
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Chitil, Olaf (2005) Source-Based Trace Exploration. In: Grelck, Clemens and Huch, Frank
and Michaelson, Greg and Trinder, Phil, eds. Implementation and Application of Functional Languages,
16th International Workshop, IFL 2004. LNCS 3474. Springer pp. 126-141. ISBN 978-3-540-26094-3.

DOI

https://doi.org/10.1007/11431664_8

Link to record in KAR

https://kar.kent.ac.uk/14347/

Document Version

UNSPECIFIED

Source-Based Trace Exploration

Olaf Chitil

University of Kent, UK

Abstract. Tracing a computation is a key method for program compre-
hension and debugging. Hat is a tracing system for Haskell 98 programs.
During a computation a trace is recorded in a file; then the user studies
the trace with a collection of viewing tools. Different views are comple-
mentary and can productively be used together. Experience shows that
users of the viewing tools find it hard to keep orientation and navigate to
a point of interest in the trace. Hence this paper describes a new view-
ing tool where navigation through the trace is based on the program
source. The tool combines ideas from algorithmic debugging, traditional
stepping debuggers and dynamic program slicing.

1 Hat and Its Views

A tracer gives us access to otherwise invisible information about a computation.
It is a tool for understanding how a program works and for locating the source
of runtime errors in a program. Hat is a tracer for the lazy functional language
Haskell 98. Hat combines the tracing methods of several preceding systems [13,
3, 4]. Tracing a computation with Hat consists of two phases, trace generation
and trace viewing:

input output hat-observe

self-tracing
computation

trace hat-trail

hat-detect

First, a special version of the program runs. In addition to its normal in-
put/output behaviour it writes a trace into a file. Second, after the program has
terminated, we study the trace with a collection of viewing tools:

– hat-detect provides algorithmic debugging, that is, semi-automatic local-
isation of program faults. Trace viewing consists of the system asking ques-
tions about the computation such as “Should factorial 3 = 42?” which we
have to answer with “yes” or “no”. After a series of questions and answers
the debugger gives the location of a fault in the program.

– hat-trail enables us to follow redex trails; we explore a computation back-
wards, from an effect — such as output or a runtime error — to its cause.
Trace viewing consists of us selecting expressions whose parent, the func-
tion call that generated the expression, is then displayed. An example with
selected expressions underlined: 42 → 3*14 → 2*7 → factorial 2 →
factorial 3.

– hat-observe allows the observation of functions. A functional value is dis-
played as a finite mapping from all the arguments the function was called
with in the computation to the respective results, for example: {factorial 0

= 7, factorial 1 = 7, factorial 2 = 14, factorial 3 = 42}.

Each viewing tool gives a different view of a computation; in practice, the
views are complementary and can productively be used together [2]. The trace
as concrete data structure liberates the views from the time arrow of the com-
putation. Hat provides valuable insights into long computations of real-world
programs

Nonetheless, Hat still has a number of shortcomings. One of these is that
it is often hard to navigate through large computations. By using the existing
viewing tools together and calling one tool from the other we can in principle
quickly reach any point in the trace. However, the questions: “where am I in the
trace?” and “how do I get to the point I want to see in the trace?” often occur.
We require orientation guides.

One candidate for an orientation structure immediately springs to mind:
the program source. We are likely to be familiar with the source, because we
wrote it, read it beforehand and/or will have to modify it. All expressions in the
trace originate from the source. Usually the source is far shorter than the huge
computation trace.

Surprisingly, none of the existing viewing tools take advantage of the source.
All Hat viewing tools display only expressions and equations of the traced com-
putation. The tools just allow opening a source browser with the cursor posi-
tioned at the redex or at the definition of the function of current interest.

This paper describes a new Hat viewing tool, hat-explore, that allows
simple, free navigation through a trace while providing orientation based on the
program source. hat-explore combines ideas from algorithmic debugging, tra-
ditional stepping debuggers and dynamic program slicing. The following sections
describe in several steps the design of hat-explore and some implementation
issues. hat-explore is part of the Hat distribution which is available from
http://haskell.org/hat.

2 Algorithmic Debugging

Algorithmic debugging is based on the representation of a computation as an
Evaluation Dependency Tree (EDT) [6, 5]. Each node of the tree is labelled with
an equation, which is a reduction of a redex to a value. The tree is basically the
proof tree of a natural semantics for a call-by-value evaluation with ‘miraculous’
stops where arguments are not needed for the final result value. The call-by-value
structure ensures that arguments are values, not complex unevaluated expres-
sions. Figure 2 shows the EDT of the sorting program given in Figure 1. Note
that {IO} denotes an IO-action value for which no informative representation is
available.

