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Abstract

In 1847, Karl Bergmann proposed that temperature gradients are the key to

understanding geographic variation in the body sizes of warm-blooded animals. Yet

both the geographic patterns of body-size variation and their underlying mechanisms

remain controversial. Here, we conduct the first assemblage-level global examination of

�Bergmann�s rule� within an entire animal class. We generate global maps of avian body

size and demonstrate a general pattern of larger body sizes at high latitudes, conforming

to Bergmann�s rule. We also show, however, that median body size within assemblages is

systematically large on islands and small in species-rich areas. Similarly, while spatial

models show that temperature is the single strongest environmental correlate of body

size, there are secondary correlations with resource availability and a strong pattern of

decreasing body size with increasing species richness. Finally, our results suggest that

geographic patterns of body size are caused both by adaptation within lineages, as

invoked by Bergmann, and by taxonomic turnover among lineages. Taken together,

these results indicate that while Bergmann�s prediction based on physiological scaling is

remarkably accurate, it is far from the full picture. Global patterns of body size in avian

assemblages are driven by interactions between the physiological demands of the

environment, resource availability, species richness and taxonomic turnover among

lineages.
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I N T R O D U C T I O N

In 1847, Karl Bergmann argued that species of homeo-

therms living in colder climates are larger than their relatives

living in warmer ones (Bergmann 1847), a hypothesis that is

now known as �Bergmann�s rule�. Bergmann�s argument was

based on simple laws of physiological scaling: larger-bodied

species have smaller surface-area-to-volume ratios, thereby

increasing heat conservation in colder climates. Conversely,

smaller-bodied species have larger surface-area-to-volume
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ratios, thereby promoting cooling in warm, humid areas

(Hamilton 1961; James 1970). Because latitude provides a

reasonable surrogate for decreasing temperature (Blackburn

et al. 1999), Bergmann�s rule is commonly discussed as a

relationship between large body size and both low temper-

ature and high latitude.

Despite much research, both the pattern and mechanism

that Bergmann proposed remain controversial (James 1970;

McNab 1971; Yom-Tov & Nix 1986; Geist 1987; Cousins

1989; Blackburn et al. 1999; Meiri & Dayan 2003). Several

studies of both endotherms and ectotherms have questioned

the generality of both the pattern and mechanism of

Bergmann�s rule (reviewed by Blackburn et al. 1999; Chown

& Gaston 1999; Meiri & Dayan 2003; Meiri & Thomas

2007; Chown & Gaston 1999). Furthermore, Rosenzweig

(1968) argued that body size increases with increasing

resource availability, rather than with decreasing tempera-

tures. He claimed that low productivity sets a limit to the

body sizes animals can achieve. Increased seasonality and

low predictability of environmental conditions were likewise

thought to select for large body size (Lindsey 1966; Boyce

1978; Geist 1987) because larger animals can survive

starvation longer than smaller ones, especially when under

cold stress (Calder 1974; Zeveloff & Boyce 1988).

The increasing availability of animal distribution data has

led to assemblage- or grid-cell-based examination of body-

size distributions, which involves averaging the body sizes of

all species within a cell (Blackburn & Gaston 1996; Ramirez

et al. 2008). However, within species or lineages, size clines

between assemblages can only be fully linked to classical

explanations for Bergmann�s rule if higher-level processes

are not prevalent. For example, species richness may

influence body-size gradients if the shape of body-size

frequency distributions changes with latitude (Cardillo 2002).

Furthermore, body-size gradients of assemblages may also be

determined by a phylogenetically non-random set of species,

rather than by selection on body size per se. For example,

some major body plans may be phylogenetically constrained,

and may only persist in certain environmental conditions. If

these are associated with particular body sizes (e.g., all

penguins are large and all are marine), then size distributions

may change between different regions because of lineage

turnover rather than because of direct selection for size.

Additionally, body-size distributions consistent with lineage

turnover may be expected if, for example, ancestral

colonizations of high latitudes were by large-bodied taxa

that subsequently diversified in situ (Blackburn et al. 1999;

Meiri & Thomas 2007), or if small-bodied taxa have been

extirpated from colder regions. Patterns of migration may

also drive gradients of body size (Blackburn & Gaston 1996).

If migratory species tend to be large-bodied, a positive

relationship between body size and latitude is expected in

summer, but if migratory species tend to be small-bodied,

this same positive relationship would instead be expected in

winter. The latter effect has been demonstrated in New

World birds, by showing that the latitudinal trend in body

size was much stronger when based on wintering than on

breeding ranges of species (Ramirez et al. 2008).

One of the key reasons that biogeographical patterns of

body size in general, and Bergmann�s rule in particular, have

remained controversial is that tests have been limited with

respect to the geographical area that they cover, the taxa

they include, the explanatory variables and spatial patterns

considered, and the statistical methods used. Here we

combine newly compiled databases on the body masses of

8270 bird species and the global geographic distribution of

all living bird species (Orme et al. 2005, 2006) to explore

global patterns of avian body size and their environmental

and ecological correlates across grid cells (Gaston et al.

2008), and to test for consistent geographic gradients in

body size within higher taxa.

