical sub-system of a real-time application, we will need to be told an upper bound to this acceptance time.

4 Usually, but not necessarily, this will be an output.
At this point, the processes at each end have synchronised at the start of their respective client-server transaction routines. They complete the transaction with a finite sequence of communications using any of the channels in the connection set – data may be transferred in either direction. The precise order of these communications may be pre-defined or data-dependent. During this transaction sequence, the client process may perform further relevant computation (provided this always terminates), but is not allowed to attempt communication outside the client-server connection set. The client may assume that all transaction communications (within the set) will complete within a bounded time.

In practice, the rich and varied message structures afforded by occam PROTOCOLs mean that only one channel in each direction is ever needed to support such transactions (e.g. the request and answer channels in Figure 5). It is advisable to keep the transaction sequence as simple as possible to avoid mis-programming. A common form is just a single reply to the opening signal – for example, the transaction routine in process A may be simply:

```mh
SEQ
request ! request.parameters
answer ? results
```

Note that some client-server connections may only need to transfer data in one direction. If this is from the client to the server, only one channel will usually be needed. If it is from the server to the client, a claim-channel carrying a data-less signal from the client to the server will also be needed (to open the transaction).

4.2 Server Behaviour

The process at the server end of a client-server connection must always accept a claim from that connection within a finite time. The simplest way to control this is to implement the server as an ‘interrupt-handler’ for that claim – i.e. something that remains dormant (apart from some internal housekeeping) outside each transaction. For example:

```mh
SEQ
... initialise internal state
WHILE servicing
SEQ
request ? parameters    -- the claim
... compute required information
answer ! information    -- end of transaction
... update internal state
```

Server processes are allowed to service more than just one client\(^5\). For example:

```mh
SEQ
... initialise internal state
```

\(^5\)In which case, the claim channels all have to be inputs to the server.
WHILE servicing
 ALT i /= 0 FOR SIZE request
 request[i] ? parameters -- claim
 SEQ
 ... compute information
 answer[i] ! information -- end of transaction
 ... update internal state

This code refers to the server process in Figure 6. Each transaction is 'atomic' in the sense that it cannot be interrupted with other service transactions – a client has exclusive access to the server whilst it is being served. [Note that this code is not quite sufficient, since there is no guarantee that a particular client may not be starved by the demands of an especially active colleague. However, this is easily dealt with by standard techniques for a 'fair' ALT [6] and is not discussed here.]

The compute and update folds in the above server codes must, of course, be guaranteed to terminate. Unlike client transaction routines, we do allow servers to communicate during a transaction – they may need to obtain information not held locally to satisfy the client request. Communication may therefore take place within the compute fold, but only as the client-end of a client-server connection – see Figure 7.

For example:

{{
 compute information
 IF
 ... we can handle request locally
 ... compute information here
 ... we need outside help
 SEQ -- client transaction
}}
Thus, on some of its client-server connections, this process acts as a server and on others as a client. Client transactions may be embedded within a server transaction (but may also be done elsewhere). Since we assume that client transactions always terminate within a bounded time, we can maintain our guarantee of bounded response times to our own clients.

4.3 Client-Server Deadlock/Livelock

Deadlock/livelock analysis of a network of processes communicating solely through the client-server paradigm is particularly easy—see [7] for full details. Each client-server connection defines an ordering between two processes.

Client-Server Theorem

Any network of client-server connections that is acyclic with respect to the client-server ordering is deadlock/livelock free.

Proof

By induction over any topological sorting (client-server ordering) of the processes. The hypothesis is that each process will accept any client signal within a finite time.

The bottom process in the topological sort makes no demands (as a client) to any other process in the network. Each service request to this process is handled either locally or by a client demand outside the network. We assume that external demands are serviced properly, since we are only concerned about deadlock arising within the network. Hence, we deduce that each service requested is completed in a (computable) finite time and the process will loop around ready to accept further claims. This is the base case of the induction argument.

