
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Genaim, Samir and King, Andy (2008) Inferring non-suspension conditions for logic programs
with dynamic scheduling. ACM Transactions on Computational Logic, 9 (3). pp. 182-196.
 ISSN 1529-3785.

DOI

https://doi.org/10.1145/1352582.1352585

Link to record in KAR

https://kar.kent.ac.uk/15105/

Document Version

UNSPECIFIED

Inferring Non-Suspension Conditions for

Logic Programs with Dynamic Scheduling

SAMIR GENAIM

Universidad Politécnica de Madrid, Spain

and

ANDY KING

University of Kent, UK

A logic program consists of a logic component and a control component. The former is a spec-
ification in predicate logic whereas the latter defines the order of sub-goal selection. The order
of sub-goal selection is often controlled with delay declarations that specify that a sub-goal is to
suspend until some condition on its arguments is satisfied. Reasoning about delay declarations is
notoriously difficult for the programmer and it is not unusual for a program and a goal to reduce to
a state that contains a sub-goal that suspends indefinitely. Suspending sub-goals are usually unin-
tended and often indicate an error in the logic or the control. A number of abstract interpretation
schemes have therefore been proposed for checking that a given program and goal cannot reduce
to such a state. This paper considers a reversal of this problem, advocating an analysis that for a

given program infers a class of goals that do not lead to suspension. This paper shows that this
more general approach can have computational, implementational and user-interface advantages.
In terms of user-interface, this approach leads to a lightweight point-and-click mode of operation
in which, after directing the analyser at a file, the user merely has to inspect the results inferred
by the analysis. In terms of implementation, the analysis can be straightforwardly realised as two
simple fixpoint computations. In terms of computation, by modelling n! different schedulings of n

sub-goals with a single Boolean function, it is possible to reason about the suspension behaviour

of large programs. In particular, the analysis is fast enough to be applied repeatedly within the
program development cycle. The paper also demonstrates that the method is precise enough to

locate bugs in existing programs.

Categories and Subject Descriptors: D.1.6 [Logic Programming]: Debugging; F.3.1 [Specify-

ing and Verifying and Reasoning about Programs]: Assertions, Pre- and post-conditions

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Abstract interpretation, Concurrency, Logic Programming

1. INTRODUCTION

A logic program can be considered as consisting of a logic component and a control
component [Kowalski 1979]. Although the meaning of the program is largely de-

Authors’ address: Samir Genaim, Universidad Politécnica de Madrid, Facultad de Informática,
28660 Boadilla del Monte, Spain; Andy King, Computing Laboratory, University of Kent, Can-
terbury, CT2 7NF, UK.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1529-3785/06/1100-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006, Pages 1–41.

2 · S. Genaim and A. King

fined by its logical specification, choosing the right control is crucial in obtaining a
correct and efficient program. One of the most popular ways of defining control is
by suspension mechanisms which delay the selection of a sub-goal until some condi-
tion is satisfied [Carlsson 1987; Naish 1986]. Delays have proved to be invaluable for
handling negation [Dahl 1980], delaying non-linear constraints [Jaffar et al. 1992],
enforcing termination [Naish 1993], improving search [Clark et al. 1982] and sup-
porting concurrency [van Emden and de Lucena Filho 1982]. However, reasoning
about logic programs with delays is notoriously difficult and one reoccurring prob-
lem for the programmer is that of determining whether a given program and goal
can reduce to a state which contains a sub-goal that suspends indefinitely. States
with suspending sub-goals are usually unintended and often indicate an error in the
logic or control.

A number of abstract interpretation schemes [Codish et al. 1994; Codish et al.
1997; Codognet et al. 1990; Debray et al. 1996] have thus been proposed for checking
that a program and goal cannot reduce to such a suspension state. These schemes
simulate the operational semantics by tracing the execution of the program over
a finite (though possibly large) collection of abstract states. Each abstract state
describes a possibly infinite set of concrete states and because of the approximation
inherent in abstract interpretation [Cousot and Cousot 1992], these schemes either
return “yes” – the program and goal definitely cannot reduce to a suspension state;
or “don’t know” – program and goal may reduce to a suspension state. In the
former case, the program is verified as being (partially) correct, whereas in the
latter case, it is potentially buggy and thus requires further inspection.

Ideally, automatic verification should be applied each time the program is altered
in a non-trivial way. However, it is arguable that a programmer will routinely and
frequently apply analysis only if it costs little. Specifically, the analysis should cost
little in terms of human interaction; the programmer should be able to activate
the analysis by merely pressing a button. Furthermore, if the programmer needs to
scrutinise the results, then the results should be easy to interpret and relate directly
to structural components of the program. A more subtle human interaction issue
relates to when the analysis returns “don’t know”. In addition to engineering
an analysis so that it is precise enough to be useful (does not yield too many
false positives), another human interaction issue is to design an analysis around a
conceptual model that can be grasped by the programmer. In the case of a “don’t
know”, the programmer needs to appreciate why the analysis failed to return “yes”
to decide whether the “don’t know” results from a bug in the program or a lack
of precision in the analysis. Finally, the analysis should also cost little in terms
of time; programmer should not hesitate about applying the analysis even to the
largest programs. Indeed, it can be argued that programs which contain the most
concurrency, are likely to benefit the most from suspension analysis.

These are demanding requirements for any analysis, let alone one that aspires to
reason about synchronisation. Not surprisingly, the previously proposed suspension
analyses [Codish et al. 1994; Codish et al. 1997; Codognet et al. 1990; Debray
et al. 1996] fail to satisfy these pragmatic requirements. Firstly, the and-or tree
framework of [Codognet et al. 1990] that applies a form of reexecution [Bruynooghe
1991; Le Charlier and Van Hentenryck 1995] to simulate the dataflow between the

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 3

body atoms under different interleavings. And-or trees are abstraction devices
[Bruynooghe 1991] rather than programming or scheduling concepts and therefore
it is not clear the extent to which a programmer will understand the underlying
analysis model. On the other hand, the suspension analysis schemes that attain
the required degree of conceptual simplicity [Codish et al. 1994; Codish et al. 1997],
do so by modelling the transition system induced by the program and goal with
an abstract transition system between a finite number of abstract states. Each
abstract state is a set of sub-goals paired with a set of dependencies between the
variables occurring in the sub-goals. Since each abstract state can include one sub-
goal for each predicate that is defined in the program, both the size and number
of abstract states can grow large (even with widening [Codish et al. 1994]) and
the practicality of these schemes has yet to be demonstrated. By way of contrast,
the work of [Debray et al. 1996] is pragmatic in that it attempts to detect non-
suspension by considering just one scheduling scheme: leftmost selection. Under
leftmost selection, the leftmost sub-goal in a sequence of sub-goals is only considered
for reduction. If the leftmost sub-goal can always be reduced and this, in turn,
introduces sub-goals which can always be reduced when they are leftmost, then
the whole goal can be verified as being suspension-free. This simple approach
is robust enough to be engineered into an optimising compiler and is surprising
effective because of the way data often flows left-to-right between the sub-goals of
a compound goal [Debray et al. 1996].

This paper is motivated by the elegance of the suspension analyses based on ab-
stract transition systems [Codish et al. 1994] and the pragmatism of the suspension
analyses based on leftmost selection [Debray et al. 1996]. The new twist that this
paper brings to suspension analysis is that rather than check that a particular goal
will not lead to a suspension state, the analysis discovers (in a single application) a
class of goals that will not lead to suspension. (This dichotomy between checking
and inference is elsewhere described in terms of the goal-dependent versus goal-
independent approach to analysis; checking is dependent on an initial goal whereas
inference does not require an initial goal to be specified.) This advance owes much
to research on domain refinement [Filé et al. 1996]. In particular, one way to en-
rich an abstract domain is to apply Heyting completion [Giacobazzi and Scozzari
1998]. For example, by applying Heyting completion to the most basic groundness
domain, Con [Mellish 1986], the domain of groundness dependencies, Pos [Arm-
strong et al. 1998], can be obtained. Con can merely express conjunctions such as
x ∧ y which is interpreted as stating that the program variables x and y are both
bound to ground terms. On the other hand, Pos can express dependencies such as
x→ (y∧z) which encodes that whenever x is ground, then both y and z are ground.
Heyting completion is more than a way of improving precision; the structure of a
resulting domain enables information flow to be reversed during analysis [King and
Lu 2002]. Rather than verify that a property holds for a given query, it is possible
to infer a class of queries under which the property holds.

Rather unusually, the analysis described in this paper also exploits a property of
a domain that is closed under disjunctive completion [Filé and Ranzato 1999]. The
disjunctive completion of Con is Mon; the domain of monotonic functions which
includes formulae such as x ∨ y which records that either x or y (or both) are

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

4 · S. Genaim and A. King

ground. It also includes functions such as x ∧ (y ∨ z) and w ∧ (x ∨ (y ∧ z)). This
paper shows that the Mon domain, when used in concert with the Pos domain,
has the important (and previously unexploited) computational attribute that it
can be used to model synchronisation. The key idea is to model the n! different
scheduling of n sub-goals with a single Boolean function. To do so, each sub-goal
is modelled by two functions: one in Mon and another drawn from Pos. The Mon

function expresses groundness properties that are sufficient for non-suspension of
the sub-goal. The Pos function captures the grounding behaviour of the sub-goal;
it expresses grounding dependencies between the bindings made by the sub-goal.
By appropriately composing these functions, it is possible to derive a function, say
f , that describes grounding requirements that, if satisfied when the conjunction of
sub-goals is called, is sufficient for a reordering of the sub-goals to exist that does
not incur a suspension. Moreover, Boolean functions can be represented densely
with binary decision diagrams (BDDs) and only O(n) logical operations are needed
to compute f . This approach leads to an efficient way of reasoning about the
suspension behaviour of large programs.

As well as its computational properties, Mon is an intuitive domain for reporting
non-suspension properties to a program developer. The domain in some sense is
not alien to a programmer familiar with block declarations [SICS 2004] since these
declarations support a rich repertoire of conjunctive and disjunction conditions.
In fact, a blocking requirement for an n-ary predicate can be expressed in SICStus
Prolog if and only if it corresponds to a monotonic Boolean function over n variables
(SICStus Prolog only permits blocking conditions to be given that can be specified
as conjunctions of disjunctions of argument positions).

Our analysis draws together a number of strands in program analysis and there-
fore, for clarity, we summarise its contributions:

—The analysis performs goal-independent suspension analysis, inferring a class of
goals that do not lead to a suspension state. As well as having the benefit of
generality, this approach leads to a point-and-click mode of operation in which,
after directing the analyser at a file, the user merely needs to inspect the results
generated by the analysis.

—The analysis exploits a property of Mon and Pos that enables an exponential
number of sub-goal reorderings to be considered in a linear number of logical
operations. This result underpins the scalability of the analysis.

—The analysis reduces to two simple bottom-up fixpoint computations – a lfp and
a gfp – which makes it surprisingly simple to implement.

—The analysis strikes a good balance between tractability and precision. It is fast
enough to be frequently used within program development and is precise enough
to locate subtle bugs in real programs.

The paper is structured as follows: Section 2 gives a detailed but accessible account
of how to apply the analysis. The focus of this section is a single worked example.
Section 3 explains the pitfalls of goal-independent suspension analysis; this section
gives insight into the design of the analysis. The following sections are more rigorous
and incrementally build towards a correctness argument. Section 4 introduces the
necessary preliminaries so that the paper is self-contained. Section 5 explains the

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 5

rôle of Boolean functions in analysis. Section 6 details the analysis itself. Section 7
outlines the implementation and section 8 presents an experimental evaluation.
Section 9 reviews related work and Section 10 concludes. This paper is an extended
and revised version of [Genaim and King 2003]. For reasons on continuity, all proofs
are relegated to appendix 10 (which will be available as an electronic appendix to
the final version of the paper).

2. WORKED EXAMPLE

Consider the Prolog program that is listed below:

inorder(nil, []).

inorder(tree(L, V, R), I) :-

append(LI, [V|RI], I), inorder(L, LI), inorder(R, RI).

:- block append(-, ?, -).

append([], X, X).

append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

Declaratively, the program defines the relation that the second argument (a list) is
an in-order traversal of the first argument (a tree). Operationally, the
declaration :- block append(-, ?, -) delays (blocks) append goals until their
arguments are sufficiently instantiated. The dashes in the first and third argument
positions specify that a call to append is to be delayed until either its first or third
argument are bound to non-variable terms. Thus append goals can be executed in
one of two modes. The analysis problem is to compute input modes which are suf-
ficient to guarantee that any inorder query which satisfies the modes will not lead
to a suspension. This problem can be solved with backward analysis. The back-
ward analysis infers conditions on the input which are sufficient for the query to
be solved, without incurring a suspension, with a local selection (or computational
[Lloyd 1993]) rule [Tamaki and Sato 1986; Vielle 1989]. Under local selection, the
selected atom is completely resolved, that is, those atoms it directly and indirectly
introduces are also resolved, before any other atom is selected. Any program that
can be shown to be suspension-free under local selection is suspension-free with
a more general selection rule (though the converse does not follow). This worked
example is intended to show that local selection fits elegantly with backward rea-
soning. The analysis itself reduces to three steps: a program abstraction step; least
fixpoint (lfp) and a greatest fixpoint (gfp) computation. Subsections 2.1, 2.2 and
2.3 are devoted to each of these steps.

2.1 Program abstraction

Abstraction in turn reduces to two transformations: normalisation and abstraction.
Former transforms the Prolog program into a form in which the head and body
atoms are flat, that is, the arguments of these atoms are vectors of distinct variables.
A normalised version of the inorder program is given below:

inorder(T, I) :- T = nil, I = [].

inorder(T, I) :- T = tree(L, V, R), A = [V|RI],
append(LI, A, I), inorder(L, LI), inorder(R, RI).

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

6 · S. Genaim and A. King

:- block append(-, ?, -).

append(L, Ys, A) :- L = [], A = Ys.

append(L, Ys, A) :- L = [X|Xs], A = [X|Zs], append(Xs,Ys,Zs).

Body unifications such as T = tree(L, V, R) and A = [V|RI] make explicit uni-
fications that would otherwise occur during argument passing. To simplify the
presentation, the body atoms of an normalised clause are reordered so that unifica-
tions precede the remaining atoms. This does not change the suspension behaviour
of the program. Moreover, the suspension behaviour of the program is not altered
by any new unifications that appear in the normalised program since they will not
instantiate any arguments that were uninstantiated in the original program. The
result of the latter transform, abstraction, is given below:

inorder(T, I) :- T, I.

inorder(T, I) :- T↔ (L ∧ V ∧ R), A↔ (V ∧ RI),
append(LI, A, I), inorder(L, LI), inorder(R, RI).

:- assertion(append(L, Ys, A), L ∨ A).
append(L, Ys, A) :- L, A↔ Ys.

append(L, Ys, A) :- L↔ (X ∧ Xs), A↔ (X ∧ Zs), append(Xs, Ys, Zs).

In the abstract version of the program, each unification is replaced with a Boolean
function in the normalised program which captures its instantiation dependen-
cies. For example, the unification A = [V|RI] is replaced (abstracted) by the
Boolean function A ↔ (V ∧ RI). The Boolean function states that A will be bound
to a ground term during execution if and only if both V and RI are bound to
ground terms during execution. This function is an exemplar of the Pos domain,
that is, the set of Boolean functions f : {true, false}n → {true, false} such that
f(true, . . . , true) = true. Other functions such as ¬x (that have little value in ex-
pressing groundness dependencies [Marriott and Søndergaard 1993]) fall outside
Pos since ¬true = false.

Observe, that once the Herbrand constraint A = [V|RI] is satisfied, then the
function A↔ (V∧RI) describes a property of that state that necessarily holds. The
converse is true for the way blocks are abstracted; blocks are abstracted by Boolean
functions that describe sufficient conditions for the blocks to hold. For example, the
declaration :- block append(-, ?, -) is abstracted with an assertion by pairing
the function L ∨ A with the atom append(L, Ys, A). When the function holds,
that is, when either L or A are ground, then the first or third arguments of the
call append(L, Ys, A) are bound to non-variables terms. Hence the call will not
block. The resulting abstract program is used as input to the lfp and gfp.

