
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Fincher, Sally and Barnes, David J. and Bibby, Pete and Bown, James and Bush, Vicky and Campbell,
Phil and Cutts, Quintin and Jamieson, Stephan and Jenkins, Tony and Jones, Michael D. and Kazakov,
Dimitar and Lancaster, Thomas and Ratcliffe, Mark and Seisenberger, Monika and Shinners-Kennedy,
Dermot and Wagstaff, Carole and White, Linda and Whyley, Chris (2006) Some Good Ideas

DOI

Link to record in KAR

https://kar.kent.ac.uk/14442/

Document Version

UNSPECIFIED

 153

SOME GOOD IDEAS FROM THE DISCIPLINARY COMMONS

Sally Fincher

Computing Laboratory
University of Kent

S.A.Fincher@kent.ac.uk

Jim Bown
Complex Systems

University of Abertay, Dundee

J.Bown@abertay.ac.uk

Quintin Cutts

Department of Computing Science
University of Glasgow

quintin@dcs.gla.ac.uk

Michael Jones

Computing
Bournemouth University

mwjones@bournemouth.ac.uk

Mark Ratcliffe

Computer Science Department
University of Wales, Aberystwyth

mbr@aber.ac.uk

Carole Wagstaff
School of Computing

University of Teesside

C.A.Wagstaff@tees.ac.uk

David Barnes
Computing Laboratory

University of Kent

D.J.Barnes@kent.ac.uk

Vicky Bush
Multi Media & Computing

University of Gloucestershire

vbush@glos.ac.uk

Stephan Jamieson

Department of Computer Science
Durham University

stephan.jamieson@durham.ac.uk

Dimitar Kazakov

Department of Computer Science
University of York

kazakov@cs.york.ac.uk

Monika Seisenberger
Department of Computer Science

University of Wales, Swansea

M.Seisenberger@swansea.ac.uk

Linda White

School of Computing & Technology
University of Sunderland

white.holmes@sunderland.ac.uk

Peter Bibby
Computing & Electronic Technology

University of Bolton

P.Bibby@bolton.ac.uk

Phil Campbell
Computing

London South Bank University

campbep@lsbu.ac.uk

Tony Jenkins

School of Computing
University of Leeds

tony@comp.leeds.ac.uk

Thomas Lancaster
Department of Computing

UCE Birmingham

Thomas.Lancaster@uce.ac.uk

Dermot Shinners-Kennedy

Department of Computer Science
University of Limerick, Ireland

dermot.shinners-kennedy@ul.ie

Chris Whyley

Department of Computer Science
University of Wales, Swansea

C.J.Whyley@swansea.ac.uk

Disciplinary Commons Web Page: http://www.cs.kent.ac.uk/~saf/dc

ABSTRACT
In this paper, we describe the Disciplinary
Commons project and identify some practical
ideas which address central issues for teaching
and learning of introductory programming that
have emerged from it.

Keywords

Introductory Programming, Scholarship of
Teaching and Learning (SoTL)

1. INTRODUCTION
The Disciplinary Commons is a project whereby
teachers come together to share and document
their practice through the production of course
portfolios. In the academic year 2005/6, 18
teachers of introductory programming courses in
different institutions met together every four weeks
to discuss and document their teaching. This kind
of forum is unusual in Higher Education, and a
number of collateral benefits were discovered as

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.

© 2006 Higher Education Academy

Subject Centre for Information and Computer Sciences

 154

we worked towards the goals of the project. Firstly,
the group encountered examples of problems in
multiple courses being addressed in similar ways.
Secondly, the group discovered examples of
unique practices which addressed common
problems. This paper examines both types of
example.

2. PROGRAMMING ENVIRONMENTS
Initial teaching of programming (itp) is often
accomplished within a particular environment.
Often these are commercial tools, appropriated for
educational purposes. Here, we present three
different approaches to supporting students with
environments designed for novices.

The first, Vortex at Wales Aberystwyth, focuses on
the design of object-oriented programs. The
second, BlueJ [3] at Kent, provides a completely
integrated development environment to support
visually the development of programs. The third,
SNOOPIE [4] at Abertay Dundee, offers support
with both program and problem formulation and
can link in to any configurable IDE.

2.1 Vortex
The VorteX [1, 2] environment is a UML based,
text editing environment aimed specifically at
novice software developers. Developed in house,
the software places much more emphasis on
object-oriented software design than is typical for
students at this stage of development. The
resulting environment is a full Java 1.5 complaint
toolset that supports both single and group
projects. A useful tool for students, but the real
power is what it provides the academics. VorteX
records everything that students do during their
development (adding, removing, editing and even
chatting). It is then able to generate statistics on
who did what, when, how much individuals
contributed to a project and what difficulties they
had. It is an ideal environment for maximising
student feedback without generating extra work for
the academic.