The induction step has to establish the hypothesis on any other process, assuming it for all processes below it in the client-server ordering. In this case, each service request is handled either locally or by a client demand to a process lower in the ordering or outside the network. By induction and the same reasoning as for the base case, all these handling methods terminate successfully and, again, we deduce that this process will get ready—within a finite time—to accept further claims.

This completes the induction and we have the hypothesis for all processes in the network. Hence, external clients will always be serviced. External servers only attempt to communicate with processes in the network during transactions initiated by those processes and which those processes locally guarantee to complete. Thus, no external communications are ever refused by the network and it is deadlock/livelock-free.

Q.E.D.

4.4 Cross-Mounted Servers

Figure 8 shows a network that breaks the rules for the client-server theorem. For example, server.A and server.B may be separate file-servers, each with their individual
sets of clients. Sometimes, the files required by a client attached to server.A are only available on server.B. In this case, server.A has to become a client of server.B to obtain the necessary information. Similarly, server.B may need to obtain the services of server.A on behalf of its clients.

So long as these cross-service demands do not occur too heavily, this system may pass its validation trials and start being used. Trouble will eventually arise when server.A and server.B both become committed to making a claim to each other’s service, as a result of two unfortunately timed local requests. At this point, neither claim ever gets accepted and the file-server network deadlocks! [Note: this is a true story!!]

A deadlock-free design is given in Figure 9, where there is now no cycle in the client-server ordering. External client processes are no longer specifically attached to either server.A or server.B. Instead they connect through multiplex processes that
route transactions to the correct file-server, possibly by first consulting an independent *name.server* to decide which one to use.

4.5 The Clock Problem

Figure 10 shows a clock process that signals on its *tick* channel at a regular time interval. This time-interval is initialised by sending a value down its *reset* channel and can be changed by sending further values down the *reset*:

![Figure 10: A Clock with Speed Control](image)

```
PROC clock (CHAN OF BOOL tick, CHAN OF INT reset)
  TIMER tim:
  INT t, gap:
  SEQ
    reset ? gap
    tim ? t -- only read the absolute time once
    t := t PLUS gap
  WHILE TRUE
    PRI ALT
    reset ? gap
    SKIP
    tim ? AFTER t
    SEQ
    tick ! TRUE
    t := t PLUS gap
```

This process acts as a *server* for its *reset* channel (and for its internal *TIMER*) and as a *client* on its *tick*-channel (which it assumes will be taken before its next *tick* is due).

Suppose we want to use *clock* in an application where the process being stimulated by the *ticks* needs to control that *tick* rate — see Figure 11.

![Figure 11: A Clock Controlled by its User](image)
Suppose this user is simple enough to be implemented as a serial process. We have a cycle in the client/server ordering and, therefore, no guarantee against deadlock! In fact, the potential for deadlock is very real.

Server processes are allowed to make client calls for its own reasons or on behalf of its own clients. Under the conditions of the theorem, this does not matter since we know that those calls will always be answered. The 'down-time' of a server is the period between its decision to make such a call and actually making it. During this down-time, it is dependent upon other servers to enable it to complete its client transaction and resume its own role as a server.

For the clock process, this down-time runs from accepting its time-out guard and attempting the tick – say about 3 micro-seconds on a transputer. The user process can keep its down-time similarly small, since it can always check its tick channel just before attempting a reset. If these two down-times ever overlap, there will be deadlock. If the average clock rate set by the user were (say) one tick every 12 milli-seconds, the probability of an individual reset causing deadlock is about \((3 + 3)/12000\), which is 0.05%. If the user adjusted the clock rate on average once every 10 seconds, after nearly 3 hours continuous operation (i.e. 1024 resets) our chance of not being deadlocked reduces to 60%. After 24 hours, we have a less than 1% chance of still being alive.

The above rate of deadlock ought to show up under reasonably persistent system testing. However, suppose the parameters of this system were somewhat different. Suppose that the reset were generated by human (e.g. pilot) intervention with the user process and that this happened very rarely – say once every 24 hours flying-time. In this case, we would have to wait 2 flying-years before our deadlock chances reached 60%. This deadlock would easily be missed in testing and only show up several years into the actual service of the plane!! Such a rare deadlock is truly deadly.

