
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

King, Andy and Soper, Paul (1991) Reducing Scheduling Overheads for Concurrent Logic Programs.
 In: Boley, Harold and Richter, Michael, eds. Processing Declarative Knowledge. Lecture Notes
in Artificial Intelligence (567). Springer-Verlag, pp. 279-286. ISBN 3-540-55033-X.

DOI

Link to record in KAR

https://kar.kent.ac.uk/20996/

Document Version

UNSPECIFIED

Reducing Scheduling Overheads for

Concurrent Logic Programs

Andy King and Paul Soper

Department of Electronics and Computer Science,

University of Southampton, Southampton, S09 5NH, UK.

Abstract

Strictness analysis is crucial for the efficient implementation of the lazy flmctionM lan-

guages. A related technique for the concurrent logic languages (CLLs) called schedule

analysis is presented which divides at compile-time a CLL program into threads of to-

tally ordered atoms, whose relative ordering is determined at run-time. The technique

enables the enqueuing and dequeuing of processes to be reduced, synchronisation tests to

be partially removed, introduces the possibility of using unboxed arguments, and permits

variables to be migrated from a heap to a stack to affect a form of compile-time garbage

collection. The implementation is outlined and some preliminary results are given.

1 Introduction

Traub [1] has proposed dependence analysis as a technique for reducing the run-time

overheads of the lenient functional languages. The analysis presented in this paper arose

because the lenient functional languages and the concurrent logic languages (CLLs), as

described in [2], share similar synchronisation mechanisms. Based on this observation a

reinterpretation and reformulation of dependence analysis, called schedule analysis, has

been developed for the (CLLs).

Schedule analysis is concerned with deducing at compile-time a partial schedule of

processes, or equivalently the guard and body atoms of a clause, which is consistent with

the program behaviour. Program termination characteristics are affected if an atom which

instantiates a shared variable is ordered after an atom that matches on that variable. In

order to avoid this an ordering of the atoms has to be determined which does not contradict

any data dependence. In general the processes cannot be totally ordered and thus the

analysis leads to a division into threads of totally ordered processes. In this way the work

required of the run-time scheduler is reduced to ordering threads.

An additional motivation for schedule analysis is that it allows a number of important

optimisations. These are surveyed in section 2. The role of schedule analysis in uniproces-

sor and multiprocessor implementations of the CLLs is also discussed. Section 3 explains

280

how dependencies between atoms can identify pairs of atoms which must be allocated to

different threads. Finally theorem 1, a safety result, states the conditions under which

atoms can be partitioned into threads and ordered within a thread whilst preserving the

behaviour of the program. The final procedure can be used with existing compile-time

analysis techniques. In section 4 we outline our implementation are give some preliminary

results. Section 5 presents the concluding discussion.

2 M o t i v a t i o n

In addition to reducing enqueuing and dequeuing of processes by a scheduler, schedule

analysis permits several useful optimisations to be applied within a thread. The optimi-

sations all depend on the existence of a total ordering of atoms within a thread.

Gregory [3] uses the sequential and parallel conjuncts of kernel Parlog to express

ordered guard and body atoms to enable matching and unification to be partially replaced

with assignment and assignment to be partially removed. Synchronisation instructions

(which correspond to DATA/1 atoms in kernel Parlog), if repeated within a sequential

conjunct, can also be removed. Crammond [4] explains how variables which are shared

between ordered atoms can be allocated to the environments of a stack rather than a

heap. Dividing the atoms of a clause into threads of totally ordered atoms extends the

scope of these optimisations. Furthermore synchronisation instructions can be removed if

producer atoms are ordered before the consumer atoms within the same thread.

Boxing analysis plays a role in realising the speedup of strictness analysis, and also

appears to be useful in schedule analysis. Boxing analysis determines whether an argument

of a predicate has to be boxed (tagged and referenced indirectly by a pointer) or can be

unboxed (is of known type and can be placed in a machine register to be referenced directly

without a pointer). Unboxed arguments can often be used if a producer atom is ordered

before the consumer atoms within the same thread. Moreover if each clause of a predicate

definition synchronises on an argument then it is possible to move the synchronisation

instruction to immediately before the invoking atom in the parent clause. In many cases

the synchronisation instruction can then be shown to be redundant.

In a multiprocessor implementation there is a tradeoff between scheduling at compile-

time and scheduling at run-time. Schedule analysis permits useful optimisations to be

applied within a thread but also limits parallelism. Thus schedule analysis should be

applied only when parallelism is inappropriate. Parallelism is always inappropriate for a

uniprocessor, and can often be inappropriate for a multiprocessor. To give an efficient and

balanced untilisation of a multiprocessor a CLL program may be divided into grains, the

constituent processes of a grain being executed on a single processor. The division of a

CLL program into grains can be performed either manuMly by the programmer annotating

code, or automatically by the compiler applying granularity analysis [5]. Since overheads

still occur within a grain, because parallelism has to be emulated, schedule analysis can

then be applied to a grain to reduce these overheads.

