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Introduction

Poly(amidoamine)s (PAAs) are synthetic tert-amino poly-

mers, which are produced by hydrogen transfer poly-

addition of primary or secondary mono(amine)s to

bis(acrylamide)s.[1–3] They are water-soluble, biodegrad-

able and are less toxic[4,5] than other cationic polymers such

as poly(L-lysine),[6] polyethyleneimine (PEI)[7] or poly

(amidoamine) (PAMAM) dendrimers[8] all of which have

been widely proposed as non-viral vectors. In aqueous

solution, amino and amido groups arranged along the PAA

polymeric chain confer moderate basicity to the polymer.[9]

As a result the polymer undergoes a conformational

change from a relatively coiled (hydrophobic) to an open

(hydrophilic) structure, when moved from a neutral to an

acidic environment. This was confirmed by a pH-dependent

haemolysis assay[9,10] and more recently by small

angle neutron scattering (SANS).[11,12] In the context of

Summary: The poly(amidoamine)s (PAAs) ISA 1 and ISA
23 display pH-dependent conformational change and pH-
dependent membrane perturbation. These properties confer
potential for use as endosomolytic polymers for intracyto-
plasmic delivery of toxins and genes. Both polymers are
relatively non-toxic, and moreover ISA 23 has the beneficial
property in vivo, of being non hepatotropic when adminis-
tered intravenously. Although ISA 23 and ISA 1 demonstrate
ability to transfect cells, ISA 1 is also able to promote
intracellular delivery of non-permeant toxins. The aim of this
study was to synthesise random and block copolymers of ISA
1 and ISA 23 and investigate whether these second generation
hybrids would allow optimisation of PAA biological
characteristics. Random and block copolymers of ISA 1
and ISA 23 were synthesised by hydrogen transfer polyaddi-
tion to generate a library of PAAs with an ISA 23:ISA 1 molar
ratios of 2:1 to 4:1. The resultant polymers have a pI slightly
below 7.4 and a Mw of 19 900–49 000 g/mol and a Mn of
13 100–24 100 g/mol. Whereas none of the random or block
copolymers were haemolytic at pH 7.4 all demonstrated
pH-dependent membrane activity. At pH 5.5 they caused 50–
60% haemoglobin (Hb) release over 1 h. This was slightly
less than that seen for ISA 23 (80% Hb release). None of the
copolymers were cytotoxic against B16F10 cells during a 72 h
incubation (IC50> 2 mg/ml; MTT assay). The ability of the
random and block copolymer PAAs to deliver the toxin

gelonin was also examined, but only ISA 1 and the block
copolymer B2 (ISA 23:ISA 1 at a 2:1 molar ratio) were able to
promote intracellular delivery, as measured by cytotoxic
activity. It would be interesting to study the body distribution
of B2 and determine whether this toxin-delivering PAA is
able to escape liver capture.
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promotion of intracellular delivery of macromolecular

drugs, this property of PAAs has been used to mediate gene

and non-permeant toxin delivery to the cytoplasm of the

cell.[13,14]

From the large library of PAAs so far examined,[4,9,10]

two PAAs have emerged as particularly interesting. The

amphoteric ISA 23 (and its analogue ISA 22, in which 4% of

2-methylpiperazine units have been replaced by 2-(4-

hydroxy)phenylethylamine units to allow radioiodination)

and the more cationic ISA 1 (and its 2-(4-hydroxy)phenyl-

ethylamine analogue, called ISA 4) (Figure 1).[10] In vivo

pharmacokinetic studies showed that 125I-labelled ISA 22

exhibited ‘‘stealth properties’’, i.e. it did not accumulate in

the liver after intravenous injection. This polymer exhibits a

prolonged blood circulation time[10] that promotes tumour

accumulation of 125I-labelled ISA 22 in mice bearing sub-

cutaneous B16F10 melanoma. This is due to the enhanced

vascular permeability of angiogenic blood vessels, leading

to the passive targeting phenomenon called the enhanced

permeability retention (EPR) effect.[15] This makes ISA 23/

22 particularly suitable for parenteral use.

In contrast, the in vivo pharmacokinetic profile of 125I-

labelled-ISA 4 is less favourable as this PAA is cationic at

physiological pH and consequently localises in the liver

after intravenous injection, i.e. it is hepatotropic.[10] Never

the less ISA 1 displays one important advantage, as this

PAA is able to promote cytosolic delivery of non-permeant

toxins such as ricin A chain and gelonin.[14]

The aim of this study was to synthesise random and block

copolymers of ISA 23 and ISA 1, and thus produce second

generation hybrids that could combine the beneficial

properties of the parent polymers – the enhanced cytosolic

delivery of proteins of ISA 1, and stealth property of ISA 23.

