A Category Theoretical Argument
against the Possibility of Artificial
Life: Robert Rosen’s Central
Proof Revisited

Abstract One of Robert Rosen’s main contributions to the
scientific community is summarized in his book Life #self. There
Rosen presents a theoretical framework to define living systems;
given this definition, he goes on to show that living systems are
not realizable in computational universes. Despite being well known
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and often cited, Rosen’s central proof has so far not been evaluated by
the scientific community. In this article we review the essence of
Rosen’s ideas leading up to his rejection of the possibility of real
artificial life in silico. We also evaluate his arguments and point out
that some of Rosen’s central notions are ill defined. The conclusion
of this article is that Rosen’s central proof is wrong.
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I Introduction

One of the stated goals of artificial life is the implementation of living systems in silico and their
simulation over an entire life cycle [5]. So far this undertaking has been at best partially successful.

Several researchers have built computational systems that display lifelike behaviors. Very famous
examples are Ray’s Tierra [21] and Adami’s Avida [2]; those systems consist of adaptive computer
programs that compete for limited resources, displaying interesting evolutionary effects reminis-
cent of living systems. Other examples of living systems in silico are Ono and Ikegami’s self-
assembling cells [18, 17], McMullin’s SCL. model [3, 15, 14], and Rasmussen et al’s self-assembling
lipid bilayers [20].

Probably the most famous of artificial life creatures is John von Neumann’s self-reproducing
machine [6, 7]. The center piece of this machine is the so-called #niversal constructor—a machine that,
given enough supplies and a description of a machine D, can build D. Together with a control unit
that regulates the sequence of events and a description of all parts of the von Neumann machine, the
universal constructor is an essential element allowing self-reproduction of the entire machine (for an
in depth discussion of the intricacies of von Neumann’s design see [13]).

Those and many other systems show interesting lifelike behavior; nevertheless, few researchers
would call any of them “living.” It is widely acknowledged that the problem of research into artificial
life forms is not only of a technical nature (how to design an artificial organisms) but at least equally
of a conceptual nature: We do not know what life is; at least, we do not have a set of criteria that can
be applied to a given system to decide whether or not it is alive.

There have been some attempts to formulate a general theory of life. One of the best-known
approaches in this context goes back more than thirty years in time and has culminated in Maturana
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and Varela’s celebrated notion of autopoiesis [25, 12]. An autopoietic system is characterized by two
main properties:

e It is separated from its environment by a boundary.

e It has an internal organization that is capable of dynamically sustaining itself (including
its boundary); this internal sufficiency of the productional processes is often referred to
as closure [4].

While autopoiesis has had considerable influence on various sciences (notably not including biology),
there is no stringent theory of autopoiesis that formulates its contents in an unambiguous way (see
Nomura [16] for an attempt).

A more mathematical approach to the topic, also emphasizing closure properties, is due to Robert
Rosen and is comprehensively laid out in his book Life itself [23]; also see [24, 22, 7, 8, 26, 9].
Rosen’s work defines a living system as closed with respect to “efficient causation.” This is often
understood to be roughly equivalent to the closure property of autopoietic systems [11]. However,
the two concepts are not identical. Maturana and Varela themselves illustrated the concept of
autopoiesis by means of a computational model [25]; this model has since been re-implemented by
McMullin and Varela [15, 14, 3]. Rosen’s central message, on the other hand, is precisely that closed
systems are fundamentally different from computing machines. Rosen takes one further step by
claiming that living systems cannot even be implemented in computational systems. If he were right,
this would mean that attempts to construct life in silico are futile. Altogether, Rosen’s central
conclusion is that life in silico is impossible.

A detailed presentation of the argument supporting his conclusion is laid out in Rosen’s book Life
itself; a central part of this book is a semi-formal proof for this assertion. Life #self was published in
1991 and has since attracted quite considerable interest, reflected in numerous citings of it. This
interest is not surprising, given that if the proof (and the conclusion) were correct, then this would
have deep implications for the field of artificial life and even our view and understanding of life.
Unfortunately, a clean assessment of the argument is hampered by the inaccessibility of Rosen’s
writing. Its free mixing of mathematical allusions, formal arguments, and comments on the history
and philosophy of science, in addition to poor editing, makes it very hard for the reader to distill the
essential argument from the text, let alone critically assess it. Rosen’s idiosyncratic style is not helpful
in this effort.

In this article we aim at two objectives. Firstly, we wish to clarify a number of concepts that are
essential for Rosen’s proof but not clearly presented by Rosen himself. In order to achieve this we
will (in Section 2) review the notions of synthetic and analytic models. Those concepts are central to
Rosen’s idea of machine versus living system, and thus essential for his central proof. An important
part of this section will also be to clarify the relations between those two models and certain concepts
from category theory. This relation is only hinted at in Rosen’s original work. Having clarified those
basic concepts of synthetic and analytic models, we will then go on to define “mechanisms” (and
“machines”) in Section 3. The notion of mechanism is of particular importance in that it is
coextensive with the set of systems that can be simulated in computers. In Section 4 we will recap
Rosen’s central proof stating that living systems are not mechanisms, hence not simulable.

The second main goal of this article is to give a critical assessment of Rosen’s central proof. We
will do this in Section 5, where we also show that Rosen’s own concept of machine is flawed. We will
provide a brief discussion and conclusion in Section 6.

2 Models

In this section we will introduce Rosen’s notion of synthetic and analytic model.
Rosen focused his discussion entirely on models; he largely avoided writing about systems. The
reason for this is that as observers we do not have direct access to real systems in the physical world
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(the Welt an sich). Knowledge about the real world is thus necessarily incomplete; at the very least,
whatever we know about real systems, we can never be sure what the status of this knowledge
actually is.

This difficulty disappears when we restrict the discussion to formal systems instead; in con-
trast to real systems, formal systems are accessible. Throughout the remainder of this article, the
word “system” will always refer to formal systems unless explicitly stated otherwise. For all practical
purposes, thus, the notion of system is interchangeable with the notion of model, only that we tend
to use the word “system” to denote given formal systems and their very accurate models.

