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Unique interpretation of Talbot Bands and  
Fourier domain white light interferometry 

 

Adrian Gh. Podoleanu 
School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK 

ap11@kent.ac.uk 

Abstract: A theoretical model is developed to interpret the output of the 
diffraction grating spectrometer used to analyze the channelled spectrum 
produced by a low coherence interferometer set-up. This model leads to an 
unique interpretation which covers both cases (i) of Talbot bands and (ii) of 
a Michelson interferometer used in most spectral interferometry set-ups for 
sensing as well as for Fourier domain optical coherence tomography 
(FDOCT). Explanation of Talbot bands visibility as well as the decay of 
sensitivity with depth, characteristic for FDOCT, is explained by 
considering the extension of the two wavetrains diffracted by the diffraction 
grating in the spectrometer. 

© 2007 Optical Society of America 
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1. Introduction 

Spectral domain white light interferometry (SDWLI) has been increasingly used for optical 
sensing purposes [1-5] as well as in optical coherence tomography (OCT). In the last five 
years, considerable research has been devoted to Fourier domain optical coherence 
tomography (FDOCT) for tissue imaging [6-10]. FDOCT or spectral radar is a form of 
spectral domain white light interferometry. SDWLI and FDOCT refer to Fourier 
transformation of the photodetected signal delivered by a spectrometer at the output of a low 
coherence interferometer [11]. The spectrum exhibits peaks and troughs in the form of a 
channelled spectrum [12] and the frequency of such a modulation is proportional to the 
modulus of the optical path difference (OPD) in the interferometer. FDOCT is attractive 
because eliminates the need for depth scanning which in time domain OCT is usually 
performed by mechanical means.  

However, in SDWLI and FDOCT, the same result is obtained for positive and negative 
OPDs, a problem which could be addressed by the method proposed here, inspired from 
Talbot bands. In FDOCT, to avoid the superposition of images of opposite OPD sign, the 
OPD=0 position is initially adjusted outside the range of interest. This is not possible all the 
time, especially when imaging moving organs or tissue. Different methods inspired from 
phase shifting interferometry can be used to eliminate the mirror terms [13-16] and attenuate 
one of the image. A truly fused 3x3 coupler having an even power splitting ratio between the 
ports exhibits 1200 phase difference between the outputs [17]. These can be conveniently used 
to generate quadrature components to eliminate the mirror terms. However, this method 
introduces attenuation, and although better suited for moving objects, relies on exact values of 
phase shifts. Therefore such method requires calibration of parameters, whose values have to 
be exact within a given bandwidth and have also to be stable in time.  

All methods mentioned above work on cancellation of the mirror terms, which when not 
perfect for different reasons, allows the mirror terms to reappear. These methods increase the 
acquisition time and therefore are sensitive to movement.  

 
2. Talbot bands 

Talbot bands represent a curious effect, discovered by Talbot in 1837 [18]. When a glass plate 
is introduced halfway into the beam coming from a white light source, modulation of the 
spectrum in the form of a channeled spectrum (CS) or Talbot bands appear only when the 
glass plate intercepts a certain side of the beam. G. B. Airy [19] dispelled any “curious” 
effects as mere results of interference which enhances the amplitude of some wavelengths and 
reduces the amplitude of others. When using a prism, the plate should be introduced into the 
side corresponding to the red part [20] of the dispersed spectrum while when using a 
diffraction grating, the plate should be introduced into the blue side of the beam. So far, the 
optical configurations producing Talbot bands and those using a Michelson interferometer in 
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most sensing and OCT systems have been dealt with independently. In this paper I propose a 
unique model to explain the CS for both types of experiments.  