A library of ISA 23:ISA 1 random and block copolymers

were synthesised having a molar ratio of 2:1 to 4:1. In the

case of the block copolymers, it was first necessary to

synthesise ISA 1 and ISA 23 with excess amine function-

ality so they could be used as macromonomers.[16] To

determine their structure activity relationships, the pH-

dependent haemolytic activity of each polymer was asses-

sed using a rat red blood cell lysis assay, and cytotoxicity

towards B16F10 murine melanoma was assessed by MTT

assay.[17] Gelonin was used as a model toxin to assess the

in vitro ability of these PAAs to mediate intracellular

delivery of proteins.[14]

Materials and Methods

Instruments

1H-NMR spectra were run in deuterated water on a Bruker

400 MHz instrument. SEC chromatograms were obtained

by using a waters 515 HPLC pump, with Toso-Haas 486

columns, using Tris buffer pH 8.00� 0.05 as mobile phase.

Conditions: sample concentration 10 mg/ml; flow rate 1 ml/

min; detector UV Knauer model, wavelength 230 nm;

temperature 30 8C, poly(N-vinylpyrrolidone) (PVP) frac-

tions were used as reference standards.

Materials

Sodium hydrogen carbonate (NaHCO3), concentrated HCl

and hydroxyethylethylenediamine (DHE) were purchased

from Fluka (Dorset, UK) and used without any purification.

2-Methylpiperazine (2-MePip) was also obtained from

Fluka but was recrystallised from hexane, its purity was

determined titrimetrically before use. 2,2-Bis(acrylami-

do)acetic acid (BAC) and bisacryloylpiperazine (PB) were

synthesised as previously described,[18,19] and their purity

was determined titrimetrically (BAC) or by NMR (BP) just

before use.

Dextran (Mw ¼ 74 000 g/mol), gelonin, optical grade

dimethyl sulfoxide (DMSO), 5-dimethylthiazol-2-yl-2,5-

diphenyltetrazolium bromide (MTT) and Triton X-100

were all from Sigma (Dorset, U.K) and were of analytical

grade. PBS was supplied from Oxoid Ltd. (Basingstoke,

U.K). RPMI 1640 medium supplemented with L-glutamine,

foetal bovine serum (FBS) and 0.25% trypsin-EDTA were

purchased from Gibco-BRL (Paisley, U.K). The B16F10

mouse melanoma cells were from ATCC (CRL-6475).

Synthesis of Random Copolymers

As a typical example, the synthesis of the random

copolymer R2 is briefly described. A mixture of BAC

(3.0 g, 15.13 mmol), sodium hydrogen carbonate (1.272 g,

15.13 mmol) and water (7.5 ml) was stirred until a clearFigure 1. Structure of poly(aminoamide)s ISA 1 and ISA 23.
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solution was obtained. The solution was flushed with

nitrogen, then BP (1.47 g, 7.56 mmol), 2-MePip (96.5%

purity, 1.96 g, 18.9 mmol) and DHE (95% purity, 0.59 g,

3.78 mmol) were added and the resultant mixture main-

tained 3 d at room temperature under a nitrogen atmos-

phere. After this time the mixture was diluted with one

volume water and 37% hydrochloric acid added until the

pH was reduced to 2.5. After further dilution the product

was ultrafiltered through a membrane with nominal cut-off

10 000 Da. The portion retained by the membrane was

finally recovered by liophylisation. The yield was about

70% of the theoretical.

The same procedure was followed to synthesised R3 and

R4 using the ratio of reactants as shown below:

R3: BAC 3.0 g (15.13 mmol); sodium hydrogen

carbonate 1.272 g (15.13 mmol); water 6.7 ml; BP 0.98 g

(5.043 mmol); 2-MePip 1.83 g (17.65 mmol); DHE 0.39 g

(2.63 mmol).

R4: BAC 3.0 g (15.13 mmol); sodium hydrogen

carbonate 1.272 g (15.13 mmol); water 6.3 ml; BP 0.734 g

(3.78 mmol); 2-MePip 1.766 g (17 mmol); DHE 0.29 g

(1.89 mmol).

The yields were the same in each case.