In algorithmic debugging an oracle decides which nodes of the EDT are
correct and which are incorrect. A node is correct if and only if its reduction of

2

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : insert x ys

Fig. 1. A faulty insertion sort program.

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"
√

’s’ <= ’o’ = False
√

insert ’s’ "" = "s"
√

sort "rt" = "r" × insert ’o’ "r" = "o" ×

sort "t" = "t"
√

insert ’r’ "t" = "r" × ’o’ <= ’r’ = True
√

sort "" = ""
√

insert ’t’ "" = "t"
√

’r’ <= ’t’ = True
√

Fig. 2. Evaluation Dependency Tree for insertion sort.

a function agrees with the semantics we as programmers intend the function to
have. A node that is incorrect but whose children are all correct is faulty. The
definition of the function reduced in this node is faulty and needs to be modified.
Hence the aim of algorithmic debugging is to find a faulty node. The definition
of a faulty node is intuitive: if a function call yields an incorrect result, but all
the calls made from this function call are correct, then the definition body must
be faulty. In the EDT of Figure 2 all nodes except the IO-related ones have been
declared as correct (

√
) or incorrect (×). The double framed nodes are faulty.

Both faulty nodes are caused by the same faulty part of the definition of insert.

A formal specification can be the basis of the oracle and the correctness of
nodes can be considered in any order. However, most algorithmic debugging
systems assume that the user is the oracle and implicitly traverses the EDT
while answering questions about correctness with “yes” or “no”. Entering “no”
makes a child of the current node the new current node (If the node has no
children, the aim of debugging has been reached, because the current node is

3

faulty). Entering “yes” makes the next yet unvisited sibling of the current node
the new current node (if all siblings have been visited, then the next yet unvisited
sibling of the parent is chosen, and so on). Usually, the user of an algorithmic
debugging tool is not meant to be aware of these non-trivial navigation steps,
but shall just answer the questions.

3 Source-Based Free Navigation through the Evaluation

Dependency Tree

Basically hat-explore is a tool for free navigation through an EDT. The EDT is
a complete representation of a computation. While navigation via “yes”/”no” an-
swers is fairly complex, it is straightforward to provide simple navigation through
the tree via the cursor keys: up to the parent, down to the first child, and left
and right to siblings. Most importantly, however, the program source can pro-
vide good orientation while traversing the EDT. The call-by-value structure of
the EDT ensures that the EDT reflects the program structure. If f . . . = . . . is
the reduction of a node, then the redexes of its children are all instances of the
definition body of the function f . Figure 3 demonstrates this property.

sort "t"
︸ ︷︷ ︸

= "t"

sort ""
︸ ︷︷ ︸

= "" insert ’t’ ""
︸ ︷︷ ︸

= "t"

sort (x:xs)
︸ ︷︷ ︸

= insert x (sort xs
︸ ︷︷ ︸

)
︸ ︷︷ ︸

Fig. 3. Relationship between parent and children in EDT and program source.

The display of hat-explore is divided into two parts: the current reduction
and the source. In the source the call site of the redex of the current reduction
is underlined.

==== Hat-Explore 0.3 ==== Call 2/2 ==============================

sort "t" = "t"

---- Insert.hs ---- line 1 to 9 ---------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

Optionally the definition site of the function of the redex can also be high-
lighted, but usually definition site and call site are far apart in the source and

4

having more than one source window would be confusing. The call site is a
smaller, more specific fragment of the source than the definition site. Addition-
ally, this fragment is directly surrounded by the call sites of the redexes of the
siblings of the current reduction. The call sites of the siblings are also highlighted
but not underlined like the current redex. When we change the current reduc-
tion via left or right cursor keys, only underlining changes in the source. So,
given the state of the last screenshot, pressing the left cursor key yields (display
shortened):

==== Hat-Explore 0.3 ==== Call 1/2 ==============================

insert ’r’ "t" = "r"

---- Insert.hs ---- line 1 to 5 ---------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

In contrast, a move to the parent via cursor key up or to a child via cursor
key down usually requires a complete change of the displayed source, because
parents and children are further away. So pressing cursor key down yields:

==== Hat-Explore 0.3 ==== Call 1/1 ==============================

’o’ <= ’r’ = True

---- Insert.hs ---- line 6 to 9 ---------------------------------

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

Pressing cursor key up once returns to the last but one screen. Pressing cursor
key up again yields:

==== Hat-Explore 0.3 ==== Call 1/2 ==============================

sort "ort" = "o"

---- Insert.hs ---- line 4 to 7 ---------------------------------

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

The call site of a parent or child can be in a different module. hat-explore

lazily loads a module source when it is needed and displays it.