Rosen’s argument fundamentally rests on the distinction between two types of models, namely
synthetic and analytic models [23, 22]. The main purpose of this section is to introduce them and to
clarify their relation to certain concepts from category theory. Since we do not assume that the
reader is familiar with this branch of mathematics, we will give a brief introduction to some con-
cepts of category theory. An exhaustive discussion of this topic would of coutse go beyond the
scope of this article; the reader who wishes to explore category theory in any depth is referred to
textbooks [19, 10].

2.1 Categories
We start by defining the notion of category.
A category is a construct that consists of the following:

¢ Objects (sets, or anything else; in our case: models).

* Morphisms between objects; not every object needs to be the domain or codomain of
a morphism.

e For every object X, an identity morphism 7dx.
e For each pair of morphisms f: .4 — B, g: B — C a composite morphism fg: .4 — C.

¢ Furthermore, we require associativity [( f2)h = f(gh)] and that morphisms can be
combined with the identity map (given a morphism f: .4 — B, we have fid4 = fand

idsf = f).

In the simplest case, the objects of a category are sets and the morphisms are mappings between the
sets. In the more general case the objects might be anything, including categories themselves.
Categories are often graphically represented as points (objects) of which some are connected by
directed graphs (the morphisms), usually indicated as arrows. The strength of category theory is that
it allows one to formulate relations between the objects and also relations between categories.

A pervasive concept in category theory is the idea of duality. Two concepts in category theory are
dnal if one is like the other but with all arrows reversed. For example, if A4 is a category, then the
opposite category AP is A with all arrows reversed. A and AP are then dual to each other.
Throughout this article the concept of duality will not be explored in any depth, but it will be used to
indicate relations between definitions and categories; specifically, the concepts of direct sum and
direct product are dual; the reader might compare the definitions in Figures 1 and 3.

The reason the direct product and sum need to be introduced here is that Rosen essentially
identifies them with analytic and synthetic models respectively. The concepts of analytic and synthetic
model in turn are essential to the concept of mechanism—the class of systems that can be simulated
in computers.

2.2 Analytic Models

While the concepts of analytic and synthetic model are crucial to the entire argument, Rosen only
hinted at a mathematical definition. The purpose of this section is to make the notion of analytic
model precise.

Artificial Life Volume 12, Number 1 3



D. Chu and W. Kin Ho A Category Theoretical Argument against the Possibility of Artificial Life

X
I
@ ! P
9 !
'
My~ S > Mo
1 2

Figure . Direct product: If S, M;, M, are objects of the category C, then § is the direct product if we can find an
object X and morphisms 7, : § — My, ™S — M|, ¢ : X — M,, and § : X — M, such that there is a unique morphism
0 : X — S. The direct product is a generalization of the familiar concept of the Cartesian product of two sets to arbitrary
categories.

Before doing so, however, we will briefly discuss the informal idea behind analytic models.
Rosen’s notion of model might to some appear somewhat counter-intuitive at first. A typical model
in science formulates a dynamic relationship between entities, as for example a differential equation.
Rosen’s idea of model is fully compatible with this conventional view, yet somewhat different in
emphasis. Instead of focusing on the dynamics of components of a system, a model in Rosen’s sense
is a certain way to measure properties of the system. Given a system §, an analytic model of §'is a set
of observables that describe the system. Clearly, the quality of the description depends on the
accuracy with which the observables are measured. An observable that can have say, 100 different
values, is better, or at least of higher resolution, than an observable that can have only two values.
Increasing the resolution of an observable thus leads to a refined model.

Besides an increase of resolution of an observable, there is a second type of refinement: Not only
might it be that the observables used are inaccurate, measuring the system only crudely; it might also
be that the set of observables used is not sufficient to give a full description of the system. In this
situation adding a new observable will also refine the model. One might for example describe a car in
terms of its speed and the number of passengers it takes; this description would, in Rosen’s sense, be
a simple analytic model. Another model of a car would describe it in terms of its milage and how
much fuel it carries. Putting those two models together, thus describing the car in terms of speed,
number of passengers, milage, and fuel content, will give a more accurate picture of the state of the
car than either of the models and thus refine both of them.

For every system S there will usually be many different models that are in a partial order
relationship with each other, generated by the refinement relationships between them. Note that, while
models in Rosen’s sense do not explicitly take into account the dynamics of the system, they never-
theless are complete descriptions of the system. This reflects the assumption that a complete de-
scription of a system at a specific time already determines all future behavior (although possibly only
in a statistical sense). In essence, an analytic model is a set of observables with a given resolution.

Formally, an observable is a mapping / from a system § (the system to be modeled) to a set
(usually R"). The observable finduces an equivalence relation on §: Two elements s, 5, € § are
equivalent (s) ~ 5,) if f(s;) = f(52). The size of the equivalence classes thus indicates how well
discriminates between states of the system; the smaller the equivalence classes, the better is the
corresponding observable. An analytic model M of § is the partition of . into equivalence classes
generated by some f

One and the same system § will typically have many different analytic models corresponding to all
possible observables f; those models will be related to each other and can be compared by the way
they partition § into equivalence classes. The relevant concept here is that of refinement: Given a
model M, the model M, is a refinement of M, if all equivalence relations induced on § by M, are
subsets of the equivalence relations induced by M; on S. Intuitively, this means that M, can distinguish
between at least as many states of S as M. Given two models M;, M, of 5, those models need not be
in a refinement relation to each other, but may be unlinked." This will be the case if the observables
measure unrelated aspects of the system. If there is no specific refinement relation between M,

I Itis an important technicality that observables and hence models may be partially linked. This is not of fundamental importance, though,
and will be ignored in the present discussion; the reader interested in this aspect is referred to Rosen’s discussion in [22].