We generate maps of the global distribution of avian body

size based on breeding ranges (Orme et al. 2005, 2006) and

use them to test whether there are consistent trends with

respect to latitude, temperature or temporal resource

stability. We begin by testing whether species richness alone

can explain body-size patterns, then test whether (1) body

size increases with decreasing temperature (Bergmann

1847), productivity (Rosenzweig 1968) or variability in

productivity (Lindsey 1966; Calder 1974; Boyce 1978;

Zeveloff & Boyce 1988); (2) median body sizes are lower

in more species-rich assemblages (Brown & Nicoletto 1991;

Cardillo 2002; Meiri & Thomas 2007); (3) island assemblages

are characterized by intermediate body sizes (Clegg &

Owens 2002); (4) latitudinal size clines are stronger once

migration is accounted for (Hamilton 1961; Meiri & Dayan

2003) and (5) different biomes are characterized by unique

size–temperature relationships. Finally, we test whether the

observed body-size trends are explained by adaptation

within lineages, as originally proposed by Bergmann, or by

latitudinal turnover between lineages.

M A T E R I A L S A N D M E T H O D S

Body-size data and mapping

Body masses of 8270 of 9702 species of extant birds were

collected from 434 literature sources (online Appendix S1),

following the taxonomy of Sibley and Monroe (Sibley &

Monroe 1990). Within-species sample sizes, where reported,

ranged from 1 to 41 884 (mean 80.6 individuals; median 9).

We mapped the body-size data onto gridded species

breeding range maps using equal-area cells approximating

to a 1� scale (Orme et al. 2005, 2006). We calculated median

body mass across all species within grid cells to obtain the

global distribution of avian body size. We also identified the
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genera, families and orders represented in each cell and

calculated the median masses at each taxonomic level from

the median mass of all species within each taxon.

We calculated the number of species in each cell falling

into each of the quartiles of the distribution of body size

across bird species (under 15.5 g; 15.5–36.9 g; 37.0–138.8 g;

over 138.8 g) in order to reveal differences in the distribu-

tions of large- vs. small-bodied species. We calculated linear

models of biome differences in the relationship between

body size and latitude using the biome occupying the largest

land area within each cell (Olson et al. 2001). These models

used the mean of log10 median body mass within latitudinal

bands to remove longitudinal autocorrelation in the model.

Similar models for island vs. continental assemblages used

only those cells that contained only island or only continental

landmass, therefore omitting many continental coastal cells.

Species richness was recorded as the number of species in

each cell for which body-size data were available.

Body size and species richness

Body-size gradients may result from non-random addition

of small-bodied species in more species-rich areas (Cardillo

2002). To examine whether such a mechanism can explain

the geographic distribution of avian median masses, we

generated a null body-size distribution by drawing species

without replacement from the species pool 1000 times for

each observed value of cell species richness. The probability

of drawing a species was weighted by its range size such that

large-ranged species were more likely to be drawn than

small-ranged species. The 95% confidence intervals of the

expectations from this randomization were then compared

to the relationship between median log10 body mass within

each cell and the observed total species richness (Orme et al.

2005).

Environmental data

Environmental variables were selected for their potential

bearing on the mechanisms suggested to explain Berg-

mann�s rule, and we therefore used measures of tempera-

ture, primary productivity, degree of seasonality and the

year-to-year variability of resources.

Mean annual temperature was determined using monthly

temperature data averaged across the period 1961–1990,

recorded at a 10-min resolution (New et al. 2002). The same

data were used to calculate the annual amplitude in

temperature as the mean intra-annual temperature range

across years. Productivity was measured by the Normalized

Difference Vegetation Index (NDVI) using monthly log10-

transformed remotely sensed NDVI averages across the

period 1982–1996 at 0.25� resolution (The International

Satellite Land-Surface Climatology Project Initiative II

2004). We included seasonality (absolute value of the

difference between the October–March mean and the

April–September mean), and the inter-annual coefficient

of variation of NDVI.

We used additional environmental variables estimating

habitat heterogeneity as covariates for similar reasons as

species richness, that is, as median body mass may be

influenced by habitat turnover independently of the climate

predictors of interest. Habitat heterogeneity was estimated

as the number of land-cover types occurring in a grid cell,

computed using remotely sensed data for the 12-month

period between April 1992 and March 1993 at 30-arcsec

resolution with types classified following the Global

Ecosystems 100 category land-cover classification (Olson

1994a,b). Elevation range (maximum minus minimum

elevation) was used as an alternative estimate of habitat

heterogeneity, calculated from 30-arcsec resolution data

(United States Geological Survey 2003). Finally, using the

same data source, we tested the fit of mean elevation, as

elevation (like latitude) is not strictly an ecological predictor

but a spatial one that is allied to a number of climatic

gradients we explicitly test. Nevertheless, we wished to

establish its relative importance among single-variable

models only (see below). Data for each environmental

variable were re-projected and re-sampled to the same

equal-area grid as the geographic range data.

Spatial analyses

We used log10 median body mass as the response variable in

our environmental models and included quadratic and linear

terms as predictors to test for nonlinear associations.

Because richness could either drive size patterns or respond

to similar environmental conditions as size, we ran two sets

of models: including and excluding species richness as a

covariate. In both sets of models, the log10 land area in each

cell was also included as a predictor. To remove extremes of

variation in land area that might dominate and ⁄ or distort

environmental model results, grid cells with less than 50%

landcover were omitted from the final dataset.