2.2 Least fixpoint calculation

The second step of the analysis approximates the success patterns of the normalised
program (and hence the original program) by computing a lfp of the abstract pro-
gram. A success pattern is an atom with distinct variables for arguments paired
with a formula over those variables. A success pattern summarises the behaviour
of an atom by describing the bindings it can make. The lfp of the abstract program
can be computed TP -style [Giacobazzi et al. 1995; Marriott and Søndergaard 1989]

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 7

in a finite number of iterates. Each iterate is a set of success patterns: at most one
pair for each predicate in the program. This gives the following lfp:

F =

{

〈inorder(x1, x2), x1 ↔ x2〉
〈append(x1, x2, x3), (x1 ∧ x2)↔ x3〉

}

Observe that F faithfully describes the grounding behaviour of inorder and append.

2.3 Greatest fixpoint calculation

A gfp is computed to approximate the safe call patterns of the program. A call
pattern has the same form as a success pattern, yet it describes a set of calls that
do not suspend under local selection. Iteration commences with D0 and the call
pattern formulae are incrementally strengthened until they are safe, that is, they
describe queries which are guaranteed not to suspend. This leads to the following
sequence of Di iterates:

D0 =

{

〈inorder(x1, x2), true〉
〈append(x1, x2, x3), true〉

}

D1 =

{

〈inorder(x1, x2), true〉
〈append(x1, x2, x3), x1 ∨ x3〉

}

D2 =

{

〈inorder(x1, x2), x1 ∨ x2〉
〈append(x1, x2, x3), x1 ∨ x3〉

}

D3 = D2

The stable iterate D2 corresponds to the gfp and constitutes the result of the
analysis. The result asserts that a local selection rule exists for which inorder will
not suspend if either its first or second arguments are ground. Indeed, if the first
argument is ground then body atoms of the second inorder clause can be scheduled
as follows inorder(L, LI), then inorder(R, RI), and then append(LI, A, I)

whereas if the second argument is ground, then the reverse ordering is sufficient for
non-suspension.

The iterate Di+1 is computed by putting Di+1 = Di and then revising Di+1 by
considering each clause p(~x) :- f1, . . . , fm, p1(~x1), . . . , pn(~xn) in the abstract pro-
gram and calculating a (monotonic) formula that describes input modes (if any)
under which the atoms in the clause can be scheduled without suspension under lo-
cal selection. This amounts to showing that a permutation π : [1, n]→ [1, n] exists
such that the atoms can be executed in the sequence pπ(1)(~xπ(1)), . . . , pπ(n)(~xπ(n))
without incurring a suspension. Recall that a monotonic function is a formula such
as x∨ (y∧ z). More exactly, a monotonic formula over set of variables X is any for-
mula of the form ∨ni=1(∧Yi) where Yi ⊆ X [Dart 1991]. Observe that each abstract
clause arises from a clause p(~x) :- b in the normalised program with a body that is
a compound goal of the form b = e1, . . . , em, p1(~x1), . . . , pn(~xn) where each ei is a
syntactic equation (unification).

Let dj denote a monotonic formula that describes the call pattern requirement
for pj(~xj) in Di and let gj denote the success pattern formula for pj(~xj) in the lfp
(that is not necessarily monotonic). A new call pattern for p(~x) is computed using
a 6 step algorithm which is given below. To illustrate each step, the presentation
will focus on the second clause of inorder, and illustrate how the call pattern for
inorder is updated inD1 to obtain a new (stronger) requirement for non-suspension
in D2. The explanation will not major on how D1 is generated because this is not
so insightful; the call patterns appearing in the D1 iterate merely correspond to

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

8 · S. Genaim and A. King

groundness conditions that satisfy the block declarations of the predicates. The call
to append will not (immediately) block if its first or third arguments are ground;
a call to inorder can never (immediately) block because a delay declaration is not
specified for this predicate. The 6 steps of the algorithm proceed as follows:

—Calculate g = (∧mi=1fi) ∧ (∧nj=1dj → gj) that describes the grounding behaviour
of the compound goal b. The action of each sub-goal pj(~xj) on the program state
is captured by the formula dj → gj . The intuition is that if the input groundness
requirements dj are satisfied, then pj(~xj) can be executed without suspension,
hence gj must describe the resulting state. The function ∧nj=1dj → gj describes
the cumulative effect of the sub-goals p1(~x1), . . . , pn(~xn) on the state. Moreover,
each unification ei never suspends and results in a state that is described by
fi. The formula ∧mi=1fi thus expresses the effect of the sub-goals e1, . . . , em. In
the case of the second clause of inorder, b = T ↔ (L ∧ V ∧ R), A ↔ (V ∧ RI),
append(LI, A, I), inorder(L, LI), inorder(R, RI) and thus f1 = T↔ (L∧V∧R) and
f2 = A↔ (V ∧ RI). Moreover from D0 it follows that d1 = I ∨ LI, d2 = true and
d3 = true and from the lfp, g1 = (LI∧A)↔ I, g2 = L↔ LI and g3 = R↔ RI. The
function g that results from this step is given below (even the simplest examples
give rise to complicated formulae, illustrating the need for automation):

g =















































(T ∧ I ∧ V ∧ A ∧ R ∧ RI ∧ L ∧ LI)∨
(¬T ∧ ¬I ∧ V ∧ A ∧ R ∧ RI ∧ ¬L ∧ ¬LI)∨
(¬T ∧ ¬I ∧ V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ L ∧ LI)∨
(¬T ∧ ¬I ∧ V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ ¬L ∧ ¬LI)∨
(¬T ∧ ¬I ∧ ¬V ∧ ¬A ∧ R ∧ RI ∧ L ∧ LI)∨
(¬T ∧ ¬I ∧ ¬V ∧ ¬A ∧ R ∧ RI ∧ ¬L ∧ ¬LI)∨
(¬T ∧ ¬I ∧ ¬V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ L ∧ LI)∨
(¬T ∧ ¬I ∧ ¬V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ ¬L ∧ ¬LI)

—Compute d = ∧nj=1dj which describes a groundness property sufficient for exe-
cuting all the sub-goals pj(~xj) in b without suspension. For the inorder clause,
this results in the Boolean function:

d = d1 ∧ d2 ∧ d3 = (I ∨ LI) ∧ true ∧ true = I ∨ LI

—Calculate g → d which is a function that describes a grounding property which,
if satisfied by the state when b is called, ensures that b can be scheduled under
local selection without suspension. The intuition is that if a Boolean function
f describes the state when b is called and f ∧ g |= d additionally holds, then it
follows that d holds once b has been executed. However, if d holds, then all the
sub-goals of b must have been executed without suspension. The largest Boolean
function f for which this argument holds is f = (g |= d) which motivates the
calculation of g |= d. (This tactic relies on the dj being monotonic and is justified
in section 5.3.) The function g → d is given below:

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 9

g → d = (¬g) ∨ d =























































































































T∨
I∨
(V ∧ A ∧ R ∧ RI ∧ L)∨
(V ∧ A ∧ R ∧ RI ∧ ¬L ∧ LI)∨
(V ∧ A ∧ R ∧ ¬RI)∨
(V ∧ A ∧ ¬R)∨
(V ∧ ¬A ∧ R)∨
(V ∧ ¬A ∧ ¬R ∧ RI)∨
(V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ L)∨
(V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ ¬L ∧ LI)∨
(¬V ∧ A)∨
(¬V ∧ ¬A ∧ R ∧ RI ∧ L)∨
(¬V ∧ ¬A ∧ R ∧ RI ∧ ¬L ∧ LI)∨
(¬V ∧ ¬A ∧ R ∧ ¬RI)∨
(¬V ∧ ¬A ∧ ¬R ∧ RI)∨
(¬V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ L)∨
(¬V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ ¬L ∧ LI)

Note that this function already expresses interesting non-suspension properties:
among other things, it states that if the compound goal b is called with the
variable T ground, then b will not suspend providing that d1, d2 and d3 are
genuine criteria for non-suspension of the sub-goals. Indeed, if b is called with a
ground T, then the unification T = tree(L, V, R) will ground L and R. The sub-
goals inorder(L, LI) and inorder(R, RI) will then bind LI and RI to ground
terms. The property d1 asserts that append(LI, A, L) will not suspend if called
with LI or L ground; this is satisfied, hence T is sufficient for non-suspension of
b providing d1, d2 and d3 are sufficient for non-suspension of the sub-goals.

—The function g → d contains variables, such as V and LI, which do not occur
in the head of the clause. Clauses of g → d which contain these variables, such
as (V ∧ A ∧ R ∧ RI ∧ L), describe non-suspension properties that can never be
satisfied by the call inorder(T, I). The call can only constrain the variables T

and I; clauses which contain other variables can never be satisfied and therefore
can be eliminated to simplify the formula. Elimination is performed by com-
puting d′ = ∀Y (g → d) where Y is the set of variables not present in the head,
∀{y1...yn}(f) = ∀y1(. . .∀yn

(f)) and a single variable is eliminated by:

∀x(f) =

{

f ′ f ′ ∈ Pos

false otherwise
where f ′ = f [x 7→ false] ∧ f [x 7→ true]

The operator ∀x returns false if there is no function f ′′ ∈ Pos such that f ′′ |= f
which is also independent of x. In general ∀x(f) entails f , that is, if ∀x(f) holds
then it follows that f also holds. Thus if g → d is a prerequisite sufficient for
scheduling b under local selection without suspension, then so is d′. The formula
d′ is computed by successively eliminating variables from g → d by calculating
∀L(g → d), ∀V(∀L(g → d)), ∀R∀V(∀L(g → d)), etc. The net result is d′ = T∨ I and
to illustrate the technique, the result of the first elimination step is:

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

10 · S. Genaim and A. King

∀L(g → d) =























































































T∨
I∨
(V ∧ A ∧ R ∧ RI ∧ LI)∨
(V ∧ A ∧ R ∧ ¬RI)∨
(V ∧ A ∧ ¬R)∨
(V ∧ ¬A ∧ R)∨
(V ∧ ¬A ∧ ¬R ∧ RI)∨
(V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ LI)∨
(¬V ∧ A)∨
(¬V ∧ ¬A ∧ R ∧ RI ∧ LI)∨
(¬V ∧ ¬A ∧ R ∧ ¬RI)∨
(¬V ∧ ¬A ∧ ¬R ∧ RI)∨
(¬V ∧ ¬A ∧ ¬R ∧ ¬RI ∧ LI)

—Compute a monotonic function d′′ that entails d′. This is required so that in the
subsequent steps of the analysis each di is monotonic. In the case of inorder,
the Boolean function d′ = T ∨ I is already monotonic, hence d′′ = d′ and thus
this step is superfluous. However, if d′ = T → I say, then it would be necessary
to replace d′ with d′′ = I – the greatest monotonic function that entails d′. Since
d′′ entails d′, it follows that because d′ is a sufficient condition for scheduling b
under local selection without suspension, then so is d′′. Section 5.4 describes how
to compute d′′ from d′.

—Replace the existing pattern 〈p(~x), d′′′〉 in Di+1 with 〈p(~x), d′′ ∧ d′′′〉, thereby
(possibly) strengthening the call pattern for p(~x). For the running example, D1

is thus updated to contain 〈inorder(T, I), T ∨ I〉.

Continuing with this procedure, the gfp is reached and checked in three iterations.
(The semantic equations that respectively specify the lfp and gfp are detailed in
Sections 6.3 and 6.4; Section 7 explains how these fixpoints can be computed.)

3. THE PITFALLS OF REVERSING SUSPENSION ANALYSIS

3.1 Merging non-suspension conditions for a compound goal

The correctness argument that underpins the analysis requires the non-suspension
conditions are described as monotonic Boolean functions. It would appear that this
requirement could be relaxed by separately considering each sub-goal reordering.
For example, the compound goal p1(~x1), p2(~x2), p3(~x3) could be analysed by merely
considering leftmost selection and inferring a non-suspension condition for each of
the following reorderings:

p1(~x1), p2(~x2), p3(~x3) p2(~x1), p1(~x1), p3(~x3) p3(~x3), p1(~x1), p2(~x2)
p1(~x1), p3(~x3), p2(~x2) p2(~x2), p3(~x1), p1(~x1) p3(~x3), p2(~x2), p1(~x1)

If f1, . . . , f6 described conditions sufficient for non-suspension for these reorderings,
then one would think that the function ∨6

i=1fi represented a condition sufficient for
the compound goal p1(~x1), p2(~x2), p3(~x3) to be executed without suspension under
local selection. However, this is not so.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 11

To illustrate, consider the compound goal p(X, Y), q(X, Y). Depending on the
delay criteria specified for the predicates p and q, under local selection, the goal
p(X, Y) could be executed before q(X, Y) or vice versa. A condition sufficient for
non-suspension for the particular scheduling p then q may differ from the condition
sufficient for non-suspension under the ordering q then p. The problem is therefore
how to compute a condition that ensures that at least one scheduling does not
suspend. The following logic program illustrates the subtlety of this problem:

:- block p(-, ?). p(X, Y) :- X = f(a, a), Y = f(a, a).

q(X, Y) :- X = f(a, a), r(Y).

:- block r(-). r(Y) :- Y = f(a, a).

The predicate p suspends until its first argument is non-variable and then it proceeds
to unify both its arguments to the term f(a, a). Observe that if X is ground when
p(X, Y) is invoked, then the call will not suspend. This sufficient condition for non-
suspension can be described by the Boolean formula X. The formula describes all
those substitutions (and therefore all calls) which ground the variable X. Now con-
sider the predicate q. The body of its clause consists of the unification X = f(a, a)

and the call r(Y). The predicate r suspends until its argument is instantiated and
then it unifies the argument with the term f(a, a). The call q(X, Y) (and those
it invokes) will not suspend if Y is ground; this requirement can be described with
the Boolean formula Y. However, less obviously, the formula X → Y describes a
strictly larger class of calls each of which ensures non-suspension of q(X, Y). This
formula can be interpreted stating the requirement that Y must be ground if X is
ground. As well as including substitutions that ground Y, it includes substitutions
of the form θ1 = {X 7→ f(Y, Z)}, θ2 = {X 7→ Y} and θ3 = {X 7→ g(W, Y, Z)}. If q(X,

Y) is called with either θ1 or θ2, then the unification X = f(a, a) can be scheduled
before the call r(Y) grounding Y and thereby ensuring that the call r(Y) does not
suspend. On the other hand, if q(X, Y) is called with θ3, then the unification fails
so that non-suspension cannot occur. To summarise, sets of non-suspending calls
for p(X, Y) and q(X, Y) are described by the formulae X and X→ Y.

Now consider the compound goal p(X, Y), q(X, Y). Under local selection, ei-
ther p is scheduled before q or q is scheduled before p. Observe that in the former
case the bindings created by p ensure that q cannot suspend whereas in the latter
case p cannot suspend because of the bindings made by q. Therefore the formu-
lae X and X→ Y represent (different) non-suspension conditions for the compound
goal. Since either of these two scheduling scenarios ensure non-suspension, it seems
reasonable that calls described by X ∨ (X → Y) will also not suspend. However,
X ∨ (X→ Y) = true and true describes a set which includes the empty substitution
ǫ under which the compound goal p(X, Y), q(X, Y) suspends. The conjunction
X ∧ (X→ Y) = (X ∧ Y) is sufficient for non-suspension but this condition is stronger
than X which is not desirable. The issue, therefore, it how to merge non-suspension
conditions that arise from different goal schedulings without compromising correct-
ness yet without enforcing overly strong requirements.

To address this issue, it is important to realise that ∨ is an unsatisfactory tactic
for merging non-suspension requirements because the class of Boolean functions

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

12 · S. Genaim and A. King

used within the analysis, Pos [Armstrong et al. 1998], is not closed under disjunctive
completion [Filé and Ranzato 1999]. It is not closed under disjunction completion
since for certain Boolean functions f1, f2 ∈ Pos the set of substitutions described
by f1 ∨ f2 is strictly larger than the union of those sets of substitutions described
by f1 and f2 separately. The solution is not to adopt a different merge operator but
apply ∨ within a sub-domain of Pos that is closed under disjunctive completion.
The most expressive sub-domain of Pos which possesses this property is Mon. Two
non-suspension requirements f1 and f2 can be merged by computing Mon formulae
g1 and g2 which are strong enough to ensure f1 and f2 hold respectively. The Mon
formula g1 ∨ g2 is then a sufficient condition for non-suspension. To continue with
the above example, if f1 = X and f2 = X → Y, then g1 = X and g2 = Y, hence
g1 ∨ g2 = X ∨ Y which indeed is sufficient for ensuring that the compound goal
p(X, Y), q(X, Y) does not suspend.