2.2 BlueJ
BlueJ is an interactive Java environment that
integrates a text editor, the standard Java
compiler, an interactive debugger and also has
support for JUnit-style unit testing. BlueJ is used
for two main reasons. First, program creation via a
text editor and then compilation and execution via
a separate command-line interface can be difficult
for novices. In particular, Java's classpath
idiosyncrasies make for confusion and
inconsistency between different command-line
environments. Most of the students are not familiar
with command-line programs, whereas they are
typically familiar with GUI-based programs.

Second, the tutor concerned wants to teach Java
in an objects-early (preferably objects-first)
fashion. An IDE offers the best chance to provide
students with object visualisation, which is
believed to be essential to them getting the idea of
what objects are. While supporting the full Java
language, the interface it presents to users is
deliberately uncluttered and easy to use.
Furthermore, its visualisation of objects, visual
distinction between classes and objects, and the
ability to inspect object state and call methods
interactively are very powerful supports for an
objects-first approach.

2.3 SNOOPIE
SNOOPIE recognises two fundamental problems
that novices have in developing programs: first
formulating a (working) program at all and second
formulating the right program to address the
problem. Compiler error messages are notoriously
obscure, and to assist program formulation
SNOOPIE captures those errors and expands
them with text related to the current teaching
material, drawn directly from dialogue with
students. Messages thus encapsulate both the
compiler error and an extension sensitive to the
novices (note, extensions provided may be
changed over a term). SNOOPIE also parses the
program for common (semantic) errors, for
example �;� at the end of for and if statements and
failing to update loop counters. SNOOPIE also
provides more sophisticated support in the way of
problem formulation. It is able to parse a student
program and identify the presence or absence of
key components at any degree of granularity, for
example �a void method called x that takes 2 int
parameters� and �a nested for loop where the inner
loop repeats 3 times and the outer twice�.
Moreover, these program checks may be
structured to allow progressive support through an
exercise.

3. SMALL-BUT-OFTEN ASSESSMENT
Using any environment, practice of programming
skills is vital. A lightweight assessment model of
small, weekly exercises with frequent but limited
(yes/no) feedback is promoted at Swansea and
Abertay, Dundee. These exercises, designed to be
adjacent to the lecture material and so familiar and
likely to lead to success, have two side-effects.
First, students are in an environment of continual
activity and the exercises are of sufficient
simplicity and consequence to promote
collaboration among those students who find
programming challenging. Second, the need to
engage with the tutor on completion of one or
more exercises on a weekly basis ensures regular
dialogue between staff and student.

 155

This dialogue additionally helps ensure ownership
of work, and understanding of what has been
done. Where ownership or understanding is in
question, students may be asked to extend the
submitted work to provide some additional, simple,
functionality. (see section 6, below)

4. STRUCTURED REFLECTION
Every introductory programming teacher
recognises the value of students� reflection on the
process of their learning, using meta-cognitive and
self-explanation strategies. Within the Commons
several ways to encourage these behaviours have
been encountered.

4.1 Logbooks (i)
At Kent logbooks are used as a self-motivated
learning aid for students. They are expected to
obtain a physical A4 logbook at the start of the
course and makes notes in it on every occasion
when they are doing practical programming work.
They are advised to note objectives for the
session, and then to make reflective notes on the
actual outcomes of that session. Class material
typically makes suggestions for things they might
like to record in it.

They are explicitly told that the logbook will not be
assessed in order to free them from concerns
about keeping it neat and presentable, and to
enable them to organise it in the way that best
suits their particular learning style. However, in
order to reinforce that we take keeping a log
seriously, class supervisors are asked to initial the
log at every practical session and answer any
queries students might have noted since the last
session. As the logbooks are checkpointed in this
way, the students can be invited to submit a
logbook�as supportive evidence in defending a
plagiarism allegation, for instance.

Reactions from the students are mixed, but
generally positive. Some make too close an
association between practical work and
assessment and cannot see how a permanent
record might be of use once an assessment is
passed. Others enjoy the freedom of being able to
record what they feel to be the important topics
covered in the course.

4.2 Logbooks (ii)
At LSBU students are expected to make an entry
into their logbook every time they do some work
on a terminal which contributes towards the
assessments. The advice given to students
requires their entries to:

1. Indicate what they intend to achieve.

2. Indicate what they did to achieve it.

3. Indicate what problems they had achieving it
and how they overcame them.

4. Indicate why they decided to attempt a
particular path through the learning material.

5. Indicate what questions they have on what
they have done.

6. Indicate what they intend to do next.

7. Every so often reflect on what they have
achieved.

Students are also advised not to waste time on:

• Making it neat (as long as it is readable)

• Copying the course material (unless it is
related to the problems they are having).