The way not to 'cure' this problem is to add extra buffering in the feedback loop – see Figure 12.

![Figure 12: Buffered Reset Connection](image)

The id process cycles through waiting for a user.reset and passing it on to the clock. It acts as a server to the user.reset channel and a client to the reset. We still have a cycle in the client/server relationships and no guarantee against deadlock.

\(^6\) Note: we are reasoning here about occam processes and can make no assumptions about the mechanisms of any multi-processing scheduler (should those processes be allocated to the same processor). Relying on such properties to verify the absence of deadlock is implementation dependent and, therefore, unsafe.
However, the chances of deadlock are greatly reduced. The user process must issue a user.reset, change its mind fairly quickly and issue another one. The first reset, propagated through id, must arrive at the clock during its down-time (probability 0.025%). Also, the tick generated at the end of that period must reach the user during the down-time for its second user.reset (probability 0.025%). Thus, the probability of deadlock arising from a randomly generated reset is about 0.000006%, which still implies a 50% chance of failure after about six months flying-time (assuming resets averaging once every ten seconds).

If we programmed the user to promise some minimum tick-service time between any consecutive (user.reset-generating) down-times, then deadlock could be avoided. This minimum time must cover the propagation delay in routing the reset through id plus the down-time of the clock plus the service time for the reset by the clock. But depending upon such real-time analysis for verifying this fundamental property is complex and hard to maintain. Any change to the speed or number of processors in the system, the scheduling algorithm or number of processes, the implementation of clock or id would require re-calculation of the timing constraints to be used within user. Administration of such side-effects is not simple engineering!

The correct way to solve this problem is to use a design that meets the conditions of the client-server theorem. The system will then be free from deadlock regardless of the details listed at the end of the previous paragraph. Figure 13 applies two standard occam idioms: an auto-prompter (prompt) and an overwriting buffer (OWB), here with capacity for just one item.

![Figure 13: Secure Reset Connection](image_url)

The prompt cycles through the sequence <req!, ans?, reset!> and acts only as a client on its two connections. The OWB is a pure server, accepting user.reset at any time (which may overwrite previously sent values) and requests (provided it is not empty).

Although there are two obvious cycles of data-flow in the system, there is no cycle in the client-server ordering and, therefore, no deadlock. The OWB/prompt sub-system provides an asynchronous connection for propagating the reset signal. The data-loss inevitable from such a link is explicitly managed within OWB — i.e. it is under control. This data-loss (of an earlier reset value) is no problem in this application since it is only caused by the arrival of a change-of-mind message. The only process that may be blocked indefinitely is prompt, as it attempts to request a reset signal that may never

Note that adding buffering is similarly no solution to the cross-mounted server deadlock of 4.3
be sent. But prompt does not have to promise service to anyone and so the design is immune to this sacrifice. This system will fly forever!

4.6 The Farm Worker

Client-Server Closure

Any collection of processes that communicate only using the client-server paradigm and has an acyclic topology (with respect to client-server relationships) itself communicates with its environment by the client-server paradigm.

Proof

We just have to show that service is guaranteed to its external clients. This is an immediate corollary of the client-server theorem, which promises that the collection is deadlock/livelock-free.

Q.E.D.

Figure 14: Farm Worker Harness

Figure 14 shows the implementation of a worker in a simple processing ‘farm’. It consists of four standard ‘harness’ processes (buffer, prompter, catch and mux) and a work process that is special to the problem being farmed. The buffer is a pure server, servicing its external link (from which new work-packets arrive) and request-connections from work and prompter.

The prompter, as before, is a pure client, making demands on the buffer and forwarding anything it gets to the next worker in the farm (see Figure 15). The central work process has the same communication behaviour as the prompter – it is a pure
client, obtaining work-packets from buffer, processing them and outputting result-packets to mux.

The mux process services result-packets from its two input connections and multiplexes them (as a client) on to its external output link.