A CS is observed using the bulk implementation shown in Fig. 1, where the optical beam 
from a broadband optical source, BOS, is collimated by a lens L1, and directed towards a 
beamsplitter BS. The light received by the beamsplitter BS is split into a sensing or object 
beam, OB, along the object path leading to an object mirror OM and into a reference beam, 
RB, along a reference path leading to a reference mirror RM. (In OCT applications, the object 
arm includes a transverse scanner and the OM is replaced by tissue or a multi-layer structure). 
The resulting beam from the BS is then sent to a diffraction grating, (or a prism) where the 
spectrum is diffracted to an output fan of rays with different wavelengths, subsequently 
focused by a focusing element L2 onto a photodetector array or a CCD linear array [1-11]. 
The CCD driver converts this spatial distribution into a temporal distribution. Using an 
electrical spectrum analyzer, ESA, the frequency of the channelled spectrum modulation is 
determined which leads to the |OPD| value. If multi-layered objects are imaged, such as tissue, 
each layer imprints its own CS periodicity, depending on its |OPD|.  
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Fig. 1. Modified Michelson interferometer configuration [21] to reproduce Talbot bands and 
distinguish between positive and negative OPDs. 

 
In a previous report [21] we demonstrated that a modified Michelson configuration can be 

used for studying the Talbot bands. By introducing screens in the Michelson interferometer, as 
shown in Fig. 1, the CS obtained when using a laser diode below threshold as a low coherence 
source was simplified. In these reports we have shown that the CS contains components due 
to the combination of the OPD in the interferometer with the OPD equivalent to the laser 
cavity length [22]. The simplification of the FFT spectrum of the CS is intimately related to 
the process of elimination of Talbot bands, as described in this paper. With a configuration as 
that in Fig. 1 with screens, CS bands are visible for one sign of the OPD only and there is an 
optimum OPD where the visibility is maximum. These particularities are characteristics of 
Talbot bands. Although Talbot bands represent an old known effect, there was no attempt in 
using Talbot bands to eliminate the mirror terms in FDOCT so far, despite the considerable 
attention to FDOCT in the last 5 years. In the following, I explain how Talbot bands could be 
used for selection in OPD sign and elimination of mirror terms. I present a theoretical model 
which covers  Talbot bands, SDWLI and FDOCT set-ups.   
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3. Theoretical model 

Based on the theoretical model in [22] and the system in Fig. 1, I obtain a unique equation for 
the photodetector CCD current covering both cases, of screens-in and no-screens. In addition 
to the notation and the case dealt with in [22], I introduce a parameter q, where q = 1 for 
screens-in and q = 2 for no-screens. 

After the screens in Fig. 1 are introduced halfway through, the remaining optical waves are 
denoted as object wave, OW and reference wave, RW. The field diffracted at an angle θ can 
be written as superposition of these two waves diffracted: 

       )}t,(X)(R),(Z]pND)q2(2jexp[)t,(X)(O),(Z{
2

1
t,,V( RO λλλθλ−π+λλλθ= )λθ        (1) 

where λ  is the wavenumber, t is the time, D is the differential delay between rays 
diffracted by two adjacent grating lines and ]ct2jexp[)(Y)t,(X λπ−λ=λ  is the source optical 
field, with c the speed of light in the interferometer space. O and R describe the action of 
region of refractive index perturbation along the object and reference arms in the 
interferometer respectively and ZO, ZR describe the effect of the diffraction grating, considered 
as being uniformly illuminated within the transverse section of the two beams. When no 
screens are in place, ZO = ZR and both terms involve qN grating lines, with q=2. When the 
screens are in place, then ZO and ZR involve different sets of grating lines. If the screens are 
introduced halfway through into the two beams, then the number of lines intercepted is qN, 
with q=1.  

Essential for what follows is that an “intrinsic” delay between the two waves OW and RW 
is introduced by the diffraction grating. This is described by the phase term in the second term 
in Eq. (1) when 2-q = 1. This is the consequence of the delay between the 1st ray in the 
diffracted beam of RW in relation to the 1st ray in the diffracted beam of OW. This is due to 
the Bragg condition, as from diffracted ray on each slit to the next, the wave encounters a 
delay:  
    λ=θ−θ= p)sin(sinaD i     (2)  
which for N grating lines is λpN , where p is an integer and signifies the diffraction order. 