An important concept is that the logbook should
not be a notebook. That is it should not contain
summaries from the text book or from the web
material. It should not contain program designs,
listings, or scripts of program runs. It is an
executive summary of the students� learning
activities. It is not their notes from the lectures.
(These may all go into the back of their book.)

Students should make an entry in the logbook
every time they do a significant activity connected
with the unit, not just during the weekly practical
classes. They should bring their logbook to every
practical class so that you tutor can assess and
sign it. Students are advised that logbooks will not
be assessed or signed at any other time.

4.3 Self-assessment grid
Bolton has a series of Good Things which are
asked for in their assessments�meaningful
identifiers, sensible use of functions etc. And they
hope students will supply them. And if they don�t,
their tutors will give them feedback.

Self-assessment grids make it easier to identify
Bad Things and target the appropriate feedback.
Over time, they may help students spot the Bad
Things for themselves.

The grid simply consists of three columns.

• The first column is the �wish list�;

• The second column is for the student to
indicate whether or not they�ve achieved
this (they can simply tick or put in a
comment);

• The third column is for the marker to
supply their comments.

Good Thing Student Lecturer

Meaningful
identifiers

Yes �Wombat� for loop
control?

 156

White Space Yes Where? I couldn�t
find one blank line!

Whilst the grid itself isn�t marked, it is mandatory�
no grid, no assessment mark. With the physical
grid, it�s easy to spot students� misconceptions, as
well as their sins of omission and commission.

5. HOW TO START A LECTURE

5.1 Go note-free
It is rare to go into a lecture these days without
seeing a Powerpoint presentation. Careful use of
such tools can lead to excellent presentations but
these are rare in the academic arena. Many tutors
do not have time for such elaborate preparation.
The end result is often an endless set of slides that
look only marginally better than traditional
overhead transparencies. Such lectures are often
boring to listen to; and are almost as boring to
give.

The approach used at Aberystwyth is simple; don�t
use slides except when displaying complicated
figures, tables or photographs. This is not as
radical as it may first seem. The suggestion is to
talk with, not at, the students. Tutors can provide
lecture notes, book references, etc. Despite
popular belief students will read this material so
long as they are motivated. Nothing destroys
motivation more than having to sit through endless
hours listening to an academic reading their slides.

5.2 Harness technology
Before a typical lecture starts, students tend to
come into the theatre, sit down, and then talk
among themselves about a wide range of subjects
- but rarely the one about to be covered in the
ensuing lecture. Capturing the moment, at
Glasgow the lecturer displays a question ready for
the students to answer as they settle themselves.
This question will usually address some aspect of
the last lecture. Each student is asked to record
their opinion as to the answer using an electronic
voting system. There are a number of benefits:

• the students (who all have a voting handset for
the year) get it out of the bag, ready for this
and future questions

• their attention is drawn towards the front of the
lecture theatre, to the question

• their thoughts and conversation, for a while at
least, will be on the subject matter of the
question, bringing to mind content from the
last lecture

• their interest is raised right at the start of the
lecture, since they typically enjoy seeing if
they got the question right, and how other
students answered

The choice of question is important. It can be used
to open a review of a topic the students found hard
in the last session. Or as an opportunity to open
up a new topic. Like any question, it should be
unambiguous, particularly because the lecturer
has less chance to resolve misunderstandings in
the hubbub at the start of a lecture. In theory, the
technique could be used successfully without
handsets, although significantly more students
attempt to derive an answer for themselves when
the results of their efforts are displayed in
aggregate and discussed by the lecturer.
Students like immediate feedback!

5.3 An analogy, a paradox, a puzzle
At Limerick, the lecturer usually tries to start each
lecture with one of the following: (1) an analogy (2)
a paradox, or (3) a puzzle. The idea is to try and
get the class 'thinking' about the topic that is about
to be discussed. It is probably more correct to say
that the tutor wishes to get them reasoning about
the topic so that they start to form a view (their
view) about it.

Analogies are a common and well documented
source of knowledge transfer. The closeness of fit
between the target concept and the analogous
concept is crucial and it is often difficult to get a
very close fit. Consequently it is important for the
tutor to manage the consideration of the analogy
and attempt to keep the focus on the aspects that
match the target concept. A useful one is:

When introducing basic data structures like stack
and queue the tutor asks the class what happens
to new text messages they receive on their mobile
phones. Students have been observed to
immediately point out how the newest message
goes in at the start/beginning/front and becomes
the first accessible message in their message list
with the other, existing messages being 'pushed
down'. They even offer justifications for this and in
a sense feel obliged to 'defend' the strategy. The
tutor subsequently ask them what happens to
voice mail messages. The students advise that
new voice mails are added to the end of the list of
existing messages and again they are quite happy
to provide an explanation as to why it is different
from the text messages scenario. These
interactions provide a useful platform for putting
names on these mechanisms (i.e. a stack and a
queue) but the principal advantage is that the
students believe they have provided the rationale
for these mechanisms and that in some sense
they have ownership of them because the mobile
phone technology provides everyday experiences
of them. From a pedagogic perspective there is no
need to make a case for having a list that behaves
like a stack or a queue, and no need to justify
simple operations like insert at front and remove
from front only.