3.2 Modelling the synchronisation within a compound goal

One novelty of the analysis is its use of a Boolean function g → d to infer a
requirement that is sufficient for non-suspension: if g → d describes the state when
a compound goal b is called, then b can be scheduled under local selection without
suspension. The function g → d is constructed from g and d which are themselves
defined in terms of the gi and di – success patterns and (monotonic) non-suspension
conditions – of the atomic sub-goals of b. One is tempted to relax the requirement
that the di are monotonic since this would infer richer and therefore more insightful
non-suspension conditions. However, this can lead to disaster.

To illustrate the problem, consider again the compound goal p(X, Y), q(X, Y)

and recall that the individual sub-goals p(X, Y) and q(X, Y) will not suspend
when called with inputs described by X and X→ Y respectively. Observe too these
non-suspending calls to p and q will both ground X and Y, hence X ∧ Y describes
their output grounding behaviour. Therefore, the input-output behaviour of the
compound goal p(X, Y), q(X, Y) is described by:

g = (X→ (X ∧ Y)) ∧ ((X→ Y)→ (X ∧ Y))

The formula g can be read as stating that for input bindings which ground X, then
the compound goal will generate output bindings that ground Y. Moreover, for any
input bindings described by X → Y then the compound goal will generate output
bindings which ensure that the groundness property X ∧ Y holds. However,

g = (X→ Y) ∧ ((X→ Y)→ (X ∧ Y)) = (X→ Y) ∧ (X ∧ Y) = X ∧ Y

The deficiency in the model becomes apparent when the formula g → d is calculated
to infer a class of bindings for which the compound goal can be scheduled in some
non-suspending fashion. Recall that the formula d represents a grounding property
sufficient for scheduling both p(X, Y) and q(X, Y) without suspension:

d = X ∧ (X→ Y) = X ∧ Y

Therefore

g → d = (X ∧ Y)→ (X ∧ Y) = true

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 13

All bindings (including the empty substitution) are described by the formula true,
yet every local scheduling of p(X, Y), q(X, Y) induces a suspension when the
goal is called with X and Y unbound. If the sub-goal p(X, Y) is selected first, then
it will suspend on X; if q(X, Y) is selected first, then its sub-goal r(Y) will suspend
on Y. Note in this case, sub-goals can be interleaved to avoid suspension, but this
is prohibited under local selection. Thus the method, as applied above, cannot
correctly infer non-suspension conditions sufficient for local selection.

The problem stems from g and that (X→ (X∧Y)) = X→ Y matches the antecedent
of the formula (X → Y) → (X ∧ Y). This problem can be avoided by replacing the
non-suspension conditions for p(X, Y) and q(X, Y), namely X and X → Y, with
stronger conditions that are monotonic. The functions X and Y are both monotonic
and X→ Y holds whenever Y holds. Reworking g, d and g → d with these monotonic
non-suspension conditions gives:

g = (X→ (X ∧ Y)) ∧ (Y→ (X ∧ Y)) = (X→ Y) ∧ (Y→ X) = (Y↔ X)

d = (X ∧ Y) g → d = (X↔ Y)→ (X ∧ Y) = X ∨ Y

which yields the condition X∨Y that is sufficient for ensuring non-suspension of the
compound goal p(X, Y), q(X, Y) even when it is executed under local selection.
Correctness is not compromised in this formulation because X→ Y does not match
the antecedent of Y → X, that is, Y; neither is it stronger than Y. This is because
X→ Y is satisfied by the truth assignment {X 7→ false, Y 7→ false} yet this assignment
can never satisfy any monotonic function (other than true).

4. LOGIC PROGRAMMING PRELIMINARIES

This section serves as a self-contained reference library for the sequel of the pa-
per; it contains the formalism required to argue correctness of the analysis. The
presentation is dense since much of this material should be familiar [Barbuti et al.
1993; Lloyd 1993]. The casual reader can skim this section with the exception of
subsections 4.3–4.5.

4.1 Sequences and vectors

Let ǫ denote the empty sequence, let . denote concatenation, let ‖s‖ denote the
length of a sequence s, and let S∗ denote the set of finite sequences whose elements
are drawn from a set S.

4.2 Terms, equations, substitutions and unifiers

Let Term denote the set of (possibly infinite) terms over an alphabet of functor
symbols Func and a (denumerable) universe of variables V ar where Func∩V ar =
∅. Let var(t) denote the set of variables occurring in the term t. An equation e is
a pair (s = t) where s, t ∈ Term. A finite set of equations is denoted E and Eqn
denotes the set of finite sets of equations.

A substitution is a map θ : V ar → Term where dom(θ) = {u ∈ V ar | θ(u) 6= u}
is finite. Let rng(θ) = ∪{var(θ(u)) | u ∈ dom(θ)} and let var(θ) = dom(θ)∪rng(θ).
A substitution θ is idempotent iff θ ◦θ = θ, or equivalently, iff dom(θ)∩ rng(θ) = ∅.
Let Sub denote the set of idempotent substitutions and let id denote the empty

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

14 · S. Genaim and A. King

substitution. Let θ(t) denote the term obtained by simultaneously replacing each
occurrence of a variable x ∈ dom(θ) in t with θ(x). Also define θ(E) = {θ(s) =
θ(t) | (s = t) ∈ E}. The map eqn : Sub → Eqn is defined eqn(θ) = {x =
θ(x) | x ∈ dom(θ)}. Composition θ ◦ ψ of two substitutions is defined so that
(θ ◦ψ)(u) = θ(ψ(u)) for all u ∈ V ar. Composition induces the (more general than)
relation ≤ defined by θ ≤ ψ iff there exists δ ∈ Sub such that ψ = δ ◦ θ which, in
turn, defines the equivalence relation (variance) θ ≈ ψ iff θ ≤ ψ and ψ ≤ θ. Let
Ren denote the set of invertible substitutions (renamings).

The set of unifiers of E is defined by: unify(E) = {θ ∈ Sub | ∀(s = t) ∈
E.θ(s) = θ(t)}. The set of most general unifiers (mgus) and the set of idempotent
mgus (imgus) are defined: mgu(E) = {θ ∈ unify(E) | ∀ψ ∈ unify(E).θ ≤ ψ}
and imgu(E) = {θ ∈ mgu(E) | dom(θ) ∩ rng(θ) = ∅}. Note that imgu(E) 6= ∅ iff
mgu(E) 6= ∅ [Lassez et al. 1988].

4.3 Syntax of logic programs

Let Pred denote a (finite) set of predicate symbols, let Atom denote the set of
(flat) atoms over Pred with distinct arguments drawn from V ar. A sequence of
equations e1, . . . , em where each ei = (si = ti) is equivalent to the single equation
f(s1, . . . , sm) = f(t1, . . . , tm) where f is any functor f ∈ Func. Thus it is sufficient
to suppose that a logic program P is a finite set of clauses p(~x) :- e, g where the
body e, g is composed of a single equation e and a sequence (or equivalently a
multiset) of atoms g ∈ Goal where Goal = Atom∗.

Dynamic scheduling assertions (block declarations) are formalised as a predicate
select ⊆ Atom× Sub that satisfies the following conditions:

—if select(p(~x), θ) holds then select(p(~x), δ ◦ θ) holds for all δ ∈ Sub;

—if select(p(~x), θ) holds then select(p(~y), θ ◦ ρ) holds where ~x = 〈x1, . . . , xn〉,
~y = 〈y1, . . . , yn〉 and ρ = {y1 7→ x1, . . . , yn 7→ xn}.

Example 4.1. Consider the declaration :- block append(-, ?, -). Then
select(append(x1, x2, x3), θ) holds iff θ(x1) 6∈ V ar or θ(x3) 6∈ V ar.

4.4 Fixpoint semantics of logic programs

A fixpoint semantics of P is defined in terms of an immediate consequences oper-
ator F that operates on a complete lattice. To construct this lattice, let Base =
{〈p(~x), θ〉 | p(~x) ∈ Atom∧ θ ∈ Sub}. The more general than relation induces a pre-
order on Base by 〈p(~y), ψ〉 ≤ 〈p(~x), θ〉 iff θ(~x) ≤ ψ(~y) (note the order reversal). The
closure of a set I ⊆ Base is defined by down(I) = {a ∈ Base | ∃b ∈ I.a ≤ b}. The
set of closed sets is Int = {I ⊆ Base | down(I) = I}. Then 〈Int,⊆,∪,∩, Base, ∅〉
is a complete lattice, in fact, Int constitutes a domain of interpretations.

Definition 4.2. Given a logic program P , the operator F : Int→ Int is defined:

F(I) =

{

〈p(~x), θ〉

∣

∣

∣

∣

p(~x) :- e, p1(~x1), . . . , pn(~xn) ∈ P
θ ∈ unify({e}) ∧ 〈pi(~xi), θ〉 ∈ I

}

The operator F is continuous and hence the fixpoint semantics for a program P
can be defined as F(P) = lfp(F).

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 15

4.5 Operational semantics of logic programs

The operational semantics for dynamic scheduling is defined in terms of transition
systems between states where State = (Goal× Sub)∪ {susp} where susp indicates
a suspension state. Transitions are annotated with an integer k that records the
number of resolution steps performed. The significance of this parameter is that if a
suspension arises, then k records the number of steps enacted before the suspension
is encountered. The chief technical result in the paper – Theorem 6.13 – establishes
a lower bound on k. The absence of suspensions can then by shown by making the
lower bound arbitrarily high.

Definition 4.3. Given a program P , ։delay ⊆ State× State is the least relation
such that:

s1։delay
k1s2 s2։delay

k2s3
s1։delay

k1+k2s3

∀i ∈ [1, n].¬select(pi(~xi), θ)

〈{pi(~xi) | i ∈ [1, n]}, θ〉։delay
0susp

select(p(~x), θ)
c = p(~y) :- e, b ∈ ρ(P) where ρ ∈ Ren

var(c) ∩ var(〈{p(~x)} ∪ g, θ〉) = ∅
δ ∈ imgu({θ(~x) = ~y} ∪ e)

〈{p(~x)} ∪ g, θ〉։delay
1〈b ∪ g, δ ◦ θ〉

The following transition system additionally enforces the requirement that the
selection rule is local:

Definition 4.4. Given a program P , ։local ⊆ State× State is the least relation
such that:

s1։local
k1s2 s2։local

k2s3
s1։local

k1+k2s3

〈{p(~x)}, θ〉։local
k〈ǫ, ψ〉

〈{p(~x)} ∪ g, θ〉։local
k〈g, ψ〉

¬select(p(~x), θ)

〈{p(~x)}, θ〉։local
0susp

∀i ∈ [1, n].〈{pi(~xi)}, θ〉։local
kisusp

〈{pi(~xi) | i ∈ [1, n]}, θ〉։local
max{ki|i∈[1,n]}susp

select(p(~x), θ)
c = p(~y) :- e, b ∈ ρ(P) where ρ ∈ Ren

var(c) ∩ var(〈{p(~x)}, θ〉) = ∅
δ ∈ imgu({θ(~x) = ~y} ∪ e)

〈{p(~x)}, θ〉։local
1〈b, δ ◦ θ〉

In the case that a compound goal suspends under local selection then, since res-
olution of constituent sub-goals is not interleaved, the number of steps that can
be applied before suspension is the maximum number of steps that can be applied
before suspension in each of the sub-goals.

Definition 4.5. The relation ։delay induces the following operational semantics:

Odelay(P) = {〈p(~x), ψ〉 | ∃〈{p(~x)}, θ〉 ∈ State . 〈p(~x), θ〉։delay
k〈ǫ, ψ〉}

Olocal(P) is defined analogously in terms of ։local.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

16 · S. Genaim and A. King

The relationship between the two operational semantics and the fixpoint semantics
is stated in the following results:

Proposition 4.6. If 〈g, θ〉։delay
lsusp then 〈g, θ〉։local

ksusp where k ≤ l.

Theorem 4.7. down(Olocal(P)) ⊆ down(Odelay(P)) ⊆ F(P).

5. BOOLEAN FUNCTIONS

This section reviews Boolean functions before moving to introduce new proper-
ties of Boolean functions that are particularly pertinent to suspension inference.
A Boolean function is a function f : Booln → Bool where n ≥ 0 and Bool =
{true, false}. A Boolean function can be represented by a propositional formula
over X ⊆ V ar where |X| = n in fact, henceforth, X is finite. The set of proposi-
tional formulae over X is denoted by BoolX . Boolean functions and propositional
formulae are used interchangeably without worrying about the distinction. The
convention of identifying a truth assignment with the set of variables M that it
maps to true is also followed.

Definition 5.1. The map modelX : BoolX → ℘(℘(X)) is defined by: modelX(f)
= {M ⊆ X | (∧x∈Mx) ∧ (∧y∈X\M¬y) |= f}.

Example 5.2. If X = {x, y}, then the Boolean function {〈true, true〉 7→ true,
〈true, false〉 7→ false, 〈false, true〉 7→ false, 〈false, false〉 7→ false} can be represented by
the formula x∧y. Moreover, modelX(x∧y) = {{x, y}}, modelX(x∨y) = {{x}, {y},
{x, y}}, modelX(false) = ∅ and modelX(true) = ℘(℘(X)) = {∅, {x}, {y}, {x, y}}.

5.1 Classes of Boolean functions

The suspension analysis is formulated with three classes of Boolean function.

Definition 5.3. A Boolean function f is positive iff X ∈ modelX(f); f is definite

iff M ∩ M ′ ∈ modelX(f) for all M,M ′ ∈ modelX(f); f is monotonic iff M ′ ∈
modelX(f) whenever M ∈ modelX(f) and M ⊆M ′ ⊆ X.

Let PosX denote the set of positive Boolean functions (augmented with false); Def X
denote the set of positive functions over X that are definite (augmented with false);
and MonX denote the set of monotonic Boolean functions over X (that includes
false). Observe MonX ⊆ PosX and Def X ⊆ PosX . One useful representational
property of Def X is that if f ∈ Def X and f 6= false, then f = ∧mi=1(yi ← ∧Yi) for
some yi ∈ X and Yi ⊆ X [Dart 1991]. Moreover, if f ∈ MonX and f 6= false, then
f = ∨mi=1(∧Yi) where Yi ⊆ X [Cortesi et al. 1996, Proposition 2.1]. The 4-tuple
〈PosX , |=,∧,∨〉 is a finite lattice and 〈MonX , |=,∧,∨〉 is a sub-lattice (whereas
Def X is not a sub-lattice as witnessed by the join of x and y in figure 1).

5.2 Projection of monotonic and positive Boolean functions

Existential quantification for PosX is defined by Schröder elimination, that is,
∃xf = f [x 7→ true] ∨ f [x 7→ false]. If f ∈ PosX then not only ∃xf ∈ PosX
[Armstrong et al. 1998] but ∃xf = ∧{g ∈ PosX\{x} | f |= g}. Thus there is
no positive function g over X \ {x} such that f |= g which fewer models than
∃xf . Universal projection is defined ∀xf = f ′ if f ′ ∈ PosX otherwise ∀xf = false
where f ′ = f [x 7→ false] ∧ f [x 7→ true]. Not only ∀xf ∈ PosX if f ∈ PosX and

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 17

false

x ∧ y
c

c
#

#
x y
�

�
�

�

\
\

\
\

x ∨ y

#
#

c
c

true

false

x ∧ y
c

c
#

#
x x↔ y y

@
@

�
�

x← y y ← x
#

#
c

c
true

false

x ∧ y
c

c
#

#
x x↔ y y

@
@

�
�

x← y x ∨ y y ← x

#
#

c
c

#
#

c
c

true

Fig. 1. Hasse diagrams for MonX , Def
X

and PosX for the dyadic case X = {x, y}

∀xf ∈ MonX if f ∈ MonX but analogous to existential projection, the following
properties hold for universal projection over the domains PosX and MonX .

Proposition 5.4. If f ∈ PosX then ∀xf = ∨{g ∈ PosX\{x} |g |= f}

Corollary 5.5. If f ∈ MonX then ∀xf = ∨{g ∈ MonX\{x} |g |= f}

Note that ∃x(∃yf) = ∃y(∃xf) and ∀x(∀yf) = ∀y(∀xf) for all x, y ∈ X. Thus
let ∃{y1,...,yn}f = fn+1 where f1 = f and fi+1 = ∃yifi and define ∀{y1,...,yn}f

analogously. Finally let ∃Y f = ∃X\Y f and ∀Y f = ∀X\Y f .