Synthesis of Block Copolymers

As a typical example, the synthesis of the block copolymer

B2 is described below. First, the a,o–bisamino terminated

ISA1 pre-polymer was prepared. A mixture of BP (1.47 g,

756.5 mmol), water (2.52 ml), 2-MePip (96.5% purity,

0.4122 g, 8.32 mmol) and DHE (95% purity, 0.62 g,

8.32 mmol) was stirred until a clear solution was obtained.

The resultant mixture was maintained 3 d at room temper-

ature under a nitrogen atmosphere. This intermediate was

used without further purification.

To prepare the a,o–bisamino terminated ISA23 pre-

polymer, a mixture of BAC (3.0 g, 15.13 mmol), sodium

hydrogen carbonate (1.272 g, 15.13 mmol); water (5.04 ml)

and 2-MePip (96.5% purity, 1.727 g, 16.6 mmol) was stirred

until a clear solution was obtained. The resultant mixture

was also maintained 3 d at room temperature under a

nitrogen atmosphere, and used without further purification.

The third component, a 1:1 mixture of BAC/BP was

prepared as follows. A mixture of BAC (0.3 g, 1.513 mmol),

BP (0.147 g, 757 mmol) and sodium hydrogen carbonate

(0.127 g, 1.513 mmol) and water (2 ml) was stirred until

homogeneous and then flushed with nitrogen in order to

eliminate the resultant carbon dioxide.

Finally, to synthesise the block copolymer B2, the a,o–

bisamino terminated ISA1 pre-polymer, the a,o–bisamino

terminated ISA23 pre-polymer and the 1:1 BAC/BP

described above were thoroughly mixed in a flask and left

for 2 d at room temperature. After this time the mixture was

diluted with one volume water, treated with 37% hydro-

chloric acid until pH 2.5, and after further dilution

ultrafiltered through a membrane with nominal cut-off

10 000 Da. The portion retained by the membrane was

finally recovered by liophylisation. The yield was about

70% of the theoretical.

The block copolymers B3 and B4, were prepared using

the same procedure. Whilst the quantities of a,o–bisamino

terminated ISA23 pre-polymer and 1:1 mixture of BAC/BP

remained the same, the monomer feed ratio for the synthesis

of a,o–bisamino terminated ISA1 pre-polymer changed as

follow:

B3: BP (0.98 g, 5.1 mmol), water (1.68 ml), 2-MePip

(0.275 g, 2.7 mmol), DHE (0.413 g, 2.7 mmol).

B4: BP (0.735 g, 3.78 mmol), water (1.26 ml), 2-MePip

(0.206 g, 2.06 mmol), DHE (0.31 g, 2.06 mmol).

NMR Characterisation of the Copolymers

The 1H NMR (D2O) spectrum of ISA1 was as follows: CH3

of 2-MePip 1.3 ppm d; CH2 of 2-MePip 3.1–3.8 ppm m

(complex system); CH2 in a and b to the amidic group of BP

3.2–4.0 ppm m (complex system); CH2 of the ring of BP

3.1–3.8 ppm m (complex system); CH2 in a to the nitrogen

groups of DHE 2.7 ppm broad (complex system); CH2 in a
to the hydroxy groups of DHE 3.5 ppm m (complex

system).

The 1H NMR (D2O) spectrum of ISA23 was as follows:

CH2 in a and b to the amidic group of BAC 3.0–3.2 ppm m

(complex system); CH in a to the amidic group of BAC

5.6 ppm s; CH3 of 2-MePip 1.3 ppm d; CH2 of 2-MePip

3.1–3.8 ppm m (complex system).

The NMR spectra of the random and block copolymers

were superimposable compared to the ISA 1 and ISA

23 spectra. The composition of the copolymers was

determined by measuring the ratio of CH in a to the amidic

group of BAC (5.6 ppm s), and CH3 of 2-MePip (1.3 ppm d).