4 A Stack for Context

Experience shows that after some navigation we still often lose orientation. We
know the call site of the current reduction, but a single call site is possibly used

5

very often in a computation. More contextual information about the current re-
duction is needed. So a stack of parents is added to the display of hat-explore.
It shows the descendants chain of reductions from main = {IO} down to the cur-
rent reduction as last element. Every time we move down to a child, this child is
pushed on the stack; every time we move up to a parent, an element is popped
from the stack. Hence the stack is displayed upside down, with the top element
in the bottom line.

==== Hat-Explore 1.0 ==== Call 1/2 ==============================

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

---- Insert.hs ---- line 3 to 9 ----------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

In practice reductions are much larger than in the small sorting example; a
single reduction may cover several lines. Hence only a small number of reduc-
tions can be shown at a time. Experience shows that in most cases the last few
reductions are sufficient for orientation in the EDT.

5 Source-Based Algorithmic Debugging

hat-explore still supports algorithmic debugging. We can declare if the cur-
rent reduction is correct or incorrect with respect to our intentions and also
change and take back any previous such declaration. The tool uses several colours
for highlighting: correct reductions are green , incorrect ones are yellow , un-

known/undeclared ones are blue . When the tool identifies a reduction as faulty,
it is highlighted in red .

Let us work step by step through an example session for the faulty insertion
sort program. The tool starts with the reduction of main.

==== Hat-Explore 2.00 ==== Call 1/1 =============================

1. main = {IO}

---- Insert.hs ---- lines 1 to 3 --------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

6

We cannot say if this reduction is correct, but only press cursor down to look at
the children:

==== Hat-Explore 2.00 ==== Call 1/2 =============================

1. main = {IO}
2. putStrLn "os" = {IO}

---- Insert.hs ---- lines 1 to 3 ---------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

The first child is a reduction of a trusted function and hence assumed to be
correct. So we press cursor right to look at the second child:

==== Hat-Explore 2.00 ==== Call 2/2 =============================

1. main = {IO}
2. sort "sort" = "os"

---- Insert.hs ---- lines 1 to 3 --------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

This reduction disagrees with our intentions and hence we press ’w’ to declare
the reduction as wrong:

==== Hat-Explore 2.00 ==== Call 2/2 =============================

1. main = {IO}
2. sort "sort" = "os"

---- Insert.hs ---- lines 1 to 3 --------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

To find out why the reduction is wrong we have to look at the children, so we
press cursor down:

==== Hat-Explore 2.00 ==== Call 1/2 =============================

1. main = {IO}
2. sort "sort" = "os"

3. insert ’s’ "o" = "os"

---- Insert.hs ---- lines 3 to 5 --------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

7

We press ’c’ to declare the reduction as correct and then press cursor right to
look at the second child:

==== Hat-Explore 2.00 ==== Call 2/2 =============================

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs ---- lines 3 to 5 --------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

We press ’w’ to declare the reduction as wrong and then press cursor down to
inquire further:

==== Hat-Explore 2.00 ==== Call 1/2 =============================

2. sort "sort" = "os"

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

---- Insert.hs ---- lines 3 to 5 --------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

We press ’w’ to declare the reduction as wrong:

==== Hat-Explore 2.00 ==== Call 1/2 =============================

2. sort "sort" = "os"

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

---- Insert.hs ---- lines 3 to 5 --------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

So the reduction insert ’o’ "r" = "o" is faulty. We have located the fault,
it must be in the definition of insert. If we are not convinced, we can still
press cursor down to see that insert ’o’ "r" = "o" has only a single child, a
reduction of a trusted function, which is assumed to be correct:

==== Hat-Explore 2.00 ==== Call 1/1 =============================

3. sort "ort" = "o"

4. insert ’o’ "r" = "o"

5. ’o’ <= ’r’ = True

---- Insert.hs ---- lines 7 to 9 --------------------------------

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

8

Declaring the (in)correctness of the current reduction is separate from navi-
gation; it does not automatically navigate to a new reduction. Thus we are free
to declare (in)correctness of reductions in any order. In practice it is often much
easier to recognise an incorrect reduction than being sure that a reduction is cor-
rect. hat-explore allows us to look at all children of a redex, determine that
one of them is incorrect, and continue exploring that reduction, without having
to consider the correctness of its siblings. We might not even rely on algorithmic
debugging at all but just use declarations of (in)correctness as memory hints.