5.3 Reordering property involving monotonic Boolean functions

One key idea behind the analysis is to compute a Boolean function of the form
(∧ni=1di → gi) → (∧ni=1di) to characterise those states under which a compound
goal p1(~x1), . . . , pn(~xn) can be executed without incurring a suspension. This tactic
is founded on the following proposition; the accompanying example illustrates how
the result can be applied.

Proposition 5.6. Let f ∈ Def X , fi ∈ PosX , di ∈ MonX and f 6|= di for all

i ∈ [1,m]. Then f ∧ ∧mj=1(dj → fj) 6|= di for all i ∈ [1,m].

Example 5.7. Consider the following program where the block declaration for
q ensures that a call to q will suspend until both its arguments are instantiated.
(In the case that multiple blocking conditions are prescribed, as for q, all blocking
conditions are reconsidered whenever a variable that induces suspension becomes
instantiated.) Observe that the compound goal p(Y,Z), q(X,Y), r(X,Z) can be
executed with a local selection rule without incurring a suspension if it is called
with Y ground. In this circumstance, the sub-goals can be executed in the order
p(Y,Z), r(X,Z) and then q(X,Y).

:- block p(-, ?).

p(Y, Z) :- Z = true.

:- block q(-, ?), q(?, -).

q(X, Y) :- true.

:- block r(?, -).

r(X, Z) :- X = true.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

18 · S. Genaim and A. King

The value of the proposition is that it can be repeatedly applied to show that a
compound goal can be executed without suspension under local selection. To see
this, observe that the following di and gi describe non-suspension requirements and
the success patterns for the sub-goals p(Y,Z), q(X,Y), r(X,Z). Then:

d1 = Y d2 = X ∧ Y d3 = Z

g1 = Z g2 = true g3 = X

d1 → g1 = Y→ Z d2 → g2 = true d3 → g3 = Z→ X

Put f = Y and observe that f ∧ ∧3
i=1(di → gi) |= X ∧ Y ∧ Z |= (∧3

i=1di), or
equivalently, f |= ∧3

i=1(di → gi) → (∧3
i=1di). The proposition thus applies (in the

contrapositive direction) hence there must exist i ∈ [1, 3] such that f |= di. Indeed
f = Y |= d1, hence the first sub-goal can be executed without suspension.

Now consider f ∧ g1. Since g1 |= d1 → g1 it follows f ∧ g1 |= ∧
3
i=2(di → gi) |=

∧3
i=1di |= ∧

3
i=2di. Reapplying the proposition, there must exist i ∈ [2, 3] such that

f ∧ g1 |= di. Indeed f ∧ g1 |= Y ∧ Z |= d3, hence the third sub-goal can be executed
without suspension.

Now consider f ∧ g1 ∧ g3. Similarly it follows f ∧ g1 ∧ g3 |= (d2 → g2) → d2.
Hence by the proposition f ∧ g1 ∧ g3 |= d2. Indeed, f ∧ g1 ∧ g3 = X ∧ Y ∧ Z |= d2,
thus the second sub-goal can next be executed without suspension.

5.4 Monotonic closure of a positive Boolean function

The following definitions explain how to (minimally) strengthen a positive function
so as to obtain a monotonic function. The specification for this operation is captured
in the following definition.

Definition 5.8. The maps ↓ : PosX → MonX and ↑ : PosX → MonX are
defined by ↓ f = ∨{g ∈ MonX | g |= f} and ↑ f = ∧{g ∈ MonX | f |= g}.

Example 5.9. Consider the dyadic case X = {x, y} and observe:

↓(x) = x ↓(x← y) = x ↓(x↔ y) = x ∧ y
↑(x) = x ↑(x← y) = true ↑(x↔ y) = true

The operation ↓ arises during analysis and to construct a method for computing ↓,
let ρ : X → X ′ be a bijective map where X ′ ⊆ V ar and X ∩X ′ = ∅.

Proposition 5.10. Let f ∈ PosX . Then ↓ f = ∀X′(d → ρ(f)) where

d = ∧{x→ ρ(x) | x ∈ X}.

Example 5.11. Consider computing ↓f whereX = {x, y} for the functions f = x
and f = (x → y) of Example 5.9. Suppose ρ(x) = x′ and ρ(y) = y′ so that
d = (x→ x′) ∧ (y → y′). Then ↓x = ∀y′∀x′f1 where

f1 = d→ x′ = ((x→ x′) ∧ (y → y′))→ x′

and ↓x = ∀y′f2 where

f2 = f1[x
′ 7→ true] ∧ f1[x

′ 7→ false]
= true ∧ f1[x

′ 7→ false]
= ¬(¬x ∧ (y → y′)) = x ∨ ¬(y → y′)

hence ↓x = f2[y
′ 7→ true] ∧ f2[y

′ 7→ false]
= (x ∨ (¬true)) ∧ (x ∨ ¬¬y)
= x ∧ (x ∨ y) = x

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 19

Now consider ↓(x→ y) = ∀x′∀y′f3 where

f3 = d→ (x′ → y′) = ((x→ x′) ∧ (y → y′))→ (x′ → y′)

and ↓(x→ y) = ∀x′f4 where

f4 = f3[y
′ 7→ true] ∧ f3[y

′ 7→ false]
= true ∧ f3[x

′ 7→ false]
= ((x→ x′) ∧ ¬y)→ ¬x′

hence ↓(x→ y) = f4[x
′ 7→ true] ∧ f4[x

′ 7→ false]
= f4[x

′ 7→ true] ∧ true
= ¬(¬y) = y

Note that an earlier version of the analysis [Genaim and King 2003] employed
an operator 	: PosX → PosX that was defined 	 f = ∀X′d → ρ(f) and applied
repeatedly. The operator was shown to compute a downward chain which converged
onto ↓ f . Although this was not incorrect, profiling experiments revealed that
convergence occurred exactly after one application of 	. Proposition 5.10 shows
that this is no coincidence.

6. SUSPENSION INFERENCE ANALYSIS

This section formalises the analysis within the framework of abstract interpretation.
First, the focus is on the relationship between interpretations and their abstract
counterparts. Second, lfp and gfp operators are specified that operate over descrip-
tions of interpretations rather than interpretations themselves. Third, correctness
results for these operators are stated (proofs again appear in the appendix).

6.1 Abstract domains

In order to specify how interpretations are abstracted, it is necessary to clarify
how sets of substitutions are described as Boolean functions. This is performed
with maps αX and γX that specify the relationship between the domain of sets of
substitutions and the domain of positive Boolean functions. The maps αX and γX
are in turn defined in terms of another map α that abstracts a single substitution:

Definition 6.1. Abstraction map for a single substitution α : Sub → Def V ar is
defined by α(θ) = ∧{x↔ ∧var(t) | x 7→ t ∈ θ}.

This map provides a way of abstracting an equation which, in turn, formalises the
program abstraction process in which syntactic equations (unifications) are replaced
with Boolean functions that capture their grounding behaviour.

Definition 6.2. The abstraction map for a single equation α : Eqn→ Def V ar is
defined α(e) = α(θ) where θ ∈ imgu({e}).

Example 6.3. Let e = {g(x, z) = g(f(y, a), y)}. Then θ1, θ2 ∈ imgu({e}) where

θ1 = {x 7→ f(y, a), z 7→ y} θ2 = {y 7→ z, x 7→ f(z, a)}

Then α(θ1) = (x↔ y) ∧ (y ↔ z) = α(θ2), hence α(e) = (x↔ y) ∧ (y ↔ z).

More generally, α(e) is always well-defined for every equation e ∈ Eqn because
α(θ1) = α(θ2) for all θ1, θ2 ∈ imgu({e}).

Definition 6.4. The abstraction and concretisation maps αX : ℘(Sub) → PosX
and γX : PosX → ℘(Sub) are defined:

αX(Θ) = ∧{f ∈ PosX | ∀θ ∈ Θ.α(θ) |= f} γX(f) = {θ ∈ Sub | α(θ) |= f}

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

20 · S. Genaim and A. King

Example 6.5. Let X = {X, Y}, θ1 = {X 7→ a}, θ2 = {X 7→ a, Y 7→ b} and θ3 =
{X 7→ f(Y, Z)}. Then α(θ1) = X, α(θ2) = X ∧ Y and α(θ3) = X↔ (Y ∧ Z), hence

αX({θ1}) = X αX({θ2}) = X ∧ Y αX({θ3}) = X→ Y

αX({θ1, θ2}) = X αX({θ1, θ3}) = true αX({θ2, θ3}) = X→ Y

Note that αX({θ1, θ3}) graphically illustrates the approximate nature of abstrac-
tion. The smallest (in fact the only) Boolean function within Pos{X,Y} that describes
{θ1, θ3} is true yet this function also represents Sub.

The abstraction map characterises a set of substitutions as a Boolean function
that represents all the substitutions in the set and possibly others. In general, the
function thus describes a superset of the original set. To conservatively model the
predicate select(p(~x), θ), however, it is necessary to find a Boolean function that
approximates in the other direction, that is, describes a subset of those substitutions
under which the predicate holds. The function select ′ performs just this task:

Definition 6.6. The function select ′ : Atom→ MonV ar is defined by:

select ′(p(~x)) = ∨{f ∈ Mon~x | ∀θ ∈ γ~x(f). select(p(~x), θ) holds}

Note that select ′ returns the most general monotonic Boolean function which only
describes substitutions that satisfy select(p(~x), θ). Relaxing this definition to re-
turn a positive Boolean function is problematic: it does not necessarily follow that
select(p(~x), θ) holds for all θ ∈ γ~x(f1∨f2) if select(p(~x), θ1) holds for all θ1 ∈ γ~x(f1)
and select(p(~x), θ2) holds for all θ2 ∈ γ~x(f2). To see this, let f1 = X and f2 = X→ Y.
Then f1∨f2 = true and the empty substitution ǫ ∈ Sub = γ~x(f1∨f2) yet ǫ 6∈ γ~x(fi).
The following proposition states that this problem is finessed by using monotonic
functions, hence select ′ is well-defined.

Proposition 6.7. The function select ′ : Atom→ MonV ar is well-defined.

Example 6.8. Consider again the declaration :- block append(-, ?, -) and
let ~x = 〈x1, x2, x3〉. Recall that select(append(~x), θ) holds iff θ(x1) 6∈ V ar or
θ(x3) 6∈ V ar. If θ ∈ γ~x(x1) then θ(x1) 6∈ V ar and likewise for the Boolean function
x3. Hence select(append(~x), θ) holds for all θ ∈ γ~x(x1) and for all θ ∈ γ~x(x3). Since
x1, x3 ∈ Mon~x it follows that select′(append(~x)) = x1 ∨ x3.

6.2 Abstract interpretations

Recall that the fixpoint semantics operates over a computational domain of in-
terpretations. Each interpretation is a set of pairs formed by pairing an atom
with a substitution. To realise an abstract version of the fixpoint semantics it is
necessary to construct an abstract counterpart of an interpretation. The construc-
tion starts with the set of pairs Base′ = {〈p(~x), f〉 | p(~x) ∈ Atom ∧ f ∈ Pos~x}.
To order these pairs, let ~x ↔ ~y = ∧ni=1(xi ↔ yi) where ~x = 〈x1, . . . , xn〉 and
~y = 〈y1, . . . , yn〉. The entailment order on Pos can be extended to a1, a2 ∈ Base

′

where ai = 〈p(~xi), fi〉, var(~x)∩ var(~xi) = ∅ and f ′i = ∃~xi
((~x↔ ~xi)∧ fi) by defining

a1 |= a2 iff f ′1 |= f ′2. Note that the ordering cannot merely be defined by a1 |= a2

iff f1 |= f2 since f1 and f1 can range over different sets of variables. The abstract
domain of interpretations is then given by Int′ = {I ′ ⊆ Base′ | down(I ′) = I ′}

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 21

where down(I ′) = {a1 ∈ Base
′ | ∃a2 ∈ I

′.a1 |= a2}. As in the concrete setting, the
〈Int′,⊆,∪,∩, Base′, ∅〉 is a complete lattice.

The following definition extends α and γ to interpretations and thereby completes
the domain construction by relating interpretations with their abstractions.

Definition 6.9. The abstraction and concretisation maps α : Int → Int′ and
γ : Int′ → Int are defined:

γ(I ′) = {〈p(~x), θ〉 | 〈p(~x), f〉 ∈ I ′ ∧ α(θ) |= f} α(I) = ∩{I ′ ∈ Int′ | I ⊆ γ(I ′)}

6.3 Specification of the lfp

An operator that abstracts the standard fixpoint operator F is given below.

Definition 6.10. Given a logic program P , the abstract fixpoint operator
F ′ : Int′ → Int′ is defined by:

F ′(I ′) = down







〈p(~x), g〉

∣

∣

∣

∣

∣

∣

p(~x) :- e, p1(~x1), . . . , pn(~xn) ∈ P ∧
〈pi(~xi), gi〉 ∈ I

′ ∧
g = ∃~x(α(e) ∧ ∧ni=1gi)







Application of the down function ensures that the operator F ′ yields a result that
appears within Int′. Without it the operator could produce a set I ′ that included
a pair 〈p(~x), g〉 but excluded 〈p(~y),∃~x((~x↔ ~y) ∧ g)〉, hence I ′ 6= down(I ′).

The operator F ′ is continuous, hence an abstract fixpoint semantics can be de-
fined F ′(P) = lfp(F ′). Moreover, lfp(F ′) can be computed in an iterative manner
by calculating the limit of the increasing sequence ∅, F ′(∅), F ′(F ′(∅)), etc. The
limit can be finitely calculated because Int′ contains a finite number of elements
since (1) the number of predicate symbols in any program P is finite and (2) PosX
is finite for any finite variable set X. The following correctness asserts that F ′

faithfully characterises F with respect to γ.

Theorem 6.11. F(P) ⊆ γ(F ′(P)).

6.4 Specification of the gfp

The central component of the suspension analysis is the gfp calculation that infers
calling patterns for predicates which are sufficient for non-suspension under local
selection. Recall that the syntactic structure of call patterns coincide with that
of success patterns. Hence the domain of interpretation descriptions Int′, that
provides the basis for F ′, also provides a basis for the operator B′ that prescribes
the gfp calculation. B′ is defined for a clause, then a predicate, then a program.

Definition 6.12. The operator B′ : Int′ → Int′ is defined:

B′p(~x):-b(I
′) = down















〈p(~x), d′〉

∣

∣

∣

∣

∣

∣

∣

∣

b = e, p1(~x1), . . . , pn(~xn) ∧
〈pi(~xi), gi〉 ∈ lfp(F ′) ∧ 〈pi(~xi), di〉 ∈ I

′ ∧
g = α(e) ∧ (∧ni=1di → gi)∧ d = ∧ni=1di ∧

d′ = select ′(p(~x)) ∧ (↓ (∀~x(g → d)))















B′p(~y)(I
′) = ∩{B′p(~x):-b(I

′) | ‖~x‖ = ‖~y‖ ∧ p(~x) :- b ∈ P ′}

B′(I ′) = ∪{B′p(~y)(I
′) | p(~y) ∈ Atom}

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

22 · S. Genaim and A. King

Consider the operator B′p(~x):-b for a clause p(~x):-b with body b. Recall that the
Boolean function g → d captures a grounding condition that, if satisfied by the
state, is sufficient for executing b without suspension under local selection. Put
another way, if α(θ) |= g → d then 〈b, θ〉 will not suspend under local selection.
The function d′ = select ′(p(~x)) ∧ ↓ (∀~x(g → d)), entails g → d, hence is also
sufficient for non-suspension. The function d′ additionally satisfies the properties
that: (1) it is only couched in terms of the variables ~x, (2) it is monotonic and (3)
it guarantees that select ′(p(~x), θ) holds. The operator B′p(~y) conjoins the formulae
calculated from the individual clauses of the predicate to obtain a formula sufficient
for non-suspension no matter what clause is selected (the constraint ‖~x‖ = ‖~y‖
ensures that the arity of the clauses match those of the predicate). The operator
B′ calculates non-suspension conditions for each predicate in the program.

The value of the operator B′ is explained by the following theorem. The theo-
rem states that Base′,B′(Base′),B′(B′(Base′)), etc respectively characterise sets
of initial states for which any suspension occurring under local selection can only
manifest itself after at least 0, 1, 2 etc steps.

Theorem 6.13. Let 〈p(~z), θ〉∈γ(B′k(Base′)). If 〈p(~z), θ〉։local
lsusp then l ≥ k.

