# Hopkins, Tim and Morse, David R. (1992) Cumulative Index to the ACM Algorithms. Technical report. , University of Kent, Canterbury, UK 

Downloaded from<br>https://kar.kent.ac.uk/21026/ The University of Kent's Academic Repository KAR

## The version of record is available from

## This document version UNSPECIFIED

## DOI for this version

## Licence for this version UNSPECIFIED

Additional information

## Versions of research works

## Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

## Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

## Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository\#policies).

# Cumulative Index to the ACM Algorithms 

Tim Hopkins and David Morse<br>Computing Laboratory<br>University of Kent<br>Canterbury<br>Kent, CT2 7NF, UK

October 6, 1992


#### Abstract

This report contains a cumulative index to the Collected Algorithms of the ACM. The algorithms are classified using the modified SHARE classification, several different views of which are provided in Chapter 1. The source codes of these routines originally appeared in the Communications of the ACM and, from Algorithm 493, in the ACM Transactions on Mathematical Software. All algorithms up to and including those appearing in the December 1991 issue of TOMS are included in the index. Information on how to obtain sources of the algorithms is given in Appendix A.

The references given in the index provide the original source in bold face followed by any published remarks or certificates. The format of each reference is <journal> <volume>:<page> where <journal> is C for CACM, T for TOMS and, in the single case of Algorithm 568, X for Transactions on Programming Languages and Systems.

The index was built from a bibliographic database which is an extension to that previously provided as Algorithm 620. This extended database plus a set of Fortran 77 routines to manipulate individual items has been published as [1]. The complete submitted remark is included in this report as Appendix B.

We have also added a perl script for performing a number of transformations of the original database. This is faster and more easily modified than the original Fortran routines. It is described in more detail in Appendix A.

We hope that users of numerical software will find this index a good starting point in their search for reliable public domain numerical routines.


## Contents

1 The SHARE Classification 2
2 Cumulative Index: Algorithms 1-701 8
A Availability of Data, Tools and Algorithm Sources 33
B A Remark on ACM TOMS Algorithm $620 \quad 35$

## Chapter 1

## The SHARE Classification

| A1 | Real Arithmetic, Number Theory |
| :--- | :--- |
| A2 | Complex Arithmetic |
| B1 | Trig and Inverse Trig Functions |
| B2 | Hyperbolic Functions |
| B3 | Exponential and Logarithmic Functions |
| B4 | Roots and Powers |
| C1 | Operations on Polynomials and Power Series |
| C2 | Zeros of Polynomials |
| C5 | Zeros of one or more Nonlinear Equations |
| C6 | Summation of Series, Convergence Acceleration |
| D1 | Quadrature |
| D2 | Ordinary Differential Equations |
| D3 | Partial Differential Equations |
| D4 | Differentiation |
| D5 | Integral Equations |
| E1 | Interpolation |
| E2 | Curve and Surface Fitting |
| E3 | Smoothing |
| E4 | Minimizing or Maximizing a Function |
| F1 | Matrix Operations, including Inversion |
| F2 | Eigenvalues and Eigenvectors of a Matrix |
| F3 | Determinants |
| F4 | Simultaneous Linear Equations |
| F5 | Orthogonalization |
| G1 | Simple Calculations on Statistical Data |
| G2 | Correlation and Regression Analysis |
| G5 | Random Number Generators |
| G6 | Permutations and Combinations |
| G7 | Subset Generators |
| H | Operations Research, Graph Structure |
| I5 | Input - Composite |
| J6 | Plotting |
| K2 | Relocation |
| L2 | Compiling |
| M1 | Sorting |
| M2 | Data Conversion and Scaling |
| O2 | Simulation of Computing Structure |
| R2 | Symbol Manipulation |
| S | Approximation of Special Functions |
| Y1 | Physics Applications |
| Z | All Others |
|  | Sing |
| Dis |  |

Figure 1.1: Classification by SHARE index
Z All OthersS Approximation of Special FunctionsG6 Combinations and Permutations
L2 Compiling
A2 Complex Arithmetic
I5 Composite Input
O2 Computing Structure Simulation
C6 Convergence Acceleration
M2 Conversion and Scaling of Data
G2 Correlation and Regression Analysis
E2 Curve and Surface Fitting
M2 Data Conversion and Scaling
F3 Determinants
D2 Differential Equations, Ordinary
D3 Differential Equations, Partial
D4 Differentiation
F2 Eigenvalues and Eigenvectors of a Matrix
B3 Exponential and Logarithmic Functions
E4 Function Minimizing or Maximizing
H Graph Structure, Operations Research
B2 Hyperbolic Functions
I5 Input-Composite
D5 Integral Equations
E1 Interpolation
F1 Inversion of a Matrix
F4 Linear Equations, Simultaneous
F1 Matrix Operations, including Inversion
B3 Logarithmic Functions and Exponential
F2 Matrix Eigenvalues and Eigenvectors
F1 Matrix Operations, Including Inversion
F3 Matrix, Determinant of
E4 Maximizing a Function
E4 Minimizing a Function
C5 Nonlinear Equations, Zeros of
A1 Number Theory

Figure 1.2: SHARE classification by subject

C1 Operations on Polynomials and Power Series
H Operations Research, Graph Structure
D2 Ordinary Differential Equations
F5 Orthogonalization
D3 Partial Differential Equations
G6 Permutations and Combinations
Y1 Physics Applications
J6 Plotting
C1 Polynomials, Operations on
C2 Polynomials, Zeros of
C1 Power Series, Operations on
B4 Powers and Roots
D1 Quadrature
G5 Random Number Generators
A1 Real Arithmetic
G2 Regression and Correlation
K2 Relocation
B4 Roots and Powers
M2 Scaling and Conversion of Data
C6 Series, Summation and Convergence Acceleration of
G1 Simple Calculations on Statistical Data
O2 Simulation of Computing Structure
F4 Simultaneous Linear Equations
E3 Smoothing
M1 Sorting
S Special Functions, Approximation of
G2 Statistical Data, Correlation and Regression Analysis of
G1 Statistical Data, Simple Calculations on
G7 Subset Generators
C6 Summation of Series
E2 Surface and Curve Fitting
R2 Symbol Manipulation
B1 Trig and Inverse Trig Functions
F5 Vectors, Orthogonalization of
C5 Zeros of one or more Nonlinear Equations
C2 Zeros of Polynomials
Figure 1.2: SHARE classification by subject (contd.)
S04 Bernoulli and Euler Numbers and Polynomials
S18 Bessel Function, Modified
S19 Bessel Functions of Complex Argument
S18 Bessel Functions of Pure Imaginary Argument
S17 Bessel Functions of Real Argument
S20 Bessel and Related Functions, Miscellaneous
S14 Beta Function and Incomplete Beta Function
S03 Binomial Coefficients
S07 Circular Functions, Miscellaneous
S19 Complex Argument, Bessel Functions of
S13 Cosine Integrals
S23 Curve-Fitting
S04 Derivatives and Differences of Zero
S15 Derivatives
S04 Differences and Derivatives of Zero
S23 Differentiation, Numerical
S21 Elliptic Integrals and Functions
S15 Error Integral
S04 Euler and Bernoulli Numbers and Polynomials
S13 Exponential Integrals
S14 Factorial Function
S03 Factorials
S22 Functions: Miscellaneous Higher Mathematical Functions
S14 Gamma Function and Incomplete Gamma Function
S15 Hermite Polynomials and Functions
S15 Higher Integrals
S22 Higher Mathematical Functions, Miscellaneous
S18 Imaginary Argument, Bessel Functions of
S14 Incomplete Beta and Gamma Functions
S13 Integrals of Exponentials, Logarithms, Sines, Cosines, etc.
S21 Integrals, Elliptic
S15 Integrals: Higher Integrals and the Error Integral

Figure 1.3: Classification of Special Functions
S23 Integration, Numerical
S23 Interpolation
S04 Inverse Powers, Sums of
S19 Kelvin Functions
S16 Legendre Functions
S13 Logarithmic Integrals
S22 Miscellaneous Higher Mathematical Functions
S18 Modified Bessel Functions
S15 Moments
S23 Numerical Differentiation and Integration
S03 Partitions
S14 Polygamma Function
S15 Polynomials, Hermite
S04 Powers and Inverse Powers, Sums of
S14 Psi Function
S13 Sine Integrals
S07 Spherical Functions, Miscellaneous
S04 Sums of Powers and of Inverse Powers
S21 Theta Functions
S07 Trigonometric Functions, Natural
S04 Zero, Differences and Derivatives of

Figure 1.3: Classification of Special Functions (contd.)