4 Artificial Life Volume 12, Number 1



D. Chu and W. Kin Ho A Category Theoretical Argument against the Possibility of Artificial Life

and M,, it is always possible to construct a model Mj that is a refinement of both M; and M, by
taking the Cartesian product of the two models (strictly, the Cartesian product of the respective
equivalence classes on 8): If £ -5 — R* and fp - § — R* are the observables belonging to the
models M;, M, respectively, then the refined model M;= M; @ M, (the mutual refinement of M,
M) is induced by a new observable 4 = (f,5) : S — R x R*. The set of equivalence classes on §
induced by f;, on the other hand, is the Cartesian product of the equivalence classes induced by £ and £
respectively.

Example.  The system is the state space of a resting point mass in a two-dimensional discrete
space. Possible models of this system are:

M, f : 5 — {0,1}
M, fo:5—N

M, f:§—N

The observable £, distinguishes only between two different positions of the particles in the space.
The corresponding model M,, is thus refined by the model M,,, which distinguishes between
countably many positions. There is no refinement relation between M, and either M,, or M,,. The
mutual refinement of those models can easily be constructed:

My fo=(fuf): S > NxN

Formally, a set of analytic models of § and the refinement relations between them are a category
A(S): The objects of the category are the models, and the morphisms are the refinement relations
between them (for the detailed definition see Figure 2). Formally, this category looks like the category
of partially ordered sets ( posets; see Figure 2). This structure will turn out to be of high relevance for
Rosen’s central argument. Note that a system § is typically associated with many categories of
analytic models; for every system 5, M“(S) is the set of all categories of analytic models of 5. One
element of M“(.S) will be the category consisting of the most refined model as the only object. Others
will contain the most refined one and less refined ones plus the refinement relations between them; yet
other categories will lack the most refined model of S. There are no restrictions on the possible
categories, but note that we always assume that at the crudest level of modeling all observables are
totally unlinked (that is, the bottom objects in the category are induced by unlinked observables).

. @\
(QK.
Figure 2. The category of analytic models: The objects of the category are models. The morphisms are refinement
relations. There is a morphism from object M| to M, if M, is a refinement of M,. Note that every model is its own
refinement; thus for every object the identity (id) map exists. In this specific example, the top-level model is the direct
product of any pair of second-level objects. To see this, identify S and X with the top-level object. The projections m, and

) are identical with the morphisms ¢ and {s respectively. Then there is a unique morphism from $ to §, as required by
the definition. This unique morphism is the identity on S.
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Figure 3. Coproduct: The coproduct (direct sum) is the dual to the product. It is defined by reversing all arrows in
Figure . If S, M, M; are objects of the category C, then § is the coproduct of M| and M, if we can find an object X and
morphisms iy : M| — S, i, : My — S, ¢ : M| — X, and ¢ : M; — X such that there is a uniqgue morphism 6 : S — X.

Rosen points out that the idea of analytic model is tightly connected to the concept of direct
product. (For the definition of a direct product see Figure 1.) This is true, but only partially so. The
mutual refinement of two models that are based on unlinked observables is formally the direct
product in the category A(S). In the above example the model M3 = M; ® M, is defined as
the Cartesian product of the models AM; and M,; the reader can easily convince himself that in the
corresponding category of analytic models consisting of the objects {M;, M,, M;} and the
corresponding inclusion relations between them, Mj is indeed the direct product of M; and M,
according to the definition in Figure 1.

However, not all models in A(S) will in general be direct products of other models in A(S).
Trivially, the bottom objects—the crudest models—will not. This can easily be seen to be the case
by comparing Figure 2 with the definition of the direct product in Figure 1. More important is
another case: The refinement of the resolution of an observable (thus not the mutual refinement of
two observables) will lead to linear branches in the category; there will be no direct products
involved.

2.3 Synthetic Models

The second kind of models are synthetic models. In a sense, synthetic models are the opposite of
analytic models. The concept of analytic model captures the idea that a modeler analyzes a specific
given system into parts (or, more precisely, into observables). This procedure is often referred to as a
top-down approach. Synthetic models in Rosen’s sense, on the other hand, correspond to bottom-up
models. The intuitive idea behind synthetic models is as follows: Given two systems (interacting or
not), one can (formally) unite both into a new, larger system containing the two components as
subsystems. This can of course be generalized to any number of systems.

Most artificial life researchers will be very familiar with synthetic models. It is a common
approach in the field to start out with a set of well-defined agents (usually simulated agents) and let
them interact. The aim of such models is to understand the aggregate behavior of the agents.

Let us now give a more precise definition of a synthetic model: A synthetic model M is a

poset of analytic models plus an order relation called #nclusion. The following conditions need to be
fulfilled:

1. The poset consists of at least three elements.
2. The poset has exactly one top element, that is, one element that is not itself included.

3. All but the lowest-level models in the poset are themselves synthetic models.

It follows from the definition that every element of the poset (except the top element) is included
in exactly one other element, and every element (except for the bottom elements) includes at least
two other elements. Graphically, a synthetic model thus has the form of a tree where every element is
a branching point.

We will now describe the procedure to construct a synthetic model M3 given the models M, and
M. In order to do this, two cases need to be distinguished. Firstly, both M; and M, are not already
synthetic models, but rather analytic models. The synthetic model M3 can then be constructed by
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taking their mutual refinement M; ® M,; in this case the synthetic model is a partially ordered set
with the elements {M;, My, M; Q@ Mo}.

In the case that M, or M, or both are already synthetic models, M; can also be constructed. The
unique top element of Mj is then the mutual refinement of the top elements of M; and Mp; M5 thus
consists of the disjoint posets M; and M, joined together by a new top element. The construction of
a new synthetic model is illustrated in Figure 4. All synthetic models are built up from atomic
systems in this way; the peculiar structure of synthetic models is a consequence of the way they are
constructed from the bottom up.