The catch process is a one-place buffer (like id), forwarding result-packets from the previous worker to mux. Its purpose is to service the external link in, result so that it may operate in parallel with out, result. In fact, all four external links of worker may operate simultaneously (and their respective handlers operate at higher priority than work to let this happen whenever possible).

![Figure 15: A Farm](image)

This design has no client-server cycle and worker is, therefore, deadlock/livelock-free and may be treated as a client-server component. A complete farm is shown in Figure 15, where the first worker omits the catch process and the last one omits the prompter. The worker-pipeline is a server to the farmer (who does not know which worker will service which packet) and a client to the harvester (who does not know which worker produced which result). We have a simple pipeline of parallel client-server connections and are, therefore, deadlock-free.

5 I/O-PAR and I/O-SEQ Networks

Consider a physical system whose components behave in a way determined only by their own state and those of their immediate neighbours (e.g. fluid flow, logic circuits, road-trafic, heart muscles, real-time control laws, bungee jumping, ...). Such a system can be precisely emulated by a network of communicating processes, each of which models one component, and whose topology exactly reflects that of the real system.

An I/O-PAR normal form \[8\][9] is a process that has a cyclic serial implementation, except for its communications which always operate in parallel:

```
WHILE running
SEQ
  ... parallel i/o (once on all channels)
  ... compute
```

An I/O-SEQ normal form is similar, except that the parallel inputs are done in sequence with the parallel outputs:

```
WHILE running
SEQ
  ... parallel inputs (all input channels)
  ... compute
```
Components of the physical system described above may always be implemented in one of these normal forms. \(I/O-SEQ\) is usually applied in systems where the component interaction is not symmetric (e.g. logic circuits and control laws). In practice, the system domain is divided up ‘geometrically’ into regions containing similar numbers of component – the number of regions equalling the number of processors at our disposal. The components in each region are modelled together as a single normal form, with each one being placed on its own processor. A simple transformation (using the laws of occam [10]) is usually performed to overlap input/output with all possible computation (so we don’t have to pay the transfer fees):

\[
\text{WHILE running}
\]
\[
\text{SEQ}
\]
\[
\text{PRI PAR}
\]
\[
\text{... exchange boundary data (parallel i/o)}
\]
\[
\text{... compute on middle of region}
\]
\[
\text{... compute on boundaries}
\]

Note that the above is semantically equivalent to the pure \(I/O-PAR\) normal form - i.e. indistinguishable by any environment.

\text{I/O-PAR Theorem}

Any network of \(I/O-PAR\) normal form processes is deadlock-free.

\text{Proof}

\text{Lemma:} any occam program with no ALTs is deterministic (in the sense of CSP [3]). [By definition, the parallel operator, \(\parallel\), of CSP is deterministic. However, the hiding operator, \(\backslash\), may introduce non-determinism and the occam PAR operator automatically introduces hiding (for all internal communications). We leave it to the reader to verify that hiding all internal events between CSP parallel processes still leaves determinism intact.]

\text{Lemma:} if one infinite trace exists for a deterministic process, \textit{all} traces can be extended – i.e. it is deadlock-free. [Again, this is left as an exercise.]

Clearly, any network of \(I/O-PAR\) processes contains no ALTs – so it is deterministic. If the network is scheduled as if there were a global ‘barrier synchronisation’ at the end of each normal form cycle, it is again clear that it will run forever – i.e. this gives an infinite trace. Hence, any trace resulting from any scheduling pattern can be continued.

\text{Q.E.D.}

A full proof may be found in [9], which also introduces the following notions.

\text{Definitions}

An ‘\(I/O-R_{net}\)’ is any connected network of \(I/O-PAR\) and \(I/O-SEQ\) normal forms.
An ‘I/O-SPnet’ is an I/O-Rnet such that there is no closed loop consisting only of I/O-SEQ normal forms and no path from external input to external output consisting only of I/O-SEQ normal forms.

Two processes are ‘p-equivalent’ if they cannot be distinguished by any I/O-Rnet environment.

I/O-PAR/SEQ Closure

Any I/O-SPnet is p-equivalent to an I/O-PAR normal form.