## Chapter 2

Cumulative Index: Algorithms 1-701

## A1: Real Arithmetic, Number Theory

| 7 | Euclidian Algorithm | C3:240 |
| :---: | :---: | :---: |
| 35 | SIEVE | $\begin{aligned} & \text { C4:151 C5:209 C5:438 } \\ & \text { C10:570 } \end{aligned}$ |
| 61 | Procedures For Range Arithmetic | C4:319 |
| 68 | Augmentation | C4:339 C4:498 |
| 72 | Composition Generator | C4:498 C5:439 |
| 93 | General Order Arithmetic | C5:344 C5:514 |
| 95 | Generation of Partitions in Part-Count Form | C5:344 |
| 99 | Evaluation of Jacobi Symbol | C5:345 C5:557 |
| 114 | Generation of Partitions with Constraints | C5:434 |
| 139 | Solutions of the Diophantine Equation | C5:556 C8:170 |
| 223 | Prime Twins | C7:243 |
| 237 | Greatest Common Divisor | C7:481 C7:702 |
| 262 | Number of Restricted Partitions of $N$ | C8:493 |
| 263 | Partition Generator | C8:493 |
| 263A | Gomory 1 | C8:601 C13:326 |
| 307 | Symmetric Group Characters | C10:451 C11:14 |
| 310 | Prime Number Generator 1 | C10:569 C10:570 C13:192 |
| 311 | Prime Number Generator 2 | C10:570 C10:570 |
| 313 | Multi-Dimensional Partition Generator | C10:666 |
| 356 | A Prime Number Generator Using the Treesort Principle | C12:563 |
| 357 | An Efficient Prime Number Generator | C12:563 C16:489 |
| 371 | Partitions in Natural Order | C13:52 |
| 372 | An Algorithm to Produce Complex Primes CSIEVE | C13:52 C13:695 |
| 373 | Number of Doubly Restricted Partitions | C13:120 |
| 374 | Restricted Partition Generator | C13:120 |
| 386 | Greatest Common Divisor of $n$ Integers and Multipliers | C13:447 C16:257 |
| 401 | An Improved Algorithm to Produce Complex Primes | C13:693 C13:695 |
| 403 | Circular Integer Partitioning | C14:48 |
| 448 | Number of Multiply-Restricted Partitions | C16:379 |
| 469 | Arithmetic Over a Finite Field | C16:699 |
| 524 | MP: A Fortran Multiple-Precision Arithmetic Package | T4:71 T5:518 |
| 567 | Extended Range Arithmetic and Normalized Legendre Polynomials | T7:141 |
| 665 | MACHAR: A Subroutine to Dynamically Determine Machine Parameters | T14:303 |
| 693 | A Fortran Package for Floating-point Multiple-precision Arithmetic | T17:273 |

## A2 : Complex Arithmetic

| 116 | Complex Division | C5:435 |
| :--- | :--- | :--- |
| 186 | Complex Arithmetic | C6:386 |

## B1 : Trig and Inverse Trig Functions

| 206 | Arccossin | C6:519 C8:104 |
| :--- | :--- | :--- |
| 229 | Elementary Functions by Continued Fractions | C7:296 C12:692 |
| 241 | Arctangent | C7:546 |

## B3 : Exponential and Logarithmic Functions

46

Exponential of a Complex Number C4:178 C5:347

Logarithm of a Complex Number
C7:660 C8:279

## B4 : Roots and Powers

| 53 | Nth Roots of a Complex Number | C4:180 C4:322 |
| :--- | :--- | :--- |
| 106 | Complex Number to a Real Power | C5:388 C5:557 |
| 190 | Complex Power | C6:388 |
| 650 | Efficient Square Root Implementation on the 68000 | T13:138 |

## C1 : Operations on Polynomials and Power Series

Polynomial Transformer
C3:604
Coefficient Determination
C5:551
Exponential of Series
C5:553 C6:390
158 Exponentiation of Series
C6:104 C6:390 C6:522
193
Reversion of Series
C6:388 C6:745
273 SERREV
C9:11
305 Symmetric Polynomials
C10:450 C11:272
337 Calculation of a Polynomial and Its Derivative Values by Horner
C11:633 C12:39
Scheme
446 Ten Subroutines for the Manipulation of Chebyshev Series
604 A Fortran Program for the Calculation of an Extremal Polynomial
641 Exact Solution of General Systems of Linear Equations
C16:254 C18:276

Exact Solution T12:149

## C2 : Zeros of Polynomials

| 78 | Rational Roots of Polynomials with Integer Coefficients | C5:97 C5:168 C5:440 |
| :---: | :---: | :---: |
| 105 | Newton Maehly | C5:387 C6:389 |
| 174 | A Posteriori Bounds on a Zero of a Polynomial | C6:311 |
| 256 | Modified Graeffe Method | C8:379 C9:687 |
| 283 | Simultaneous Displacement of Polynomial Roots if Real and Simple | C9:273 |
| 326 | Roots of Low-Order Polynomial Equations | C11:269 |
| 340 | Roots of Polynomials by a Root-Squaring and Resultant Routine | C11:779 C12:281 |
| 419 | Zeros of a Complex Polynomial | C15:97 C17:157 |
| 429 | Localization of the Roots of a Polynomial | C15:776 C16:490 C16:5 |
| 493 | Zeros of a Real Polynomial | T1:178 |
| C5 : Zeros of one or more Nonlinear Equations |  |  |
| 2 | Rootfinder | $\begin{aligned} & \text { C3:74 C3:354 C3:475 } \\ & \text { C4:153 } \end{aligned}$ |
| 4 | Bisection Routine | C3:174 C4:153 |
| 15 | Rootfinder II | $\begin{aligned} & \text { C3:475 C3:475 C3:602 } \\ & \text { C4:153 } \end{aligned}$ |
| 25 | Real Zeros of An Arbitrary Function | C3:602 C4:153 C4:154 |
| 26 | Rootfinder III | C3:603 C4:153 |
| 196 | Muller's Method for Finding Roots of an Arbitrary Function | C6:442 C11:12 |
| 314 | Finding a Solution of $N$ Functional Equations in $N$ Unknowns | C10:726 C12:38 |
| 316 | Solution of Simultaneous Nonlinear Equations | C10:728 C14:493 |
| 365 | Complex Root Finding | C12:686 |
| 378 | Discretized Newton-like Method for Solving a System of Simultaneous Nonlinear Equations | C13:259 |
| 413 | ENTCAF and ENTCRE: Evaluation of Normalized Taylor Coefficients of an Analytic Function | C14:669 |
| 443 | Solution of the Transcendental Equation we ${ }^{w}=x$ | C16:123 C17:225 |
| 502 | Dependence of Solution of Nonlinear Systems on a Parameter | T2:98 |
| 554 | BRENTM: A Fortran Subroutine for the Numerical Solution of Systems of Nonlinear Equations | T6:240 |
| 555 | Chow-Yorke Algorithm for Fixed Points or Zeros of $C^{2}$ Maps | T6:252 |
| 566 | Fortran Subroutines for Testing Unconstrained Optimization Software | T7:136 |
| 631 | Finding a Bracketed Zero by Larkin's Method of Rational Interpolation | T11:120 T12:72 |
| 652 | HOMPACK: A Suite of Codes for Globally Convergent Homotopy Algorithms | T13:281 |
| 666 | CHABIS: A Mathematical Software Package for Locating and Evaluating Roots of Systems of Nonlinear Equations | T14:330 |
| 681 | INTBIS, a Portable Interval Newton/Bisection Package | T16:152 |

## C6 : Summation of Series, Convergence Acceleration

Euler Summation
Summation of Fourier Series
157 Fourier Series Approximation
C3.318 C6:663

C6:103 C6:521 C6:618
215 Shanks
255 Computation of Fourier Coefficients
277 Computation of Chebyshev Series Coefficients
320 Harmonic Analysis for Symmetrically Distributed Data
338 Algol Procedures For the Fast Fourier Transform
339 An Algol Procedure for the Fast Fourier Transform with Arbitrary Factors

345 An Algol Convolution Procedure Based on the Fast Fourier Transform

393 Special Series Summation with Arbitrary Precision
473 Computation of Legendre Series Coefficients
545 An Optimized Mass Storage FFT
602 HURRY: An Acceleration Algorithm for Scalar Sequences and Series

C5:513 C7:421

C6:662 C7:297
C8:279 C12:636
C9:86
C11:114
C11:773
C11:776 C12:187

C12:179 C12:566

C13:570 C15:468
C17:25
T5:500
T9:355

## D1 : Quadrature

1

98 Evaluation of Definite Complex Line Integral
103 Simpson's Rule Integrator
Weightcoeff
Adaptive Numerical Integration by Simpson's Rule
Multiple Integration
Nonrecursive Adaptive Integration
Adaptive Integration and Multiple Integration
Simpson's Rule for Multiple Integration
Havie Integrator
Chebyshev Quadrature

Abscissas and Weights for Gregory Quadrature
Abscissas and Weights for Romberg Quadrature
An Adaptive Quadrature Procedure with Random Panel Sizes
Gaussian Quadrature Formulas
Modified Romberg Quadrature

C3:74
C4:106 C6:69 C11:826
C4:255 C5:168 C5:281
C7:420
C5:208 C5:392 C5:440
C5:557
C5:345
C5:347
C5:510
C5:604 C6:167 C8:171
C5:604 C7:296
C6:315 C7:244
C6:443
C7:348 C13:512
C8:381 C9:795 C9:871
C9:270 C9:434 C10:294
C10:666
C9:271
C9:271 C10:188
C10:373
C11:432 C12:280 C13:512
C12:324 C13:263 C13:374
C13:449

| 353 | Filon Quadrature | C12:457 C13:263 |
| :---: | :---: | :---: |
| 379 | Squank (Simpson Quadrature Used Adaptively-Noise Killed) | C13:260 C15:1073 |
| 400 | Modified Havie Integration | C13:622 C17:324 |
| 417 | Rapid Computation of Weights of Interpolatory Quadrature Rules | C14:807 |
| 418 | Calculation of Fourier Integrals | C15:47 C15:469 C17:324 |
| 424 | Clenshaw-Curtis Quadrature | C15:353 C16:490 T5:240 |
| 427 | Fourier Cosine Integral | C15:358 |
| 436 | Product Type Trapezoidal Integration | C15:1070 |
| 437 | Product Type Simpson's Integration | C15:1070 |
| 438 | Product Type Two-point Gauss-Legendre-Simpson's Integration | C15:1071 |
| 439 | Product Type Three-point Gauss-Legendre-Simpson's Integration | C15:1072 |
| 440 | A Multidimensional Monte Carlo Quadrature with Adaptive Stratified Sampling | C16:49 |
| 453 | Gaussian Quadrature Formulas for Bromwich's Integral | C16:486 |
| 468 | Algorithm for Automatic Numerical Integration Over a Finite Interval | C16:694 |
| 584 | CUBTRI - Automatic Cubature Over a Triangle | T8:210 T12:71 |
| 612 | TRIEX: Integration Over a TRIangle Using Nonlinear EXtrapolation | T10:17 |
| 614 | A Fortran Subroutine for Integration in $H_{p}$ Spaces | T10:140 |
| 639 | To Integrate Some Infinite Oscillating Tails | T12:24 |
| 647 | Implementation and Relative Efficiency of Quasirandom Sequence Generators | T12:362 |
| 649 | A Package for Computing Trigonometric Fourier Coefficients Based on Lyness's Algorithm | T13:97 |
| 655 | IQPACK: Fortran Subroutines for the Weights of Interpolatory Quadratures | T13:399 |
| 672 | Generation of Interpolatory Quadrature Rules of the Highest Degree of Precision with Preassigned Nodes for General Weight Functions | T15:137 |
| 691 | Improving QUADPACK Automatic Integration Routines | T17:218 |
| 698 | DCUHRE: An Adaptive Multidimensional Integration Routine for a Vector of Integrals | T17:452 |
| 699 | A New Representation of Patterson's Quadrature Formulae | T17:457 |
|  | D2 : Ordinary Differential Equations |  |
| 9 | Runge-Kutta Integration | C3:318 C9:273 |
| 194 | ZERSOL | C6:441 |
| 218 | Kutta Merson | C6:737 C7:585 C9:273 |
| 407 | DIFSUB for Solution of Ordinary Differential Equations | C14:185 C16:448 |
| 461 | Cubic Spline Solutions to a Class of Functional Differential Equations | C16:635 |
| 497 | Automatic Integration of Functional Differential Equations | T1:369 |