In addition to fitting non-spatial ordinary least squares

(OLS) regressions, we fitted spatial generalized least squares

(GLS) regressions using SAS version 9.1.3 (Littell et al. 1996)

to test the fit of environmental predictors while accounting

for spatial non-independence. The latter models included

multiple exponential spatial covariance terms fitted indepen-

dently within each biogeographic realm using a realm-specific

range parameter (q), or distance over which autocorrelation

between grid cells is observed to occur, as estimated from

semi-variograms of OLS regression residuals.

For both OLS and GLS model sets, we first ran single-

variable models of both linear and quadratic forms of the

environmental parameters. We then used a backwards
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removal procedure from the full model (excluding mean

elevation, see above) to arrive at a minimum adequate model

(MAM). The removal of predictor terms was based on the

maximum decrease in AIC, hence the maximum increase in

overall model fit, for the removal of each remaining term.

We stopped removing terms when no term deletion further

decreased AIC. While this does not achieve a best-fit model

set in the same way as a full model selection procedure using

all combinations of predictors, the latter was not compu-

tationally feasible given the numbers of predictor variables

involved and the computational intensity of GLS regression.

Nevertheless, our method is the next best option for

incorporating some beneficial elements of an information-

theoretic approach to our model building. We used

tolerance levels (Quinn & Keough 2002) to exclude the

possibility of serious collinearity (tolerances > 0.1) in all

models.

In order to determine the relationships between log10

median body mass and each of our predictors, as indicated

by the spatial GLS multipredictor model results, we plotted

values predicted from the parameter estimates of the

predictor in question against the linear term for that

predictor, while holding all other predictors at their mean

values. We compared the relationships predicted by GLS

MAMs that include and exclude species richness.

Within-taxon analyses

To examine whether adaptation within lineages or turnover

between lineages drives body-size clines, we regressed

species� body masses on the median temperature in their

breeding ranges within genera, families and orders (484

genera, 102 families and 23 orders with five or more

species). We tested for the existence of an overall negative

size–temperature relationship across taxa at each of these

levels using a meta-analysis. Using Fisher�s Z-transformation

of r and weighting by taxon species richness, we pooled the

estimated correlation coefficients (r) within each taxonomic

level and tested whether the weighted common correlation

(Z+) differed from zero (Hedges & Olkin 1985).

Migratory effects

We used data from 2789 bird species for which we had data

on migratory habits to examine the role of migration in

generating the observed body-size gradients. We included

only species with breeding and wintering ranges that could

be assigned unambiguously to either tropical–subtropical or

to temperate–polar regions. Unambiguously sedentary or

migrant species were identified, along with other species

exhibiting some range movements (nomads, partial migrants

or elevational migrants). We divided the species into body-

size quartiles and used chi-squared tests to test for the

dependence of body size and migratory behaviour in both

tropical–subtropical and temperate–polar regions.

R E S U L T S

Global maps of avian body size

Bird assemblages exhibit a strong, global, latitudinal gradient

in body size (Fig. 1a,e) with large masses being associated

with higher latitudes. The median body mass of species

within cells increases with absolute latitude both globally

and within the northern and southern hemispheres respec-

tively (Table 1). Although there is a consistent latitudinal

gradient in body size (Fig. 1e), there is considerable

variation within latitudes (Fig. 1a). Latitudinal patterns of

median body mass within biomes (Olson et al. 2001) show

marked differences (Fig. S1a) in both slope (F13,753 = 10.1,

P < 0.0001) and intercept (F13,766 = 39.7, P < 0.0001). For

example, species assemblages breeding in the tundra have

markedly larger body sizes given their latitude and, whilst

showing considerable variation, Mediterranean forest assem-

blages reverse the overall trend, with larger body sizes at low

latitudes. In addition, island assemblages (Fig. S1b) have

larger median body sizes than those of mainland assem-

blages at similar latitudes (F1,271 = 115.7, P < 0.0001) and

median body size increases more rapidly with increasing

latitude on islands (F1,270 = 6.2, P = 0.014). These relation-

ships often show considerable differences between the

northern and southern hemispheres (Fig. S1).

Species richness and body size

Species-rich cells generally have right-skewed body-size

distributions (Cardillo 2002; Meiri & Thomas 2007) and

usually occur in tropical areas (Orme et al. 2005) (Fig. 2a)

whereas species-poor cells, which tend to occur at high

latitudes, on islands and in deserts (Orme et al. 2005), are

characterized by less-skewed distributions and larger median

sizes (Cardillo 2002; Meiri & Thomas 2007).

Maps of the proportion of total species richness in cells

falling into the lowest and highest quartiles of the species

body-size distribution (Fig. 2b,c respectively) show that

small-bodied species are over-represented in many species-

rich regions (Orme et al. 2005), and under-represented in

species-poor regions (e.g. islands, deserts and polar regions).

In contrast, large-bodied species are over-represented in

tundra regions. The correlation between the skew in body-

size distributions and the number of species in the lowest

body-size quartile (r = 0.73) is stronger than the equivalent

relationship in the highest quartile (r = 0.56).

Random community assembly models, however, fail to

capture the true relationship between median body size and

species richness (Fig. 2d). Simulations weighted by range
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size describe the associations between median size and

species richness at some medium richness values (between c.