Proof

See [9].

Q.E.D.

Note that p-equivalence is weaker than trace-equivalence. A non-trivial I/O-SPnet cannot be serialised into an I/O-PAR normal form using transformations that obey the laws of occam. For instance, an I/O-SPnet with several I/O-PAR normal forms will allow traces in which some external communications have taken place many more times than others. A single I/O-PAR normal form will only allow traces in which the numbers of occurrences of each channel differs by at most one. Thus, we could create an environment in which the normal form deadlocks but the network does not. However, for all I/O-Rnet environments (which are the only environments for which they are designed) either they both deadlock (although not necessarily after the same trace) or they both do not deadlock.

I/O-PAR/SEQ Theorem

Any I/O-SPnet is deadlock/livelock-free.

Proof

Suppose it is not! Then there is a trace (of external communications) after which all further external communications may be refused.

Construct an I/O-Rnet environment to support this trace as follows. To each external channel of the I/O-SPnet, attach a pipe-line (‘spoke’) of I/O-PAR normal forms of length equal to the number of occurrences of the channel in the deadlocking/livelocking trace. Connect the end processes of each adjacent ‘spoke’ together to form a connected I/O-Rnet. This environment will accept the trace (with each normal form cycling by one more than its distance from the ‘rim’).

Apply this I/O-Rnet to its p-equivalent I/O-PAR normal form. Since the original network deadlocked/livelocked in this environment, so – at some stage – should the normal form. Since the normal form only has external channels and cannot cycle without using them, livelock is impossible – i.e. it must deadlock with the environment. But the environment consists solely of I/O-PAR normal forms – i.e. the combined system cannot deadlock (by the I/O-PAR theorem). Contradiction!

Therefore, the trace from which the I/O-Rnet was constructed cannot exist and the I/O-SPnet must be deadlock/livelock-free.

Q.E.D.
This closure property gives us design rules for constructing parallel emulators for a wide range of physical systems as a hierarchy of I/O-SPnets that are guaranteed deadlock and livelock free. Each net models the behaviour of a real system component. At the lowest level are simple normal forms emulating the simplest components of the system.

[9] gives (and implements) a constructive serialisation from an arbitrary I/O-SPnet to its p-equivalent normal form. This has practical significance since it allows us to automate the production of optimised parallel code for any chosen ‘domain decomposition’ of the system. Thus, distributing the original finely-grained massively parallel design on to any (smaller) number of parallel processors can be mechanised.

6 Hybrid Networks

The client-server paradigm supports regular designs (such as farming) but is especially useful for the safe construction of irregular networks that model complex system interfaces. The I/O-PAR and I/O-SEQ paradigm only supports the modelling of regular systems for which domain decomposition is the appropriate strategy. However, if we want the latter to be more than just an off-line activity (e.g. we want to have visual feedback on the emulation and/or interactive control over its progress and system parameters), we will need to build a rich interface. The right tool for this is client-server, which means that we must be able to design safe client-server and I/O-PAR hybrids.

Hybrid nets are safe provided we can maintain a separate view of the different types of network as intact sub-systems, even though the same processes may be part of differently typed sub-systems.

For example, Figure 16 shows a worker process, rope, for modelling a section of an elastic rope in the simulation of a ‘bungee jump’ [11]. It is I/O-PAR on its horizontal links, but acts as a server on its control line and client on its dump channel:

```
WHILE running
  SEQ
  PRI PAR
  PAR
    ... i/o-parallel horizontally
    ... poll control for new parameters
    ... compute on middle
    ... compute on boundaries
    ... dump current state (occasionally)
    ... update current parameters (if necessary)
```

Figure 16: A Hybrid Component
If we ignore the control and dump channels, rope is an I/O-PAR normal form and may be replicated (horizontally) to form a deadlock-free model of the complete rope. We may now assume that the horizontal communications always succeed.

Each rope process is now connected through its dump channel to a client-server network that multiplexes the state information to a graphics device. Each rope process acts as a pure client to this sub-network and graphics is a pure server. So long as this sub-network is built according to the rules of the client-server theorem, we know that it will never refuse the dump request from rope.