| 504 | GERK: Global Error Estimation for Ordinary Differential Equations | T2:200 |
| :---: | :---: | :---: |
| 534 | STINT: STiff (differential equations) INTegrator | T4:399 |
| 569 | COLSYS: Collocation Software for Boundary Value ODE's | T7:223 T12:283 |
| 596 | A Program for a Locally Parametrized Continuation Process | T9:236 |
| 648 | NSDTST and STDTST: Routines for Assessing the Performance of Initial Value Solvers | T13:28 |
| 658 | ODESSA: An Ordinary Differential Equation Solver with Explicit Simultaneous Sensitivity Analysis | T14:61 |
| 669 | BRK45: A Fortran Subroutine for Solving First-Order Systems of Nonstiff Initial Value Problems for Ordinary Differential Equations | T15:29 T17:424 |
| 670 | A Runge-Kutta-Nyström Code | T15:31 |
| 687 | A Decision Tree for the Numerical Solution of Initial Value Ordinary Differential Equations | T17:1 |
| 700 | A Fortran Software Package for Sturm-Liouville Problems | T17:500 T17:481 |
|  | D3 : Partial Differential Equations |  |
| 392 | Systems of Hyperbolic P.D.E. | C13:567 C15:1074 |
| 460 | Calculation of Optimum Parameters for Alternating Direction Implicit Procedures | C16:633 |
| 494 | PDEONE Solution of Systems of Partial Differential Equations | T1:261 |
| 527 | A Fortran Implementation of the Generalized Marching Algorithm | T4:165 |
| 540 | PDECOL: General Collocation Software for Partial Differential Equations | T5:326 |
| 541 | Efficient Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations | T5:352 T5:365 |
| 543 | FFT9: Fast Solution of Helmholtz-Type Partial Differential Equations | T5:490 |
| 553 | M3RK: An Explicit Time Integrator for Semidiscrete Parabolic Equations | T6:236 |
| 565 | PDETWO/PSETM/GEARB: Solution for Systems of Two-Dimensional Nonlinear Partial Differential Equations | T7:126 |
| 572 | Solution of the Helmholtz Equation for the Dirichlet Problem on General Bounded Three Dimensional Regions | T7:239 |
| 593 | A Package for the Helmholtz Equation in Nonrectangular Planar Regions | T9:117 |
| 621 | Software with Low Storage Requirements for Two-Dimensional Nonlinear Parabolic Differential Equations | T10:378 |
| 637 | GENCOL: Collocation on General Domains with Bicubic Hermite Polynomials | T11:413 |
| 638 | INTCOL and HERMCOL: Collocation on Rectangular Domains with Bicubic Hermite Polynomials | T11:416 |
| 651 | Algorithm HFFT: High-Order Fast-Direct Solution of Helmholtz Equation in Three Dimensions | T13:235 |
| 685 | A Program for Solving Separable Elliptic Equations | T16:325 |


| 688 | EPDCOL: A More Efficient PDECOL Code | T17:153 |
| :---: | :---: | :---: |
| 690 | Chebyshev Polynomial Software for Elliptic-parabolic Systems of PDEs | T17:178 |
|  | D4: Differentiation |  |
| 79 | Difference Expression Coefficients | C5:97 C6:104 |
| 579 | CPSC: Complex Power Series Coefficients | T7:542 |
|  | D5 : Integral Equations |  |
| 368 | Numerical Inversion of Laplace Transforms | C13:47 C13:624 |
| 486 | Numerical Inversion of Laplace Transform | $\begin{aligned} & \text { C17:587 T2:395 T3:111 } \\ & \text { T10:354 } \end{aligned}$ |
| 503 | An Automatic Program for Fredholm Integral Equations for the Second Kind | T2:196 |
| 619 | Automatic Numerical Inversion of the Laplace Transform | T10:348 |
| 627 | A Fortran Subroutine for Solving Volterra Integral Equations | T11:58 |
| 629 | An Integral Equation Program for Laplace's Equation in Three Dimensions | T11:85 |
| 662 | A FORTRAN Software Package for the Numerical Inversion of the Laplace Transform Based on Weeks' Method | T14:171 T16:405 |
| 682 | Talbot's Method for the Laplace Inversion Problem | T16:158 |
| 689 | Discretized Collocation and Iterated Collocation for Nonlinear Volterra Integral Equations of the Second Kind | T17:167 |
|  | E1: Interpolation |  |
| 18 | Rational Interpolation by Continued Fractions | C3:508 C5:437 |
| 70 | Interpolation by Aitken | C4:497 C5:392 |
| 77 | Interpolation Differentiation and Integration | $\begin{aligned} & \text { C5:96 C5:348 C6:446 } \\ & \text { C6:663 } \end{aligned}$ |
| 167 | Calculation of Confluent Divided Differences | C6:164 C6:523 |
| 168 | Newton Interpolation with Backward Divided Differences | C6:165 C6:523 |
| 169 | Newton Interpolation with Forward Divided Differences | C6:165 C6:523 |
| 187 | Differences and Derivatives | C6:387 |
| 210 | Lagrangian Interpolation | C6:616 C6:619 |
| 211 | Hermite Interpolation | C6:617 |
| 264A | Interpolation in a Table | C8:602 |
| 416 | Rapid Computation of Coefficients of Interpolation Formulas | C14:806 |
| 472 | Procedures for Natural Spline Interpolation | C16:763 |
| 480 | Procedures for Computing Smoothing and Interpolating Natural Splines | C17:463 |
| 507 | Procedures for Quintic Natural Spline Interpolation | T2:281 |
| 526 | Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points | T4:160 T5:242 |


| 574 | Shape-Preserving Osculatory Quadratic Splines | T7:384 |
| :---: | :---: | :---: |
| 585 | A Subroutine for the General Interpolation and Extrapolation Problems | T8:290 |
| 623 | Interpolation on the Surface of a Sphere | T10:437 |
| 624 | Triangulation and Interpolation at Arbitrarily Distributed Points in the Plane | T10:440 |
|  | E2 : Curve and Surface Fitting |  |
| 28 | Least Squares Fit by Orthogonal Polynomials | C3:604 C4:544 C10:293 |
| 37 | Telescope 1 | C4:151 C5:438 C6:445 |
| 38 | Telescope 2 | C4:151 C6:445 |
| 74 | Curve Fitting with Constraints | C5:47 C6:316 |
| 91 | Chebyshev Curve-Fit | $\begin{aligned} & \text { C5:281 C6:167 C7:296 } \\ & \text { C10:803 } \end{aligned}$ |
| 164 | Orthogonal Polynomial Least Squares Surface Fit | C6:162 C6:450 |
| 176 | Least Squares Surface Fit | C6:313 C15:1073 |
| 177 | Least Squares Solution with Constraints | C6:313 C6:390 |
| 275 | Exponential Curve Fit | C9:85 |
| 276 | Constrained Exponential Curve Fit | C9:85 |
| 295 | Exponential Curve Fit | C10:87 |
| 296 | Generalized Least Squares Fit by Orthogonal Polynomials | C10:87 C10:377 C12:636 |
| 318 | Chebyschev Curve-Fit (Revised) | C10:801 |
| 375 | Fitting Data to One Exponential | C13:120 |
| 376 | Least Squares Fit by $f(x)=A \cos (B x+C)$ | C13:121 |
| 409 | Discrete Chebychev Curve Fit | C14:355 |
| 414 | Chebyshev Approximation of Continuous Functions by a Chebyshev System of Functions | C14:737 |
| 433 | Interpolation and Smooth Curve Fitting Based on Local Procedures | C15:914 T2:208 |
| 458 | Discrete Linear $L_{1}$ Approximation by Interval Linear Programming | C16:629 |
| 474 | Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures | C17:26 T5:241 |
| 476 | Six Subprograms for Curve Fitting Using Splines Under Tension | C17:220 |
| 485 | Computation of $g$-Splines via a Factorization Method | C17:526 |
| 501 | Fortran Translation of Algorithm 409 Discrete Chebyshev Curve Fit | T2:95 T4:95 |
| 510 | Piecewise Linear Approximations to Tabulated Data | T2:388 |
| 514 | A New Method of Cubic Curve Fitting Using Local Data | T3:175 |
| 525 | ADAPT: Adaptive Smooth Curve Fitting | T4:82 |
| 592 | A Fortran Subroutine for Computing the Optimal Estimate of $f(x)$ | T9:98 |
| 600 | Translation of Algorithm 507. Procedures for Quintic Natural Spline Interpolation | T9:258 |
| 634 | CONSTR and EVAL: Routines for Fitting Multinomials in a Least-Squares Sense | T11:218 |