The operator B′ is co-continuous, hence gfp(B′) exists. Moreover, since Int′ is
finite, gfp(B′) can be calculated as the limit of the sequence, Base′, B′(Base′),
B′(B′(Base′)), etc. The significance of the limit is that it describes a set of states
that can never generate a suspend under local selection. The immediate corollary
is that the same states can never lead to a suspension when the local selection
requirement is dropped. This is the correctness result that underpins that analysis.

Corollary 6.14. If 〈p(~z), θ〉։delay
ksusp then 〈p(~z), θ〉 6∈ γ(gfp(B′)).

7. IMPLEMENTATION

One advantage that the suspension analysis has over many of its predecessors is the
simplicity with which it can be implemented. This section explains how the analysis
can be realised as two meta-interpreters: one for computing an approximation of the
success set (which computes the lfp); and the other for performing the backwards
analysis itself (which computes the gfp). The meta-interpreters are presented as
Prolog programs and, for generality, these programs are parametrised by predicates
that realise operations on Boolean functions. In actuality, Boolean functions might
be represented as BDDs [Armstrong et al. 1998] or as lists of clauses [Howe and
King 2001] or some other way. These predicates are interpreted as follows:

—bool and(ϕin1
, ϕin2

, ϕout) succeeds whenever ϕin1
and ϕin2

are bound to
data-structures representing Boolean functions and subsequently binds ϕout to a
data-structure that represents ϕin1

∧ ϕin2
;

—bool or(ϕin1
, ϕin2

, ϕout) binds ϕout to ϕin1
∨ ϕin2

;

—bool implies(ϕin1
, ϕin2

, ϕout) binds ϕout to ϕin1
→ ϕin2

;

—bool entails(ϕin1
, ϕin2

) is a test predicate that neither instantiates ϕin1
nor

ϕin2
; it succeeds if and only if ϕin1

|= ϕin2
;

—bool iff(X, Xs, ϕout) succeeds whenever X is a variable and Xs is a list of
variables [X1, ..., Xn], whereupon the predicate instantiates ϕout to a data-
structure that represents the Boolean function X↔ (∧ni=1Xi);

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 23

—bool rename(ϕin, Xs, Ys, ϕout) succeeds whenever ϕin represents a Boolean
function and Xs and Ys are lists of variables [X1, . . . , Xn] and [Y1, . . . , Yn], whence
each occurrence of Xi in ϕin is replaced with Yi to obtain ϕout;

—bool monotonic(ϕin, ϕout) binds ϕout to the most general Boolean function
which is both monotonic ϕout and ϕout |= ϕin;

—bool universal(ϕin, t, ϕout) applies universal quantifier elimination to project
ϕin onto those variables occurring in the term t to obtain ϕout;

—bool existential(ϕin, t, ϕout) applies existential quantifier elimination to
project ϕin onto the variables in t to obtain ϕout.

The meta-interpreters operate on programs stored as database of facts of the
form my clause(h(~x), [b1, . . . , bn]). Each body atom bi is either a call pi(~xi) to a
predicate that is defined within the program or an iff(x, [x1, . . . , xm]) atom
(if the program defines the predicate iff then that predicate can always be re-
named). The pi(~xi) atoms are flat, that is, their arguments ~xi are distinct vari-
ables. Grounding dependencies between arguments, and more generally the vari-
ables occurring in a clause, are recorded by iff(x, [x1, . . . , xm]) atoms that
represent x ↔ (∧ni=1xi) dependencies [Codish and Demoen 1995]. For exam-
ple, the grounding behaviour of the unification x = t is modelled by iff(x,
[x1, . . . , xm]) where var(t) = {x1, . . . , xm}. More generally, a unification t1 = t2
is modelled by a composition iff(x, [x1, . . . , xm]), iff(x, [y1, . . . , yn]) where
var(t1) = {x1, . . . , xm}, var(t2) = {y1, . . . , yn} and x is a fresh variable. Strategies
for modelling other Prolog builtins are documented in [Heaton and King 2000].
This approach, which essentially compiles builtins into combinations of iff atoms,
encapsulates the complexity of handling builtins into a single module that precedes
the analysis itself. It also simplifies, and thereby speeds up, the meta-interpreters.
In addition to the my clause database, an assertion(p(~x), ϕ) database records
a Boolean function for each predicate that is sufficient for a call p(~x) to not suspend
(immediately). For instance, for the declaration :- block p(-, ?, -), p(?, -,

-) specifies that the predicate p will suspend until either its first and second argu-
ments or its third argument is instantiated. The table would therefore include a
fact assertion(p(~x), ϕ) in which ϕ represents the Boolean function (x1∧x2)∨x3.

Figure 2 lists the two interpreters. Both interpreters manipulate a memo table of
facts of the form memo(lfp, p(~x), ϕ) and memo(gfp, p(~x), ϕ) where ϕ represents
a Boolean function. These facts are added and removed from the memo table to
record the status of the lfp and the gfp. For illustrative purposes, both meta-
interpreters implement a simple (Gauss-Seidel [Cousot and Cousot 1992]) iteration
strategy, that is, reapply all clauses until stability is achieved. A call to lfp iterate

triggers another iteration of lfp operator. Whenever the memo table is updated,
a flag is raised in lfp mutate. Iteration ceases when retract(flag) fails in the
second clause of lfp iterate, that is, when no changes where made in the previous
iteration. The following two sections describe the predicates that implement the
lfp and the gfp calculations.

7.1 Implementation of the lfp

In the case of the lfp, the memo(lfp, p(~x), ϕ) facts stores a series of Boolean
functions ϕ1, ϕ2, . . . , that for a given p(~x), constitute an increasing sequence

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

24 · S. Genaim and A. King

lfp iterate :- lfp operator, fail.
lfp iterate :- retract(flag), lfp iterate.
lfp iterate.

lfp operator :-
my clause(Head, Body),
lfp solve(Body, true, ϕ1),
bool existential(ϕ1, Head, ϕ2),
lfp update(Head, ϕ2).

lfp solve([], ϕ, ϕ).
lfp solve([iff(X,Xs)|Atoms],ϕin,ϕout) :-

bool iff(X, Xs, ϕ1),
bool and(ϕin, ϕ1, ϕ2),
lfp solve(Atoms, ϕ2, ϕout).

lfp solve([Atom|Atoms], ϕin, ϕout) :-
get memo(lfp, Atom, ϕ1),
bool and(ϕin, ϕ1, ϕ2),
lfp solve(Atoms, ϕ2, ϕout).

lfp update(Head, ϕin) :-
(memo(lfp, Head, ϕ1),
bool entails(ϕin, ϕ1) ->

true
;

lfp mutate(Head, ϕin)
).

lfp mutate(Head, ϕin) :-
(retract(memo(lfp, Head, ϕ1)) ->

bool or(ϕin, ϕ1, ϕ2)
;

ϕ2 = ϕin

),
assert(memo(lfp, Head, ϕ2)),
(flag ->

true
;

assert(flag)
).

get memo(Type, Atom, ϕout) :-
functor(Atom, Name, Arity),
functor(Fresh Atom, Name, Arity),
Atom =..[Name, Args],
Fresh Atom =..[Name, Fresh Args],
memo(Type, Fresh Atom, ϕ),
bool rename(ϕ, Fresh Args, Args, ϕout).

gfp iterate :- gfp operator, fail.
gfp iterate :- retract(flag), gfp iterate.
gfp iterate.

gfp operator :-
my clause(Head, Body),
gfp solve(Body, true, true, ϕ1),
assertion(Head, ϕ2)
bool and(ϕ1, ϕ2, ϕ3),
bool universal(ϕ3, Head, ϕ4),
bool monotonic(ϕ4, ϕ5),
gfp update(Head, ϕ5).

gfp solve([], φin, ψin, ϕout) :-
bool implies(φin, ψin, ϕout).

gfp solve([iff(X,Xs)|Atoms],φin, ψin, ϕout) :-
bool iff(X, Xs, ϕ1),
bool and(φin, ϕ1, φ1),
gfp solve(Atoms, φ1, ψin, ϕout).

gfp solve([Atom|Atoms], φin, ψin, ϕout) :-
get memo(gfp, Atom, ϕ1),
get memo(lfp, Atom, ϕ2),
bool implies(ϕ1, ϕ2, ϕ3),
bool and(φin, ϕ3, φ1),
bool and(ψin, ϕ1, ψ1),
gfp solve(Atoms, φ1, ψ1, ϕout).

gfp update(Head, ϕin) :-
(memo(gfp, Head, ϕ1),
bool entails(ϕ1, ϕin) ->

true
;

gfp mutate(Head, ϕin)
).

gfp mutate(Head, ϕin) :-
(retract(memo(gfp, Head, ϕ1)) ->

bool and(ϕin, ϕ1, ϕ2)
;

ϕ2 = ϕin

),
assert(memo(gfp, Head, ϕ2)),
(flag ->

true
;

assert(flag)
).

Fig. 2. Meta-interpreters for computing the lfp (left) and the gfp (right)

(chain) over the lifetime of the lfp calculation. If the memo table does not contain
a fact for p(~x), then ϕ is bound to false. This saves initialising the table with facts
of the form memo(lfp, p(~x), false).

The lfp operator predicate looks up a clause in the my clause(Head, Body)

database and proceeds to solve the Body of that clause using the Boolean functions
currently stored in the memo table. This is realised by lfp solve(Body,ϕin,ϕout)
which conjoins ϕin with a Boolean function for each atom in Body to obtain ϕout.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 25

If Body is empty then ϕin = ϕout. Otherwise the first atom in Body is either an
iff(X, [X1, . . . , Xn]) atom or an atom p(~x) defined elsewhere in the program. In the
former case, the accumulated Boolean function that is used to solve the remaining
body atoms is ϕin∧(X↔ (∧ni=1Xi)). In the latter case, it is ϕin∧ϕ1 where ϕ1 is the
current value for p(~x) in the memo table. Note that if the table omits a memo(lfp,

p(~x), ϕ) fact, then get memo(lfp, Atom, ϕ1) fails, hence lfp solve fails and
the memo table is unchanged. The remaining calls of lfp operator project the
resulting Boolean function onto the variables of Head and, if necessary, modify the
memo table with the projection.

The predicate lfp update(Head, ϕin), if necessary, updates the function stored
in the memo table for Head. If the table contains a fact memo(lfp, Head, ϕ)
and ϕin |= ϕ, then no update is necessary. Otherwise, lfp mutate(Head, ϕin)
is invoked which replaces memo(lfp, Head, ϕ) (if it exists) with the new fact
memo(lfp, Head, ϕin ∨ ϕ). The predicate also ensures that the flag is raised.

One technicality that complicates analysis is renaming. The problem is that
variables occurring in a body atom do not necessary concur with those in the memo
table. For example, if BDDs were used to represent Boolean functions then, most
likely, each memo(lfp, p(~x), ϕ) fact would store an atom p(~x) in which ~x was a
sequence of distinct numbers. Then ϕ would point to a BDD over propositional
variables identified with these numbers. Under this scheme, variables occurring
in each clause would also be numeric. The numbers occurring in the arguments
of a body atom would not in general match those in the table for that predicate,
hence the requirement for renaming. Renaming is thus performed as formulae are
retrieved from the table by get memo(Type, Atom, ϕout). This predicate is used
in both the lfp and gfp calculation; Type indicates whether a lfp or gfp fact is to
be read.

7.2 Implementation of the gfp

Much of the gfp interpreter mirrors that of the lfp interpreter. The iteration strategy
is analogous, except that the memo(gfp, p(~x), ϕ) facts define a decreasing chain
ϕ1, ϕ2, . . . over the history of the gfp calculation. Moreover, if the table does
not contain a fact for p(~x), then ϕ is considered to be true. Again, this saves on
initialisation.

The gfp operator predicate considers each clause in my clause(Head, Body)

individually and solves the body atoms in Body using Boolean functions extracted
from the pre-computed lfp memo table and the partially computed gfp memo ta-
ble. The predicate gfp solve(Body, φin, ψin, ϕout) iterates over the list Body

accumulating new Boolean functions, φ′in and ψ′
in say, as each atom in Body is con-

sidered. Iteration ceases when the body is empty, whereupon ϕout is instantiated
to the function φ′in → ψ′

in. When Body has been traversed, ψ′
in is the conjunction

of those ϕ1 in the gfp memo table that match an atom in Body. Likewise, φ′in is
also a conjunction. It is the conjunction of formulae of the form ϕ1 → ϕ2 where ϕ1

and ϕ2 respectively match body atoms in the gfp and lfp tables.
Once the function φ′in → ψ′

in is computed for Body, the result is conjoined with
the assertion, and universal variable elimination is applied to remove any variables
not occurring in Head. Finally, the call to bool monotonic strengthens (if neces-
sary) the projection to ensure that it is monotonic.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

26 · S. Genaim and A. King

It is straightforward to refine these meta-interpreters to incorporate semi-naive
iteration [Wunderwald 1995], that is, only reapply those clauses which contain an
atom whose memo value was modified in the previous iteration. Another refinement
to compute the strongly connected components (SCCs) of the call graph of a given
program, topologically order the SCCs, and then iterate and stabilise on lower SCCs
before proceeding to higher SCCs. An experimental analyser that incorporates
these two refinements can be found at:

http://www.cs.kent.ac.uk/people/staff/amk/susweb.html

The analyser uses the PiLLoW library [Gras and Hermenegildo 2001] for an HTML
interface. The above URL provides all the benchmarks used within the experiments,
enables the analysis to be rerun on these examples, whilst providing an interface
for experimenting with the analysis on new examples.

8. EXPERIMENTAL EVALUATION

To assess the analysis, the analyser was applied to a series of programs solicited
from various sources. Figure 3 summarises the precision and timing results where

—the preds column indicates the number of predicates occurring in the programs
(ignoring any builtin predicates);

—blocks gives the number of predicates for which call patterns other than false were
inferred;

—% denotes the ratio of blocks to preds expressed as a percentage;

—abs is the time required to read the file off the disk, parse it and preprocess it
into pure Horn clauses ready for analysis;

—SCC records the time necessary for computing the strongly connected compo-
nents (SCCs) of the call graph of the program [Tarjan 1972];

—the columns lfp and gfp record the times required to compute the least and
greatest fixpoints respectively;

—total records the total analysis time that additionally includes any overhead for
pretty printing the results to HTML files [Gras and Hermenegildo 2001].

The timings experiments were conducted on a PC with a Intel Pentium III 933MHz
processor, 640MB memory, running SICStus Prolog 3.7.1 on Linux 2.6.7. All tim-
ings were averaged over 10 runs. Note that the on-line analyser is implemented on
a slightly slower machine and its timings can vary with load.

Many of the programs used for experiments were adapted from programs written
in concurrent logic languages, such as Strand [Foster and Taylor 1989], KL1 [Tick
1991] or Parlog [Gregory 1987], or the distributed constraint programming language
Janus [Debray 1993]. All the programs donated by Foster, Huntbach and Johnson
were coded in Strand; all the programs donated by Debray were coded in Janus.
Many of the KL1 programs donated by Tick and Massey were tuned for efficient
parallel evaluation [Tick 1991]. All the synchronisation in these programs was
reexpressed in Prolog with block declarations and the resulting programs tested.
The analysis was then applied to these 30 programs.