The angles θi and θ of the incident and diffracted rays are measured from the diffraction 
grating normal to the reflected and diffracted rays and a is the grating spacing. Later on, we 
will restrict the discussion to the first order of diffraction, 1p ±= , where the choice of sign 
depends on the grating orientation relative to the direction of incoming beams. 

Considering the transmission along the two object and reference beams described by TO 
and TR respectively and that the delays along the object optical path is tO and along the 
reference optical path is tR: 

])tt(c2jexp[)(YT)t,(X)(O OO λ−π−λ=λλ                (3a) 

and  

])tt(c2jexp[)(YT)t,(X)(R RR λ−π−λ=λλ            (3b) 
with  

RO ttt −=Δ      (3c) 

the temporal delay introduced by the interferometer and the OPD = cΔt. 
Starting with an equation similar to (1), reference [22] presents a detailed evaluation of the 

CCD photocurrent during one read time sequence as result of the interference of two 
diffracted waves. Following the same steps as in reference [22], a more complete equation for 
the CCD photocurrent is obtained including the effect of the phase factor depending on q in 
(1). For brevity, similar assumptions are considered, such as the negligible effect of pixelation 
when each CCD pixel is a lot smaller than the size of the diffracted spot determined by the 
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grating resolution, that the photodetector responsivity is η  and that the source spectrum 

profile 2|)(Y| Λ  in the wavenumber space Λ  is a Gaussian centered around the wavenumber 

0λ  in the middle of the spectrum:  

]
2

)(
exp[

2

1
|)(Y|

2

2
02

σ
λ−Λ−

πσ
=Λ     (4a) 

where the coefficient σ  is related to the FWHM of the line-width in wavelength, λΔ  by: 

    
2
02ln22 λ

λΔ=σ      (4b) 

Then, the amplitude autocorrelation function, g(x), of the optical field generated by the source 
is also a Gaussian, according to the equation: 

              )x2iexp()x(g}|)(Y{|F 0
2 λπ=Λ                             (4c) 

where F signifies the Fourier transformation from the wavenumber space Λ  to a space 
described by coordinate x and  

)x2exp()x(g 22πσ−=                                          (4d) 

Introducing the notation: 

          

    )x2cos()x(g(x 0λπ= )ψ     (5) 

and following the same steps as in the Appendix A in reference [22], the CCD photocurrent 
results as: 

        ∑ Δ+ψ
+

 +)ψ+η= −
−−=

1qN
)1qN(s 2

R
2
O

RO
s

2
R

2
O ]}tc-q)N)D-(2p(s[

TT

TT2
(sD{C)TT(

qN2

1
)D(I    (6) 

For an axis D oriented along the CCD array, D will be considered positive, with values 
between Dmin and Dmax spectrum edges (Fig. 1) sampled by the CCD. The sign of the phase 
term in Eq. (1) depends on the grating orientation and is incorporated into p. Summing the 
diffracted rays from all grating lines, it can be shown that the coefficients Cs are given by: 

          |s|qNCs −=      (7a) 

for 

1qNs1qN −≤≤+−      (7b) 
The first term in Eq. (6) describes the spectrum profile of the optical source sampled by the 
CCD length. The second term represents modulation of the spectrum, i.e. the CS. 

Different visibility profiles of the CS versus the optical path difference, tcΔ , in the 
interferometer are obtained, depending on the case, screens-in or out. The amplitude 
autocorrelation function varies quickly with its argument for a low coherent source, the larger 
the source bandwidth, the narrower the g(x) profile. Therefore, the most relevant terms 
contributing to the CS in Eq. (6), for a given OPD value, are those with zero or small 
argument of the correlation function g. Argument zero for g happens when: 

    q)ND-(2psDtc +=Δ      (8) 