| 660 | QSHEP2D: Quadratic Shepard Method for Bivariate Interpolation of Scattered Data | T14:149 |
| :---: | :---: | :---: |
| 661 | QSHEP3D: Quadratic Shepard Method for Trivariate Interpolation of Scattered Data | T14:151 |
| 677 | $C^{1}$ Surface Interpolation | T15:365 |
| 684 | $C^{1}$ - and $C^{2}$ - Interpolation on Triangles with Quintic and Nonic Bivariate Polynomials | T16:253 |
| 697 | Univariate Interpolation that has the Accuracy of a Third-degree Polynomial | T17:367 |
| E3: Smoothing |  |  |
| 188 | Smoothing 1. | C6:387 |
| 189 | Smoothing 2. | C6:387 |
| 216 | Smooth | C6:663 |
| 547 | Fortran Routines For Discrete Cubic Spline Interpolation and Smoothing | T6:92 |
| E4 : Minimizing or Maximizing a Function |  |  |
| 129 | Minifun | C5:550 C6:521 |
| 178 | Direct Search | $\begin{aligned} & \text { C6:313 C9:684 C11:498 } \\ & \text { C12:637 C12:638 } \end{aligned}$ |
| 203 | STEEP1 | C6:517 C7:585 C8:171 |
| 204 | STEEP2 | C6:519 |
| 205 | ATIVE | C6:519 C8:171 |
| 251 | Function Minimisation | $\begin{aligned} & \text { C8:169 C9:686 C12:512 } \\ & \text { C14:358 } \end{aligned}$ |
| 315 | The Damped Taylor's Series Method for Minimizing a Sum of Squares and for Solving Systems of Nonlinear Equations | C10:726 C12:513 |
| 387 | Function Minimization and Linear Search | C13:509 |
| 450 | Rosenbrock Function Minimization | $\begin{aligned} & \text { C16:482 C17:470 C17:590 } \\ & \text { T2:300 } \end{aligned}$ |
| 454 | The Complex Method for Constrained Optimization | C16:487 C17:471 |
| 500 | Minimization of Unconstrained Multivariate Functions | T2:87 T3:112 T6:618 |
| 559 | The Stationary Point of a Quadratic Function Subject to Linear Constraints | T6:432 |
| 573 | NL2SOL - An Adaptive Nonlinear Least-Squares Algorithm | T7:369 T9:139 |
| 611 | Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach | T9:503 |
| 617 | DAFNE: A Differential-Equations Algorithm for Nonlinear Equations | T10:317 |
| 630 | BBVSCG - A Variable-Storage Algorithm for Function Minimization | T11:103 |
| 667 | SIGMA: A Stochastic-Integration Global Minimization Algorithm | T14:366 |

## F1 : Matrix Operations, including Inversion

| 42 | INVERT | $\begin{aligned} & \text { C4:176 C4:498 C6:38 } \\ & \text { C6:445 } \end{aligned}$ |
| :---: | :---: | :---: |
| 50 | Inverse of a Finite Segment of the Hilbert Matrix | C4:179 C5:50 C6:38 |
| 51 | Adjust Inverse of a Matrix when an Element is Perturbed | C4:180 C5:391 |
| 52 | A Set of Test Matrices | $\begin{aligned} & \text { C4:180 C4:339 C4:498 } \\ & \text { C5:438 C6:39 C6:446 } \end{aligned}$ |
| 58 | Matrix Inversion | $\begin{aligned} & \text { C4:236 C5:347 C5:438 } \\ & \text { C5:438 C5:606 } \end{aligned}$ |
| 66 | INVRS | C4:322 C5:50 C5:348 |
| 67 | CRAM | C4:322 C5:348 |
| 120 | Matrix Inversion II | C5:437 C6:40 C6:445 |
| 140 | Matrix Inversion | C5:556 C6:448 |
| 150 | SYMINV2 | $\begin{aligned} & \text { C6:67 C6:390 C6:390 } \\ & \text { C7:148 } \end{aligned}$ |
| 166 | MonteCarlo | C6:164 C6:523 |
| 197 | Matrix Division | C6:443 C7:148 |
| 230 | Matrix Permutation | C7:347 |
| 231 | Matrix Inversion | C7:347 C8:220 |
| 274 | Generation of Hilbert Derived Test Matrix | C9:11 C12:407 |
| 287 | Matrix Triangulation with Integer Arithmetic | C9:513 |
| 298 | Determination of the Square Root of a Positive Definite Matrix | C10:182 C12:325 |
| 319 | Triangular Factors of Modified Matrices | C11:12 |
| 325 | Adjustment of the Inverse of a Symmetric Matrix When Two Symmetric Elements are Changed | C11:118 |
| 348 | Matrix Scaling by Integer Programming | C12:212 |
| 358 | Singular Value Decomposition of a Complex Matrix | C12:564 |
| 380 | In-situ Transposition of a Rectangular Matrix | C13:324 C13:327 C15:49 |
| 467 | Matrix Transposition in Place | C16:692 T5:520 |
| 508 | Matrix Bandwidth and Profile Reduction | T2:375 |
| 509 | A Hybrid Profile Reduction Algorithm | T2:378 |
| 513 | Analysis of In-Situ Transposition | T3:104 T5:520 |
| 529 | Permutations to Block Triangular Form | T4:189 |
| 539 | Basic Linear Algebraic Subprogram for Fortran Usage | T5:324 T8:403 T9:140 |
| 575 | Permutations for a Zero-Free Diagonal | T7:387 |
| 581 | An Improved Algorithm for Computing the Singular Value Decomposition | T8:84 |
| 601 | A sparse Matrix Package - Part II: Special Cases | T9:344 |
| 636 | Fortran Subroutines for Estimating Sparse Hessian Matrices | T11:378 |
| 645 | Subroutines for Testing Programs that Compute the Generalized Inverse of a Matrix | T12:274 |
| 653 | Translation of Algorithm 539: PC-BLAS Basic Linear Algebra Subprograms for Fortran Usage with the INTEL8087 80287 Numeric Data Processor | T13:311 |

$\left.\begin{array}{lll}656 & \text { An Extended Set of Basic Linear Algebra Subprograms: Model } & \text { T14:18 } \\ & \text { Implementation and Test Programs } \\ 663 & \text { Translation of Algorithm 539: Basic Linear Algebra Subprograms } & \text { T14:177 } \\ & \text { for Fortran Usage in Fortran 200 for the Cyber 205 }\end{array}\right]$.

| 570 | LOPSI: A Simultaneous Iteration Algorithm for Real Matrices | T7:230 |
| :---: | :---: | :---: |
| 589 | SICEDR: A Fortran Subroutine for Improving the Accuracy of Computed Matrix Eigenvalues | T8:371 |
| 590 | DSUBSP AND EXCHQZ: Fortran Subroutines for Computing Deflating Subspaces With Specified Spectrum | T8:376 T10:207 |
| 598 | An Algorithm to Compute Solvents of the Matrix Equation $\mathbf{A} \mathbf{X}^{2}+\mathbf{B X}+\mathbf{C}=0$ | T9:246 |
| 640 | Efficient Calculation of Frequency Response Matrices from State Space Models | T12:26 |
| 646 | PDFIND: A Routine to Find a Positive Definite Linear Combination of Two Real Symmetric Matrices | T12:278 |
| 696 | An Inverse Rayleigh Iteration for Complex Band Matrices | T17:335 |
|  | F3 : Determinants |  |
| 41 | Evaluation of Determinant | $\begin{aligned} & \text { C4:176 C7:144 C6:520 } \\ & \text { C9:686 } \end{aligned}$ |
| 159 | Determinant | C6:104 C6:739 |
| 170 | Reduction of a Matrix Containing Polynomial Elements | C6:165 C6:450 C7:421 |
| 224 | Evaluation of Determinant | C7:243 C7:702 |
| 269 | Determinant Evaluation | C8:668 C9:686 |
|  | F4: Simultaneous Linear Equations |  |
| 16 | Crout with Pivoting | C3:507 C3:540 C4:154 |
| 17 | TRDIAG | C3:508 |
| 24 | Solution of Tri-Diagonal Linear Equations | C3:602 |
| 43 | Crout with Pivoting II | C4:176 C4:182 C6:445 |
| 92 | Simultaneous System of Equations and Matrix Inversion Routine | C5:286 |
| 107 | Gauss's Method | C5:388 C6:39 C6:445 |
| 126 | Gauss' Method | C5:511 |
| 135 | Crout with Equilibration and Iteration | $\begin{aligned} & \text { C5:553 C5:557 C7:421 } \\ & \text { C8:104 } \end{aligned}$ |
| 195 | BANDSOLVE | C6:441 C15:1074 |
| 220 | Gauss-Seidel | C6:739 C7:349 |
| 238 | Conjugate Gradient Method | C7:481 |
| 288 | Solution of Simultaneous Linear Diophantine Equations | C9:514 |
| 290 | Linear Equations Exact Solutions | C9:683 |
| 328 | Chebyshev Solution to An Overdetermined Linear System | C11:428 C12:326 |
| 406 | Exact Solution of Linear Equations Using Residue Arithmetic | C14:180 C16:311 |
| 408 | A Sparse Matrix Package (Part I) | C14:265 C16:311 C16:578 T3:303 T4:295 T6:456 |
| 423 | Linear Equation Solver | C15:274 |
| 432 | Solution of the Matrix Equation $\mathbf{A} x+x \mathbf{B}=\mathbf{C}$ | C15:820 |