Like analytic models, synthetic models also form a category, V(S) (see Figure 5). The objects of
the category are synthetic models, and thus posets; those posets themselves form a new, higher-level
poset. The morphisms between them are defined as order relations as follows: M is smaller than M,
if M, is a subtree of M (see Figure 5). The category V() thus records the construction history of
the synthetic model. All categories Y(S) have a very specific structure. The characteristic properties
of Y(S) are:

* Y(S) has exactly one top object.

¢ All but the bottom objects include at least two synthetic models (the bottom objects
include none).

Henceforth we will say that a category D looks like a synthetic model if it has this structure.
Furthermore, we will denote by M‘(S) the set of all categories of synthetic models of S.

Given a category of synthetic models Y(S), it is immediate from the definition that a synthetic
model M is the direct sum of M; and M, if M; and M, are one level below M and there atre
morphisms ¢ : M; — M and § : My — M (see Figure 5). Formally, thus, a model M is a synthetic
model of M; and M, if it is of the form M = M; @ My; the models M; and M, may themselves
be synthetic models. Note that the generalization of this discussion to any number of systems is
straightforward. An example will illustrate what it means to take the direct sum of two models and,
more important, what it does not mean.

ExampLE: Given two systems corresponding to point masses that live in a one-dimensional con-
tinuous space. The state space of each of them is two-dimensional, the dimensions corresponding
to the position and the momentum respectively. The state space of the compound system is four-
dimensional, describing the momenta and the positions of both particles. Establishing a new de-
scription uniting the two separate point masses into one model is clearly synthetic modeling, yet
formally, the state space of the larger system is the Cartesian product of the state spaces of the
individual particles and not the direct sum. (The direct sum would be the disjoint union of the state
spaces of each of the particles and would represent a situation where either of the two particles is
present in the system but not both of them.) It thus seems wrong to associate synthetic models with
the direct sum.

This apparent error rests on a misunderstanding: Taking the ditect sum of systems is not the
same as taking the direct sum of their respective state spaces. Formally, the direct sum of two posets
is just the disjoint sum of the posets, plus an arbitrary bottom element that connects the top

Figure 4. Synthetic models: A synthetic model is a poset of analytic models with a specific structure (see main text): All
points need to be branching points, because the models at higher levels are the sums of at least two lower-level models.
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Figure 5. The category of synthetic models, ) (S): The objects of this category are synthetic models; those posets
themselves form a new, higher-level poset. The morphisms between the objects are order relations. There is a morphism
from object M| to object M, if M, contains M, as a subtree. Note that every object has a morphism onto itself. In the
specific example in this figure it is thus easy to see that the top-level model is the direct sum of the second-level objects.

elements of the summands. This formally introduced bottom element in the new category has a
very precise interpretation in this case: It is the direct product of the models M; and M, and
thus the mutual refinement of M; and M,. In summary: Taking the direct sum of two models
induces a new system that is the direct product of the original models; the equivalence class in-
duced by M; @ M, on § is the direct product of the equivalence classes induced by M; and M,
respectively.

Finally, note that synthetic models are completely determined by their components (they ate
nothing but the sum of their parts). Also, the process of taking the direct sum of analytic models is a
purely syntactic (or algorithmic) process. Given disjoint analytic models of systems, one can always
construct a synthetic model by taking the mutual refinement between those models. This does not
require new measurements of the system, but is an entirely formal procedure.

2.4 Relation between Analytic and Synthetic Models

Rosen defines mechanisms as the class of systems of which all analytic and synthetic models are
equivalent; according to Rosen, this is the case when direct product and direct sum coincide. Again,
Rosen does not actually spell out in detail what precisely it means for a synthetic model to be
equivalent to a analytic model, nor does he say precisely what it means that direct sum and direct
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product coincide. The purpose of this subsection is to clarify in which sense analytic and synthetic
models might be equivalent.

Roughly, equivalence of synthetic and analytic models should mean that every synthetic model of
a system S can be seen seen as an analytic model and every analytic model can be seen as a synthetic
model. From the definition of the two types of models, it is clear that the phrase “can be seen as”
cannot possibly mean “is identical to,” because synthetic and analytic models are generally not the
same type of things (synthetic models are posets of analytic models). The strategy we use here to
define equivalence is to look at the structures of M’(') and M“(.S) (defined in Sections 2.3 and 2.2)
and to establish a mapping between them. Mote specifically, we will define a subset C of M?(§) and
specify a mapping from C to M’(S). Equivalence of synthetic and analytic models will then be
defined in terms of the properties of this mapping,

Before doing so, however, let us look at the simpler case of relating synthetic models to analytic
models. Rosen points out that the first part of the equivalence is always true, that is, synthetic
models are always analytic models. Again, this is not to be understood in the sense of identity,
but as follows: For every category of synthetic models V() € M’(S) the dual Y°P(S) looks like
a category of analytic models of A(S) € M“(S) in the following sense: Consider this algorithm (see
Figure 5):

1. Replace each object in the category of synthetic models with its top node.

2. Invert the arrows between the objects.

The reader can easily convince herself that this algorithm maps every element Y(5) € M’(S) to a
unique element A(S) € M“(S) of the set of categories of analytic models of . Note that the
application of this algorithm is a purely syntactic procedure and does not require any additional
information about the system, such as for example new measurements of the system. Thus every
synthetic model can be transformed into an analytic model, or, as Rosen formulates it, every
synthetic model is an analytic model.

The converse of this statement, which would complete the equivalence between synthetic and
analytic models, is not true in general: Not every analytic model is a synthetic model. In order to see
this, we will first have to determine what it means for a analytic model to be a synthetic model and
more general for all analytic models of § to be synthetic models. Once we have clarified this, we will
have to discuss under which circumstances all analytic models of § are actually synthetic models.
Neither aspect is elaborated by Rosen himself.

Again, our informal understanding of an analytic model being a synthetic model is that for every
A(S) € M“(S) the dual A(S) looks like a2 Y(5) € M’(S). Two conditions need to be fulfilled in
order for this to be the case: LA(S) needs to have a unique top node, and this top node needs to join
disjoint trees; this is so because by construction categories of synthetic models always have a unique
top object.