When this is combined with Eq. (7b), it gives the range of OPD within which a CS is 
produced. Depending on the sign in the exponential of the second term in Eq. (1), which 
depends on the sign of p in Eq. (2), the range of OPD is: 
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     D)1N2(tcD]1N)q1(2[ −≤Δ≤+−     for 1p =   (9a) 
and 
   D]1N)q1(2[tcD)1N2( +−−≤Δ≤−−  for 1p −=         (9b) 

 
For q=2, the case with no screens, both equations (9) give the same range for OPD: 

    D)1N2(tcD)1N2( −≤Δ≤+−                             (10a) 

However, when the screens are in, q=1, depending on the orientation of the grating, i.e. on 
the sign of the phase factor in the second term in Eq. (1), Eq. (9a) and Eq. (9b) give 
respectively: 

D)1N2(tcD −≤Δ≤        for 1p =                            (10b) 

 and  

DtcD)1N2( −≤Δ≤−−   for 1p −=                            (10c)  

The set-up with no screens (equivalent to set-ups largely used in sensing and in all 
FDOCT reports) produces a CS for positive and negative OPD values as predicted by Eq. 
(10a). The case with screens-in (Talbot bands), produces a CS for positive OPD values only, 
according to Eq. (10b) and for negative OPD values only, according to Eq. (10c), depending 
on the grating tilt (the sign of p) in relation to the incoming beam direction. 

 

3.1. Visibility decay with OPD 

An approximate evaluation of the visibility of the CS can be performed as follows. If the 
source spectrum is sufficiently wide, then the amplitude correlation function g defined in Eq. 
(4d) decays rapidly with its argument which includes the OPD. Therefore, a limited number of 

terms, 
λΔ

λ
≈ 02r2  in Eq. (6) present significant values. For this limited number of terms, and 

for cltc >>Δ  (coherence length of the optical source), the cosines in the second terms in Eq. 
(6) can be approximated as pulsating with the same periodicity. Let us denote the point closest 
to the center of the spectrum D0 = λ0 by Dm, then Eq. (8) is satisfied for the index s taking 
the particular value:  

Ν)−− )Δ= q2(pD/tInt(c S m m    (11) 

where Int(α) means the integer value of the argument α. Considering small variations 

mDδ about the point mD , the visibility of the CS is then given by :  

   
∑

∑

+
≈

−=

+
−=
r

rs ms

rmS
rmSs mms

2
R

2
O

RO
q

)(sDgC

])DS-(s[gC

TT

TT2
V    (12) 

Using Eq. (7a), Eq. (12) becomes: 

])D(g)qN[(2)0(qNg

)]D(g2)0(g|)[S|qN(

TT

TT2
V

r
1 m

r
1 mm

2
R

2
O

RO
q

∑ εε−+
∑ ε+−

+
≈

=ε

=ε   (13) 

In practice, N>>r, which leads to further simplification of Eq. (13) to: 

qN

|S|qN

TT

TT2
V m

2
R

2
O

RO
q

−
+

≈     (14) 
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Equation (14) describes a triangular shape of the visibility with maximum for Sm= 0 for 
both cases, screen-in or out. For screens-in, this represents the known triangular profile for 
Talbot bands [23]. However, the triangular profile is obtained for different OPD ranges in the 
two cases, either symmetric around OPD=0 according to Eq. (10a) or covering one OPD sign 
only, according to Eq. (10b) or Eq. (10c). The decay of visibility with OPD for systems like in 
Fig.  1 with no screens (q=2), was discussed in previous papers on sensing and FDOCT in the 
context of spectrometer resolution [6,13]. I will show here that the decay is mere the result of 
the same phenomenon which could be used to explain the decay of sensitivity with the OPD 
in a Talbot bands like experiment.  