6 Program Slicing

Algorithmic debugging is based on the principle that if a node of the EDT is
incorrect, then a faulty node must be amongst this node and its descendants,
that is, the bug is in that sub-EDT of the EDT. If a sub-EDT of this sub-EDT
has a correct node as root, that sub-EDT can be subtracted, the faulty node
must be in the remaining sub-EDT. During algorithmic debugging the faulty
sub-EDT is cut smaller and smaller, until it is reduced to a single node, the
faulty node. hat-explore marks the definition of the function reduced in the
faulty node. However, that happens only rather late, after the faulty node has
been identified. So in addition, hat-explore can mark the definitions of all
functions that are reduced in the nodes of the current faulty sub-EDT. These
definitions comprise the faulty slice.

In the example session of the previous section a faulty slices is marked in
italics. When sort "sort" = "os" is declared as wrong, the definition of sort
and insert become the faulty slice. When insert ’o’ "r" = "o" is declared
as wrong, the definition of sort is subtracted from the faulty slice, leaving only
the definition of insert.

While we declare nodes as correct or incorrect, the faulty sub-EDT and thus
the slice of definitions that must contain a fault keep shrinking. The shrinking of
the faulty slice shows us that we are making progress, it may quickly exclude large
parts of the program, possibly parts that had been wrongly suspected, and when
the faulty slice has become small we may spot the fault straight away without
even having to continue algorithmic debugging to its end. While traversing an
EDT we often skip declaring the correctness of a node; for example, because
it might be hard (large input or output) or impossible (values of abstract data
types) to determine. Figure 4 shows a partially annotated EDT where the nodes
of the faulty sub-EDT are marked.

A faulty sub-EDT of a partially annotated EDT is defined as a minimal
connected subgraph such that for any completion of the annotation the sub-
EDT contains a faulty node. So an unannotated EDT has no faulty sub-EDT,
because all nodes might be correct. In general an annotated EDT can have
several (disjoint) faulty sub-EDTs. hat-explore marks the faulty sub-EDT
that contains the currently viewed node or, if the current node is outside of any
faulty sub-EDT, the next faulty sub-EDT above the current node.

9

main = {IO}

sort "sort" = "os" × putStrLn "os" = {IO}

sort "ort" = "o" × insert ’s’ "o" = "os"

’s’ <= ’o’ = False
√

insert ’s’ "" = "s"

sort "rt" = "r" × insert ’o’ "r" = "o"

sort "t" = "t" insert ’r’ "t" = "r" ’o’ <= ’r’ = True
√

sort "" = "" insert ’t’ "" = "t" ’r’ <= ’t’ = True
√

Fig. 4. A Faulty Sub-EDT.

7 Smaller Faulty Slices and Code Coverage

The faulty slice can be made smaller without additional input from us. Keeping
the faulty sub-EDT unchanged, we can determine a smaller faulty slice. When
the faulty sub-EDT contains a reduction f . . . = . . ., it is not necessary to add the
whole definition of function f to the faulty slice. For a specific reduction usually
only parts of the definition body of the reduced function are evaluated because of
pattern matching, conditionals and lazy evaluation. The fault can only be in that
part of the definition that was actually evaluated for that particular reduction.
Evaluated parts of the definition are the call sites of the children of the node plus
demanded constants, data constructor applications and literals.1 hat-explore

optionally only shows this smaller faulty slice. In our example program the “else”
branch was never evaluated for the current, incorrect reduction.

==== Hat-Explore 2.03 ==== Call 2/2 | faulty slice | executed ===

1. main = {IO}
2. sort "sort" = "os"

3. sort "ort" = "o"

---- Insert.hs ---- line 3 to 9 ----------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

1 If a constant is evaluated, it is impossible to determine if it was demanded for
the currently considered reduction or a different part of the computation, because

10

Unfortunately it is no longer true that the fault has to be within the faulty
slice. The fault may also be within the patterns on the left-hand-sides of the
defining equations.2 The fault might even be that an equation that should be
there is missing. This last possibility cannot be expressed well by marking any
slice at all.