[Note: rope need not make a dump on every cycle, since that may take too much time and block progress on the computation. Part of the graphics delivery network may reside on the same processor as rope, so that the physical output of state information from the processor can be executed in parallel over several cycles of rope. Only a one-place buffer (e.g. id) is needed for this.]

As far as the control line is concerned, the rope process now looks like a ‘busy-waiting’ server. Whenever a control message arrives (carrying new parameter information for the simulation – e.g. time-step, rope elasticity, gravity, viscosity or even new position and velocity data for some or all of the rope particles), the rope process guarantees to complete its current cycle and accept the signal.

We may therefore place above each rope process a client-server network that delivers the control information. The rope process now appears to be a pure server to this sub-network and will not deadlock it.

![Diagram](image)

Figure 17: A Hybrid Network

Figure 17 shows the complete system. It is a hybrid of two separate client-server networks joined along an I/O-PAR seam. The I/O-PAR pipeline handles the main computational functions and the client-server nets deliver interactive control and graphics
The user interface process will have a rich internal client-server structure to manage simply its diverse responsibilities. Two of its internal processes will also have I/O-PAR normal forms with respect to their connections to the ends of the I/O-PAR pipeline.

In general, it is quite safe for a process to have client connections, server connections and I/O-PAR (or I/O-SEQ) connections - but they must, of course, all be different. So long as the individual sub-networks constructed from these hybrids satisfy either the rules for the client-server theorem or are I/O-SPnets, the overall system will remain free from deadlock and livelock.

(Note: the system in Figure 17 may be directly configured on to existing T2/T4/T8 networks using the automatic ‘virtual channel routing’ option provided by the latest occam Toolset from INMOS. Alternatively, a special-purpose routing network (constructed to a deadlock-free client-server design) can be added. For T9000/C104 networks, all the virtual channels and routers needed for direct execution of the system are provided by the hardware.)

An example of a hybrid network that does not follow these rules is the model of collegiate life described in the ‘Dining Philosophers’ story. Each philosopher is an I/O-PAR normal form who cycles through ‘thinking’ (computation), ‘grabbing the forks’ (I/O-PAR signals), ‘eating’ (computation) and ‘putting down the forks’ (I/O-PAR signals). [Note: some versions of this tale have the philosophers picking up (and putting down) their forks in a particular order – in which case, I/O-PAR is replaced by I/O-SEQ.]

On the other hand, each fork is a pure server handling signals from the philosophers on either side. A transaction covers the period from being ‘picked up’ by one of the philosophers (this is the claim signal) to being ‘put down’.

The college consists of a ring of alternating philosophers and forks. For each connection, one side thinks it is part of an I/O-PAR communication and the other thinks it is part of a client-server one – confusion reigns! None of the conditions required for the theorems that guarantee deadlock freedom apply. The college deadlocks.

7 occam3 Support for Client-Server Networks

occam3 [12] provides language support for client-server transactions. This enables the compiler to ensure that individual clients and servers conform to the behaviour patterns specified for them in sections 4.1 and 4.2, as well as to generate much faster codes for their implementation. We have both added security and added performance.

First of all, occam3 introduces channel-types, which allow us to group together as a single unit the various channels (carrying different protocols and directions of data-flow) that make up a single client-server connection.

Secondly, it allows a particular instance of such a connection to be shared between a single server process and any number of clients – see Figure 18.

Sharing automatically introduces a claim-channel into the connection (or something equivalent that performs this function). A client initiates a transaction by making a claim on the shared connection. When this claim is granted (by the server), the client has exclusive use of the channel resources provided by the connection to interact with the server. For the shared connection called X.bus in Figure 18, a client transaction looks like:
CLAIM X.bus
 ... use X.bus to interact with the server

The language will not allow clients to use X.bus channels outside such a CLAIM. Inside the body of the CLAIM, only X.bus channels may be used – no other synchronising events are permitted. When the body of the CLAIM terminates, the transaction is complete and the client yields control of the connection. This sequence of claiming, using and releasing the shared medium cannot be violated.