3.2 Heuristic explanation of sensitivity decay with OPD 

A simple explanation can be put forward based on the fact that the coherence length of the 
dispersed wave by a prism or of the diffracted wave by a diffraction grating is longer than the 
coherence length of the incoming wave. This particularity can be used to explain the Talbot 
bands and extended to explain selection in the OPD values of the configuration in Fig. 1 with 
or without screens. In this respect, let us consider a temporal view of the partial coherence 
light as made of femtosecond pulses. Each diffraction grating slit generates a replica of the 
incoming pulse (wavelet) in the first order of diffraction, delayed by λ . For example, for a 
superluminiscent diode at 1 mμ , of several tens of nm linewidth, the coherence length is in 
the range of 10 mμ . Using 2N=2000 grating lines (no screens in Fig. 1) means a wavetrain 
length of 2N individual pulses (wavelets) of 10 mμ length each, delayed in between by 1 mμ . 
As consequence, the total wavetrain is as long as 2 mm. Table 1 shows the superposition of 
diffracted wavetrains for different values of OPDs for the two cases, screens-out (top raw) and 
screens-in (2nd and 3rd raw). The assumption is that the grating is on the left and the 
wavetrains travel to the CCD array to the right of each sketch. R and L signify wavetrains 
produced by the right, respectively left side of the grating. Wavetrains for N = 6 grating lines 
are shown for simplicity.  

The 6 pulses in the wavetrains mark the spatial position of the maximum of each wavelet 
diffracted, and are shown narrower than the space between them, λ , for simplicity, to 
illustrate in a small sketch the dependence between the wavetrain length and the number of 
diffraction lines intercepted. (In fact, each wavelet extends for more than several wavelengths 
either side for most real cases of several micron coherence length sources and may be wider 
than the length of the whole wavetrain for 6 pulses only, however when a large number of 
pulses are considered, the wavetrain length is practically proportional to the number of 
diffracted wavelets in the wavetrain with a good approximation. Also, as it will be understood 
later from interpreting the Table 1, the temporal extension of each wavelet has insignificant 
effects on the channelled spectrum visibility versus OPD when N is large).  

The striking difference between the two cases is due to the existence or not of the 
“intrinsic” delay in Eq. (1) introduced by the dispersion element (here the diffraction grating). 
No ‘intrinsic’ delay means that the two wavetrains are totally superposed, as shown in the top 
raw of Table 1. When the OPD goes higher (positive or negative), the two wavetrains 
emerging from the diffraction grating are delayed in relation to each other and the amount of 
overlap reduces, as shown for OPD = λ±N  and becomes zero for OPD= λ± N2 , observing 
the triangular profile dependence on OPD as described by Eq. (14). For q=1 the behaviour is 
different, in OPD = 0 there is no overlap due to the existence of the ‘intrinsic’ delay, so no CS 
modulation. Therefore, the two wavetrains can be superposed only by introducing a definite 
sign of OPD in the interferometer. Let us define the OPD as the difference between the object  
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Table 1. Overlap of the two wavetrains versus OPD. 

 

tcΔ  λ− N2  λ− N  0 λN  λN2  

Case 2 

No 
screens 

q=2 

SDWLI 
and 

FDOCT 

Zero overlap Partial overlap Maximum 
overlap 

Partial overlap Zero overlap 

Case 1 

Screens 
in place 

q=1,  

p=1 

Talbot 
bands No overlap No overlap Zero overlap Maximum 

overlap 
Zero overlap 

Case 1 

Screens 
in place 

q=1, 

p=-1 

Talbot 
bands 

Zero overlap Maximum 
overlap 

Zero overlap No overlap No overlap 

 
 
path length, and the reference path length, according to (3c): OPD=2Z-2X, where distances X 
and Z are shown in Fig 1.In the second raw, p=1 signifies such an ‘intrinsic’ delay of the 
reference wavetrain RW in relation to the object wavetrain OW, that for OPD = 0, RW lags 
behind OW. In the third raw, the orientation of the grating is such that the ‘intrinsic’ delay 
makes OW lag behind RW. For p=1, delaying the object wave (2nd raw) and for p = -1, 
delaying the reference wave (3rd raw) allows overlap of the two wavetrains to take place. As 
consequence, with the screens-in, starting from zero OPD, the visibility of the CS can be 
made either to increase or stay at zero value, in opposition to the case of no-screens where the 
visibility decays with OPD either side of OPD = 0. 