| 470 | Linear Systems with Almost Tridiagonal Matrix | C16:760 |
| :---: | :---: | :---: |
| 478 | Solution of an Overdetermined System of Equations in the $L_{1}$ Norm | C17:319 C18:277 |
| 495 | Solution of an Overdetermined System of Linear Equations in the Chebyshev Norm | T1:264 |
| 512 | A Normalized Algorithm for the Solution of Positive Definite Symmetric Quindiagonal Systems of Linear Equations | T3:96 |
| 522 | ESOLVE: Congruence Techniques for the Exact Solution of Integer Systems of Linear Equations | T3:404 |
| 533 | NSPIV: A Fortran Subroutine for Sparse Gaussian Elimination with Partial Pivoting | T4:391 |
| 544 | L2A and L2B Weighted Least Squares Solutions by Modified Gram-Schmidt with Iterative Refinement | T5:494 |
| 546 | SOLVEBLOK | T6:88 |
| 551 | A Fortran Subroutine for the $L_{1}$ Solution of Overdetermined Systems of Linear Equations | T6:228 |
| 552 | Solution of the Constrained $L_{1}$ Linear Approximation Problem | T6:231 |
| 563 | A Program for Linearly Constrained Discrete $L_{1}$ Problems | T6:609 |
| 576 | A Fortran Program for Solving Ax $x=b$ | T7:391 |
| 578 | Solution of Real Linear Equations in a Paged Virtual Store | T7:537 |
| 582 | The Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms for Reordering Sparse Matrices | T8:190 |
| 586 | ITPACK 2C: A Fortran Package for Solving Large Sparse Linear Systems by Adaptive Accelerated Iterative Methods | T8:302 |
| 587 | Two Algorithms for the Linearly Constrained Least Squares Problem | T8:323 |
| 603 | COLROW and ARCECO: Fortran Packages for Solving Almost Block Diagonal Linear Systems by Modified Alternate Row and Column Elimination | T9:376 T14:196 |
| 618 | Fortran Subroutines for Estimating sparse Jacobian Matrices | T10:346 |
| 633 | An Algorithm for Linear Dependency Analysis of Multivariate Data | T11:170 |
| 635 | An Algorithm for the Solution of Systems of Complex Linear Equations in the $L_{\infty}$ Norm with Constraints on the Unknowns | T11:242 |
| 664 | A Gauss Algorithm to Solve Systems with Large Banded Matrices Using Random Access Disk Storage | T14:257 |
| 701 | GOLIATH - A Software System for the Exact Analysis of Rectangular Rank-deficient Sparse Rational Linear Systems | T17:519 |

## F5 : Orthogonalization

| 127 | Ortho | C5:511 C13:122 |
| :--- | :--- | :--- |
| 580 | QRUP: A Set of Fortran Routines for Updating QR Factorizations | T7:548 T8:405 |
| 686 | Fortran Subroutines for Updating the QR Decomposition | T16:369 |

## G1 : Simple Calculations on Statistical Data

| 208 | Discrete Convolution | C6:615 |
| :---: | :---: | :---: |
| 212 | Frequency Distribution | C6:617 |
| 289 | Confidence Interval For a Ratio | C9:514 |
| 330 | Factorial Analysis of Variance | C11:431 |
| 359 | Factorial Analysis of Variance | C12:631 C13:449 |
| 451 | Chi-Square Quantiles | C16:483 C18:116 |
| 616 | Fast Computation of the Hodges-Lehman Location Estimator | T10:265 |
| G2 : Correlation and Regression Analysis |  |  |
| 39 | Correlation Coefficients with Matrix Multiplication | C4:152 |
| 142 | Triangular Regression | C5:603 |
| 366 | Regression Using Certain Direct Product Matrices | C12:687 |
| 367 | Analysis of Variance for Balanced Experiments | C12:688 |
| 434 | Exact Probabilities for $R \times C$ Contingency Tables | $\begin{aligned} & \text { C15:991 C17:326 C18:117 } \\ & \text { T2:108 } \end{aligned}$ |
| 583 | LSQR: Sparse Linear Equations and Least-Square Problems | T8:195 |
| 591 | A Comprehensive Matrix-Free Algorithm for Analysis of Variance | T8:383 |
| 615 | The Best Subset of Parameters in Least Absolute Value Regression | T10:202 |
| 642 | A Fast Procedure for Calculating Minimum Cross-Validation Cubic Smoothing Splines | T12:150 |
| 643 | FEXACT: A Fortran Subroutine for Fisher's Exact Test on Unordered $r \times c$ Contingency Tables | T12:154 |
| 675 | Fortran Subroutines for Computing the Square Root Covariance Filter and Square Root Information Filter in Dense or Hessenberg Forms | T15:243 |
| 676 | ODRPACK: Software for Weighted Orthogonal Distance Regression | T15:348 |

G5: Random Number Generators

| 121 | Normdev | C5:482 C8:556 |
| :--- | :--- | :--- |
| 133 | Random | C5:553 C5:606 C6:105 |
|  |  | C6:167 |
| 200 | Normal Random | C6:444 C8:556 |
| 247 | Radical-Inverse Quasi-Random Point Sequence | C7:701 |
| 266 | Pseudo-Random Numbers | C8:605 C9:687 C9:687 |
|  |  | C15:1072 |
| 267 | Random Normal Deviate | C8:606 |
| 294 | Uniform Random | C10:40 |
| 334 | Normal Random Deviates | C11:498 C12:281 T8:89 |
| 342 | Generator of Random Numbers Satisfying the Poisson Distribution | C11:819 |
| 369 | Generator of Random Numbers Satisfying the Poisson Distribution | C13:49 |


| 370 | General Random Number Generator | C13:49 C15:467 |
| :---: | :---: | :---: |
| 381 | Random Vectors Uniform In Solid Angle | C13:326 C15:468 |
| 425 | Generation of Random Correlated Normal Variables | C15:355 C17:325 |
| 441 | Random Deviates from the Dipole Distribution | C16:51 |
| 488 | A Gaussian Pseudo-Random Number Generator | C17:704 |
| 599 | Sampling From Gamma and Poisson Distributions | T9:255 |
| 659 | Implementing Sobol's Quasirandom Sequence Generator | T14:88 |
| 668 | H2PEC: Sampling from the Hypergeometric Distribution | T14:397 |
| 678 | BTPEC: Sampling from the Binomial Distribution | T15:394 |
|  | G6: Permutations and Combinations |  |
| 71 | Permutation | $\begin{aligned} & \text { C4:497 C5:209 C5:209 } \\ & \text { C5:439 } \end{aligned}$ |
| 86 | Permute | C5:208 C5:440 |
| 87 | Permutation Generator | $\begin{aligned} & \text { C5:209 C5:440 C5:514 } \\ & \text { C10:452 } \end{aligned}$ |
| 94 | Combination | C5:344 C5:557 C5:606 |
| 102 | Permutation in Lexicographical Order | C5:346 C10:452 |
| 115 | Perm | C5:434 C5:514 C5:606 |
| 130 | Permute | C5:551 C10:452 |
| 152 | NEXCOM | C6:68 C6:385 |
| 154 | Combination in Lexicographical Order | C6:103 C6:449 |
| 155 | Combination in Any Order | C6:103 C6:449 |
| 156 | Algebra of Sets | C6:103 C6:450 |
| 160 | Combinatorial of $M$ Things Taken $N$ at a Time | C6:161 C6:450 C6:618 |
| 161 | Combinatorial of $M$ Things Taken One at a Time, Two at a Time, Up to $N$ at a Time | C6:161 C6:450 C6:619 |
| 202 | Generation of Permutations in Lexicographical Order | C6:517 C8:556 C10:452 |
| 235 | Random Permutation | C7:420 C8:445 |
| 242 | Permutations of a Set With Repetitions | C7:585 |
| 250 | Inverse Permutation | C8:104 C8:670 |
| 306 | Permutations with Repetitions | C10:450 |
| 308 | Generation of Permutations in Pseudolexicographic Order | C10:452 C12:638 |
| 317 | Permutation | C10:729 |
| 323 | Generation of Permutations in Lexicographic Order | C11:117 C12:512 C16:577 |
| 329 | Distributed of Indistinguishable Objects Into Distinguishable Slots | C11:430 C12:187 |
| 361 | Permanent Function of a Square Matrix I and II | C12:634 C13:376 |
| 362 | Generation of Random Permutations | C12:634 |
| 382 | Combinations of $M$ Out of $N$ Objects | C13:368 C13:376 |
| 383 | Permutations of a Set with Repetitions | C13:368 C13:376 |
| 452 | Enumerating Combinations of $m$ Out of $n$ Objects | C16:485 |
| 466 | Four Combinatorial Algorithms | C16:690 |

## G7 : Subset Generators

| 81 | Economising A Sequence 1 | C5:166 |
| :--- | :--- | :--- |
| 82 | Economising A Sequence 2 | C5:167 |
| 477 | Generator of Set-Partitions to Exactly $R$ Subsets | $\mathbf{C 1 7 : 2 2 4}$ |
| 482 | Transitivity Sets | $\mathbf{C 1 7 : 4 7 0}$ |