The server process manages in-coming claims on a FIFO-queue. If the queue is non-empty, it must grant access on the X.bus to the process at the head of the queue within a bounded time. A server transaction looks like:

GRANT X.bus
 ... use X.bus to interact with a client

As before, the server may only use X.bus channels within such a GRANT. Unlike clients though, a server may indulge in other synchronisations within the body of the GRANT (like making a CLAIM to another server on behalf of its current client). When the body of the GRANT terminates, the transaction is complete and the server regains its authority on X.bus (and should check its queue again). This sequence of granting, using and regaining control of the shared medium cannot be violated.

As a result, clients have mutually exclusive access to the server. The server ‘fairly’ grants audiences to its clients on a first-come-first-served basis. Each GRANT is managed with a constant overhead – we no longer have the ALT-penalty, whose overhead grows linearly with the number of clients. [However, ALT is retained in occam3, since a FIFO management of competing events is not always what we want. Also, GRANTS may be used as guards in ALTs so that a server may service several sets of clients on separate shared connections – see Figure 20.]

However, occam3 does not do everything for us! We still have to perform the higher-level checks of ensuring there are no cycles in the client-server ordering. We also must
check the low-level algorithm in each server to guarantee that it waits on its service lines in each cycle. [Although, for simple loops, occam3 provides a SERVER process declaration that supplies this guarantee – but we shall not examine this here.]

7.1 A Simple occam3 Farm

The abstraction of a shared connection is not restricted by physical configuration. The clients and their server may be distributed over any number of processors. 79000/C104 configurations will support a distributed shared connection in hardware.

![Diagram of an occam3 Farm](image)

Figure 19: An occam3 Farm

Figure 19 shows an occam3 design for a farm of worker processes. It is extremely simple (as it should be) and quite takes away the fun we used to have implementing such things. Each work process, W, is a pure client (as it was in Figure 14), but this time it makes claims directly on the (remote) farmer and harvester, who are now both servers (compare with Figure 15).

The farmer and harvester simply wait on their respective service lines. The farmer responds to a claim by outputting another work-packet. The harvester responds to a claim by inputting a result-packet. As with the earlier farm, neither needs to know (and does not care) with which worker it is dealing.

The worker, W, simply cycles through claiming the farmer, processing the work-packet and claiming the harvester. To save being blocked whilst claiming, it might buffer one work and one result packet internally (either by including two one-place buffer processes or turning itself into an I/O-PAR – or CLAIM-PAR – normal form).

Clearly, the farm has no client-server cycle and is therefore deadlock/livelock-free.

7.2 An occam3 Farm of Servers

A more sophisticated farm is shown in Figure 20. This time the workers are themselves servers, S, offering their services to the world-at-large. The farmer is now a manager, M, controlling the allocation of farm services to clients, C. Clients want to be given the first available server and do not mind which one they get.

The manager, M, services two shared connections: a public one for use by clients requesting service and a private one known only to the servers. When a server is free, it reports to the manager by making a CLAIM on its private line. The manager lets these queue up until a client makes a CLAIM on the public line. To service the client, it waits for a server CLAIM (possibly with a time-out – it's up to the client). The server tells the manager its name and issues a password (end of server transaction) and these
details are forwarded to the *client* (end of *client* transaction). The *client* then calls on the named *server*, uses the password and gets the desired service.

If there is a recession (not enough *clients*), the *servers* will end up queueing for work. If there is a boom (too many *clients*), the *clients* will have to queue for service. The queues are automatically managed by the mechanics of the shared channels – no programming is needed!

This *server* farm can be made highly secure against *client* misuse, especially if *occam3* CALL channels can be used for the public *server* connections. CALL channels should be used for *client*-server connections when we do not need computational support or independent decision making from the *client* during an individual transaction. The *client* process is suspended during a CALL, whilst the *server* process runs the transaction and has been given certain access rights to certain *client* resources (*e.g.* data-structures). Because only the *server* process is active, the transaction cannot deadlock because of mis-programming between the *client* and *server*.