By declaring the root reduction of the EDT, main = {IO}, as incorrect and
asking hat-explore to mark only the evaluated faulty slice, we can obtain the
slice of the program that was evaluated at all during the whole computation:

==== Hat-Explore 2.03 ==== Call 1/1 | faulty slice | executed ===

1. main = {IO}

---- Insert.hs ---- line 1 to 9 ---------------------------------

main = putStrLn (sort "sort")

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

So hat-explore can serve as a code coverage tool.

8 Trusting

Hat supports a notion of trusting modules. The computation of these modules is
not traced [3]. By default all Haskell standard libraries are trusted. The reduction
of a trusted function is still recorded in the trace. For example, length "hi" =

2 may be recorded, but not its recursive call length "i" = 1. So leafs of the
EDT can be reductions of trusted functions. hat-explore assumes by default
that these reductions are correct.

Trusted functions can be higher-order and the functional arguments may be
normal untrusted functions [10, 5], for example map myInc [1,2,3] = [2,3,4].
In that case the reduction of the trusted function can have children, namely

constants are shared. For most data constructor applications and literals, the entry in
the Hat trace contains no indication if they were ever demanded in the computation.
To be on the safe side, in all such cases the expression has to be included in the slice,
if the surrounding expression construct is included.

2 The Hat trace does not include any information on the pattern matching process.
For an unsuccessful match it cannot be determined which parts of a pattern were
used and exactly where matching failed. The trace has no information on locations
of patterns in the source. Nonetheless, Hat works fine for computations that abort
with a pattern match failure, as Section 10 demonstrates.

11

the reductions of the passed untrusted functions. So map myInc [1,2,3] =

[2,3,4] has the children myInc 1 = 2, myInc 2 = 3 and myInc 3 = 4. In gen-
eral, trusting causes parts of an EDT to be “cut out”, even out of the middle of
the tree. If a trusted reduction has children, it cannot assumed to be correct by
default.

The children of trusted higher-order functions have call sites within trusted
modules. Displaying these call sites would contradict the idea of a trusted mod-
ule whose implementation is irrelevant.1 So when the current reduction is the
child of a trusted reduction, hat-explore highlights the call site of the trusted
parent instead of the child; it does so in a different style to indicate the different
situation. The children of such a reduction without call site are again reductions
with call site. So there is no danger of us losing orientation because we might
have to make a long sequence of navigation steps without highlighting of call
sites.

==== Hat-Explore 2.03 ==== Call 2/4 | faulty slice | executed ===

1. main = {IO}
2. sort "sort" = "os"

3. foldr insert [] "sort" = "os"

4. insert ’r’ "t" = "r"

---- FoldrInsert.hs ---- line 3 to 9 -----------------------------

sort :: Ord a => [a] -> [a]

sort xs = foldr insert [] xs

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

9 Constants

A constant definition, such as nats = [0..], has to be handled specially in the
construction of an EDT. In a computation the definition body is only evaluated
once and the value is shared by all calls (i.e. uses) of the constant in the program.
The algorithmic debugger Freja [5] does not include the reduction of a constant
at its call site, but produces a forest of EDTs, one EDT per constant definition
(the definition of main is a constant definition). This approach would complicate
free navigation. Hence in hat-explore there is only a single EDT with the EDT
of a constant inserted at its call sites. The EDT of the constant is shared by all
call sites, so that the EDT is no longer a tree but a directed graph. Navigation
into the EDT of a constant is natural. Where to go back up is also uniquely
identified by the information in the stack.

Because constant definitions may be (mutually) recursive, the EDT may
be cyclic. Algorithmic debugging only works for trees or acyclic graphs. It is
currently the responsibility of the user to be aware that algorithmic debugging

1 Hence the Hat trace also does not contain any such source location information.

12

may not be able to locate a faulty reduction within the computation of mutually
recursive functions. The faulty slice is still correct, but it may never shrink
further than a set of mutually recursive definitions.

10 Other Starting Points

Normally hat-explore starts with the reduction of main. Although paths
through the EDT are only logarithmic in the size of the tree, a reduction of
interest may still be far away from the root.