## H : Operations Research, Graph Structure

| 27 | Assignment | C3:603 C6:618 C6:739 |
| :--- | :--- | :--- |
| 40 | Critical Path Scheduling | C4:152 C4:392 C5:513 |
|  |  | C7:349 |
| 69 | Chain Tracing | C4:392 |
| 83 | Optimal Classification of Objects | C5:167 |
| 96 | Ancestor | C5:344 C6:104 |
| 97 | Shortest Path | C5:345 |
| 119 | Evaluation of a Pert Network | C5:436 C8:330 |
| 141 | Path Matrix | C5:556 |
| 153 | GOMORY | C6:68 C6:449 |
| 217 | Minimum Excess Cost Curve | C6:737 C11:573 |
| 219 | Topological Ordering for Pert Networks | C6:738 T3:303 |
| 248 | Netflow | C8:103 C11:633 C11:633 |
| 258 | Transport | C8:381 C8:445 C10:453 |
| 264 | Map of Partitions into Integers | C8:493 |
| 285 | The Mutual Primal-Dual Method | C9:326 C10:453 |
| 286 | Examination Scheduling | C9:433 C9:795 |
| 293 | Transportation Problem | C9:869 C10:453 C11:271 |
| 324 | Maxflow | C11:117 C16:309 |
| 333 | Minit Algorithm For Linear Programming | C11:437 C12:408 C14:50 |
|  |  | C16:310 C16:310 |
| 336 | Netflow | C11:631 C13:192 |
| 341 | Solution of Linear Programs in 0-1 Variables by Implicit | C11:782 C12:692 C13:263 |
|  | Enumeration | C12:275 |
| 350 | Simplex Method Procedure Employing $L U$ Decomposition | C12:511 |
| 354 | Generator of Spanning Trees | C13:53:62 C15:621 C15:469 |
| 360 | Shortest-Path Forest with Topological Ordering | C14:805 |
| 394 | Decision Table Translation | C14:491 |
| 397 | An Integer Programming Problem | Cpanning Tree |


| 422 | Minimal Spanning Tree | C15:273 C16:448 |
| :---: | :---: | :---: |
| 430 | Immediate Predominators in a Directed Graph | C15:777 |
| 431 | A Computer Routine for Quadratic and Linear Programming Problems | C15:818 C17:157 C17:590 |
| 447 | Efficient Algorithms for Graph Manipulation | C16:372 |
| 449 | Solution of Linear Programming Problems in 0-1 Variables | C16:445 |
| 456 | Routing Problem | C16:572 C17:706 |
| 457 | Finding All Cliques of an Undirected Graph | C16:575 |
| 459 | The Elementary Circuits of a Graph | C16:632 C18:119 |
| 481 | Arrow to Precedence Network Transformation | C17:467 |
| 491 | Basic Cycle Generation | C18:275 |
| 492 | Generation of All the Cycles of a Graph from a Set of Basic Cycles | C18:310 |
| 520 | An Automatic Revised Simplex Method for Constrained Resource Network Scheduling | T3:295 |
| 548 | Solution of the Assignment Problem | T6:104 |
| 557 | PAGP A Partitioning Algorithm for (Linear) Goal Programming Problems | T6:429 |
| 558 | A Program for the Multifacility Location Problem with Rectilinear Distance by the Minimum-cut Approach | T6:430 |
| 562 | Shortest Path Lengths | T6:450 T9:260 |
| 595 | An Enumerative Algorithm for Finding Hamiltonian Circuits in a Directed Graph | T9:131 |
| 608 | Approximate Solution of the Quadratic Assignment Problem | T9:461 |
| 613 | Minimum Spanning Tree for Moderate Integer Weights | T10:108 |
| 632 | A Program for the 0-1 Multiple Knapsack Problem | T11:135 |
|  | I5 : Input - Composite |  |
| 239 | Free Field Read | C7:481 |
| 249 | Outreal $N$ | C8:104 |
| 335 | A Set of Basic Input-Output Procedures | C11:567 |
|  | J6: Plotting |  |
| 162 | XYMOVE Plotting | C6:161 C6:450 C7:482 |
| 278 | Graph Plotter | C9:88 |
| 412 | Graph Plotter | C14:492 C16:489 |
| 420 | Hidden-Line Plotting Program | C15:100 C16:448 C16:578 C17:324 C17:324 C17:706 |
| 463 | Algorithms SCALE1, SCALE2, and SCALE3 for Determination of Scales on Computer Generated Plots | C16:639 |
| 475 | Visible Surface Plotting Program | C17:152 C18:202 C18:276 C18:277 T1:381 T2:109 T5:521 |


| 483 | Masked Three-Dimensional Plot Program with Rotations | C17:520 T1:285 |
| :---: | :---: | :---: |
| 531 | Contour Plotting | T4:290 |
| 625 | A Two-Dimensional Domain processor | T10:453 |
| 626 | TRICP: A Contour Plot Program for Triangular Meshes | T10:473 |
| 657 | Software for Plotting Contour Surfaces of a Function of Three Variables | T14:42 T16:109 |
| 671 | FARB-E-2D: Fill Area with Bicubics on Rectangles - A Contour Plot Program | T15:79 |
|  | K2 : Relocation |  |
| 173 | ASSIGN | C6:311 C6:619 C6:619 |
| 284 | Interchange of Two Blocks of Data | C9:326 T2:392 |
| 302 | Transpose Vector Stored Array | C10:292 C12:326 |
|  | L2 : Compiling |  |
| 265 | Find Precedence Functions | C8:604 |
|  | M1 : Sorting |  |
| 23 | Math Sort | C3:601 C4:238 |
| 63 | Partition | C4:321 C5:439 C6:446 |
| 64 | Quicksort | $\begin{aligned} & \text { C4:321 C5:439 C6:446 } \\ & \text { C17:143 } \end{aligned}$ |
| 65 | Find | C4:321 C5:439 C6:446 |
| 76 | Sorting Procedures | C5:48 C5:348 |
| 113 | Treesort | C5:434 |
| 143 | Treesort 1 | C5:604 |
| 144 | Treesort 2 | C5:604 |
| 151 | Location of a Vector in a Lexicographically Ordered List | C6:68 |
| 175 | Shuttle Sort | $\begin{aligned} & \text { C6:312 C6:619 C6:739 } \\ & \text { C7:296 } \end{aligned}$ |
| 201 | Shellsort | $\begin{aligned} & \text { C6:445 C7:349 C13:373 } \\ & \text { C17:143 } \end{aligned}$ |
| 207 | Stringsort | C6:615 C7:585 C17:143 |
| 232 | Heapsort | C7:347 |
| 245 | Treesort 3 | $\begin{aligned} & \text { C7:701 C8:445 C13:371 } \\ & \text { C17:143 } \end{aligned}$ |
| 271 | Quickersort | C8:669 C9:354 C17:143 |
| 347 | An Efficient Algorithm for Sorting with Minimal Storage | $\begin{aligned} & \text { C12:185 C13:54 C13:624 } \\ & \text { T2:290 } \end{aligned}$ |
| 402 | Increasing the Efficiency of Quicksort | C13:693 C16:311 C17:143 |
| 410 | Partial Sorting | C14:357 |
| 426 | Merge Sort Algorithm | C15:357 C17:706 T2:290 |
| 489 | The Algorithm SELECT - for Finding the $i$ th Smallest of $n$ Elements | C18:173 T2:301 |

## M2 : Data Conversion and Scaling

673 Dynamic Huffman Coding

## O2 : Simulation of Computing Structure

| 100 | Add Item to Chain-Linked List | C5:346 |
| :--- | :--- | :--- |
| 101 | Remove Item From Chain-Linked List | C5:346 |
| 137 | Nesting of For Statement I | C5:555 |
| 138 | Nesting of For Statement II | C5:555 |
| 268 | Algol 60 Reference Language Editor | C8:667 C1 |
|  | R2 : Symbol Manipulation |  |
| 377 | Symbolic Expansion of Algebraic Expressions <br> 628 | An Algorithm for Constructing Canonical Bases of Polynomial <br> Ideals |
|  | T11:66 |  |

## S : Approximation of Special Functions

S03

| 19 | Binomial Coefficients | C3:540 C5:347 C5:438 |
| :--- | :--- | :--- |
| 33 | Factorial | C4:106 |

S13

| 14 | Complex Exponential Integral | C3:406 |
| :--- | :--- | :--- |
| 20 | Real Exponential Integral | C3:540 C4:105 C4:182 |
| 108 | Definite Exponential Integrals A | C5:388 C5:393 |
| 109 | Definite Exponential Integrals B | C5:388 C5:393 |
| 385 | Exponential Integral $E_{i}(x)$ | C13:446 C13:448 C13:750 |
|  |  | C15:1074 |
| 471 | Exponential Integrals | C16:761 |
| 556 | Exponential Integrals | T6:420 T9:525 |
| 609 | A Portable Fortran Subroutine for the Bickley Functions $K i_{n}(x)$ | T9:480 |
| 683 | A Portable Fortran Subroutine for Exponential Integrals of a | $\mathbf{T 1 6 : 1 7 8 ~}$ |
|  | Complex Argument |  |

S14

| 31 | Gamma Function | C4:105 C5:605 C6:38 |
| :--- | :--- | :--- |
| 34 | Gamma Function | C4:106 C5:391 C9:685 |
| 54 | Gamma Function for Range 1 to 2 | C4:180 C9:685 |
| 80 | Reciprocal Gamma Function of Real Argument | C5:166 C9:685 |
| 147 | PSIF | C5:605 C6:168 C12:691 |


| 179 | Incomplete Beta Ratio | $\begin{aligned} & \text { C6:314 C10:375 C17:156 } \\ & \text { T2:207 } \end{aligned}$ |
| :---: | :---: | :---: |
| 221 | Gamma Function | C7:143 C7:586 C9:685 |
| 222 | Incomplete Beta Function Ratios | C7:143 C7:244 |
| 225 | Gamma Function with Controlled Accuracy | C7:295 C7:586 |
| 291 | Logarithm of Gamma Function | C9:684 C9:685 C11:14 |
| 309 | Gamma Function with Arbitrary Precision | C10:511 |
| 321 | $t$-Test Probabilities | C11:115 C13:124 |
| 322 | $F$-Distribution | C11:116 C12:39 C14:117 |
| 344 | Student's $t$-Distribution | C12:37 C13:124 C13:449 |
| 346 | $F$-Test Probabilities | C12:184 |
| 349 | Polygamma Functions with Arbitrary Precision | C12:213 T1:380 |
| 395 | Student's $f$-Distribution | C13:617 T5:238 T7:247 |
| 396 | Student's $f$-Quantiles | C13:619 T5:238 T7:250 |
| 404 | Complex Gamma Function | C14:48 C16:489 |
| 421 | Complex Gamma Function with Error Control | C15:271 |
| 435 | Modified Incomplete Gamma Function | C15:993 T4:296 |
| 442 | Normal Deviate | C16:51 |
| 465 | Student's $t$ Frequency | C16:690 |
| 487 | Exact Cumulative Distribution of the Kolmogorov-Smirnov Statistic for Small Samples | C17:703 T2:111 T3:285 |
| 518 | Incomplete Bessel Function $I_{0}$ : The von Mises Distribution | T3:279 |
| 519 | Three Algorithms for Computing Kolmogorov-Smirnov Probabilities with Arbitrary Boundaries and Certification of Algorithm 487 | T3:285 |
| 542 | Incomplete Gamma Functions | T5:482 |
| 571 | Statistics for von Mises' and Fisher's Distribution of Directions: $I_{1}(x) / I_{0}(x) I_{1.5}(x) / I_{.5}(x)$ | T7:233 |
| 610 | A Portable Fortran Subroutine for the Derivation of the Psi Function | T9:494 |
| 654 | Fortran Subroutines for Computing the Incomplete Gamma Function Ratios and their Inverse | T13:318 |
|  | S15 |  |
| 11 | Evaluation of the Hermite Polynomial $H_{n}(X)$ by Recursion | C3:353 |
| 123 | Real Error Function erf ( $x$ ) | $\begin{aligned} & \text { C5:483 C6:316 C6:618 } \\ & \text { C7:145 C10:377 } \end{aligned}$ |
| 180 | Error Function - Large $x$ | C6:314 C10:377 |
| 181 | Complimentary Error Function - Large $x$ | C6:315 C7:702 C10:377 |
| 185 | Normal Probability for Curve Fitting | C6:386 |
| 209 | Gauss | $\begin{aligned} & \text { C6:616 C7:148 C7:482 } \\ & \text { C10:377 } \end{aligned}$ |
| 226 | Normal Distribution Function | C7:295 C10:377 |