In the following I show that the sketches of the wavetrains in Table 1 are in accordance to 
the theoretical model developed above. The different ranges of OPD values determined by 
(10a,b,c) are inferable from Table 1 by considering the amount of overlap of the two 
wavetrains. In the top raw, positive and negative OPD values lead to overlap of the waves and 
so to a CS. The ambiguity created by what is called mirror terms in FDOCT is illustrated by 
the cases of λ±= NOPD  which exhibit similar overlap. In the other two raws the ambiguity 
is eliminated, negative OPD values in the 2nd raw and positive OPD values in the 3rd raw 
increase the separation of the two wavetrains, so no overlap and therefore a CS is obtained for 
one sign of OPD only.  
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At an OPD value, of λ=Δ N2tc  (last column), the overlap is brought to zero and the 
visibility of the CS rolls-off to zero. This is in accordance with Eq. (10a) (first raw) and Eq. 
(10b) (second raw). The same is valid for the first column, according to Eq. (10a) (first raw) 
and Eq. (10c) (third raw). These give the maximum OPD measurable values in SDWLI 
sensing set-ups and in FDOCT.  

The interpretation here for the maximum OPD range, derived from the study of Talbot 
bands is more fundamental than that invoking the spectrometer resolution [6,13] and provides 
an explanation based on the length and relative delay of the wavetrains after the diffraction 
grating, delay represented as a combination of the `intrinsic` delay due to dispersion 
(diffraction) with that introduced in the interferometer. The combination of the two delays is 
described by Eq. (8). In fact, the interferometer arms are extended up to the CCD array 
including the spectrometer. With no screens, the OPD reduces to the genuine optical path 
difference evaluated up to the beamsplitter. With the screens-in, this genuine OPD is 
combined with the ‘intrinsic’ delay.   

Also, the OPD values where maximum visibility is predicted by the theoretical model 
above are obtainable by evaluating the overlap for the three cases in Table 1. The visibility 
registers a maximum for Sm = 0 in Eq. (14). For q = 2, Eq. (11) leads to 0tc =Δ  (however no 
CS exists until the |OPD| is at least comparable with the coherence length of the source). In 
table 1, top raw, the two wavetrains OW and RW have a spatial length of λN2  and for OPD 
= 0 are totally superposed. For q=1, according to (11), the value Sm = 0 is obtained for 

0m NNDtc λ+≈+=Δ  for p = 1 and 0m NNDtc λ−≈−=Δ  for p = -1. The same values are 
obtained from the 2nd and 3rd raws, where the two wavetrains OW and RW have a spatial 
length of λN  and are totally superposed for λ= NOPD  in the 2nd raw and for λ−= NOPD  
in the 3rd raw. In addition to selection in the OPD sign, this method moves the OPD value of 
maximum visibility towards the middle of the range. This property is important in OCT, 
where it could be advantageously used to compensate for the attenuation of signal with depth 
in the tissue. 

4. Conclusions 

I derived a theoretical model which provides an equation applicable to both cases of screens-
in (Talbot bands) and no-screens (case valid for all reports on FDOCT) in Fig. 1. A 
supplementary explanation of differences in behavior of the system with the screens-in and 
screens-out is provided by considering the equivalent length of the wavetrains after the 
diffraction grating. This allows a simple heuristic interpretation of the Talbot bands generation 
and extension of similar principles to applications requiring operation for one sign of OPD 
only. The paper shows that: (i) the same Eq. (6), Eq. (11) and Eq. (14) can be put forward to 
explain the CS properties in a wide range of interferometers; (ii) based on the extension of 
coherence length of the diffracted waves due to diffraction, the variation of the CS strength 
with OPD can be explained. The Eq. (11) and Eq. (14) were then validated against the 
heuristic interpretation represented in Table 1, based on the extension of the diffracted 
wavetrains and shown delayed by the ‘intrinisic delay’. The model (Eq. (6) and Eq. (14) and 
interpretation in Table 1) is applicable to both cases of Talbot bands as well as to Michelson 
configurations with spectral interrogation. This interpretation is fruitful in showing that the 
later case could be interpreted as superposition of wavetrains in configurations producing 
Talbot bands (superposition of wavetrains in raws 2 and 3 gives the wavetrains in raw 1).  