Firstly, we assume that subtrees in the category of analytic models are always disjoint. This
assumption only means that the observables at every level are mutually totally unlinked. A change of
observables can always achieve this situation; since we are only interested in properties of systems,
and not in properties of specific encodings of systems into observables, this restriction is acceptable
and does not pose any restriction on the generality of systems about which we make statements.

Secondly, if a category A(S) has several top nodes, then we can always reduce the number of top
nodes by taking the mutual refinement of the existing top nodes. Note that this is a purely syntactic
procedure (in the context of real systems, we would not have to perform new measurements, only
process the results of measurements we already have made).

There is another possible complication. The category of analytic models of § might contain non-
branching refinement relations between models, that is, branches of the tree that look like M, —
My, +1 — =+ — My, +,. In this case the model My, is associated with the same observable as the
models Mg 4, (/ =1,2,...,7), but its resolution is higher than any of theirs. If the category of

Artificial Life Volume 12, Number 1 9
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analytic models contains such subttees, then, formally A°P (') will not look like the dual of a category
of synthetic models of §. However, from a practical point of view this is no problem. All the
information about the system contained in the models My, ; is already contained in My, and the
models themselves can be recovered from My, at any time. We can therefore remove all but the most
refined model in the tree, without losing information about the system. Doing this for all linear
branches, we remove this complication. Again, this is a putely algorithmic procedure; if there are
linear branches in the model, then this says nothing about the system, but rather records the specific
refinement history.

A situation where the current picture breaks down arises in the case where there is no finite set of
observables that will lead to a complete description of S. In this case, there will be no maximally
refined model. Thus finality of the system is a necessaty condition for analytic models to be synthetic
models.

Let now C be the reduced set of categoties A(S) of analytic models. We obtain C from M*(.f) as
follows:

e For all elements A(S) € M?(S5) do:

1. If A(S) contains multiple top nodes, add new top nodes by taking the mutual refinement of
existing top nodes.

2. Replace all linear branches in A(S) with the most refined model in the linear branch.
e If the resulting category is not already in C, add it.

Henceforth, we will say that all analytic and synthetic models of a system § are equivalent if for
all categories A(S) € C the dual of A(S) looks like a category in M’(.5).

2.4.1 Analytic-Synthetic Means S Is Defined on a State Space

For the following we say that a system S is state-space-based if there is a set of observables O and a
time 7, such that the values of all ¢ € O at %, completely determine the behavior of § for all 7 > £
(though possibly only stochastically).

It is straightforward to show that for all state-space-based systems S, analytic and synthetic
models will always be equivalent: Having excluded sets of partially linked observables, all elements of
C ate, by construction, guaranteed to look like synthetic models; see the discussion above. The finite
dimensionality of the state space guarantees that the construction of C can be done in finite time.

Similarly, the converse can be shown. If synthetic and analytic models are equivalent, then § has a
unique most refined model in terms of a finite number of observables. Thus there are a finite
number of unlinked observables that specify the system completely; this in turn means precisely that
the systems is defined on a finite state space.

In summary, we conclude that:

¢ All synthetic models are analytic models.

¢ The converse does not hold in general, but holds for all systems that are defined on a
finite state space.

Furthermore, whenever a system is defined on a state space, its synthetic models are equivalent to
its analytic models. More important is the contrapositive statement: Whenever analytic models are
not equivalent to synthetic models, the corresponding system .§ is not defined on a state space.

In Life iself, Rosen makes the connection between the equivalence of synthetic and analytic
models and the equivalence of direct sum and direct product. The equivalences are indeed related to
some extent—not, however, as closely as it might seem from Rosen’s exposition. Since the concepts
of direct product and direct sum are dual to each other, the following is always true: If 4, b, ¢
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are objects of a category Dand if « = b ® ¢in D, then in the dual category D°P it will be true that a =
b @ ¢ This, however, does not translate directly into a theorem about the equivalence of analytic and
synthetic models, because, as the preceding discussion has made clear, the relation between synthetic
and analytic models is only partially a relation of duality: While it is true that what is the direct
product in a category A(S) will be a direct sum in AP(S), this dual category will not always be a
category of synthetic models of .

3 Mechanisms and Machines

In this section we will now finally define the notion of mechanism. Mechanisms are an important
class of systems, because Rosen defines them as the class of systems that are simulable; the question
whether life in silico is possible is thus essentially the question whether or not at least some living
systems are mechanisms. Rosen’s central result in Iife #self is that whatever has the organization of
living systems (closure) cannot be a mechanism.

Rosen bases his definition of mechanisms on the concept of simulability. In order to avoid
butrdening the present discussion with yet another new concept, we will give an alternative, yet
essentially equivalent definition of mechanism: A system is a mechanism if all its analytic models
are equivalent to synthetic models. Thus, all mechanisms can be exhaustively defined as state-based
systems. Mechanisms are always simulable in Rosen’s sense [though they might not be simulable (or
computable) in the colloquial sense of the word].