In terms of efficiency, the total analysis times are sufficiently low for the analysis
to be applied repeatedly and frequently during the development of an application.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 27

precision time (msecs)
source program preds blocks % abs SCC lfp gfp total

[Debray 1993] dnf 8 8 100 11 1 2 3 17
combo 10 10 100 9 2 2 3 16
transp 11 11 100 12 2 1 4 19
primes 7 7 100 12 1 1 2 16
bessel 16 16 100 12 2 1 5 20
deriv 7 7 100 9 1 1 2 13

[Foster and Taylor 1989] sieve 6 6 100 7 1 1 5 14
insert 8 8 100 9 1 1 2 13
btree 10 10 100 11 2 2 4 19

ssd 24 24 100 33 5 8 18 64

[Gregory 1987] hamming 6 6 100 8 1 2 3 14
[Howe and King 2001] entails 8 8 100 7 1 1 3 12

[Huntbach and Ringwood 1999] colouring 42 37 88 42 9 30 40 121
spanning 76 71 93 81 28 84 153 346

eight puzzle 97 88 91 100 40 75 211 426
[Johnson 1994] PTMddd 319 316 99 476 592 785 25138 26991

[Marriott et al. 1994] queens 10 10 100 7 1 1 3 12
[King and Martin 2006] msort control 14 14 100 14 3 3 5 25

qsort control 11 11 100 11 2 1 5 19
queens control 15 15 100 13 3 2 4 22

[Tick et al. 1996] bestpath 20 11 55 39 4 11 19 73

fact 7 7 100 7 1 1 1 10
isotrees 20 20 100 16 3 3 7 29

pascal 23 23 100 22 5 5 8 40
mm 19 19 100 17 3 5 5 30

hanoi 8 8 100 7 2 2 2 13
msort 23 23 100 18 4 6 9 37

semigroup 20 19 95 21 4 6 11 42
mastermind 20 20 100 28 5 6 148 187

nand 25 25 100 32 6 8 15 61

Fig. 3. Summary of precision and timing results

For the larger benchmarks, computing the gfp dominates the cost of the analysis.
This is because the cost of abstracting the file and computing the SCCs, grows
linearly with the size of the program. Calculating the gfp is more expensive than
computing the lfp, partly because of the cost of calculating monotonic closure ↓,
partly because the function di → fi can be represented less densely than fi, and
partly because the lfp can be optimised with some BDD refinements that are not
applicable to the gfp [San Miguel Aguirre and Vardi 2001]. It is worth pointing
out that the times to compute the lfp and the gfp would benefit significantly from
replacing the BDD library of Armstrong and Schachte [Armstrong et al. 1998] with
a faster and more space efficient version [Bagnara and Schachte 1998]. It is more
difficult to quantitatively qualify the usefulness of results generated by the analysis
and therefore the results are discussed in the following sections. Section 8.1 reports
some discrepancies that were discovered by the analysis. However, since the anal-
ysis is based on approximation, it will inevitably not be able to infer some queries
for which the program will actually not suspend. This leads to the issue of false
positives – if too many of the false call patterns arise from imprecision (rather than
genuine coding errors), then the usefulness of the analysis is compromised. Sec-

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

28 · S. Genaim and A. King

tion 8.2 thus catalogs the false positives that arose in the analysis of the programs.
This section also explains those circumstances, for example which coding styles,
are problematic for analysis. Section 8.3 considers applying the analysis to code
generated by program transformation, namely, through control generation. This
section demonstrates how suspension analysis can throw new light on the termi-
nation inference problem [Genaim and Codish 2005; Mesnard and Ruggieri 2003]
– the problem of inferring a class of terminating goals for a given program. Sec-
tion 8.4 explains the debugging techniques that were found to be useful for applying
suspension inference to a larger application.

8.1 Anomalies discovered through the analysis

8.1.1 bessel. For this program, the analysis inferred a call pattern of false for
the predicate bessel, the problem stemming from the clause:

bessel(0, X, Y1, Y2) :- Y2 = 0.0, j0(10, X, Y).

According to a comment in the original source, bessel(N, X, Y1, Y2) should bind
Y1 and Y2 to the values of the functions JN (X) and JN−1(X). However, Y1 is never
instantiated, leading to a suspension whenever this clause is selected. The author
of bessel confirmed that the goal j0(10, X, Y) should be j0(10, X, Y1) and this
amendment was sufficient to verify complete non-suspension.

8.1.2 ssd. For this program, a call pattern of false was inferred for the predicate
that is given below:

try orient([], Remain, Pent, [Orient, Starts, Pattern | Orients],

Board, First, History, D) :-

member(First, Starts, Mem),

start match(Mem, Pattern, Board, New Board, D1),

add pent(D1, Remain, Pent, Orient, New Board, History, D2),

try orient(D2, Remain, Pent, Orients, Board, First, History, D).

try orient([], , , [], , , , D) :- D := [].

The processes start match, add pent and try orient bind the variables D1, D2
and D with [] to indicate termination. The processes add pent and try orient

suspend until D1 and D2 are bound and thus these “done” variables act to serialise
the computation. The suspension arises because add pent is defined in terms of a
predicate next play, listed below, whose final clause does not instantiate D. The
original author of ssd confirmed this was a bug, indeed, the oversight seems to
relate to the commented out case. The commented out case prints a message and,
in doing so, print history sets D. Yet when printing was deactivated, by replacing
the commented out clause with the last clause, D was left unset.

next play(Remaining, Board, History, D) :- Remaining =\= [] |

length(Board, Len),

First is (2 * Len) // 3,

try pent([], Remaining, Remaining, Board, First, History, D).

%next play([], , History, D) :-

% print history(" SOLN ", History, D).

next play([], , History, D).

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 29

8.1.3 queens control. An anomaly was spotted within this program, not because
a call pattern of false was inferred, but because the analysis only inferred that a
certain predicate, perm, will not suspend if its first argument is ground. Curiously
the control for perm was generated with a technique [King and Martin 2006] that
ensures that the predicate will not suspend if either its first or second argument are
ground. The discrepancy was tracked to the following declaration for perm aux:

:- block perm_aux(-, ?, ?). perm_aux(?, -, ?).

perm_aux(D1, D2, D) :- D1 = D2, D = D1.

The original intention behind the declaration was to suspend until its first and

second arguments were ground. The separator between perm aux(-, ?, ?) and
perm aux(?, -, ?), however, should be a comma. The period is an unfortunate
error since it introduces a clause perm aux(?, -, ?) which, though spurious, is
not syntactically incorrect.

What is interesting is that none of these problems manifested themselves during
testing, either because of the case coverage within the test harnesses or because of
the particular interleavings adopted by the scheduler.

8.2 False positives generated by the analysis

8.2.1 semigroup and eight puzzle. For the program semigroup, non-suspension
could only not be shown for the top-level predicate main:

main(N) :-

kernel(K),

append([begin|K],[end|R],S),

spawn(S,R,Out,[]),

count(Out,N).

The analysis infers that spawn(S,R,Out,[]) will not suspend if both S and R are
ground. However, spawn implements a form of pipelined filter where the input
stream S is fed by the output stream R [Tick 1991]. Thus neither S nor R are
ground at the time of the call (though kernel(K) binds K to a ground structure).

A similar cyclic dependency between streams was discovered in the program
eight puzzle in the following clause:

search1(false, Upbound, State, Moves, PCosts, Sols, Count1) :-

search1 aux(Count, Count1),

gen succs(State, Moves, Succs),

succs search(Succs, [Upbound | NCosts], CSols, Count),

manage children(State, Upbound, PCosts, CSols, NCosts, Sols).

The stream CSols that is output from the succs search process is input into
manage children process and conversely the stream NCosts that is output from
manage children is input into succs search. Note the streams S and R are initially
open-ended (likewise CSols and NCosts), and abstracting these streams as rigid lists
(or even dependencies between rigid lists [Giacobazzi et al. 1995]) is not sufficient
for analysing this class of problem.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

30 · S. Genaim and A. King

8.2.2 colouring, spanning and bestpath. A call pattern of false for the predi-
cate setup in the program colouring was traced to use of the back-communication
protocol [Foster and Taylor 1989] in the following predicate:

send colour(Colour,Accepted,[I/O|Channels]) :-

O:=[mess(Colour,Accepted)|Channel],

send colour(Colour,Accepted,Channels).

A send colour process will suspend until its third argument is bound to a list whose
first element is an I/O term. The variable O is then instantiated. The analysis in-
fers that send colour will not suspend if it is called with a ground third argument.
However, this sufficient condition is never satisfied, indeed send colour is respon-
sible for partially instantiating this argument. Similar use of back-communication
impeded full analysis of the program spanning (indeed spanning was derived from
colouring [Huntbach and Ringwood 1999]). Back-communication was also respon-
sible for false positives in bestpath, the problem emanating from the clause:

eval([echo(X)|Next],BestCost,Paths,BestPath) :- true |

X = BestCost,

eval(Next,BestCost,Paths,BestPath).

Note that although this style of programming introduces false positives in any analy-
sis that only considers local selection, it is interesting to see that for these programs,
such an analysis can pinpoint the lowest SCC which relies on this protocol. This is
useful since knowing where this protocol is applied, aids the understanding of code
developed by a third-party.

When a false positive is detected in one SCC, it will necessarily prohibit a higher
SCC from being verified. The analyser thus supports annotations of the form
:- assume p(-,?,-) which resemble block declarations and inform the analyser,
in this particular case, that the predicate p will not suspend if its first or third ar-
guments are ground. (If more that one assume is given for the same predicate these
conditions are treated conjunctively, in an analogous fashion to block declarations.)
Since any false positive requires manual inspection anyway, such declarations pro-
vide a lightweight mechanism for ensuring that all SCCs in the program can be
systematically considered.

8.3 A case study on applying suspension analysis with control generation

The objective of control generation is to derive a computation rule for a set of
Horn clauses which is efficient, assures termination and yet is complete, that is,
it computes all answers to a given query [Bruynooghe et al. 1989; Lüttringhaus-
Kappel 1993; Naish 1993]. Progress in solving this fundamental problem in logic
programming has been slow, but recently it has been shown how control generation
can be tackled by program transformation [King and Martin 2006]. The transform
relies on information about the depths of derivations to derive block declarations
which orchestrate the control. The relevance for suspension analysis is twofold:

—the transformation introduces blocks that allow unusually flexible, albeit unusu-
ally subtle, control. The resulting code is a particular challenge for analysis. For
example, applying the transform to a mergesort [King and Martin 2006] gives a

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 31

program that can be executed both in forward mode to sort a list into ascending
order and backward mode to permute an ordered list.

—the transform is guaranteed to generate programs that either suspend or univer-
sally terminate, that is, finitely enumerate all the answers to a particular goal
[Vasak and Potter 1986]. Hence, if suspension analysis can infer a class of goals
for which the transformed program does not suspend, then universal termina-
tion is assured for this class of query (under a computational rule such as the
one employed by SICStus Prolog [King and Martin 2006]). Hence, through the
application of program transformation, suspension inference can be adapted to
tackle the termination inference problem [Genaim and Codish 2005; Mesnard and
Ruggieri 2003] – the problem of inferring a class of terminating goals for a given
program.

The control generation transform was applied to three programs: mergesort,
quicksort and queens (see [King and Martin 2006] for further details) and the re-
sulting code analysed. The first predicate of mergesort that was found to have a
call pattern of false was split:

split(L, L1, L2) :-

split_aux(S, S1, S2, D),

list_length(L, S, D),

list_length(L1, S1, D),

list_length(L2, S2, D),

split_sdr(L, L1, L2, D).

The predicate split is itself defined in terms of list length, split aux and
split sdr. The predicate list length(L, S, D) delays until L is bound to a
rigid list, that is, a list of determined length, before instantiating S to the length of
L. The predicate split aux(S, S1, S2, D) suspends until either S, S1 or S2 are
instantiated. Then D is bound to either S, 2 * S1 or 2 * S2 + 1. The predicate
split sdr(L, L1, L2, D) suspends until D is instantiated. The call patterns gen-
erated for list length, split aux and split sdr where as expected. On closer
inspection, however, it was found that the success set of list length was merely
true. By repeatedly commenting out the clauses of the auxiliary list length aux

and rerunning the analysis, the first clause was diagnosed as the source of the
problem. This clause is designed to abort an unnecessary list traversal and does
not instantiate any output arguments. For example, if L is rigid, then the goal
list length(L, S, D) will bind S, which is sufficient to instantiate D. Hence there
is no need to traverse L1 and L2; these calls to list length can be aborted.

list length(Xs, L, Kill) :- list length aux(Xs, 0, L, Kill).

:- block list length aux(-, ?, ?, -).

list length aux(, , , Kill) :-

nonvar(Kill), !.

list length aux([], L, L,).

list length aux([| Xs], A, L, Kill) :-

A1 is A + 1,

list length aux(Xs, A1, L, Kill).

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

32 · S. Genaim and A. King

This clause is problematic for analysis and for consistency, to ensure that
list length always instantiated its second argument, the first clause of
list length aux was replaced with:

list length aux(, , L, Kill) :-

nonvar(Kill), !,

L = dummy.

With this revision in place, the analysis inferred that split(L, L1, L2) will not
suspend if it is called with either L, L1 or L2 are ground. The necessity of this
revision suggests that suspension analysis is unlikely to be completely automatic for
programs with such sophisticated control. This amendment was sufficient to infer
non-trivial call patterns for the rest of mergesort. In particular the analysis verified
that mergesort can operate in two modes without incurring suspension. Moreover,
by virtue of the correctness of the program transformation [King and Martin 2006],
it follows that if either the first or second arguments the top-level query are ground,
then the query is also guaranteed to terminate. This is an interesting result within
itself since most termination inference schemes [Genaim and Codish 2005; Mesnard
and Ruggieri 2003] presuppose left-to-right control.

8.4 A case study on applying suspension analysis to a large application

PTMddd is a tableau theorem prover developed at the Manchester Metropolitan
University by Fisher and Johnson that applies a form of parallel depth-first search
[Johnson 1994]. The Strand version of the program exceeds 4000 LOC which define
319 predicates over 14 modules. The program is challenging computationally for
analysis since it contains a large SCC of 16 mutual recursive predicates each of
which has between 11 and 16 arguments. The results for each predicate were then
inspected one-by-one starting the predicates at the lowest nodes in the call graph.
The first predicate with a call pattern of false was set rf4; the SCC algorithm
that precedes analysis places this predicate in SCC number 78 out of the 277 SCCs
occurring in the program. The Strand code for this predicate is given below:

set_rf4(PiSet,{Dk,Tk},true,true,_,Flag,NewPiSet):-

Flag := true,

lhs_strip_DmTm(PiSet,[],Dk,Tm,NewPiSet1),

compose(NewPiSet1,{Dk,Tk},[],NewPiSet2),

compose(NewPiSet2,{Tm,Tk},[],NewPiSet).

set_rf4(PiSet,{Dk,Tk},false,true,true,Flag,NewPiSet):-

Flag := true, rhs_strip_DmTm(PiSet,[],Dk,Dm,NewPiSet1),

compose(NewPiSet1,{Dk,Tk},[],NewPiSet2),

compose(NewPiSet2,{Dm,Tk},[],NewPiSet).

set_rf4(PiSet,_,_,_,_,Flag,NewPiSet):-

otherwise |

NewPiSet := PiSet, Flag := false.

The analysis correctly infers that a call to compose will not suspend if its first,
second and third arguments are ground. The predicate lhs strip DmTm, however,
includes a debugging/error handling clause that merely contains a call to the pretty
printer builtin pp (! flushes the output buffer):

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 33

lhs_strip_DmTm([],_,_,_,_):-

pp(’ERROR {Dm,Tm} not found in PiSet’)!.

This clause is the source of the problem, since unlike the other clauses of
lhs strip DmTm, it does not ground its third, fourth and fifth arguments. In
addition to printing a message, it is arguably better practise to abort the com-
putation which can be accomplished by binding the output arguments to rogue
values thereby causing the consuming compose processes to fail. Therefore this
clause was modified to:

lhs strip DmTm([], ,C,D,E):-

pp(’ERROR Dm,Tm not found in PiSet’)!,

C := error, D := error, E := error.

Note that the problem was diagnosed by noting a mismatch between its success
patterns of lhs strip DmTm and the call patterns of compose. In fact, to locate the
source of a suspension, the programmer needs to consider the call graph structure
and reason about success patterns and the inferred call patterns; all three pieces of
information are required for effective suspension analysis on a larger application.

The analysis located similar error handling issues in the predicates
rhs strip DmTm, set rf5 and find Dk rf6 and Fisher confirmed these anomalies
to be genuine bugs. The program was corrected, and when rerun with these modi-
fications, the analysis successfully inferred that a call to set rf4 will not suspend
if its first and third arguments are ground. The number of reruns of the analysis
that were needed to debug set rf4 alone suggest that any practical system needs
to be able to reanalyse a program within minutes; otherwise the cost of analysis
will be prohibitively high for interactive debugging.

A call pattern of false was then inferred for collect matches which occurs in
SCC 176. This predicate contains 17 clauses all of which perform tuple manip-
ulation. Rather than inspect the clauses manually, the analysis was repeatedly
applied to isolate the source of the suspension. Initially all but one of the clauses
were commented out. Then each clause was uncommented and the analysis rerun
until a call pattern of false was inferred for collect matches. This tactic revealed
that the suspension arose from the following clause:

collect matches(n,X, , ,[d,Y|T],Acc,NSet):-

dummy match(d,Y,X,PiSet),

next collect(PiSet,n,X, , ,T,Acc,NSet).

Note that this method of diagnosis that hinges on removing/reinserting clauses and
then rerunning the analysis, seems key to debugging larger predicates.