| 272 | Procedure for the Normal Distribution Functions | C8:789 C10:377 C11:498 |
| :--- | :--- | :--- |
| 299 | Chi-Squared Integral | $\mathbf{C 1 0 : 2 4 3 ~ C 1 1 : 2 7 1 ~ T 2 : 3 9 3 ~}$ |
|  |  | $\mathrm{T} 11: 185$ |
| 304 | Normal Curve Integral | $\mathbf{C 1 0 : 3 7 4 ~ C 1 0 : 3 7 7 ~ C 1 1 : 2 7 1 ~}$ |
|  |  | $\mathrm{C} 12: 565 \mathrm{C} 13: 624$ |
| 363 | Complex Error Function | $\mathbf{C 1 2 : 6 3 5 ~ C 1 5 : 4 6 5 ~}$ |
| 462 | Bivariate Normal Distribution | $\mathbf{C 1 6 : 6 3 8}$ |
| 521 | Repeated Integrals of the Coerror Function | $\mathbf{T 3 : 3 0 1}$ |
| 680 | Evaluation of the Complex Error Function | $\mathbf{T 1 6 : 4 7}$ |

## S16

13 Evaluation of the Legendre Polynomial $P_{n}(X)$ by Recursion
47 Associated Legendre Functions of the First Kind for Real or Imaginary Arguments
62 A Set of Associate Legendre Polynomials of The Second Kind
259 Legendre Functions for Arguments Larger than One

S17
21 Bessel Function for a Set of Integer Orders
22 Riccati-Bessel Functions of First and Second Kind
44 Bessel Functions Computed Recursively
49 Spherical Neumann Function
124 Hankel Function
163 Modified Hankel Function
236 Bessel Functions of the First Kind
484 Evaluation of the Modified Bessel Functions $K_{0}(z)$ and $K_{1}(z)$ for Complex Arguments
498 Airy Functions using Chebyshev Series Approximations
597 Sequence of Modified Bessel Functions of the First Kind

S18
5 Bessel Function $I$ Series Expansion
C3:240
6 Bessel Function I Asymptotic Expansion C3:240
$214 \quad q$-Bessel Functions $I_{n}(t)$
$228 \quad Q$-Bessel Functions $\bar{I}_{n}(t)$
511 CDC 6600 Subroutines IBESS and JBESS for Bessel Functions $I_{\nu}(x), J_{\nu}(x), \nu \geq O x \geq O$

C3:353 C4:105 C4:181
C4:178 C6:446 C12:635

C4:320 C4:544
C8:488 T3:204

C3:600 C8:219
C3:600 C13:448
C4:177
C4:179 T4:295
C5:483 C8:790
C6:161 C6:522
C7:479 C8:105 T1:282
C17:524

T1:372 T7:404
T9:242

C6:662 C7:349
C7:295
T3:93 T4:411

S19
57 Ber or Bei Function
644 A Portable Package for Bessel Functions of a Complex Argument and Non-negative order

C4:181 C5:392 C5:438
T12:265 T16:404

| 88 | Evaluation of Asymptotic Expression for the Fresnel Sine and Cosine Integrals | C5:280 C6:618 |
| :---: | :---: | :---: |
| 89 | Evaluation of the Fresnel Sine Integral | C5:280 C6:618 |
| 90 | Evaluation of the Fresnel Cosine Integral | C5:281 C6:618 |
| 213 | Fresnel Integrals | C6:617 C7:661 |
| 244 | Fresnel Integrals | C7:660 |
| 301 | Airy Function | C10:291 C10:453 |
| 505 | A List Insertion Sort for Keys with Arbitrary Key Distribution | T2:204 |
| S21 |  |  |
| 55 | Complete Elliptic Integral of The First Kind | C4:180 C6:166 |
| 56 | Complete Elliptic Integral of The Second Kind | C4:180 C9:12 |
| 73 | Incomplete Elliptic Integrals | $\begin{aligned} & \text { C4:543 C4:544 C5:514 } \\ & \text { C6:69 C6:167 } \end{aligned}$ |
| 149 | Complete Elliptic Integral | C5:605 C6:166 T4:95 |
| 165 | Complete Elliptic Integrals | C6:163 C12:38 |
| 549 | Weierstrass' Elliptic Functions | T6:112 |
| 577 | Algorithms for Incomplete Elliptic Integrals | T7:398 |
| S22 |  |  |
| 10 | Evaluation of the Chebyshev Polynomial $T_{n}(X)$ by Recursion | C3:353 C4:181 |
| 12 | Evaluation of the Laguerre Polynomial $L_{n}(X)$ by Recursion | C3:353 |
| 36 | Tchebycheff | C4:151 |
| 110 | Quantum Mechanical Integrals of Slater-Type Orbitals | C5:389 C5:393 |
| 111 | Molecular-Orbital Calculation of Molecular Interactions | C5:390 |
| 132 | Quantum Mechanical Integrals Over all Slater-Type Integrals | C5:551 |
| 184 | Erlang Probability for Curve Fitting | C6:386 |
| 191 | Hypergeometric | C6:388 C7:244 C17:589 |
| 192 | Confluent Hypergeometric | C6:388 C7:244 |
| 227 | Chebyshev Polynomial Coefficients | C7:295 |
| 282 | Derivatives of $e^{x} / x, \cos (x) / x$ and $\sin (x) / x$ | C9:272 C13:53 |
| 292 | Regular Coulomb Wave Functions | $\begin{aligned} & \text { C9:793 C12:278 C12:280 } \\ & \text { C13:573 } \end{aligned}$ |
| 300 | Coulomb Wave Functions | $\begin{aligned} & \text { C10:244 C12:279 C12:692 } \\ & \text { C16:308 } \end{aligned}$ |
| 327 | Dilogarithm | C11:270 |
| 332 | Jacobi Polynomials | C11:436 C13:449 C18:116 |
| 352 | Characteristic Values and Associated Solutions of Mathieu's Differential Equation | C12:399 C13:750 C15:1074 |
| 388 | Rademacher Function | C13:510 |
| 389 | Binary Ordered Walsh Functions | C13:511 |


| 390 | Sequency Ordered Walsh Functions | C13:511 |
| :---: | :---: | :---: |
| 490 | The Dilogarithm Function of a Real Argument | C18:200 T2:112 |
| 537 | Characteristic Values of Mathieu's Differential Equations | T5:112 |
|  | S23 |  |
| 234 | Poisson-Charlier Polynomials | C7:420 C8:105 |
|  | Z : All Others |  |
| 45 | INTEREST | C4:178 C6:520 |
| 112 | Position of Point Relative to Polygon | C5:434 C5:606 |
| 117 | Magic Square (Even Order) | $\begin{aligned} & \text { C5:435 C5:440 C6:39 } \\ & \text { C6:105 } \end{aligned}$ |
| 118 | Magic Square (Odd Order) | $\begin{aligned} & \text { C5:436 C5:440 C5:606 } \\ & \text { C6:39 C6:105 } \end{aligned}$ |
| 136 | Enlargement of a Group | C5:555 |
| 148 | Term of Magic Square | C5:605 C6:168 C6:168 |
| 199 | Conversions Between Calendar Date and Julian Day Number | C6:444 C7:661 |
| 240 | Coordinates On An Ellipsoid | C7:546 |
| 246 | Graycode | C7:701 C8:382 T1:285 <br> T11:441 |
| 252 | Vector Coupling or Clebsch-Gordan Coefficients | C8:217 |
| 260 | 6-J Symbols | C8:492 |
| 261 | 9-J Symbols | C8:492 |
| 355 | An Algorithm for Generating Ising Configuration | C12:562 |
| 364 | Coloring Polygonal Regions | C12:685 |
| 391 | Unitary Symmetric Polynomials | C13:512 C15:49 |
| 398 | Tableless Date Conversion | C13:621 C15:918 |
| 428 | Hu-Tucker Minimum Redundancy Alphabetic Coding Method | C15:360 C16:490 |
| 444 | An Algorithm for Extracting Phrases in a Space-Optimal Fashion | C16:183 |
| 445 | Binary Pattern Reconstruction from Projections | C16:185 C16:186 |
| 455 | Analysis of Skew Representations of the Symmetric Group | C16:571 |
| 479 | A Minimal Spanning Tree Clustering Method | C17:321 C18:119 T2:110 |
| 499 | An Efficient Scanning Technique | T2:82 |
| 523 | CONVEX: A New Convex Hull Algorithm for Planar Sets | T3:411 |
| 528 | Framework for a Portable Library | T4:177 T5:524 |
| 532 | Software for Roundoff Analysis | T4:388 |
| 536 | An Efficient One-Way Enciphering Algorithm | T5:108 |
| 550 | Solid Polyhedron Measures | T6:121 |
| 561 | Fortran Implementation of Heap Programs for Efficient Table Maintenance | T6:444 |
| 564 | A Test Problem Generator for Discrete Linear $L_{1}$ Approximation Problems | T6:615 |