The benefit now is that the *server*, S, can immediately terminate a *client* CALL if an incorrect password is supplied (or at any time during the transaction if it so chooses). The *client*, no matter how it has been programmed, cannot resist this! Since each *server* generates a new password each time it reports to the *manager*, a *client* cannot by-pass the *manager* and try to pick up a *server* directly. Even when it has been allocated a *server*, it cannot hang on to it indefinitely!

The *server* may also set an internal time-out on the validity of its password, starting from the end of its transaction with the *manager*. If the *client* does not CALL in time, the *server* goes back to the *manager*. In this way, a *client* cannot acquire a *server* in advance of its actual need and sit on it – an anti-social pattern of behaviour!!

This multi-*client*/multi-*server* system contains no *client*-server cycles and is safe.
Two paradigms have been presented for parallel system design using synchronised message-passing that guarantee freedom from deadlock and livelock.

`I/O-PAR` designs cover the computationally intensive core of super-computing or high-performance embedded applications that model physical phenomena through ‘domain decomposition’. They may be combined with `client-server` networks to provide interactive control and visualisation. They may be tuned automatically to produce optimised codes for different numbers of processor.

`Client-server` principles cover the design of processor ‘farms’ for high-performance applications whose parallel decomposition is logically regular, but requires dynamic load-balancing. They are also suitable for the safe and maintainable construction of networks with irregular topology. These greatly simplify the implementation of ever-increasing levels of sophistication in real-world interfaces (such as an X-window server [7][13]), where the specifications demand similarly irregular functionality.

The analysis of `client-server` principles in this paper is not complete. In particular, its closure property is too strong. For example, if we combined the `prompt` and `OWB` processes of Figure 13, we would get a component with the same `client-server` connections as the `id` process of Figure 12 — and an apparent cycle in the `client-server` ordering!

We need to introduce the notion of `dependency` between `server` and `client` connections to the same process. For a serial process, the `server` connections are always dependent upon the bounded acceptance of all `client` transactions that are attempted — any failure will break the promise it must maintain to its own `clients`. However, the `user.reset server` connection on a combined `prompt/OWB` process is not dependent on the `reset client` connection being accepted.

`Server` connections can also become dependent upon other `server` connections! For example, when the `buffer` process in the `worker` harness (Figure 14) is full, the `buffer` refuses service on its `in.work` connection. This connection then becomes dependent on its sibling connections (both `server` ones) being called in order for its own service to be resumed. Tracing this through, we see that the `in.work server` is dependent upon the `out.work` and `out.result clients`. The `in.result server` is dependent only upon the `out.result client`.

These dependencies should be part of the specification of a `client-server` component and the rules need to be worked out for how these dependencies are inherited by ‘properly’ composed `client-server` networks. The ‘proper’ composition rules must be relaxed so that they only forbid cycles of `client-server` connections that are all pair-wise dependent.

However, the current rules — although too restrictive in the case of `client-servers` — are flexible enough to allow the design of a very wide range of high-performance and safety-critical applications.

Parallelism gives us simplicity and physical concurrency. Synchronised message-passing and no shared variables give us secure communications (i.e. no unexpected data-loss). Parallel slackness, auto-serialisation, microsecond context-switches and hardware support for concurrent computation-with-communication give us efficiency. The `client-server` and `I/O-PAR` paradigms, with their respective closure rules, give us freedom from deadlock and livelock (without the need for state analysis of the system design).
occam and the transputer have always supported all these principles. occam3 and the new T9000 family support them to a considerably greater depth. The need for occam3 to be implemented in full is crucial for the widespread development of these ideas and the safe exploitation of High-Performance Computing in general.

9 Acknowledgements

We are very grateful to all our colleagues who have talked through (and used!) these ideas. Special thanks are owed to Andy Bakkers, David Beckett, Vedat Demiralp, Jon Kerridge, Roger Peel, Dyke Stiles, Shane Sturrock and Steven Turner.

References