The values found had a good correlation with the com-

position of the monomer feed, within the experimental error

(�5%).a

Evaluation of PAA Cytotoxicity
Using B16F10 Cells

B16F10 cells were cultured in RPMI-1640 supplement-

ed with 10% (v/v) heat inactivated FBS and maintained

a All NMR spectra show many overlapping signals in the range
2.8–4.0 ppm (for the 1H spectra) and between 40–60 ppm
(for the 13C spectra), due to different dimethylene groups with
similar chemical shifts. In addition, the signals were broad
because of the coupling of nuclear spins. This is not unexpected.
In NMR spectra of small molecules, these interactions are
averaged to zero by rapid, isotropic tumbling. However, in
polymer solutions, the molecular motion is slow enough that this
coupling can contribute significantly to the spectrum.[20]
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at 37 8C in a humid incubator with a 5% (v/v) CO2

atmosphere. No antibiotics were added. The cells were

subcultured every 4 d at a split ratio of 1:10. Polymer

cytotoxicity was assessed during the log phase of cell

growth using an MTT assay as described previously.[17]

Cells were added to 96-well microtitre plates at a density

of 1� 104 cells/well 24 h prior to the assay. Polymer

solutions (0.2 mm filtered) were made in complete RPMI-

1640 medium to give a concentration range of 0 to 2 mg/ml.

At the start of the experiment the culture medium was

removed and the desired polymer solution was added

(100 ml). After 67 h MTT (20 ml; 5 mg/ml in PBS sterile

filtered) was added to each well and the plates re-incubated

for a further 5 h. The formazan crystals were dissolved

in DMSO and concentration read at 550 nm using a

microtitre plate reader. Cells grown in media alone were

used as a reference for 100% viability. The results were

expressed as viability (%) relative to a control containing no

polymer.

Evaluation of PAA-Mediated Gelonin Delivery

A method previously described[14] was used to assess the

ability of the PAAs to deliver gelonin.[21] B16F10 cells were

plated as described above. PAAs, at concentrations from 0

to 2 mg/ml, where then added to cells in the presence or

absence of gelonin (0.2 mm filtered; 1.4 mg/ml) and

cytotoxicity was determined after 72 h by MTT assay as

described above.

Evaluation of PAA-Induced Haemolysis

The haemolytic activity of the PAAs was evaluated using a

rat red blood cell lysis assay as previously described.[22] A

male Wistar rat was killed by 4% CO2 asphyxiation. Blood

was obtained by cardiac puncture and collected in a heparin

blood tube. The tube was centrifuged at 1 000� g for 10 min

at 4 8C, the plasma was discarded and the erythrocytes

(RBC), collected in the pellet, were re-suspended in pre-

chilled PBS and re-centrifuged twice, as described above.

The final pellet was re-suspended in pre-chilled PBS at

pH 5.5, 6.5 and 7.4, in order to give a 2% (w/v) RBC

suspension. Fresh solutions of each polymer (2 mg/ml)

were prepared in PBS at a starting pH of 5.5, 6.5 and 7.4.

These solutions (100 ml) were added to 96-well plates and

the appropriate RBC suspension was added at a 1:1 (v/v)

ratio. The plates were incubated for 1 h at 37 8C. After this

time the plate was centrifuged at 1 000� g for 10 min

at room temperature. The haemoglobin (Hb) content of

the supernatant was measured spectrophotometrically at

550 nm using a microtiter plate reader. Haemolysis was

expressed as a percentage of the value obtained using Triton

X-100 (1% w/v Triton X-100) which was used to provide

a 100% value.

Results and Discussion

Since 1990 a steady stream of polymer therapeutics,

particularly polymer-protein and polymer-drug conjugates,

have entered clinical trial, and in some cases the market.[23]

However, with the completion of the human genome

project, and the recent advances in proteomics, there is an

ever increasing need to design nano-vectors able to deliver

genes and macromolecular drugs (particularly proteins

and peptides) to the cytoplasm of the cell.[24] In nature,

viruses deliver their DNA (or RNA) to the cytosol using

fusogenic peptides and proteins[25] To overcome the re-

cognised disadvantages of viral vectors, many are investi-

gating synthetic mimetics,[26–29] and much effort has been

directed towards the design of pH-responsive endosomo-

lytic polymers that might efficiently open the endosomal

membrane, and allow cytosolic access of macromolecular

drugs without the need to use a protein or peptide.[30–36]

Our past research led us to PAAs. These are water-

soluble, cationic polymers that demonstrate endosomolytic

properties.[9,13,14] This behaviour has been confirmed using

model systems,[13,14] and also isolated lysosomal vesicles

containing PAAs.[37] The composition of the ISA 23-ISA 1

random and block copolymers described here was selected

with the aim of designing a hybrid polymer with an

isoelectric point slightly below 7.4, i.e., a negative net

average charge at pH 7.4, but also with a greater positive

charge than ISA 23 at acidic pH.[9] The net average charge

of PAAs and their isoelectric points, can be calculated from

their monomer composition.[9] In this case, theoretical

calculations suggested that the charge density, and total

charge, of ISA 23:ISA 1 copolymer compositions with a

molar ratio in the range 2:1–4:1 would fulfil the above aim

(Figure 2). The net average charge will be the same for

block and random copolymers of the same composition.