 157

6. INDIVIDUALISED ASSESSMENT
For reasons of academic integrity and to ensure
that students are suitably prepared for further
study it is necessary to ensure that the
programming assessments they submit are the
results of their own effort. There are several
heavyweight processes to identify plagiarism [5]�
some involve running all solutions through a
detection-engine, others asking every student to
describe how the code they have submitted works.
An interesting alternative is to produce
programming assessments that are unique for
every student.

6.1 Personal Input
At Gloucestershire, assessed exercises are varied
each semester to reduce the possibility of
plagiarism by taking work from a student who took
the module in a previous run. Where possible,
exercises have an element of individuality. For
example, one introductory programming module
asks students to implement an animated
screensaver. To personalise this, they have been
asked to choose a representation that relates to a
hobby or interest:

Your requirements are to design and create a
pattern or picture that shows the illusion of some
simple animation or movement, such as you might
see in a screen saver. The image should have
some personal significance e.g. it could be your
initials or a logo related to your favourite music or
football team, for example.

In other years, they have been asked to choose
scenes related to a particular topic e.g. Spring,
cartoon characters and Outer Space. Because the
students must design the scene themselves, it is
difficult for them to copy from each other.

6.2 Free choice
A key principle at Durham is to enable
independent, self directed learning. Tutors support
personal interests, objectives, prior experiences
and learning preferences. One way of enabling
this, is what is called the "December Project".

Students are told on arrival in October that they
have the opportunity to conduct a personally
chosen (formative) project. They are invited to
submit details of their choice so that resources can
be provided. Choices are also made public for the
sake of those starved of ideas.

The project runs for the last fortnight of term one.
The students are encouraged to continue to work
on it over Christmas and, if they wish, during the
first week of term two. Completed projects are
assessed by staff in one-to-one discussions during
laboratory classes.

The project is a successful way of "individualising"
learning. It's clear from the one-to-one assessment
that many students do take ownership and
consequently give an honest account of their level
of attainment. They are proud of their
achievements, and where let down by lack of
experience, keen to discuss how to progress.

6.3 Re-combination
Individualisation does not need to solely occur
within the programming parts of an assessment. It
can also include other elements of the software
development process, such as design, testing or
critical reflection.

As an example, the software development team at
UCE Birmingham use an Open Office document
template, merged with the contents of a simple
spreadsheet and individualised with an OO-Basic
script. The open source software is used as PDF
files can be produced, eliminating many disguise
strategies used by students on contract cheating
sites. The most recent assignment involved
producing a playable simulation of the TV show
�Deal or No Deal�. Individualisations issued
included the strategy used by The Banker, the
sections of the solution for which a pseudocode
design or class diagram was required, or the areas
for which a detailed test log was needed. Care
was taken to ensure that the same learning
outcomes were tested for all students and that all
deliverables were at the same level of
computational difficulty.

In this way tutors ensure that colluding students
cannot directly copy from one another; the work
they submit has to have some original components
to it. Further the unique combinations mean that
work placed on a contract cheating site [6], a site
where students place work out to tender, can be
traced to an identifiable student.

7. SUMMARY
By presenting these examples, we hope that they
might be of interest to colleagues in similar
situations. In this way, we work to extend the
community of the Commons, sharing and
documenting our practice to make it available for
future use and development.

8. REFERENCES
[1] Thomasson, B.J., Ratcliffe, M.B., and Thomas,

L.A., Identifying Novice Difficulties in Object
Oriented Design, Eleventh Annual Conference
on Innovation and Technology in Computer
Science Education, University of Bologna,
Italy, June 2006

 158

[2] Ellis, W. and Ratcliffe, M., An Anonymous
Approach to Group Based Assessment, 8

th

International Computer Assisted Assessment
Conference, Loughborough, July 2004

[3] www.bluej.org

[4] Coull N, Duncan I, Archibald J, & Lund G.
Helping Novices Interpret Compiler Error
Messages. 4th Annual LTSN-ICS Conference,
26-28, 2003

[5] Lancaster T. & Culwin F. (2004), A
Comparison of Source Code Plagiarism
Detection. Journal of Computer Science
Education 14.2, pp101 - 117.

[6] Clarke R. & Lancaster T. (2006), Eliminating
the successor to plagiarism? Identifying the
usage of contract cheating sites. To appear in
Proceedings of JISC International Plagiarism
Conference 2006, The Sage, Gateshead,
Newcastle, UK, 19 - 21 June 20