200 and 300 species) relatively well, but they poorly capture

both the observed small median body sizes at high species

richness, and the large median sizes observed in species-

poor cells. Thus, other mechanisms are needed to explain

the geographic distribution of median body sizes.

Environmental drivers of avian body size

Multivariate MAMs based on spatial GLS regression showed

considerably lower AIC values compared with equivalent

OLS models fitting the same predictors (Table 2), as well as

with OLS MAMs achieved using backwards removal

(Table S1), indicating that the GLS models were a consis-

tently more accurate description of variability in body mass.

Spatial MAMs show significant associations between median

body size and species richness, temperature and resource

availability. Species richness was the most important predic-

tor of size in the spatial MAM. Other variables in the model

predicting large body size were (in decreasing order of

importance) low mean annual temperature, intermediate

temperature amplitude, low elevation range, high inter-

annual variability of productivity and high overall productiv-

ity (NDVI, only when controlling for species richness)

(Table 2 and Fig. 3, see also Fig. S2). Mean productivity was

the only predictor for which direction of slope was reversed

when not controlling for species richness (excluding richness,

the relationship is negative at most productivity values).

While seasonality in productivity was maintained both in

MAMs that did and did not fit species richness, it was only

statistically significant in the former case, and even here, it

had minor effects (Table 2). Spatial GLS and non-spatial

OLS models that fitted each environmental predictor in

1.03 1.68 1.78 1.85 1.92 2 2.01 2.09 2.17 2.3 4.14
Log10 Median Body Mass

1.0 2.0 3.0 4.0

(e)

(f)

(g)

(h)

(a)

(b)

(c)

(d)

Figure 1 Global distribution of avian body

sizes. The median log10 body mass within

grid cells is shown for: (a) species, (b)

genera, (c) families and (d) orders. In the

case of higher taxa (b, c, d), the values

shown are the median of the median masses

of all taxa of that rank occurring in each grid

cell (c). The four maps share a common

colour scale. In addition, the plots shows the

corresponding median log10 body mass

within latitudinal bands for species (e),

genera (f), families (g) and orders (h). In

plots (d–f), grey shading shows the inter-

quartile range and dashed lines show

the minimum and maximum of values of

cells within latitudinal bands.
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isolation (while also controlling for species richness) gave

broadly similar results to the spatial MAMs (Tables S2 and S3

respectively). Our analyses suggest that variation in species

richness is the most influential variable affecting the median

body size within grid cells. Variation in temperature is the

main environmental correlate of avian body-size distribu-

tions, after controlling for species richness and spatial

autocorrelation. We found a hump-shaped relationship

between size and seasonality, as well as support for the

hypothesis that resource availability has an important

influence on the geographic distribution of bird body sizes

(Fig. 3; Geist 1987; Blackburn et al. 1999; Meiri & Dayan

2003).

Within-taxon analyses

To ascertain whether assemblage-level size clines result from

adaptation within lineages (Bergmann 1847) or from

turnover between lineages (Blackburn & Gaston 1996;

Blackburn et al. 1999), we tested whether the associations

between body size and environmental factors were also

present when comparing species within genera, families and

orders, or whether patterns were present only when we

examined all birds.

There was no significant correlation between body size

and temperature within the majority of genera (Fig. 4a,

430 ⁄ 484), families (Fig. 4b, 80 ⁄ 104) and orders (Fig. 4c,

15 ⁄ 23). Only 37 genera, 20 families and six orders showed a

significant, negative size–temperature association, while 17

genera, four families and two orders showed a significant

positive correlation (Fig. 4, Table S4). However, because

many lineages contain few species and we are performing

multiple tests, we used a meta-analysis to test for an overall

trend in the correlations between body size and temperature

within genera, families and orders. For genera (Fig. 4d;

Z+ = )0.109, P < 0.0001) and families (Fig. 4e; Z+ =

)0.068, P < 0.0001), we found a significant overall negative

association between body size and temperature. However,

the relationship was not significant for orders (Fig. 4f;

Z+ = )0.016, P = 0.196).

Table 1 Slopes, standard errors and correlation coefficients from

linear models of absolute latitude as a predictor of median body

mass within cells for species, genera, families and orders

Taxonomic level Slope SE R d.f.

Species

Both hemispheres 0.0100*** 0.00090 0.686*** 139

Northern hemisphere 0.0066*** 0.00092 0.643*** 74

Southern hemisphere 0.0190*** 0.00110 0.906*** 63

Genera

Both hemispheres 0.0071*** 0.00067 0.671*** 139

Northern hemisphere 0.0049*** 0.00081 0.574*** 74

Southern hemisphere 0.0130*** 0.00077 0.899*** 63

Families

Both hemispheres )0.0003 0.00082 )0.034 139

Northern hemisphere )0.0015 0.00078 )0.220 74

Southern hemisphere 0.0048*** 0.00100 0.508 *** 63

Orders

Both hemispheres 0.0048*** 0.00045 0.671*** 139

Northern hemisphere 0.0047*** 0.00060 0.673*** 74

Southern hemisphere 0.0059*** 0.00056 0.795*** 63

Significance is indicated as: ***P < 0.001.
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Figure 2 Global distribution of skewness in log10 body mass

(a) along with species richness of cells using species in the first

(b) and fourth (c) quartiles of the avian body-mass distribution

as a proportion of total species richness. The distribution of

median mass in cells with respect to total species richness (d).