The analysis inferred that a call to next collect will not suspend if called with
its first and second arguments ground. However, this particular clause invokes
next collect with the non-ground tuple {n,{X, }, }. Inspection of next collect

(and those predicates it calls) revealed that these variables are never read or written.
It is good programming practise to replace such variables with unique dummy terms,
as illustrated below, to generate an error if the next collect predicate (and those
it calls) were incorrectly modified to read or write to these tuple arguments.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

34 · S. Genaim and A. King

collect_matches({n,{X,_},_},[{d,Y}|T],Acc,NSet):-

dummy_match({d,Y},X,PiSet),

next_collect(PiSet,{n,{X, dummy}, dummy},T,Acc,NSet).

This modification is also sufficient for inferring that collect matches will not
suspend when it is called with its first and second arguments ground.

Next, a call pattern of false was found in SCC 222 which contains the predi-
cate distribute tasks. The predicate distribute tasks invokes another named
produce sets (via 4 intermediate calls) which includes a base clause which is prob-
lematic for analysis:

% Another call has dealt with the assignments.

produce_sets(_,_,_,_,_,_,_,_,true,_,_,_,_).

% Path closed elsewhere but no other call fired.

produce_sets(_,_,_,_,_,_,_,closed,false,

TopPiSets,NSets,NewTasks,Tests):-

NewTasks = [], TopPiSets = [[]], NSets = [[]], Tests = [closed].

Unlike the other clauses of this predicate, the first clause neither instantiates its
final 4 arguments nor checks that they are completely instantiated. The clause
seems to detect that another process has already instantiated these arguments. It
is unlikely that any analysis will be able to trace this form of interaction and this
predicate illustrates that although analysis can aid manual debugging, it cannot
completely replace it. This suspension in turn induces two further suspensions in
the predicates solve and tabx in the SCCs 226 and 227 (the two topmost SCCs)
as a result of the suspension in distribute tasks. Therefore the analysis infers
non-trivial suspension conditions for all but 3 of the 319 predicates in the program.

9. RELATED WORK

The earliest work on suspension analysis [Codognet et al. 1990] presents an and-or
tree framework [Bruynooghe 1991] that applies local reexecution to simulate the
dataflow under different interleavings. A more direct approach is to abstract each
state in the transition system with an abstract state to obtain an abstract transi-
tion system [Codish et al. 1994]. Finiteness is enforced through a widening known
as star-abstraction [Codish et al. 1994]. This approach achieves a degree of concep-
tual simplicity though the abstract states themselves can be unwieldy. The work of
[Debray et al. 1996] is unusual in that it attempts to detect suspension-freeness for
goals under leftmost selection. Although this approach only considers one local se-
lection rule, it is surprising effective because of the way data often flows left-to-right.
A particularly elegant approach to suspension analysis follows from a confluence
semantics that approximates the standard semantics in the sense that suspension
implies suspension in the confluent semantics [Codish et al. 1997]. The crucial point
is that because of confluence, an analysis based on the confluence semantics need
only consider one scheduling rule. None of these analyses, however, can infer initial
queries that guarantee non-suspension – all check for non-suspension. Other works
have proposed generic abstract interpretation frameworks for dynamic scheduling
[Garćıa de la Banda et al. 1995; Marriott et al. 1994] but none of these are geared
towards goal-independence.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 35

Surprisingly, one closely related work comes from the compiling control literature
[Bruynooghe et al. 1989]; the work of [Hoarau and Mesnard 1999] considers the
problem of generating a local selection rule under which a program universally
terminates. The technique of [Hoarau and Mesnard 1999] builds on the termination
inference method of [Mesnard 1996] which infers initial modes for a query that, if
satisfied, ensure that a logic program left-terminates. The chief advance in [Hoarau
and Mesnard 1999] over [Mesnard 1996] is that it additionally infers how goals can
be statically reordered so as to improve termination behaviour. This is performed
by augmenting each clause with body atoms a1, . . . , an with n(n − 1)/2 Boolean
variables bi,j with the interpretation that bi,j = 1 if ai precedes aj in the reordered
goal and bi,j = 0 otherwise. The analysis of [Mesnard 1996] is then adapted to
include consistency constraints among the bi,j , for instance, bj,k ∧¬bi,k ⇒ ¬bi,j . In
addition, the bi,j are used to determine whether the post-conditions of ai contribute
to the pre-conditions of aj . Although motivated differently and realised differently
(in terms of the Boolean µ-calculus) this work also uses Boolean functions to finesse
the problem of enumerating goal reorderings.

Interestingly, the problem of inferring whether a goal reordering exists also arises
in the context of the strongly typed and moded constraint logic programming lan-
guage HAL [de la Banda et al. 2005]. There, one aspect of mode checking is
determining whether each literal that occurs in the definition of a rule can be re-
ordered so that when the literal is called its input satisfies one of its declared modes.
The complexity of mode checking in HAL not only stems from the need to reorder
rule bodies, but also the need to automatically initialise solver variables and rea-
son about higher-order predicates. This work on HAL, and the related language
Mercury [Somogyi et al. 1996], raises the question of whether a logic program with
dynamic scheduling can be specialised using the call patterns inferred by suspen-
sion analysis. In principle, there is no reason why a different version of each clause
cannot be generated for each safe call mode, though some care is needed to control
the degree of specialisation if a predicate possesses many safe calling modes.

There is also no reason why the analysis cannot be enhanced using techniques
that have been recently been devised to aid termination checking [Bruynooghe et al.
2006]. Rather than merely inferring groundness dependencies that are sufficient
for non-suspension, the type system can be considered to infer dependencies that
expresses rigidity conditions [Bruynooghe et al. 2001]. In effect, the Mon, Def and
Pos domains used within the analysis would be specialized to the particular types
occurring in the predicate under examination. Such domains could express weaker
conditions for non-suspension and thereby permit non-suspension to be inferred for
a broader class of program.

Further afield, the similarity between logical variables in concurrent logic pro-
gramming and I-structures [Arvind et al. 1989] in parallel functional programming
has not gone unnoticed [Ariola et al. 1996]. Like a logical variable, an I-structure
begins life unbound and any function that attempts to read the I-structure is sus-
pended. The function is resumed once the I-structure is written, though any at-
tempt to rebind that I-structure will incur an error. In an attempt to share analyses
between these languages, a common intermediate language has even been proposed
[Ariola et al. 1996]. It would therefore be interesting exercise to adapt the suspen-

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

36 · S. Genaim and A. King

sion analysis presented in this paper to this intermediate language.

10. CONCLUSIONS

This paper has shown how suspension analysis can be tackled from a new perspec-
tive – that of goal-independence. The paper has argued that goal-independence
is advantageous in that it enables the programmer to activate the analysis at the
press of a button. Moreover, it leads to an analysis whose results and underlying
conceptual model can be comprehended by the programmer; the programmer can
understand the suspension conditions inferred for a clause by studying the suspen-
sion conditions and success patterns inferred for the body atoms of that clause.
Despite its generality, the goal-independent approach to suspension analysis can
be realised efficiently even with relatively simple fixpoint engines. The efficiency
and simplicity follow from exploiting an interaction between monotonic and posi-
tive Boolean functions. This result enables the analysis to avoid the complexity of
enumerating various goal interleavings. In practical terms, significance of increased
efficiency is that it allows the programmer to apply the analysis frequently within
the program development cycle. In practice, for example, it enables to the source
of a suspension to be straightforwardly located within a predicate defined over
many clauses. The problematic clause can be found in a semi-automatic way by
first commenting out the clauses and then second individually uncommenting them
and reapplying the analysis until the suspension occurs. Finally, the paper demon-
strates that the goal-independent approach to suspension analysis can strike a good
balance between tractability and precision. Even with domains that merely track
groundness, it is possible to locate bugs that otherwise would have been missed.

Proof Appendix

Proof for proposition 4.6. Suppose 〈g, θ〉։delay
lsusp. Then it follows that

〈g, θ〉։local
k〈g′, θ′〉։localsusp for some 0 ≤ k. Hence 〈g, θ〉։delay

k〈g′, θ′〉 where
〈g′, θ′〉։delaysusp or 〈g′, θ′〉։delay〈g

′′, θ′′〉. Thus k ≤ l as required.

Proof for theorem 4.7. Let 〈p(~x), ψ〉 ∈ Olocal(P). Therefore there exists
〈{p(~x)}, θ〉 ∈ State such that 〈{p(~x)}, θ〉։local

k〈ǫ, ψ〉. Hence 〈{p(~x)}, θ〉։delay
k〈ǫ, ψ〉

whence 〈p(~x), ψ〉 ∈ Odelay(P). Thus down(Olocal(P)) ⊆ down(Odelay(P)).
Let 〈{p(~x)}, θ〉։delay

k〈ǫ, ψ〉. Now suppose select(p(~x), θ) holds for all p(~x) ∈
Atom and for all θ ∈ Sub. Then again it follows 〈{p(~x)}, θ〉։delay

k〈ǫ, ψ〉 but now
by multiple applications of the switching lemma [Lloyd 1993] it also follows that
〈{p(~x)}, θ〉։local

k〈ǫ, ψ′〉 where ψ′ ≈ ψ. Now induction can be applied to show
〈p(~x), ψ′〉 ∈ Fk(∅) and hence 〈p(~x), ψ〉 ∈ Fk(∅) ⊆ lfp(F) as required.

The base case is straightforward so let 〈{p(~x)}, θ〉։local
k+1〈ǫ, ψ′〉. There exists

c = p(~y) :- e, p1(~y1), . . . , pn(~yn) ∈ ρ(P) where ρ ∈ Ren, var(c)∩var(〈{p(~x)}, θ〉) = ∅,
δ ∈ imgu({θ(~x) = ~y} ∪ e) and 〈{p(~x)}, θ〉։local〈{p1(~y1), . . . , pn(~yn)}, δ ◦ θ〉. Put
θ0 = δ ◦ θ. Now 〈{pi(~yi)}, θi−1〉։local

ki〈ǫ, θi〉 and ki ≤ k for all i ∈ [1, n]. By
induction 〈pi(~yi), θi〉 ∈ F

k(∅) for all i ∈ [1, n]. Hence 〈pi(~yi), θn〉 ∈ F
k(∅) for all i ∈

[1, n]. Moreover θn ∈ unify({e}) whence 〈p(~y), θn〉 ∈ F
k+1(∅). But θn(~x) = θn(~y)

and θn = ψ′ thus 〈p(~x), ψ′〉 ∈ Fk+1(∅) and the result follows.

Proof for proposition 5.4.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 37

—To show ∀xf |= f . If ∀xf = false the result is immediate. Thus suppose ∀xf =
f [x 7→ true] ∧ f [x 7→ false]. Let M ∈ modelX(∀xf). If x ∈ M then M ∈
modelX(f) since M ∈ modelX(f [x 7→ true]) ⊇ modelX(∀xf). Likewise if x 6∈ M
then M ∈ modelX(f) since M ∈ modelX(f [x 7→ false]) ⊇ modelX(∀xf).

—Let g |= f such that g ∈ PosX\{x}. To show g |= ∀xf . Let M ∈ modelX(g).

—Suppose x ∈ M . Because g |= f , M ∈ modelX(f) and since x ∈ M it follows
that M ∈ modelX(f [x 7→ true]). Because x 6∈ var(g), M \ {x} ∈ modelX(g),
hence M \ {x} ∈ modelX(f) and M \ {x} ∈ modelX(f [x 7→ false]). Since
x 6∈ var(f [x 7→ false]), M ∈ modelX(f [x 7→ false]). Thus M ∈ modelX(∀xf).

—Suppose x 6∈M . Symmetric to the previous case.

Therefore ∀xf = ∨{g ∈ PosX\{x} |g |= f} as required.

Proof for proposition 5.6. Put Y = {y ∈ X | f |= y} and g = ∧Y . Then
f = g ∧ (g → f). Since f ∈ Def X , g → f ∈ Def X , hence g → f = ∧k∈Kyk ← Yk
for some (possibly empty) index set K where yk 6∈ Yk and Y ⊂ Yk. Thus yk 6∈ Y ,
hence Y ∈ modelX(yk ← Yk) and therefore Y ∈ modelX(g → f). Moreover,
Y ∈ modelX(g) so that Y ∈ modelX(f). Since f 6|= di and f |= g, it follows
g 6|= di. Because di ∈ MonX , Y 6∈ modelX(di), hence Y ∈ modelX(di → fi) and
thus Y ∈ modelX(f ∧ ∧mj=1(dj → fj)). For a contradiction, suppose there exists
i ∈ [1,m] such that f ∧ ∧mj=1(dj → fj) |= di. Then Y ∈ modelX(di) and since
di ∈ MonX , a contradiction f |= di is obtained as required.

Lemma A.1. Let f ∈ PosX and d = ∧{x→ ρ(x) | x ∈ X}.

—Let g ∈ MonX . Then g |= f iff g ∧ d |= ρ(f).

—Let g ∈ PosX . If g ∧ d |= ρ(f) then (↑g) ∧ d |= ρ(f).

Proof for lemma A.1. Put Y = X ∪ ρ(X).

—Let g ∈ MonX . To show g |= f iff g ∧ d |= ρ(f).

—Suppose g ∧ d |= ρ(f). Let M ∈ modelX(g). Then M ∪ ρ(M) ∈ modelY (d),
hence M ∪ ρ(M) ∈ modelY (g ∧ d), thus M ∪ ρ(M) ∈ modelY (ρ(f)). Therefore
M ∈ modelX(f).

—Suppose g |= f . Let M1∪M2 ∈ modelY (g∧d) where M1 ⊆ X and M2 ⊆ ρ(X).
Put M ′

1 = ρ−1(M2) ⊇ M1. Because g ∈ MonX , M ′
1 ∈ modelX(g) therefore

M ′
1 ∈ modelX(f) thus M2 ∈ modelX(ρ(f)). Hence M1 ∪M2 ∈ modelY (ρ(f)).

—Let g ∈ PosX and suppose g∧d |= ρ(f). Let M1∪M2 ∈ modelY ((↑g)∧d) where
M1 ⊆ X and M2 ⊆ ρ(X). Since ↑ g ∈ MonX there exists M ′

1 ⊆ M1 such that
M ′

1 ∈ modelY (g). But M ′
1∪M2 ∈ modelY (g∧d) hence M ′

1∪M2 ∈ modelY (ρ(f))
thus M2 ∈ modelρ(X)(ρ(f)) and therefore M1 ∪M2 ∈ modelY (ρ(f)).

Proof for proposition 5.10. Observe (d→ ρ(f))∧d |= ρ(f). By lemma A.1,
↑ (d→ ρ(f)) ∧ d |= ρ(f). Thus ↑ (d→ ρ(f)) |= d → ρ(f) and hence d → ρ(f) ∈
MonX∪ρ(X). By corollary 5.5, ∀X′(d → ρ(f)) = ∨{g ∈ MonX | g |= d → ρ(f)}.
Let g ∈ MonX . Moreover g |= d → ρ(f) iff g ∧ d |= ρ(f) iff g |= f by lemma A.1.
Therefore ∀X′(d→ ρ(f)) = ∨{g ∈ MonX | g |= f}.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

38 · S. Genaim and A. King

Proof for proposition 6.7. Suppose f1, f2 ∈ Monvar(~x) such that for all θ ∈
γvar(~x)(fi) the predicate select(p(~x), θ) holds. Since γvar(~x)(f1∨ f2) = γvar(~x)(f1)∪
γvar(~x)(f2) it follows that select(p(~x), θ) holds for all θ ∈ γvar(~x)(f1 ∨ f2).

Proof for theorem 6.11. Since the operators F and F ′ are both continuous,
by the Knaster-Tarski theorem it suffices to show that ∪k≥0F

k(∅) ⊆ γ(∪k≥0F
′k(∅)).

Observe that ∅ = γ(∅) and now suppose ∪j≥k≥0F
k(∅) ⊆ γ(∪j≥k≥0F

′k(∅)) for

some j ∈ N. Continuity implies monotonicity and therefore Fj(∅) ⊆ γ(F ′j(∅)).
Now let 〈p(~x), θ〉 ∈ Fj+1(∅). There exists p(~x) :- e, p1(~x1), . . . , pn(~xn) ∈ P and

〈pi(~xi), θ〉 ∈ F
j(∅) such that θ ∈ unify({e}). There exists 〈pi(~xi), gi〉 ∈ F

′j(∅)

such that α(θ) |= gi. Therefore 〈p(~x), g〉 ∈ F ′j+1
(∅) where g = ∃~x(α(e) ∧ ∧ni=1gi).