One class of mechanisms that are of specific interest for Rosen are what he calls machines;
machines in Rosen’s sense are essentially Turing machines. Traditionally Turing machines are thought
of as consisting of a reading head—that is, a finite-state automaton that can read from and write to a
tape. Rosen stipulates that “Turing machines” are machines sens# Rosen and thus mechanisms.
Therefore they can be completely described in terms of states, {x1, X2,. .., Xe_1, Xpye - X4}

The reader might find the claim that a Turing machine can be exhaustively described in terms of
states alone somewhat surprising. The best way to convince oneself that Turing machines are indeed
mechanisms is to consider implementations of Turing machines in cellular automata (such as in the
Game of Life [1]). All configurations in cellular automata are quite obviously state-space-based. In
the case of the Game of Life, this description will be entirely in terms of a collection of binary states.
If S is the # X m dimensional array of automaton cells, and §' C S a £-cell subset of S, then the
Turing machine (or in fact any other configuration) implemented in this CA can be completely
specified by the following analytic model:

My £=(f1,.,f): 85 — {0,1}*

Rosen points out that models of machines in terms of states are not particularly instructive, and
introduces an alternative representation, so-called relational models (see Figure 6). Relational models
are a way to represent systems by showing how higher-level parts of the system interact. In the case

A.\“l—b.B

Figure 6. Rosen’s (relational) model of a Turing machine. The vertex f£ denotes the hardware that induces a software
flow from input (A) to output (B). Based on Figure 9B.3 in [23]. Note that the component £ in this figure is different from
the observable label f used in Section 2.2.
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of a Turing machine a state description can be partitioned into states that correspond to hardware
(say the first £ states) and software, comprising input, output, and other software states:

XYy XDgeney X1y Xy Xp—1 9003 Xy
—_—
hardware software

In the relational model the hardware states are lumped together (component £ in Figure 6). Similatly,
input and output states are combined together into the components .4 and B respectively. The basic
idea reflected in the relational model is that the software flow from input to output is implemented
by the hardware components® . Rosen points out that this flow of data can formally be seen as a
mapping £ : A4 — B. In contrast with pure mathematics, where the mapping £ is simply assumed, in
real systems f needs to be realized by something in the world. In the relational model of the Turing
machine this is reflected by the separate representation of £ as a part of the machine (the hardware).
In Figure 6, the solid arrow indicates that .4 is mapped into B, whereas the dashed arrow from f to
the solid arrow from A to B indicates that this mapping is implemented by the component f; for
reasons that will become clear below, we will henceforth express the fact that B is the codomain of a
mapping £ : A — B by saying that B is maintained by the mapping £. We will also say that the
component £ implements the mapping £ : A — B.

Relational models such as the one in Figure 6 play an important role in Rosen’s work.
Unfortunately, it is not clarified by Rosen how in general a complete (non-relational) description
of a specific system S can be transformed into a relational one; in other words, it is unclear how,
given a system, the mappings and their implementations can be recovered from, say, a state-space-
based description of the system. The precise meanings of abstract diagrams such as the one in
Figure 6 must thus remain somewhat unclear. However, in order to be able to present and evaluate
Rosen’s central argument, we will pretend for the moment that this is not a problem and that
we have a full operational understanding of relational models. In Section 5 we will reconsider this
point.

4 Rosen’s Central Argument about Living Systems and Machines

The central result of Life itself is the proof that living systems are not mechanisms; any description of
these systems in terms of states would thus be incomplete. Rosen introduces his notion of a living
system in terms of general properties of relational models (closure). The central argument about the
impossibility of artificial life in silico will then essentially consist in showing that the type of relational
model that defines a minimal organism is inconsistent with the assumption that the corresponding
system is fully defined by a state description. This also implies that the system cannot be
implemented in a finite-state machine. This insight then substantiates Rosen’s central result in I7fe
utself, namely, that there are systems that are not mechanisms, and that in fact neatly all systems fail to
be mechanisms. In this section we will recap Rosen’s central argument.

Rosen’s strategy to prove that organisms are not mechanisms is as follows: Firstly he defines a
universal property of organisms. As in the case of autopoiesis, this property is closure (as defined
below). He then shows that systems with this closure property cannot be modeled in a state-space
system. Thus, organisms are not machines.

We will start with a discussion of closure. A system is closed in Rosen’s sense if every
component in the system except for a set of input components is maintained and every mapping in
the system is implemented by a component within the system. (We see here the similarity to
autopoiesis.) An example of a closed system is pictured in Figure 7, whereas Figure 6 is an example
of a system that is not closed: The component f in Figure 6 implements the mapping .4 — B, but it

2 The reader interested in a detailed description of machines in terms of mechanisms is referred to the original literature [23, Chaps. 8,9].
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m
»® =

A.‘—V.B

Figure 7. A minimal model of a system with closure. The dashed arrows indicate the implementation of a mapping,
whereas the solid arrows indicate maintenance of a component. The component A represents input to the system. Note
that this figure does not depict a category (as for example in Figure 5), but rather a possible object of the category of
models.

is not itself maintained from within the system. Rosen then goes on to identify closure as a necessary
condition for a system to be living,

The intuitive idea behind this is that systems that are not closed in this sense have some
distinctively unbiological properties. For example, the system in Figure 6 must rely on external
maintenance, because the mapping £ is not maintained from within the system. If £ is damaged it
will go unrepaired, ultimately ceasing to function. This in turn leads to a disintegration of the system.
In contrast, components in organisms are usually maintained by some other components within the
organism. This should hold true for every component of the system, including the repair
components themselves. The reader interested in a more exhaustive discussion of closure and its
relevance for biological systems is referred to the relevant literature—in particular Iife iself, but also
[24, 4, 11].

We will now show how the system in Figure 6 can be enhanced (and closed); this discussion
closely follows Rosen’s own exposition in Iife #self. First of all, in order to have £ maintained, a new
map needs to be added to the system, IF : B — £. This enhancement leads to £ being maintained,
however, at the expense of a new unmaintained component F In order to avoid the infinite
regress of adding further and further new maintenance elements, we add just one more, namely,
a process that maps B to F implemented by £ itself (f : B — F). (For a discussion of the
specific conditions under which this is possible, the reader is referred to Rosen’s original argument
[23]; alternatively, Wolkenhauer [26] offers a very clear discussion.) Now every component (except
for the presumed input A4) is maintained in the system, and every mapping is implemented by
a component.

4.1 The Proof

In this subsection we will recap Rosen’s proof that living systems are not implementable in com-
putational systems, or more precisely, that the relational model in Figure 7 cannot be reconstructed
from a state description. Thus, the system contains more than can possibly be encoded in a state
description—it is not implementable in a computational system. In what follows we will closely
follow Rosen’s own exhibition of the proof in Chap. 9 of Life ifsel.