Figure 2. Influence of the pH on the total charge of amphiphile
poly(amidoamine)s.
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However, the charge distribution along the polymer chain

will be quite different. Positive and negative charge is

expected to be evenly distributed in random copolymers,

but will be grouped within ISA 23 amphoteric sequences in

the block copolymers. In fact, at physiological pH the block

copolymers will have sequences of purely positive charges

(ISA 1) combined with amphoteric sequences of negative

and positive charge (ISA 23), with a prevalence of anionic

character. Furthermore, each PAAs repeating units can

be considered as separate molecules and though will be-

have nearly independently towards protonation.[1–3] Hence,

the complex molecular architecture of the copolymers

should induce no or little variation of the aminic nitrogen

pKa values relative to the parent polymer ISA1 and ISA23

(Figure 1).

The random copolymers (Table 1) were prepared

(Scheme 1) simply by mixed polyaddition of BAC, BP, 2-

MePip and DHE, in the appropriate ratios. Based on

previous experience, no sequentially ordered PAA copoly-

mers may be expected if all the co-monomers are mixed

together before starting polymerisation. The block copoly-

mers (Table 1) were synthesised (Scheme 2) starting from

ISA 23 and ISA 1 pre-polymers amino-terminated at both

ends. The polymerisation degree of these pre-polymers was

planned to be 19 according to the well known relation

between the limit number-average polymerisation degree

and the initial stoichiometric ratio r of the monomers[38]

(Equation 1):

Xn ¼
1 þ r

1 � r
ð1Þ

NMR has shown[39] that when bis-secondary amines are

employed as monomers, this relationship is perfectly

fulfilled when (as in the present case) the excess is an

amine function. However, the relationship does not always

hold true when an excess bisacrylamide is used.[3] This

makes it difficult to predict the polymerisation degree of a

vinyl-terminated pre-polymer. The a,o–bisamino termi-

nated ISA 1 and ISA 23 pre-polymers were used for the

subsequent chain-extension step without isolation, using

the same bisacrylamides used for the preparation of ISA 1

and ISA 23. The total number of double bonds equalled, in

all cases, the number of amino groups. For this reason, the

procedure described here was preferred to preparation and

direct coupling of complementary pre-polymers, that is,

a,o–terminated with amino groups and double bonds

respectively.

The Mw of the random copolymers varied between

19 000 and 43 000 g/mol (Table 1) and these polymers had

a polydispersity index of <2. The block copolymers had a

higher Mw, in the range 35 000 to 50 000 g/mol, and a

polydispersity index of up to 2.7 (Table 1). Their Mw

corresponds to approximately 6 blocks (three for each type)

per macromolecule. The composition of the copolymers

was determined from their 1H NMR spectra, by measuring

the ratio between the peak at 5.6 ppm (corresponding to

NCHN group of the BAC monomer) and the peak at

1.3 ppm, (corresponding to CH3 group of the 2-MePip

monomer). It was found to correlate well with that of the

monomer feed ratio (Data not shown). This was expected as

when the polymerisation is brought to high yields the

copolymer composition reflects the stoichiometry of the

monomer feed.[40]

Table 1. Chemical characteristics of the random (R2, R3, R4) and block (B2, B3, B4) copolymers.

Polymer ISA 23:ISA 1 Molar ratio Mw
a) Mn

a) Mw=Mn
a) pIb)

ISA1 – 12 300 6 900 1.78 –
ISA23 – 50 826 28 469 1.78 5.5
Random copolymers
R2 2:1 19 900 13 100 1.52 7.5
R3 3:1 43 000 24 100 1.78 7.3
R4 4:1 23 200 16 000 1.45 6.9
Block copolymers
B2 2:1 35 200 14 700 2.39 7.5
B3 3:1 49 000 18 200 2.69 7.3
B4 4:1 45 700 18 700 2.44 6.9

a) The Mw, Mn (g/mol) and Mw=Mn were calculated by GPC using PVP standards as described in the text.
b) pI was calculated.