But α(θ) |= α(e) and α(θ) |= ∧ni=1gi whence α(θ) |= g and the result follows.

Proof for theorem 6.13. Let 〈p(~z), θ〉։local
lsusp. Proof by induction on k.

—Suppose 〈p(~z), θ〉 ∈ γ(B′(Base′)). Thus there exists 〈p(~z), d′〉 ∈ B′(Base′) such
that α(θ) |= d′. Moreover d′ |= select ′(p(~z)), hence θ ∈ γ~z(select

′(p(~z))), thus
select(p(~z), θ) holds, therefore l ≥ 1 as required.

—Suppose 〈p(~z), θ〉 ∈ γ(B′k+1
(Base′)). Thus there exists 〈p(~z), d′〉 ∈ B′k+1

(Base′)
such that α(θ) |= d′. Moreover d′ |= select ′(p(~z)), hence θ ∈ γ~z(select

′(p(~z))),
thus select(p(~z), θ) holds, whence 〈p(~z), θ〉։local

1〈g, δ ◦ θ〉 where ρ ∈ Ren, c =
p(~y) :- e, g ∈ ρ(P), var(c) ∩ var(〈{p(~z)}, θ〉) = ∅ and δ ∈ imgu({θ(~z) = ~y} ∪ e).
Hence 〈g, δ ◦ θ〉։local

l−1susp.
Let g = p1(~y1), . . . , pn(~yn) and put ψ0 = δ ◦ θ. Let π : [1, n] → [1, n] be a
permutation and m ∈ [0, n − 1] such that 〈pπ(i)(~yπ(i)), ψi−1〉։local

li〈ǫ, ψi〉 for

each i ∈ [1,m] and 〈{pπ(i)(~yπ(i)) | i ∈ [m + 1, n]}, ψm〉 ։local
l−(1+

P

m

i=1
li)susp.

By theorem 4.7 it follows that 〈pπ(i)(~yπ(i)), ψi〉 ∈ F(P) for each i ∈ [1,m]. By
Theorem 6.11 there exists 〈p(~yi), gi〉 ∈ F

′(P) such that α(ψi) |= gi for each
i ∈ [1,m].

Since 〈p(~z), d′〉 ∈ B′k+1
(Base′) it follows 〈p(~y),∃~z(~z ↔ ~y ∧ d′)〉 ∈ B′k+1

(Base′).
Therefore ~z ↔ ~y ∧ d′ |= ∃~z(~z ↔ ~y ∧ d′) |= (α(e) ∧ (∧ni=1di → gi)) → (∧ni=1di)

where 〈p(~yi), di〉 ∈ B
′k(Base′). It follows that ~z ↔ ~y ∧ d′ ∧ α(e) |= (∧ni=1di →

gi)→ (∧ni=1di). But δ ∈ imgu({θ(~z) = ~y} ∪ e), therefore α(δ ◦ θ) |= α(θ) ∧ (~z ↔
~y) ∧ α(e) |= d′ ∧ (~z ↔ ~y) ∧ α(e) |= (∧ni=1di → gi)→ (∧ni=1di).
Since ψi ≤ ψm for all i ∈ [0,m] it follows α(ψm) |= ∧mi=1gπ(i) |= ∧

m
i=1dπ(i) → gπ(i).

Because α(ψm) |= α(δ ◦ θ), α(ψm) |= (∧ni=m+1dπ(i) → gπ(i)) → (∧ni=1dπ(i)) |=
(∧ni=m+1dπ(i) → gπ(i)) → (∧ni=m+1dπ(i)). Hence, by proposition 5.6, there exists
j ∈ [m + 1, n] such that α(ψm) |= dπ(j). By the inductive hypothesis it follows
that if 〈pπ(j)(~xπ(j)), ψm〉։local

l′′susp then l′′ ≥ k. Hence l−1 ≥ l−(1+
∑m
i=1 li) ≥

l′′ ≥ k and therefore l ≥ k + 1 as required.

Note that proofs for standard and the particularly straightforwardly results are
omitted for brevity.

Acknowledgements. The Royal Society funded Andy King whilst he visited the
University of Verona and UPM and Samir Genaim whilst he visited the University of

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 39

Kent. We thank Jacob Howe and Fred Mesnard for their valuable comments on an
earlier version [Genaim and King 2003] of this work. We would also like to thank
Bart Massey, Evan Tick, Robert Johnson and Matthew Huntbach for providing
benchmarks. We also thank Saumya Debray, Michael Fisher and Ian Foster for,
respectively, clarifying details of bessel, PTMddd and ssd. The work of Samir
Genaim was supported by Marie Curie Fellowship number HPMF-CT-2002-01848
whilst the author was affiliated with the University of Verona.

REFERENCES

Ariola, Z. M., Massey, B. C., Sami, M., and Tick, E. 1996. A common intermediate language

and its use in partitioning concurrent declarative programs. New Generation Comput. 14, 3,
281–315.

Armstrong, T., Marriott, K., Schachte, P., and Søndergaard, H. 1998. Two classes of

Boolean functions for dependency analysis. Science of Computer Programming 31, 1, 3–45.

Arvind, Nikhil, R. S., and Pingali, K. 1989. I-structures: Data structures for parallel computing.
CM Transactions on Programming Languages and Systems 11, 4, 598–632.

Bagnara, R. and Schachte, P. 1998. Factorizing Equivalent Variable Pairs in ROBDD-Based
Implementations of Pos. In Algebraic Methodology and Software Technology. Lecture Notes in
Computer Science, vol. 1548. Springer-Verlag, 471–485.

Barbuti, R., Giacobazzi, R., and Levi, G. 1993. A General Framework for Semantics-Based
Bottom-Up Abstract Interpretation of Logic Programs. CM Transactions on Programming
Languages and Systems 15, 1, 133–181.

Bruynooghe, M. 1991. A Practical Framework for the Abstract Interpretation of Logic Programs.
The Journal of Logic Programming 10, 1/2/3&4, 91–124.

Bruynooghe, M., Codish, M., Gallagher, J., Genaim, S., and Vanhoof, W. 2006. Termina-
tion Analysis through Combination of Type Based Norms. ACM Transactions on Programming
Languages and Systems. To appear.

Bruynooghe, M., De Schreye, D., and Krekels, B. 1989. Compiling Control. The Journal of
Logic Programming 6, 1&2, 135–162.

Bruynooghe, M., Vanhoof, W., and Codish, M. 2001. POS(T): Analyzing Dependencies in

Typed Logic Programs. In Fourth International Andrei Ershov Memorial Conference. Lecture
Notes in Computer Science, vol. 2244. Springer-Verlag, 406–420.

Carlsson, M. 1987. Freeze, Indexing and Other Implementation Issues in the WAM. In Inter-

national Conference on Logic Programming. MIT Press, 40–58.

Clark, K. L., McCabe, F. G., and Gregory, S. 1982. IC-Prolog Language Features. In Logic

Programming, K. L. Clark and S.-Å. Tärnlund, Eds. Academic Press, 253–266.

Codish, M. and Demoen, B. 1995. Analyzing Logic Programs Using PROP-ositional Logic
Programs and a Magic Wand. The Journal of Logic Programming 25, 3, 249–274.

Codish, M., Falaschi, M., and Marriott, K. 1994. Suspension Analyses for Concurrent Logic
Programs. ACM Transactions on Programming Languages and Systems 16, 3, 649–686.

Codish, M., Falaschi, M., Marriott, K., and Winsborough, W. H. 1997. A Confluent Se-
mantic Basis for the Analysis of Concurrent Constraint Logic Programs. The Journal of Logic
Programming 30, 1, 53–81.

Codognet, C., Codognet, P., and Corsini, M. 1990. Abstract Interpretation for Concurrent
Logic Languages. In North American Conference on Logic Programming. MIT Press, 215–232.

Cortesi, A., Filé, G., and Winsborough, W. H. 1996. Optimal Groundness Analysis Using
Propositional Logic. The Journal of Logic Programming 27, 2, 137–167.

Cousot, P. and Cousot, R. 1992. Abstract Interpretation and Application to Logic Programs.

The Journal of Logic Programming 13, 2–3, 103–179.

Dahl, V. 1980. Two Solutions for the Negation Problem. In Workshop on Logic Programming,
S.-Å. Tärnlund, Ed.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

40 · S. Genaim and A. King

Dart, P. 1991. On Derived Dependencies and Connected Databases. The Journal of Logic
Programming 11, 1–2, 163–188.

de la Banda, M. J. G., Harvey, W., Marriott, K., Stuckey, P. J., and Demoen, B. 2005.

Checking modes of HAL progams. Theory and Practice of Logic Programming 5, 6, 623–668.

Debray, S. K. 1993. QD-Janus: a Sequential Implementation of Janus in Prolog. Software,
Practice and Experience 23, 12, 1337–1360.

Debray, S. K., Gudeman, D., and Bigot, P. 1996. Detection and Optimization of Suspension-
free Logic Programs. The Journal of Logic Programming 29, 1–3, 171–194.

Filé, G., Giacobazzi, R., and Ranzato, F. 1996. A Unifying View of Abstract Domain Design.

ACM Computing Surveys 28, 2, 333–336.

Filé, G. and Ranzato, F. 1999. The Powerset Operator on Abstract Interpretations. Theoretical
Computer Science 222, 1–2, 77–111.

Foster, I. and Taylor, S. 1989. Strand: New Concepts in Parallel Programming. Prentice-Hall.

Garćıa de la Banda, M., Marriott, K., and Stuckey, P. J. 1995. Efficient Analysis of Logic
Programs with Dynamic Scheduling. In International Symposium on Logic Programming. MIT

Press, 417–431.

Genaim, S. and Codish, M. 2005. Inferring termination conditions for logic programs using
backwards analysis. Theory and Practice of Logic Programming 5, 1-2, 75–91.

Genaim, S. and King, A. 2003. Goal-Independent Suspension Analysis for Logic Programs with
Dynamic Scheduling. In European Symposium on Programming, P. Degano, Ed. Lecture Notes
in Computer Science, vol. 2618. Springer-Verlag, 84–98.

Giacobazzi, R., Debray, S. K., and Levi, G. 1995. Generalized Semantics and Abstract Inter-
pretation for Constraint Logic Programs. The Journal of Logic Programming 25, 3, 191–248.

Giacobazzi, R. and Scozzari, F. 1998. A Logical Model for Relational Abstract Domains. ACM
Transactions on Programming Languages and Systems 20, 5, 1067–1109.

Gras, D. C. and Hermenegildo, M. V. 2001. Distributed WWW Programming using Ciao-
Prolog and the PiLLoW library. Theory and Practice of Logic Programming 1, 3, 251–282.

Gregory, S. 1987. Parallel Programming in Parlog. Addison-Wesley.

Heaton, A. and King, A. 2000. Abstracting Builtins for Groundness Analy-
sis. Tech. Rep. 19-04, Computing Laboratory, University of Kent, CT2 7NF.

http://www.cs.kent.ac.uk/pubs/2000/957.

Hoarau, S. and Mesnard, F. 1999. Inferring and Compiling Termination for Constraint Logic
Programs. In Logic-based Program Synthesis and Transformation. Lecture Notes in Computer

Science, vol. 1559. Springer-Verlag, 240–254.

Howe, J. M. and King, A. 2001. Positive Boolean Functions as Multiheaded Clauses. In
International Conference on Logic Programming. Lecture Notes in Computer Science, vol.
2237. Springer-Verlag, 120–134.

Huntbach, M. M. and Ringwood, G. A. 1999. Agent-Oriented Programming. Lecture Notes in
Artificial Intelligence, vol. 1630. Springer-Verlag.

Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R. H. C. 1992. The CLP(R) Language
and System. ACM Transactions on Programming Languages and Systems 14, 3, 339–395.

Johnson, R. 1994. A Blackboard Approach to Parallel Temporal Tableaux. In Proceedings
of the Sixth International Conference on Artificial Intelligence, Methodologies, Systems and
Applications, P. Jorrand and V. Sgurev, Eds. World Scientific.

King, A. and Lu, L. 2002. A Backward Analysis for Constraint Logic Programs. Theory and
Practice of Logic Programming 2, 4–5, 517–547.

King, A. and Martin, J. C. 2006. Control Generation by Program Transformation. Fundamenta

Informaticae 69, 1-2, 179–218.

Kowalski, R. 1979. Algorithm = Logic + Control. Communications of the ACM 22, 7, 424–436.

Lassez, J.-L., Maher, M., and Marriott, K. 1988. Unification Revisited. In Foundations of
Deductive Databases and Logic Programming. Morgan Kaufmann.

Le Charlier, B. and Van Hentenryck, P. 1995. Reexecution in Abstract Interpretation of
Prolog. Acta Informatica 32, 209–253.

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

Inferring Non-Suspension Conditions for Logic Programs with Dynamic Scheduling · 41

Lloyd, J. W. 1993. Foundations of Logic Programming. Springer-Verlag.

Lüttringhaus-Kappel, S. 1993. Control Generation for Logic Programs. In International Con-
ference on Logic Programming, D. S. Warren, Ed. The MIT Press, 478–495.

Marriott, K., Garćıa de la Banda, M., and Hermenegildo, M. 1994. Analyzing Logic
Programs with Dynamic Scheduling. In Principles of Programming Languages. ACM Press,
240–254.

Marriott, K. and Søndergaard, H. 1989. Semantics-based dataflow analysis of logic programs.

Information Processing, 601–606.

Marriott, K. and Søndergaard, H. 1993. Precise and Efficient Groundness Analysis for Logic
Programs. ACM Letters on Programming Languages and Systems 2, 4, 181–196.

Mellish, C. 1986. Abstract Interpretation of Prolog Programs. In International Conference on

Logic Programming. Lecture Notes in Computer Science, vol. 225. Springer-Verlag, 463–474.

Mesnard, F. 1996. Inferring Left-terminating Classes of Queries for Constraint Logic Programs
by means of Approximations. In Joint International Conference and Symposium on Logic

Programming. MIT Press, 7–21.

Mesnard, F. and Ruggieri, S. 2003. On Proving Left Termination of Constraint Logic Programs.
ACM Transactions on Computational Logic 4, 2, 207–259.

Naish, L. 1986. Negation and Control in Logic Programs. Springer-Verlag.

Naish, L. 1993. Coroutining and the Construction of Terminating Logic Programs. Australian

Computer Science Communications 15, 1, 181–190.

San Miguel Aguirre, A. and Vardi, M. Y. 2001. Random 3-SAT and BDDs: The Plot Thickens
Further. In Principles and Practice of Constraint Programming, T. Walsh, Ed. Lecture Notes

in Computer Science, vol. 2239. Springer-Verlag, 121–136.

SICS. 2004. SICStus Prolog User’s Manual. See http://www.sics.se/sicstus/.

Somogyi, Z., Henderson, F., and Conway, T. 1996. The Execution Algorithm of Mercury, an
Efficient Purely Declarative Logic Programming Language. J. Log. Program. 29, 1-3, 17–64.

Tamaki, H. and Sato, T. 1986. OLD Resolution with Tabulation. In International Conference
on Logic Programming, E. Y. Shapiro, Ed. 84–98.

Tarjan, R. 1972. Depth-First Search and Linear Graph Algorithms. SIAM Journal of Comput-
ing 1, 2, 146–160.

Tick, E. 1991. Parallel Logic Programming. MIT Press.

Tick, E., Massey, B. C., and Larson, J. S. 1996. Experience with the Super Monaco Optimizing
Compiler. The Journal of Logic Programming 29, 1–3, 141–169.

van Emden, M. H. and de Lucena Filho, G. J. 1982. Predicate Logic as a Language for Parallel
Programming. In Logic Programming, K. L. Clark and S.-Å. Tärnlund, Eds. Academic Press,
189–198.

Vasak, T. and Potter, J. 1986. Characterisation of Terminating Logic Programs. In Symposium

on Logic Programming. IEEE Press, 140–147.

Vielle, L. 1989. Recursive Query Processing: The Power of Logic. Theoretical Computer Sci-
ence 69, 1, 1–53.

Wunderwald, J. E. 1995. Memoing Evaluation by Source-to-Source Transformation. In Pro-

ceedings of Logic Program Synthesis and Transformation. Lecture Notes in Computer Sciene,
vol. 1048. Springer-Verlag, 17–32.

Received November 2004; revised October 2006; accepted November 2006

ACM Transactions on Computational Logic, Vol. V, No. N, November 2006.