Let us assume that the system in Figure 7 is indeed a mechanism, that is, it is completely specified
in terms of a set of states. Due to the equivalence of synthetic and analytic models of mechanisms,
every mechanism can be considered as a direct sum of its components. We can therefore assume that
its components £, F; B, and A4 can also be completely described in terms of states. In such a way one
gets models for each of the components in terms of states. Given those components, one can then
generate a synthetic model of the entire system with the models of the components as summands.
If the system in Figure 7 is a mechanism, then this synthetic model should be a complete description
of the model.

Rosen argues that this is not possible, however: Let us assume that there is a most refined
model of £ in terms of states that we can write as {£1,..., £z }. We would now like to know whether
it is possible to recover the original component £ from this state description; more specifically,
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whether we can recover the functional overloading of £ (that is, £ maintains both B — F and
A — B).

Let us consider two possibilities: The first possibility is that the first ) < & components of £
implement the mapping .4 — B and the remaining components implement B — F In this case the
component £ is of the form £ 4.5 @ fp_p. If this is so, then in order to retain the closure of the
system we need to have each of the components £ 4, and fp_,F itself be maintained by something
within the system. This means that we need to assume the mapping B — £ to be in fact two
mappings, namely B — £ 4_,p and B — fp_,r. This in turn means that we need to split up the
component I into two parts as well: one that implements B — £ 4.5 and one that implements
B — fp_r Unfortunately, in this case we will have at least one component of F unmaintained.
Continuing the argument will lead to no closure. We therefore need to reject the possibility that £ can
be split up into two parts as indicated above.

The second possibility is that even in the most refined model there are some components that
implement two mappings. According to Rosen this possibility is not compatible with the assumption
of a machine. In the context of machines, where synthetic models are equivalent to analytic models,
one would expect that “functions are always localized into corresponding organs” [23, p. 212]. Rosen
concludes from this that we must suppose £ = £ 4,5 @ f5,F in the sense of a direct sum [23,
p. 240]. This means that if £ implements two functions, then it can be split up into at least two
independent components. We are thus back at the first case.

Altogether, Rosen concludes that the system in Figure 6 is not compatible with a state-space-
based description and is thus not a mechanism. This proof is the crucial piece in Life itself, sub-
stantiating the main point that there are systems that they bear the organizational characteristic of
living systems (closure). These systems cannot be completely described by a state-space approach. If
correct, this would indeed have important consequences for our understanding of life in general
and attempts to create artificial life in silico. The implication of Rosen’s argument would be that the
latter project is infeasible on principle grounds.

5 The Concept of Implementation

But is it correct? Does Rosen’s central proof hold? In this section we will show that it does not.

There are two main possible criticisms of Rosen’s proof. Firstly, one might wish to question
whether Rosen’s closure property really represents a necessary feature of living systems. This is
an interesting question, but we will not pursue it in the context of this article. The second possible
criticism is directed against the proof itself. In this section we will follow this second strategy.

A crucial element of the entire proof is the requitement that implementations of the mappings be
localized in specific components of the system. Ultimately it was this requirement that led Rosen to
the conclusion that state-based systems cannot realize the closure property of living systems. This
requirement of localization says that in machines we can at any time precisely specify which parts of
the system implement a particular mapping and which parts do not. Stated contrapositively: Given
two components of a system, £; and £, if neither of those implements a mapping, the compound
system f; @ £, will not do so either. If it did, then we could not determine where precisely the
implementation is located. This requirement reflects the idea that machines can be built from parts
and are completely determined by their parts. Unfortunately, the localization requitement is
unrealistic, and the concept of implementation is ill defined. In the next few paragraphs we will
explain this in more detail.

Let us start by reviewing the basic properties of a machine sexs# Rosen.

¢ They can be analyzed into their parts.
e The parts themselves can be reassembled to recover the whole system.

e Mappings in machines are implemented by localized parts of the machine.
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Those are only the properties of mechanisms as they follow from the equivalence of synthetic
and analytic models plus a formulation of the localization hypothesis. One way to understand
Rosen’s central proof is as saying that those three properties are not compatible with the property
of closure. While that may be true, we will now show that even in machines those properties are not
compatible.

Consider the component £ in the machine in Figure 6. There £ implements the mapping 4 — B;
thus the mapping .4 — B is located in f. So far, no problem. Let us now try to investigate the
component f in more detail and analyze how precisely it implements the mapping. Assume that
the component £ is the direct sum of components, £ = &,f;. Then according to the localiza-
tion hypothesis for mechanisms, at least one of the £;, say £;, implements .4 — B (or parts of it).
It might then be that £, is itself a direct sum; without restricting the generality of the argument,
we will ignore this possibility and assume that £; is an atomic component. Due to £ being a
mechanism, we know that the component is exhaustively described by one state only; call the
state variable Xg,5 if we needed two or more states to describe it, then £; would not be an atomic
component and we could simply split it up further and further until we did find an atomic
component.

The problem of this becomes clear when one attempts to recover information about the mapping
implemented by the component £, if this component is described in terms of the x¢, . By the same
token, given a set of states, how can one decide whether or not they actually do implement a mapping
or not? Our conclusion is that one cannot. To see this, consider an implementation of the system in
Figure 6. Specifically, assume an implementation of this system in an N-dimensional cellular auto-
maton (CA). By the assumption of mechanism, such a CA is guaranteed to exist. Moreover, because
of the finiteness of mechanisms, there will be a minimum required size for the CA to implement the
system. Let us assume that K is such a CA. Assume that K implements the machine in Figure 6.
Furthermore assume that K’ is a copy of K except that we assume all its cells are in the quiescent state.
Given those systems, we can now form a new system G by taking the direct sum K & K.