Predicted 95% confidence intervals are also shown on expec-

tations from a range-weighted randomization model (see

Materials and methods).
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Between-taxon analyses

Size increases with increasing latitude when all species are

considered, and when we use a single, average mass value

for all species within genera and all species within orders in

each grid cell (Table 1, Fig. 1b,d,f,h). However, for families

this is true only in the southern hemisphere (Table 1,

Fig. 1g). Thus, the increase in size with latitude is driven, in

part, by taxonomic turnover across latitudes: large-bodied

genera and orders (and, in the southern hemisphere, also

families) replace small-bodied ones at high latitudes. In the

northern hemisphere, small-bodied families occupy mainly

intermediate latitudes whereas large-bodied families are

represented more at both equatorial and polar latitudes

(Fig. 1c,g).

Migratory effects

We found that frequencies of migratory behaviour are not

independent of body size in either tropical–subtropical

(v2
6 ¼ 31:31, P < 0.0001) or temperate–polar (v2

6 ¼ 29:79,

P < 0.0001) regions (Fig. S3). Small-bodied migratory

species were significantly (Z = 2.95, P < 0.0001) over-

represented in temperate and polar regions (Table S5).

D I S C U S S I O N

We found strong support for a global Bergmann�s rule in

birds, whether framed in terms of latitude or temperature:

species living at high latitudes and in cooler climates tend to

be larger-bodied than their relatives living at lower latitudes

or in warmer climates. The negative relationship between

richness and size is not simply reflecting the common

influence of temperature and seasonality on both species

richness and body size. The association between body size

and species richness is the strongest factor affecting size

even after the effects of temperature and seasonality are

accounted for. While species richness was the strongest

predictor of median body size, our weighted null model

shows that richness alone underestimates median masses at

species-poor cells, and systematically overestimates median

masses in species-rich ones. Thus, a combination of

community assembly and environmental factors is needed

to explain avian body-size distributions.

Table 2 Best-fit multivariate spatial generalized least squares models of global patterns of avian body size in relation to environmental

variables

Predictor

Including species richness:

AICGLS = )34 018.9, AICOLS = )6232.0

Excluding species richness:

AICGLS = )32 122.0, AICOLS = )5481.7

Slope SE F1,13941 Slope SE F1,13942

Intercept 3.26 0.064 3.30 0.073

Log10 land area )0.036 0.012 9.72** )0.13 0.014 85.50****

Species richness 0.0013 0.000062 459.94**** – – –

Sqrt species richness )0.073 0.0023 1019.34**** – – –

Temperature

Mean annual )0.026 0.0021 154.73**** )0.041 0.0022 339.54****

Mean annual2 0.00028 0.000022 155.66**** 0.00041 0.000025 276.40****

Amplitude 0.0066 0.00091 51.88**** 0.013 0.0011 154.88****

Amplitude2 )0.00019 0.000024 59.65**** )0.00028 0.000026 115.14****

NDVI

Log10 NDVI 0.56 0.13 17.76**** )0.96 0.14 44.63****

Log10 NDVI2 )1.15 0.41 7.86** 2.53 0.45 31.11****

Log10 NDVI seasonality 0.25 0.12 4.55* 0.21 0.13 2.39

Log10 NDVI seasonality2 )1.66 1.02 2.63 )1.32 1.12 1.40

Log10 CV NDVI – – – 0.045 0.014 10.76**

Log10 CV NDVI2 0.068 0.011 37.94**** – – –

Elevation

Log10 elevational range – – – 0.047 0.012 16.34****

Log10 elevational range2 )0.0030 0.00042 50.62**** )0.016 0.0023 47.14****

Significance is indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

NDVI, Normalized Difference Vegetation Index; OLS, ordinary least squares; GLS, generalized least squares; SE, standard error; CV,

coefficient of variation.

Models are shown including and excluding species richness as a covariate. The estimated slope and SE are shown along with the F-ratio. AIC

values are shown from spatial GLS models and non-spatial OLS models containing the same variables
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Mean temperature, temperature amplitude, inter-annual

variability in productivity, and mean productivity were

important correlates of size. However, while the positive

relationships between size and both inter-annual variability

of productivity and mean annual productivity were expected

(Rosenzweig 1968), the hump-shaped relationship between

body size and temperate amplitude was not (Lindsey 1966;

Calder 1974; Boyce 1978; Zeveloff & Boyce 1988).

Our between-assemblage and within-lineage results are

broadly consistent with patterns observed at the intraspe-

cific level, in which body-size clines are typically explained

by variation in temperature or seasonality (Meiri & Dayan

2003). However, our results indicate that the observed body-

size patterns are not only due to adaptation within lineages,

but also due to taxonomic turnover across lineages.

Although we found strong support for a body size–

temperature gradient consistent with Bergmann�s rule, it is

clear that spatial patterns of avian body size are also driven

by forces acting at the between-taxon and assemblage levels

(Gaston et al. 2008). Notably, body-size gradients are

present at taxonomic levels above the species (generic to

ordinal levels), indicating that taxon turnover at different

levels may at least partly account for the geographic

distribution of avian body sizes.