281

3 Out l ine of schedule analysis

In this section we briefly outline the main points of schedule analysis without formal defi-

nitions or proofs. A detailed account of the method can be found in [6]. Schedule analysis

is based on overestimating the relevances associated with sharing, variable producers and

variable consumers. These are assumed to be already derived, for instance by the abstract

interpretation techniques reported by King and Soper [7] and Codish, Dams and Yardeni

is].

A relevance relation is constructed by overestimating the atoms which produce a vari-

able and overestimating the atoms which consume the variable. A relevance is included

for each such producer to consumer dependence. In the following we use the notation

(p � 9 P w for the set of predicate symbol occurrences in the program W, with a typical

element p, and (v �9 V for the set of program variables, with typical element v. For

brevity we refer to the atom with predicate symbol p and also the clause defining p by

the same symbol p. To describe the procedure for construction the relevance relation a

producer map P : P w --* 2 v and a consumer map C : P w --* 2 v are introduced such

that: v �9 "P(p) if p can affect v; and v �9 C(p) if v can affect p. Specifically v r T'(p) if v

can be shown to be completely matched or ignored by p and v ~ C(p) if v can be shown

to be completely instantiated or ignored by p. Sharing is encapsulated by the mappings

S : P w --* 2 N x N and V : P w • N --+ 2 v which respectively indicate which arguments

of an atom can share, and identify the variables in an argument of an atom. More exactly

(m, n) �9 $ (p) if the terms of the ruth and nth arguments of the atom p can share, and

v �9 Y(p, n) if the variable v is part of the nth argument of p. A relevance relation on the

set of body atoms Qp for the clause p can be constructed in terms of 9 , C, ,.r and 1~.

Defini t ion 1 The relevance relation 5p is defined by: (q, q') �9 5p if and only if

1. (m , m ') �9 8(p ') and v �9 13(p,m) and v' �9];(p,m') and v �9 7~(q) and v' �9 C(q')

and q # q' or

2. v �9 7~(q) and v �9 e(q') and q # q'.

Note that since 5p is defined edge-wise it is not necessarily transitive. Although producers

and consumers are intuitively connected with relevance, the connection for sharing is

indirect are arises through the potential for feedback which can introduce additional

relevanees into the relevance relation. This is explained in [6].

The 5p relation summarises the behaviour of clause p independently of the initial

query and it can be used to partition the atoms of Qp into threads of totally ordered

atoms. Threads are formed by identifying pairs of atoms which must be allocated to

different threads. Pairs of atoms are related in just four ways according to the categories

of figure 1 (where 5 + denotes the transitive closure of 5p). For category one, either q

always precedes q' or q sometimes precedes q', so that for both cases q can be ordered

before q' within the same thread. Category two is the symmetric variant of category

one. For category three the atoms q and qt can be arbitrarily ordered because neither

282

Category Characteristic Order

1 (q,q') e di+ and (q',q> q[di+

(q',q> e di+ and (q,q'} q[di+

(q, q') r di+ and (q', q) r di+

(q,q'} E di+ and (q',q) E di+

q precedes q'.

q' precedes q.

neither q precedes q'

nor q' precedes q.

either q precedes q'

or q~ precedes q, or

q and q' coroutine.

Figure 1: Categorising atom pairs.

q precedes q' nor q' precedes q. Category four either identifies coroutining activity, or

different sequences for which q precedes q' in one sequence and q' precedes q in another

sequence. In either case the atoms q and q~ must be assigned to different threads and the

ordering resolved at run-time. Of these four categories only category four corresponds to

pairs of atoms that must be allocated to different threads. This is encapsulated as the

relation ap on Qp called the separation relation,

Definit ion 2 ap on Qp is defined by: (q, qr) E cr~ if and only if (q, q') E 6 + and (q', q) E
di+.

Atoms which are related by ~rv must be allocated to different threads.

Definition 3 {Q~,. . . , Qpt} is a partition of Q~ such that q e Qg and q' e Qg with i # j
if (q,q') E crp. o~ is a total ordering on Q~ such that if iq, q I) E o~ then, (q',q) ~ 5 +.

Q~ expresses the constituent atoms of a thread, o~ expresses the ordering of atoms within

i is chosen not to contradict di~. a thread, and t expresses the number of threads. Each %

It is possible for {o~,.. . , o~} to describe a division into threads which affects the

behaviour of the clause p. The problem stems from the sequential nature of threads.