An important conclusion is that by modifying an FDOCT interferometer to produce Talbot 
bands, is possible to sense the sign of the OPD in the interferometer. This could be employed 
in sensing as well as to eliminate the mirror terms in FDOCT and advantageously shift the 
visibility maximum towards the middle of the OPD range.  

Such a method is superior to all other known methods to resolve the ambiguity in the OPD 
sign, all based on cancellation techniques inspired from phase shifting interferometry [13,14] 
or complex Fourier signal processing [16], methods which require calculations which take 
time and also well adjusted and stable parameters. Therefore, the method proposed is less 
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sensitive to experimental set-up adjustment and does not require combination of signals and 
computation, simply the system is made sensitive to one sign of the optical path difference 
(OPD) only. 

It is however true that based on Talbot bands the range is not doubled like in complex 
Fourier OCT set-ups, which tolerate the OPD=0 crossing the useful range. However the 
attenuation of mirror terms using Talbot bands is superior to any other methods proposed 
because it is not based on cancellation procedures. 

The explanation put forward here does not deny the assertion in previous FDOCT papers 
that the spectrometer resolution is responsible for the sensitivity decay with OPD. The 
spectrometer resolution depends on the number of grating lines, N, and according to Table 1, 
the overlap of the two wavetrains is reduced to zero when the OPD is longer than Nλ. 
However, the explanation here shows the fundamental origin of the decay of sensitivity with 
OPD. Other factors limiting the spectrometer resolution such as the number of photodetectors 
in the array interrogating the spectrum should be considered in addition to the phenomenon 
explained in Table 1, of signal decay due to the reduction of overlap of the two diffracted 
wavetrains with the increase in the OPD. 

The paper shows that by routing each beam from a low coherence two beam 
interferometer via separate parts of the diffraction grating in an interrogation spectrometer is 
possible to sense the sign of the optical path difference in the interferometer and eliminate the 
mirror terms in FDOCT. This is obtained here using  screens to obscure halves of the two 
beams. The screens modify radically the operation of the system. With no screens, the system 
is similar to that largely used in low coherence interferometry sensing [1-5] and FDOCT [6-
10], consisting of an interferometer followed by a spectrometer. When the screens are in, the 
behavior is similar to that encountered in an experiment of generating Talbot bands [21]. 
While this set-up is useful in developing a unique model for SDWLI, FDOCT and Talbot 
bands, it is inefficient in terms of power use. We are now devising equivalent more power 
efficient set-ups using optical fibers to route light along two optical paths, one for the 
reference and the other via the object arm and illuminating separate parts of the diffraction 
grating.  

The model developed and the sketches in Table 1 explain the effect on the channelled 
spectrum visibility of introducing an OPD in the interferometer. The model could be extended 
to the case where the two beams cover a different number of grating lines and a gap is left on 
the grating between the two beams. Without writing any equations however, it is possible to 
infer the effect of a gap using the interpretation of delayed wavetrains in Table 1. The gap, 
covering M grating lines will require an OPD of at least λ±M before the two wavetrains could 
overlap. Therefore, such a method could be used for adjustment of the minimum path 
imbalance, with possible applications in sensor multiplexing.  

The sketches in Table 1 are applicable to any type of spectrometer, using diffraction 
gratings or prisms, the findings here are not restricted to spectral analysis performed by 
diffraction. Equivalent explanation could be produced for a spectrometer based on dispersion 
by writing the effect of the dispersion on the delay of different parts of the beams traversing 
the prism [20]. 
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