Scheme 1. Synthesis of random copolymers of ISA 23 and
ISA 1.
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It was first important to determine whether synthesis of

such random and block copolymers would increase PAA

general cytotoxicity, thus making them unsuitable for

in vivo administration. Following incubation of the hybrid

PAAs with B16F10 cells for 72 h, all were found less toxic

compare to the parent ISA 1. The IC50 values observed were

all >2 mg/ml and 1.5 mg/ml (Figure 3). Second, it was

hoped that these random and block copolymers would

still demonstrate pH dependent membrane permeability.

When the ISA 23-ISA 1 block and random copolymer

hybrids were tested for their haemolytic activity at physio-

logical (pH¼ 7.4), endosomal (pH¼ 6.5) and lysosomal

(pH¼ 5.5) pH, all polymers displayed haemolytic activity

which was not distinguishable from the PBS and dextran

controls (10% Hb release) at pH 7.4 (Figure 4). At pH 6.5 a

two-fold increase in haemolysis was generally observed for

each PAA hybrid, whereas at pH 5.5 the Hb release showed

a 5-fold increase compared to pH 7.4 (50 to 60% Hb

Scheme 2. Synthesis of block copolymers of ISA 23 and ISA 1.

Figure 3. PAA cytotoxicity towards B16F10 mouse melanoma. Panel (a) shows the relative toxicity of random copolymers (R2, R3, R4)
and the parent polymers ISA 23 and ISA 1. Panel (b) shows the relative toxicity of block copolymers (B2, B3, B4) and the parent polymers
ISA 23 and ISA 1. Viability is expressed as % of the growth of control cells incubated inmedium alone. Data represent mean� SEM
(n¼ 12).
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release). Under the same conditions, the parent polymers

ISA 1 and ISA 23 were also not haemolytic at pH 7.4

and 6.5, but at pH 5.5 showed 20% and 80% haemolysis

activity, respectively. Although these observations indicate

a 20–30% reduction in membrane activity of the hybrids,

compared to ISA 23, they demonstrated a 30–40% increase

compared to ISA 1.

Gelonin (Mw ¼ 30 kDa, pI¼ 8.15), a ribosome inactivat-

ing protein, lacks a cell binding domain and is a non-

permeant toxin.[41] Gelonin alone is not toxic to intact cells

due to its poor uptake and its trafficking to the lysosomes

where it is degraded by enzymes.[21] ISA 1 has been shown

to promote intracytoplasmic delivery of gelonin and ricin A

chain[14] in B16F10 cells and also other cell lines.[42] ISA23

has consistently failed to do this,[14] although it is able

to deliver DNA.[13] It was hoped that combination of the

consistent monomers as a random or block copolymer,

would result in hybrid structures that would enable in-

tracytoplasmic delivery of toxins. Of this series reported

here the block copolymer B2 (ISA 23:ISA 1 2:1) did

have the ability to deliver gelonin (Figure 5). At higher

polymer concentration, a marked decrease in B16F10

viability can be seen when the cells are incubated with a

combination of gelonin, in the presence of the B2 block

copolymer (IC50¼ 1.8 mg/ml). Neither B2 alone nor

gelonin (IC50> 10 mg/ml) display any cytotoxicity and

moreover none of the other random and block copolymers

were able to promote cytoplasmic delivery of gelonin. This

is interesting as it suggests a narrow tolerance in terms of

PAAs composition for optimal gelonin delivery.

Conclusion

ISA 1 and ISA 23 random and block copolymers can be

synthesised to have aMw in the range 13 000–50 000 g/mol

and were non toxic against B16F10 cells (IC50> 2.0 mg/

ml). Although all the hybrid PAA copolymers demonstrated

preserved pH-dependent membrane perturbation, manifest

as haemolytic activity, only the ISA 23:ISA 1 (2:1) block

copolymer showed ability to promote cytoplasmic delivery

of gelonin. It would be interesting to study the mechanism

of action of this polymer further and undertake pharmaco-

kinetic studies to see if such a block copolymer might also

display ‘‘stealth’’ properties.

In general, the synthesis of random, block and graft

copolymers designed as improved endosomolytic polymers

suitable for in vivo (and later clinical) use have displayed

disappointing properties in terms of improved membrane

destabilisation at endosomal pH. Thus, we are currently

trying to define more clearly the solution properties of

PAAs at intracellular pH[11,12] and their mechanisms of

membrane destabilisation.[43] Only with this information

will it become possible to tailor the most effective hybrid

structures.
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(1.4 mg/ml). Viability was determined using anMTT assay and
is expressed as % of the growth of control cells incubated in
medium alone. Data represent mean� SEM (n¼ 12).
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