Collectively {o~,. . . , o~} can introduce extra non-trivial cycles into dip. This is because

the totally ordered threads induce extra dependencies between atoms. It is as if these

extra dependencies are included in another relevance relation which is a superset of the

original relevance relation. The superset relevance relation can require a different division

into threads. In this case the original partition is inappropriate and can potentially affect

program behaviour. The observation that the partition can affect termination if the

threads collectively introduce extra non-trivial cycles into the relevance relation motivates

the following safety result.

Definition 4 r~ on Qp is defined by rp = Ui=l,...,to~.

Definition 5 An interleave t~ of { o~, . . . , o~ } is a total relation on Q, such that rp C_ t~

and if (q, q') e t, then (q', q) • Tp.

283

Data Get_Const and Bind Unify Minus and Less

Get_List Plus

n f i b / 2 1/441 89/89 0/264 177/177 352/353

nrev/2 31/496 91/91 466/466

s i eve /2 473/473 258/258 247/275 28/28 51/51

Figure 2: Preliminary schedule analysis results.

Theorem 1 I f rp U 6 + has no more non-trivial cycles than 6 + then there ezists an in-

~} such that for all initial queries % does not contradict any data terleave tp of { o~, . . . , %

dependence on Qp.

An interleave expresses how the body atoms of a clause can be ordered by scheduling

threads. In other words definition 5 states that the ordering of atoms in an interleave

must not contradict the ordering of atoms in a thread. Theorem 1 is a safety result in the

sense that if rp adds no extra non-trivial cycles to 5 + then for all initial queries the threads

can always be scheduled so as to resolve all data dependencies. Specifically theorem 1

describes a procedure for safely partitioning the atoms of a clause into threads of totally

ordered atoms in such a way that termination characteristics are preserved.

4 Implementation and Preliminary Results

Schedule analysis has been implemented and integrated into an existing FParlog86 com-

piler. 5 + is calculated as the fixed-point of the Boolean adjacency matrix for 5p [9]. The

problem of finding an optimal partition of Qp, one which minimises the number of threads

t, is NP-complete [10]. Therefore, instead, a good partition is found in polynomial-time

by a sequential colouring algorithm [11]. Each o~ is formed by topologically sorting the

relation induced by 5 + on Q~. The number of non-trivial cycles in 8 + and rp U 6 + is

counted by a backtracking algorithm [12]. The prototype schedule analysis module has

been coded in 350 lines of FParlog86, and typically equates to 10% of execution time

of the compiler (excluding the generation of mode information by abstract interpreta-

tion). Some preliminary results obtained with the prototype implementation are given in

figure 2.

Figure 2 lists the instruction count for three benchmark programs: n f i b / 2 which

counts the number of reductions required to calculate the tenth number in the Fibonacci

sequence; nrev/2 which computes the naive reverse of a thirty element list; and s i eve /2

which finds the first ten prime numbers by a sieve-based method. The instruction counts

are presented in the form c/c* where c and c* are the instruction counts obtained

with/without applying schedule analysis. Note how the synchronisation, binding and

unifying instructions can often be removed. Observe too that because s i eve /2 uses sig-

nificant amounts of corouting few instructions can be removed from the program.

284

5 D i s c u s s i o n

A compilation technique called schedule analysis has b ~ n presented which divides a

program into threads, whose relative ordering is determined at run-time. The analysis

has been developed in a formal framework within which safety conditions are established.

A practical procedure for constructing threads, which satisfies the safety conditions, is also

presented. Schedule analysis plays amore central role than just another intermediate stage

of compilation, since it enables the enqueuing and dequeuing of processes to be reduced,

binding checks and variable tagging to be partially removed, and variables migrated from

a heap to a stack to effect a form of compile-time garbage collection. Since the lenient

functional languages are similar in a number of ways to the CLLs the benefits ensuing

from dependence analysis suggest that schedule analysis is likely to be worthwhile even

for microprocessors equipped with microcoded scheduling support.

Some of the benefits of schedule analysis are linked with replacing bounded-depth

scheduling with depth-first scheduling. The scheduling of guard and body atoms is said

to be and-fair [2] if any atom capable of being evaluated will eventually be evaluated.

And-fairness is only guaranteed by depth-first scheduling if the branch of the SLD-tree

emanating from each atom is bounded and can be extended without indefinite suspen-

sion. Although the compile-time detection of bounded SLD-tree branches is in general

undecidable. Francez [13], Ullman and Van Gelder [14], Walther [15], Apt et al. [16],

Bezem [17], Van Gelder [18], Pliimer [19] and Wang [201 have shown that the termination

of logic programs can be usefully detected at compile-time. It has been assumed in this

work that an important class of clauses can be identified for which the constituent atoms

can be depth-first scheduled without compromising and-fairness or for which depth-first

is preferred on the grounds of efficiency [21].