Other viewing tools such as hat-trail and hat-observe may give quicker
access to a reduction of interest. It was simple to extend these tools so that we
can directly switch from one of them to hat-explore, starting at the reduction
that we just investigated in the other tool.

Experience shows that faults are often not far (within the EDT) from the
observed error. Hence the feature of hat-trail, to start directly at the reduction
that raised a runtime error, has been added to hat-explore. A slightly modified
version of our insertion sort causes a pattern match failure. hat-explore starts
as follows, displaying the error value as | (bottom):

==== Hat-Explore 2.03 ==== Call 1/2 | faulty slice | complete ===

4. sort "rt" = _|_

5. sort "t" = _|_

6. insert ’t’ [] = _|_

---- Insert.hs ---- line 1 to 9 ---------------------------------

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x (y:ys) = if x <= y then x : ys else y : (insert x ys)

11 Implementation

hat-explore has been implemented in about 1000 lines of Haskell. It also uses
a library for accessing the trace that is shared with other viewing tools.

The Hat trace is a complex graph of expression components. The reconstruc-
tion of an EDT from this structure is described in [13]. For the efficiency of
hat-explore it is important that a small part of an EDT can be constructed
easily from reading only a small part of the trace. So both memory and time
costs for the construction of the small part of an EDT that is demanded by the
user in a single interaction step is independent of the generally huge size of the
trace. Only determining the faulty slice is expensive. It requires traversing the
whole faulty sub-EDT in the trace. Hence the user can turn off this feature.

The algorithmically most complex part of hat-explore is the handling of
source slices. A slice is a set of source locations, where a location consists of start

13

line and column and end line and column. hat-explore comprises an abstract
data type of slices with several functions for combining and subtracting slices.
Slices are used to highlight parts of the source while excluding subexpressions.
In an extreme case an application has to be highlighted, without highlighting its
function and arguments. The slice for highlighting can be obtained by subtract-
ing the locations of the subexpressions from the location of the whole applica-
tion. In the case of an application only the space between the function and the
arguments may remain in the slice.

To support hat-explore, Hat required two extensions: Originally the trace
contained for each recorded expression and each defined function the filename,
line and column where it starts in the source. Now Hat records a full location
that also includes the line and column at which such an expression or definition
ends. The lexer and parser had to be modified and the abstract syntax tree
slightly extended. Second, now a trusted reduction in the trace has an explicit
list of pointers to its children. In the past, hat-detect used an incomplete
approximation algorithm to determine children; to find all children for certain, a
time consuming search through most of the trace would have been required. Only
the definition of a single combinator in the Hat library of tracing combinators
[3] had to be modified. Both extensions slightly changed the trace file format,
but only few changes in a library for accessing the trace were needed to make
all previously existing Hat viewers work with the file format. Overall, both
extensions only needed a small number of changes to Hat and benefit other
viewing tools besides hat-explore.

hat-explore has a simple textual user interface based on text interleaved
with ANSI escape sequences for various forms of highlighting. This user interface
is portable and was easy to implement. Nonetheless it has its limitations; in
particular, different highlighting of nested expressions yields output that is hard
to read. For this purpose multiple underlining similar to the old redex trail
browser [11] would be more suitable.

12 Related Work

Using hat-explore reminds one of using a classical stepping debugger for an
imperative programming language, such as DDD2. The debugger highlights the
current execution line. The user can perform one execution step, moving to a
line which was called from the previous line. Alternatively, the user can go to
the next line, skipping the execution of all function calls. So the source-based
navigation model of hat-explore has already been proven useful for imperative
languages. Users of these stepping debuggers can build on previous experience
when moving to hat-explore. While the user steps through the computation
hat-explore also provides with each function call its result. In a side-effect free
functional language the result fully describes the semantics of the function call.
Thus it is far easier to locate the faulty program part than it is in a stepping
debugger for an imperative language.

2 http://www.gnu.org/software/ddd/

14

Algorithmic debugging [9] has been the starting point for hat-explore.
There exist several algorithmic debuggers for lazy functional languages [5, 13,
8]. They all allow more direct navigation through the EDT then via “yes”/”no”
answers but they do not encourage free navigation. They do not use the source.

Program slicing is a well-known technique for analysing and particularly
debugging programs [12]. The faulty slice of hat-explore (both with full def-
initions and with evaluated expressions only) is a dynamic slice in that sense,
with the reduction of the root node as slicing criterion. However, whereas pro-
gram slicing is based on the control and data flow of a computation, the EDT
expresses the control and data flow of a computation only in a limited form.