Island assemblages have larger median sizes than

expected from their latitude alone. This may be a

manifestation of the negative correlation between cell

species richness and median body size (Brown & Nicoletto

1991; Cardillo 2002; this study). The body size of bird

species has been shown to shift following the colonization

of islands, due to ecological processes related to feeding,

competition and heat balance (Clegg & Owens 2002) – a

finding supporting the idea that the larger body sizes we

observed on islands are at least partly adaptive. While it has

been claimed that size evolution on islands drives species

towards medium sizes (Clegg & Owens 2002; but see

Gaston & Blackburn 1995), we note that the cut-off

between large and small sizes in that work (Clegg & Owens

2002) (321.4 g) is well within the largest body-size quartile in

our global dataset (over 138.8 g). The large median body

sizes observed on islands may also be due, in part, to the

number of seabirds that breed there (Gaston & Blackburn

1995). Most species comprising typical �seabird� families (i.e.

Phaethontidae, Sulidae, Phalacrocoracidae, Spheniscidae,

Procellariidae, Fregatidae) are large and breed partly or

exclusively on islands. Island patterns would probably have

been even stronger before the large recent extinction event

following human colonization of most oceanic islands

around the world, where mostly large-bodied birds went

extinct (Blackburn & Gaston 2005; Steadman 2006).

Body-size distributions may differ between areas of high

and low species richness because of factors related to

community assembly (Brown & Nicoletto 1991; Meiri &

Thomas 2007), rather than by direct adaptation to lower

temperatures. Alternatively, species richness may represent a

trade-off between body size and abundance: if resources are

limiting, then given that abundance decreases with increas-

ing size, an area can either support many small, abundant

species or few large, rare ones (Cousins 1989; Blackburn &

Gaston 1996). Thus, species richness may be a consequence

rather than a driver of body-size distributions. At present,

we cannot readily distinguish between these possibilities.

Greve et al. (2008) found that the body size in high-richness

areas fell within the bounds of their null distributions. The

discrepancy between these and our results is likely to be due

to regional (South Africa) vs. global effects. Specifically,

variation in global rates of speciation, extinction and

immigration is expected to generate phylogenetically non-
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Figure 3 Model predictions of log10 median body mass for cells

from minimum adequate generalized least squares models both

including (solid lines) and excluding (dashed lines) species-

richness terms. Predictions are shown for: (a) mean annual

temperature; (b) mean annual amplitude in temperature; (c) log10
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necessary, are made whilst holding the other variables fixed at

their global means.
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random species distributions, whereas at regional and local

scales the phylogenetic pattern is probably much weaker.

Furthermore, the range of variation in environmental

variables in regional assemblages may be insufficient to

drive strong patterns of geographic size variation (Meiri et al.

2007).

Most genera, families and orders did not show significant

body size–temperature gradients, even when their geo-

graphical distributions encompassed large temperature

variation (Fig. 4). This may be due to the large number of

small-bodied species that migrate away from cold and

seasonal regions when not breeding (Fig. S3). It can also

reflect adaptations other than body size that increase fitness

in harsh climates such as communal roosting (Marsh &

Dawson 1989; Cartron et al. 2000; McKechnie & Lovegrove

2002). Interestingly, we found that large-bodied migratory

or nomadic species were over-represented in warm climates,

potentially supporting a hypothesis (Hamilton 1961; James

1970) that large-bodied taxa are at a disadvantage in tropical

conditions (Table S5).

Taken together, global distributions of avian body masses

are not simply reflections of processes at and within the

species level. While environmental variables, in particular

temperature, are certainly important determinants of body-

size distributions, they cannot account by themselves for the

whole, richly textured, pattern. Non-random patterns of

community assemblage and geographic variation in the

phylogenetic affinities of co-occurring taxa are also impor-

tant drivers of global body-size distributions.
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1

Supplementary Table S1: Best-fit multivariate non-spatial OLS models of global patterns of avian 

body size in relation to environmental variables.  Models are shown a) including and b) excluding 

species richness as a covariate. The estimated slope and standard error (SE) are shown along with 

the F-ratio. Significance is indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001.  

Predictor Slope se F1,13940 Slope se F1,13942

a) Including species richness:
AICOLS =-6305.4

b) Excluding species richness:
AICOLS =-5481.7

Intercept 5.171 0.144 6.148 0.144
Log10 Land Area -0.571 0.036 257.76**** -0.843 0.035 577.28****
Species richness 0.00037 0.000068 28.79**** - - -

Sqrt Species 
richness -0.0305 0.0021 216.98**** - - -

Temperature

Mean annual -0.036 0.0012 959.33**** -0.043 0.0015 801.07****
Mean annual2 0.00037 0.000014 729.37**** 0.00045 0.000018 619.46****
Amplitude -0.0065 0.00034 372.48**** 0.0032 0.00068 22.11****
Amplitude2 - - - -0.00017 0.000013 173.68****

NDVI

Log10 NDVI -0.533 0.186 8.24** -2.35 0.160 214.91****
Log10 NDVI2 -1.203 0.649 3.43* 2.179 0.615 12.57***
Log10 Seasonality 1.455 0.184 62.77**** 1.392 0.191 52.95****
Log10 Seasonality2 -3.558 1.261 7.96** -3.412 1.328 6.60*
Log10 CV NDVI 0.126 0.0177 50.52**** -0.063 0.016 15.61****
Log10 CV2 NDVI - - - - - -

Landcover variability 0.0019 0.00043 19.23**** - - -

Elevation
Log10 Elev. Range 0.239 0.028 72.65**** 0.319 0.0275 135.35****
Log10 Elev.  Range2 -0.062 0.0054 132.26**** -0.080 0.0052 235.82****



2

Supplementary Table S2: Spatial GLS regression results of linear and quadratic relationships 

between avian body size and key environmental variables across grid cell values. Models contain 

either only linear values (L), only quadratic values (Q), or both linear and quadratic forms (LQ). 