Acknowledgments

We would like to thank Ken Traub whose dependence analysis motivated much of this
work and Hugh Glaser and Pieter Hartel for helpful discussions.

References

[1] Traub, K.R. (1989). "Compiling as Partitioning: A New Approach to Compiling Non-

strict Functional Languages", in Proceedings of the Fourth International Conference
on Functional Programming, pp. 75-88. ACM Press.

[2] Shapiro, E.Y. (1989). "The Family of Concurrent Logic Programming Languages",

Journal of ACM Computing Surveys, 21 (3): 413-510.

[3] Gregory, S. (1987). Parallel Logic Programming in Parlog, The Language and its
Implementation. Addison-Wesley.

285

[4] Crammond, J.A. (1988). Implementation of Committed-Choice Logic Languages on
Shared Memory Multiprocessors. PhD thesis, Heriot-Watt University, Edinburgh.

[5] King, A. and P. Soper (1990). "Granularity Analysis of Concurrent Logic Programs",
in The Fifth International Symposium on Computer and Information Sciences, Nevse-
hir, Cappadocia, Turkey.

[6] King, A. and P. Soper (1990). "Schedule Analysis of Concurrent Logic Programs",
Technical Report 90-22, Department of Electronics and Computer Science, Southamp-
ton University, Southampton, S09 5NH.

[7] King, A. and P. Soper (1991). "A Semantic Approach to Producer and Consumer
Analysis", International Conference on Logic Programming Workshop on Concurrent
Logic Programming, Paris, France.

[8] Codish, M., D. Dams, and E. Yardeni (1990). "Derivation and Safety of an Abstract
Unification Algorithm for Groundness and Alia.sing Analysis", Technical Report CS90-
28, Department of Computer Science, Weizmann Institute of Science, Rehovot 76100,
Isreal.

[9] CarrY, B. (1979). Graphs and Networks. Clarendon Press, Oxford.

[10] Karp, R.M. (1972). Complexity of Computer Computations, chapter Reducibility
among Combinatorial Problems, pp. 85-103. Plenum Press.

[11] D.W. Matula, G. Marble and J.D. Isaacson (1972). Graph theoryand computing,
chapter Graph colouring algorithms, pp. 109-122. Academic Press, London. Edited
by R.C. Read.

[12] Tiernan, J.C. (1970). "An efficient search algorithm to find the elementary ciccuits
of a graph", Communications of the ACM, 13: 722-726.

!13] Francez, N., O. Grumberg, S. Katz, and A. Pnueli (1985). "Proving Termination
of Logic Programs", in Proceedings of Logics of Programs Conference, pp. 89-105,
Brooklyn, NY. Springer-Verlag.

I14] Ullman, J.D. and A. Van Gelder (1988). "Top-down Termination of Logical Rules",
Journal of the ACM, 35 (2): 345-373.

[15] Walther, C. (1988). Automated Termination Proofs. PhD thesis, University of Karl-
sruhe.

[16] Apt, K.R., R.N. Bol, and J.W. Klop (1989). "On the safe termination of Prolog pro-
grams", in Proceedings of the Sixth International Conference on Logic Programming,
pp. 353-368, Lisboa, Portugal. MIT Press.

[17] Bezem, M. (1989). "Characterizing Termination of Logic Programs with Level Map-
pings", in Proceedings of the North American Conference on Logic Programming, pp.
69-80, Case Western Reserve University, Cleveland, Ohio.

286

[18] Gelder, A. Van (1990). "Deriving Constraints Among Argument Sizes in Logic Pro-
grams", in Proceedings of the Ninth A CM Symposium on Principles of Database Sys-
tems, Nashville, Tennessee.

[19] Plumer, L. (1990). "Termination Proofs for Logic Programs based on Predicate
Inequalities", in Proceedings of the Seventh International Conference on Logic Pro-
gramming, Jerusalem, Isreal.

[20] Wang, B. and R. K. Shyamasundar (1990). "Towards a Characterisation of the Ter-

mination of Logic Programs", in The Second International Workshop on Programming
Language Implementation and Logic Programming, pp. 204-221, Linkoping, Sweden.

Springer-Verlag.

[21] Sato, M., H. Shimizu, A. Matsumoto, K. Rokusawa, and A. Goto (1987). "KL1
Execution Model for PIM Cluster with Shared Memory", in Proceedings of the Fourth
International Conference, pp. 338-355.