In [7] a slicing method for a core of the Haskell-like functional logic language
Curry is described. Although the slicing criterion is also based on a reduction,
these slices are not related to EDTs and the authors do not claim that a fault
has to be within a slice. Their trace structure [1], although also called redex
trail, differs in several points from the Hat trace. In particular, parent pointers
have a different meaning; they do not point to an EDT parent and hence it is
doubtful that an EDT can be reconstructed from this trace structure.

13 Conclusions and Future Work

hat-explore is a new trace viewing tool for the Hat system that enables us
to navigate freely and intuitively through the trace of a Haskell 98 program.
The display of the source together with a stack of reductions for the context
give good orientation. The tool combines algorithmic debugging with program
slicing and the user interface of a traditional stepping debugger. Initial informal
feedback from users has been positive.

The Hat system gives important insights into the internals of computations
of Haskell programs. Nonetheless there is still much work to do. Features of
several existing Hat viewers could be combined. In particular, it is possible to
merge hat-trail and hat-explore. However, the resulting tool might be too
complex to use. Alternatively, hat-trail could be extended by source-based ori-
entation facilities. Hat does not support all types of programs well. For example,
tracing of IO intensive programs is limited because the IO monad is just treated
as an abstract data type with unknown values; some higher-order programs rely
on a complex control flow that is hard to visualise adequately.

This paper demonstrates that it is relatively easy to extend the Hat system
by a new viewing tool for which it was not designed originally. Hat provides a
modular framework for further exploration of tracing systems.

Acknowledgements

This work relies heavily on previous work on the Haskell tracer Hat by Colin
Runciman, Malcolm Wallace and Thorsten Brehm. I also thank the four referees
for their constructive comments.

15

References

1. Bernd Braßel, Michael Hanus, Frank Huch, and German Vidal. A semantics for
tracing declarative multi-paradigm programs. In Proceedings of the 6th ACM-
SIGPLAN International Conference on Principles and Practice of Declarative Pro-
gramming, pages 179–190. ACM Press, 2004.

2. Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat and Hood — A
comparative evaluation of three systems for tracing and debugging lazy functional
programs. In Markus Mohnen and Pieter Koopman, editors, Implementation of
Functional Languages, 12th International Workshop, IFL 2000, LNCS 2011, pages
176–193. Springer, 2001.

3. Olaf Chitil, Colin Runciman, and Malcolm Wallace. Transforming Haskell for
tracing. In Proceedings of the 14th International Workshop on Implementation of
Functional Languages (IFL 2002), LNCS 2670, pages 165–181, 2003.

4. Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Malcolm Wallace.
Testing and tracing lazy functional programs using QuickCheck and Hat. In 4th
Summer School in Advanced Functional Programming, LNCS 2638, pages 59–99,
August 2003.

5. Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis,
Linköping, Sweden, May 1998.

6. Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basis for lazy
functional debugging. Automated Software Engineering: An International Journal,
4(2):121–150, April 1997.

7. C. Ochoa, J. Silva, and G. Vidal. Dynamic Slicing Based on Redex Trails. In
Proc. of the ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation (PEPM’04), pages 123–134. ACM Press, 2004.

8. B. Pope and Lee Naish. Practical aspects of declarative debugging in Haskell-
98. In Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pages 230–240, 2003.

9. E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.
10. Jan Sparud and Colin Runciman. Complete and partial redex trails of functional

computations. In C. Clack, K. Hammond, and T. Davie, editors, Selected papers
from 9th Intl. Workshop on the Implementation of Functional Languages (IFL’97),
pages 160–177. Springer LNCS Vol. 1467, September 1997.

11. Jan Sparud and Colin Runciman. Tracing lazy functional computations using redex
trails. In H. Glaser, P. Hartel, and H. Kuchen, editors, Proc. 9th Intl. Symposium
on Programming Languages, Implementations, Logics and Programs (PLILP’97),
pages 291–308. Springer LNCS Vol. 1292, September 1997.

12. Frank Tip. A survey of program slicing techniques. Journal of programming lan-
guages, 3:121–189, 1995.

13. Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-
view tracing for Haskell: a new Hat. In Preliminary Proceedings of the 2001 ACM
SIGPLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001. Final
proceedings to appear in ENTCS 59(2).

16