Associated degrees of freedom were either 13,950 in the case of (L) and (Q) or 13,949 (LQ). The 

model for each variable with the best AIC is shown in bold. All analyses controlled for cell land 

area, as well as species richness (range of slopes: 0.00128 – 0.00145, range of standard errors:  

0.000058 – 0.000061) and the square root of species richness (range of slopes: -0.079 – -0.073, 

range of standard errors: 0.00209 – 0.00223). Significance levels are indicated as in Table 2.

Predictor Terms AIC Slope se F
Log10 Elevation Range L -33876.9-1.5E-02 2.0E-03 56.66****

Q -33882.5-3.3E-03 4.0E-04 65.85****

LQ -33878.21.7E-02 9.5E-03 3.21

-6.6E-03 1.9E-03 12.11***

Log10 Mean Elevation L -33981.4-4.2E-02 3.3E-03 161.93****

Q -33994.9-8.5E-03 6.4E-04 179.40****

LQ -33999.06.8E-02 2.1E-02 10.04**

-2.1E-02 4.1E-03 27.01****

Temperature L -33817.04.6E-07 3.0E-04 0.00
Q -33812.26.9E-06 3.3E-06 4.42*

LQ -33950.4-2.2E-02 1.8E-03 158.94****

2.5E-04 1.9E-05 162.71****

Temperature Amplitude L -33830.31.4E-03 3.8E-04 12.91****

Q -33814.42.0E-05 9.7E-06 4.26*

LQ -33818.43.6E-03 8.9E-04 16.50****

-6.0E-05 2.3E-05 7.76**

Log10 NDVI L -33827.2-2.8E-02 3.5E-02 0.62
Q -33829.9-1.1E-01 1.2E-01 0.95

LQ -33827.65.1E-02 1.1E-01 0.20

-2.7E-01 3.8E-01 0.53

Log10 Seasonality of NDVI L -33835.31.2E-01 5.6E-02 4.58*

Q -33835.84.1E-01 5.1E-01 0.65

LQ -33841.83.3E-01 1.1E-01 8.54**

-2.2E+00 1.0E+00 4.61*

Log10 CV of NDVI L -33841.53.9E-02 9.2E-03 17.67****

Q -33842.93.8E-02 8.7E-03 19.22****

LQ -33837.65.8E-03 2.8E-02 0.04

3.3E-02 2.6E-02 1.59

Landcover Variability L -33816.61.4E-04 1.8E-04 0.65
Q -33809.53.5E-06 6.0E-06 0.34

LQ -33796.84.1E-04 5.2E-04 0.60
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Supplementary Table S3: Non-spatial OLS regression results of linear and quadratic relationships 

between avian body size and key environmental variables across grid cell values. Models contain 

either only linear values (L), only quadratic values (Q), or both linear and quadratic forms (LQ). 

Associated degrees of freedom were either 13,956 in the case of (L) and (Q) or 13,955 (LQ). The 

model for each variable with the best AIC is shown in bold. All analyses controlled for cell land 

area, as well as species richness (range of slopes: -0.00017– 0.00046, range of standard errors:  

0.000054 – 0.000066) and the square root of species richness (range of slopes: -0.0385 – -0.0178, 

range of standard errors: 0.00153– 0.00197). Significance levels are indicated as in Table 2.

Predictor Terms AIC Slope se F
Log10 Elevation Range L -4100.0 -0.06567 0.003516 348.86****

Q -4137.0 -0.01305 0.000661 390.24****
LQ -4185.6 0.2098 0.02855 54.03****

  -0.05225 0.005373 94.55****
Log10 Mean Elevation L -4661.5 -0.1352 0.00442 935.58****

Q -4713.4 -0.0257 0.000815 994.73****
LQ -4747.4 0.2451 0.03942 38.65****

  -0.07068 0.007281 94.23****
Temperature L -3881.3 -0.00184 0.00016 132.72****

Q -3780.1 -1.00E-05 1.96E-06 39.77****
LQ -5156.8 -4.04E-02 0.001058 1459.87****

  0.000477 0.000013 1358.17****
Temperature Amplitude L -3835.5 0.001475 0.000159 86.55****

Q -3944.5 4.20E-05 2.96E-06 204.77****
LQ -4152.5 -0.00798 0.000535 222.95****

  0.000185 0.00001 342.32****
Log10 NDVI L -4077.8 -0.7344 0.04098 321.16****

Q -4152.7 -3.0625 0.1541 395.19****
LQ -4167.8 0.6137 0.1482 17.16****

  -5.286 0.5584 89.61****
Log10 Seasonality of NDVI L -4048.8 0.7165 0.04686 233.78****