The system G is now completely specified by a set of states:

/élvféZ;"'a /ém/é{v"w /é:z
—_——

system K system K’

Given this complete model of the machine, we will now assume that we can actually identify the
state variable X, with a state variable of K, say &, We conclude that the state variable &, implements
a mapping,

Let us now assume a slightly different scenario. Specifically, assume that the system in Figure 6 is
implemented in the patt of G that corresponds to the summand K, while we assume now that all the
cells of K are kept in a quiescent state. Now, the state variable £, still describes some state of K| but it
does not describe a mapping any more; this is so because we assumed that K is an empty system (all
cells in the quiescent state). On the other hand, we would now have to assume that the corre-
sponding state £/ of the subsystem K’ does implement a mapping.

This example thus seems to indicate that whether or not a state implements a function does
depend on the context of the system as a whole. This however is in clear contradiction to the
requirement that the state description be a complete description.

We are thus left with two possibilities. The first possibility is that we acknowledge that machines
are not compatible with the localization hypothesis. In this case Rosen’s proof is rendered irrelevant,
because all he has shown is that closed systems share this property with machines; this does not tell
us whether or not closed systems ate mechanisms; thus we still do not know whether artificial life
in silico is possible.

The second possibility is that Figure 6 is indeed not a valid model of a machine because it is
incompatible with the localization hypothesis. This might well be the case, but would render the

Artificial Life Volume 12, Number 1 15



D. Chu and W. Kin Ho A Category Theoretical Argument against the Possibility of Artificial Life

proof irrelevant in that we have only shown that the systems in Figure 6 and Figure 7 do not share a
certain property. Since the system in Figure 6 is a machine, all we know now is that neither machines
nor closed systems have this localization property. This again does not tell us anything about the
difference between machines and closed systems.

Altogether, it seems that Rosen’s proof does not hold and we are still entitled to conclude that
organisms might be machines.

5.1 Syntax and Semantics

In this section we will revisit the notion of implementation of a mapping. This notion has been
central to the idea of a relational model of a machine and thus ultimately to the definition of closure.
The discussion in the last section indicated already that there is a problem with the notion of the
implementation of a mapping, Particularly, it seems unclear how one can recover the relational
models of machines from their state-based models.

Rosen’s own comments on the nature of the mappings and their implementations in relational
models are somewhat unclear. On the one hand, it seems that the localization hypothesis suggests
that a mapping is a syntactic component of the machine, in the sense that there is an algorithm that
allows one to specify all mappings in the machine, given a complete description of the machine. On
the other hand, though, there are passages in Life iself that seem to suggest otherwise. For example,
referring to components that implement mapping Rosen writes

[...] its description changes as the system to which it belongs changes. It can thus acquire
new properties from the larger system with which it associates. [23, p. 121]

The ability of a component to acquire new properties from the environment is itself not compatible
with the idea that it is a mechanism, that is, with the idea that the component is determined entirely in
terms of its states. From the above quotation it seems that the concept of a mapping and its
implementation are semantic; this does not fit very well with the idea of a mechanism as an
inherently syntactic system (syntactic in the sense that all aspects of the machine can be derived from
the complete description of its parts). If the description of the mechanisms changes depending on the
context of the machine, then the description obviously cannot be recovered from a complete
description of the machine itself. On the other hand, if the relational models of a machine can be
derived from the state description, then Rosen should have specified a suitable algorithm. He has
not done so.

A concept that springs to one’s mind when reading Rosen’s statement above is that of ewergence.
Particularly in various bottom-up models, it is often observed that the interactions between
components lead to new and surprising aggregate effects. It is in this context that one often
observes that components acquire new properties that also might change according to the context.
Of course, the actual properties of the components do not change, and often they cannot change
because they are “hard-wired.” One might for example think of interacting agents in agent-based
models. What does change is the meaning of the component and its relation to other components in
its environment. Thus the emergent effects we observe in bottom-up models are of semantic nature;
something is emergent because we think it is interesting.

Altogether, it seems that relational models are semantic models in the sense that the relation
between components in those models cannot be derived from the a complete description of the
system in terms of states. Relational models might be valuable in certain contexts to describe both
machines and organisms, yet in the context of Rosen’s “proof™ they are misplaced. In fact, by
representing machines as relational models, Rosen already leaves the realm of mechanisms. Even
more, relational models of living systems, or indeed any other relational models, cannot be
mechanisms, due to their semantic nature.
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6 Discussion and Conclusion

This article contains two main contributions. Firstly, a clarification of the notions underlying Rosen’s
central proof. We have mainly concentrated on a comprehensive outline of the mathematical
concepts to clarify the mathematical background of the most important notions underlying Rosen’s
work. A detailed mathematical and formal treatment including formal definitions and proofs will be
provided elsewhere.

Secondly, this article also contains a critical examination of Rosen’s central theorem. The main
conclusion of this is that relational models rely on an understanding of the system and its context
and function, while state-space-based models only reflect purely formal aspects of systems. By its
very definition such a description cannot per se contain any semantic aspects. Biologically important
notions, such as “function” (an inherently semantic concept) can therefore trivially never be
recovered from such descriptions. Functional (sens# biology) aspects of systems are invisible in a
state-space-based description of systems. Yet, this does not mean that there are no functional
components in the system. Think for example of the organs in von Neumann’s self-reproducing
machine.

Where does that leave attempts to create artificial life in silico? In the absence of a generally
accepted example of a living system in silico, we cannot know for sure that computational processes
can implement life. At the same time, Rosen’s argument certainly does not show that they cannot.
Rosen’s published works do not contain a final answer to the fundamental question of artificial life:
Is life in silico possible? Nor does it contain a final definition of life. Despite this shortcoming, we
still think that Rosen has something to contribute. His work reflects on the status of models, and on
the relations between syntax and semantics and between reductionism and emergence. Those topics
are still poorly understood, although of high relevance for artificial life research. We believe that
Rosen’s circles of ideas contain valuable contributions to those big questions, and their reevaluation
will help to bring us closer to an understanding of life and artificial life.
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