568 PDS - A Portable Directory System
Fast Hankel Transforms Using Related and Lagged Convolutions

605 PBASIC - A Verifier Program for ANSI Minimal Basic
606 NITPACK - An Interactive Tree Package
607 Text Exchange System: A Transportable System for Management and Exchange of Programs and Other Text

620 References and Keywords for Collected Algorithms from ACM
A Simple Macroprocessor

X3:162
T8:369
T9:125
T9:391
T9:418
T9:427

T10:359 T11:305 T16:401
T10:410

## Appendix A

## Availability of Data, Tools and Algorithm Sources

In addition to the Fortran code described in Appendix B there is a perl script for transforming the original database files into a number of more useful formats. Currently the perl script will generate

1. a $\mathrm{Bib}_{\mathrm{E}} \mathrm{Xdatabase}$ entry for each algorithm,
2. a cumulative index based on the SHARE classification like the one in [2],
3. a cumulative index based on the GAMS classification like the one in [3].

The algorithm databases available are

1. The calgo algorithms published in Communications of the ACM from 1960-1975 and in ACM Transactions on Mathematical Software from 1975-,
2. The Applied Statistics algorithms published in Applied Statistics 1968-.

The databases and software are available via electronic mail or anonymous ftp from unix.hensa.ac.uk. The files are

- acm.dbase - the CALGO algorithms database,
- acm.bib-BibTEXdatabase of the CALGO algorithms,
- as.dbase - the Applied Statistics algorithms database,
- as.bib - BibTEXdatabase of the Applied Statistics algorithms,
- bibeg.f, lib.f, shared.f - Fortran 77 codes for operating on the database files. These codes are described in Appendix B,
- bibop.sh - a shar file containing the perl script, data files and man page as described above.

To obtain these files by electronic mail send mail of the form
send misc/netlib/bib/file
to archive@unix.hensa.ac.uk where file is replaced by the name of the file you require.

To obtain files via anonymous ftp, connect to unix.hensa.ac.uk (129.12.21.7) - the files are in the directory misc/netlib/bib. Compressed PostScript versions of [2] and [3] are also available for ftp in misc/ukc.reports/reports/64 and misc/ukc.reports/reports/71 respectively.

Please send bug reports, extensions to the perl script or further algorithm databases to trh @ukc.ac.uk.

## Availability of algorithms

The sources to all algorithms published in TOMS and a number of those published in the Communications to the ACM are available via both e-mail and ftp.

To obtain copies via e-mail send a message of the form
send number from toms
where number is the number of the algorithm you require, e.g., to obtain algorithm 495 the message would be
send 495 from toms
to netlib@unix.hensa.ac.uk (UK/Europe) or netlib@research.att.com (US).
Using anonymous ftp connect to unix.hensa.ac.uk (129.12.21.7) from the UK and Europe or research.att.com (192.20.255.2) from the US, $\log$ in as anonymous and use your e-mail address as a password. To access the TOMS algorithms
cd netlib/toms
The algorithms currently available are
$380,386,400,403,404,406-408,410,413,414,419$,
$420,432,433,458,473-476,478,479,483-485,487$, 488, 490, 493 -

## Appendix B

## A Remark on ACM TOMS Algorithm 620

We report on an enhanced version of the database originally reported in [6]. In this new version we have included all the information necessary to generate full bibliographic references. Extra information includes the author's name (including any accents), the page range of the original reference (rather than just the starting page), the month and year of publication and an abbreviated journal name. The programming language used to code the algorithm is also given. Any mathematical notation used within the algorithm title and accents in the author's name have been defined using $\mathrm{T}_{\mathrm{E}} \mathrm{X}[4]$. Following the practice used with $\mathrm{Bib}_{\mathrm{E}} \mathrm{X}[5]$, all letters within the title which need to remain capitalised in a printed version of the reference (e.g., Fortran, Bessel) are enclosed in braces.

The keywords and SHARE classification associated with each algorithm have been included with the main entry information rather than in a separate list as in [6]. Finally we have included references to all published remarks for each algorithm. These are in a compressed form which provides type (Remark or Certification), journal in which it appeared, volume, number, month and year of publication, page range and author.

The entry for each algorithm consists of either four or five records depending on whether there have been any published remarks. Each line in the file is restricted to 80 characters; records longer than this are continued on successive lines using a + in the first character position to denote that the line is a continuation line. Only the first record begins in character position one.

The first record gives details of the primary reference. The second and third are the author's name and title of the algorithm respectively. The keywords make up the fourth record. The first four records are always present. The final record provides details of remarks; individual fields within each remark reference are separated by commas and a semicolon is used to terminate each reference. Multiple remark references are treated as a single record.

As an example, the following entry is for algorithm 487

```
487 cacm 703 704 17 12 December 1974 sl4 F
    J. Pomeranz;
    Exact Cumulative Distribution of the {K}olmogorov-{S}mirnov Statistic for
+ Small Samples
    goodness-of-fit testing;k-s statistic;k-s test;Kolmogorov-Smirnov test;
    R,toms,111,2,1,March,1976,J. Pomeranz;
+R,toms,285--294,3,3,September,1977,R. Kallman;
```

The first line should be interpreted as 'ACM CALGO Algorithm 487 appeared in Commun. ACM, Volume 17, Number 12, December 1974, pages 703-704'. The algorithm was implemented in Fortran and the modified SHARE classification is S14 (a sub-classification of the Special Functions).

The title spans two lines and contains two letters which must remain in upper case. The second remark is interpreted as being a Remark which appeared in ACM TOMS, Volume 3, Number 3 (second of the threes) in September 1977, pages 285-294. The author was R. Kallman.

We have provided Fortran routines which read in a reference in this compressed form and split the information up into a number of variables stored in a pair of common blocks. A template showing how to use these routines is given in Figure B.1. The two common blocks CREFNO and CREFST,

```
*
* TEMPLATE FOR USE OF GETREF
*
    LOGICAL GETREF
*
* Insert COMMON block definitions here
*
* Set up i/o channels and open data file
* (This routine contains a possibly machine dependent
* OPEN statement)
    CALL SETUP
*
* Set up output file -- application dependent routine
    CALL OUTFIL
*
* Initialize input buffer for references
* a call to initrf must precede calls to getref
    CALL INITRF
*
* Process all references
    10 IF (GETREF()) THEN
* process current reference
            GO TO 10
        END IF
*
*
```

Figure B.1: Template code for processing references
holding numerical and character data respectively, are defined by

```
    INTEGER NUMBER,PAGEND,PAGEST,VOLUME,YEAR
    COMMON /CREFNO/VOLUME,NUMBER,YEAR,PAGEST,PAGEND
    INTEGER AUTLEN,TITLEN,KEYLEN,OTHLEN
    PARAMETER (AUTLEN=80,TITLEN=160,KEYLEN=400
+ ,OTHLEN=300)
CHARACTER AUTHOR(AUTLEN), KEYWDS(KEYLEN),
+ OTHERS (OTHLEN),TITLE(TITLEN)
CHARACTER ALABEL* (6), JOURNL* (4),MONTH* (9),
+ LANG* (3),SHARE* (3)
```

```
COMMON / CREFST/ALABEL, JOURNL,MONTH, LANG,SHARE, AUTHOR,
+ TITLE,KEYWDS,OTHERS
```

where

- JOURNL contains the journal in which the algorithm was published (possible values are cacm, toms or topl),
- VOLUME, NUMBER, MONTH and YEAR store the volume, number, month and year of publication of the main reference,
- PAGEST and PAGEND give the page range of the main reference,
- the author and title are stored in the arrays AUTHOR and TITLE,
- the algorithm number (in two instances this contains a letter), implementation language ( $\mathrm{F}=$ Fortran, A60 $=$ Algol 60, PLI $=$ PL1, $\mathrm{R}=$ Ratfor, $\mathrm{N}=$ None ), and the Share index are placed in ALABEL, LANG and SHARE respectively;
- KEYWDS is an array containing the list of keywords separated by semicolons,
- the array OTHERS stores associated Remarks and Certifications. Each remark is separated by a semicolon and contains, as a list separated by commas
- type of remark ( $\mathrm{R}=$ Remark, $\mathrm{C}=$ Certification),
- journal of publication (cacm or toms)
- page range - either a pair of number separated by -- or a single integer for a one page remark,
- the volume, number, month and year of the publication,
- the author.

Two example programs are included which use these routines to generate a BIBTEX database and a cumulative index sorted by the SHARE index.

## Bibliography

[1] Hopkins, T., and Morse, D. Remark on algorithm 620. ACM Trans. Math. Softw. 16, 4 (December 1990), 401-403.
[2] Hopkins, T., and Morse, D. Cumulative index to the ACM algorithms. Tech. Rep. 64 (Revised), Computing Laboratory, University of Kent, Canterbury, UK, Oct. 1992.
[3] Hopkins, T., And Morse, D. Cumulative index to the Applied Statistics algorithms. Tech. Rep. 71 (Revised), Computing Laboratory, University of Kent, Canterbury, UK, Oct. 1992.
[4] Knuth, D. E. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1984.
[5] LAmport, L. ATEX User's Guide \& Reference Manual. Addison-Wesley, Reading, Massachusetts, 1986.
[6] Rice, J. R., and Hanson, R. J. References and keywords for Collected Algorithms from ACM. ACM Trans. Math. Softw. 10, 4 (December 1984), 359-360.