Q -4028.9 5.1567 0.3563 209.42****
LQ -4051.6 0.8319 0.168 24.52****

  -0.9132 1.2765 0.51
Log10 CV of NDVI L -4143.7 0.2455 0.01241 391.1****

Q -4083.3 0.2265 0.01249 329.17****
LQ -4165.5 0.5259 0.05657 86.42****

  -0.2885 0.05678 25.81****
Landcover Variability L -3930.1 -0.00479 0.000357 180.46****

Q -3922.8 -1.70E-04 1.30E-05 179.77****
LQ -3915.7 -0.00255 0.001199 4.52*

  -0.00008 0.000043 3.84
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Supplementary Table S4: Significant relationships between median temperature of bird species 
ranges and body size within extant genera, families and orders containing more than four species. 
Taxa in italics show a slope opposite to that predicted by Bergmann’s rule. Significance levels are 
indicated as in Table 1. Passerine taxa are indicated (+).

Taxon N Slope Taxon N Slope
Genera Genera (continued)

Pteroglossus 13-0.128* Philydor+ 120.024*

Porphyrio 5-0.076* Grallaria+ 250.030*

Cercomacra+ 9-0.059* Chamaeza+ 50.033*

Euplectes+ 16-0.058**** Myzomela+ 210.036*

Spizaetus 8-0.050* Illadopsis+ 90.048**

Gallirallus 6-0.045* Sarothrura 80.055**

Andropadus+ 12-0.041* Cacicus+ 70.058*

Campylorhamphus+ 5-0.040* Amaurornis 50.217*

Agapornis 9-0.037* Napothera+ 70.217*

Geositta+ 10-0.028* Malacopteron+ 60.794*

Sylvietta+ 9-0.027** Families

Galerida+ 6-0.026* Megapodiidae 13-0.062*

Lampornis 5-0.025* Podicipedidae 20-0.029**

Apalis+ 19-0.022** Rhinocryptidae+ 27-0.028*

Puffinus 17-0.022* Corvidae+ 517-0.027****

Malacoptila 7-0.022** Apodidae 81-0.021**

Sicalis+ 9-0.020* Spheniscidae 16-0.020*

Ploceus+ 51-0.020* Sulidae 8-0.020*

Aulacorhynchus 6-0.017* Pardalotidae+ 58-0.018**

Pterocles 13-0.017* Phalacrocoracidae 30-0.015**

Dendrocopos 21-0.016*** Phasianidae 169-0.014****

Pachycephala+ 26-0.016** Falconidae 59-0.013*

Phalacrocorax 30-0.015** Cisticolidae+ 92-0.011*

Sericornis+ 12-0.015* Laridae 119-0.011***

Veniliornis 12-0.015* Accipitridae 211-0.010**

Metallura 6-0.014* Alaudidae+ 76-0.010***

Carpodacus+ 17-0.013* Regulidae+ 5-0.009*

Haliaeetus 7-0.011* Caprimulgidae 67-0.008*

Charadrius 28-0.010** Pteroclidae 15-0.008*

Aegithalos+ 5-0.010* Anatidae 143-0.007**

Caprimulgus 47-0.010* Passeridae+ 327-0.005***

Regulus+ 5-0.009* Sylviidae+ 4510.008***

Dryocopus 7-0.009* Certhiidae+ 870.013**

Cranioleuca+ 17-0.009* Scolopacidae 820.014***

Progne+ 6-0.007* Bucerotidae 480.074*

Zonotrichia+ 5-0.007* Orders

Dendroica+ 27-0.005** Coraciiformes 132-0.023*

Parus+ 470.007*** Apodiformes 85-0.020**

Bradypterus+ 150.009* Gruiformes 156-0.020**

Pheucticus+ 60.010* Strigiformes 235-0.014**

Icterus+ 240.011* Galliformes 206-0.014****

Anser 100.012* Anseriformes 156-0.006**

Pipilo+ 70.015* Ciconiiformes 9070.006***

Alcippe+ 130.017* Struthioniformes 100.069**
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Supplementary Table S5: Chi-square tests for differences in migratory behaviour between bird 

species in a) tropical-subtropical and b) temperate-polar climates. The bird species are divided by 

body-size quartiles (Q1 – Q4). Values are the observed numbers of species in each category and 

values in italics are the expected numbers. Significant departures from expected values (see Table 1 

for levels) were tested using the normal approximation of the standardized Pearson residuals and 

are shown in bold.

Q1 Q2 Q3 Q4
a) tropical and subtropical climates (χ26 = 31.31, p < 0.0001)

Resident396.0 481.0 479.0 446.0

367.2 474.0 482.3 478.5
Other184.0* 138.0 131.0 171.0**

106.8 137.8 140.2 139.1
Migrant8.0 11.0 31** 19.0

14.1 18.2 18.5 18.3
b) temperate and polar climates (χ26 = 29.79, p < 0.0001)

Resident13.0 9.0 19.0 47.0

21.0 8.9 17.0 41.1
Other127.0 9.0 33.0 85.0

36.7 15.6 29.7 71.9
Migrant54.0** 22.0 24.0 52.0*

36.3 15.4 29.3 71.0

   1 – Includes partial migrants, nomads, and elevational migrants
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