
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Li, Huiqing and Thompson, Simon (2005) Formalisation of Haskell Refactorings. In: UNSPECIFIED.

DOI

Link to record in KAR

https://kar.kent.ac.uk/14266/

Document Version

UNSPECIFIED

Chapter 1

Formalisation of Haskell

Refactorings

Huiqing Li1, Simon Thompson1

Abstract: Refactoring is a technique for improving the design of existing pro-

grams without changing their external behaviour. HaRe is the refactoring tool we

have built to support refactoring Haskell 98 programs. Along with the develop-

ment of HaRe, we have also investigated the formal specification and proof of

validity of refactorings. This formalisation process helps to clarify the meaning

of refactorings, improves our confidence in the behaviour-preservation of refac-

torings, and reduces the need for testing. This paper gives an overview of HaRe,

and shows our approach to the formalisation of refactorings.

1.1 INTRODUCTION

Refactoring [3] is about improving the design of a program without changing its

external behaviour. Behaviour preservation guarantees that refactoring does not

introduce (nor remove) any bugs. Separating general software updates into func-

tionality changes and refactorings has well-known benefits. While it is possible

to refactor a program by hand, tool support is considered invaluable as it is more

reliable and allows refactorings to be done (and undone) easily. Tools can ensure

the validity of refactoring steps by automating both the checking of the condi-

tions for the refactoring and the application of the refactoring itself, thus making

refactoring less painful and less error-prone.

As part of our project ‘Refactoring Functional Programs’ [14], we have devel-

oped the Haskell Refactorer, HaRe [7], providing support for refactoring Haskell

programs. HaRe covers the full Haskell 98 standard language, and is integrated

with two development environments: Vim and (X)Emacs. Apart from preserv-

ing behaviour, HaRe preserves both the comments and layout of the refactored

1Conputing Laboratory, University of Kent, UK; Email: H.Li@kent.ac.uk,

S.J.Thompson@kent.ac.uk

1

-- Test.hs -- Test.hs

module Test where module Test where

f [] = 0 f m [] = 0

f (h:t) = hˆ2 + f t f m (h:t) = hˆm + (f m) t

-- Main.hs -- Main.hs

module Main where module Main where

import Test import Test

main y = print $ f y main y = print $ f 2 y

FIGURE 1.1. Generalise function f over the subexpression 2.

programs as much as possible. HaRe is itself implemented in Haskell. The first

version of HaRe was released in October 2003, and since then more features have

been added to make it more usable. By the third release of HaRe, it supports 24

refactorings, and also exposes an API [8] for defining refactorings or more gen-

eral program transformations. The refactorings implemented in HaRe fall into

three categories: structural refactorings, module refactoring, and data-oriented

refactorings. Structural refactorings, such as generalising a definition, renaming

a definition, unfold a definition and changing the scope of a definition, mainly

concern the name and scope of the entities defined in a program and the structure

of definitions; module refactorings, such as move a definition from one module

to another, removing redundant imports, etc, concern the imports and exports

of individual modules, and the relocation of definitions among modules; Data-

oriented refactorings, such as from abstract to concrete data type, are associated

with data type definitions. Apart from implementing the refactoring tool, we have

also examined the formal specification and proof of validation of refactorings.

A number of tools [3] have been developed to automate the application of

refactorings in the past decade, especially for object-oriented programming lan-

guages, however the study of formalisation and proof of refactorings has been lag-

ging behind mostly due to the complexity of programming language semantics.

Compared to imperative languages, pure functional languages have a stronger

theoretical basis, and reasoning about programs written in pure functional lan-

guages is less complicated due to the referential transparency [4] property. This

is also manifested by the collection of related work in the functional program-

ming paradigm where functionality-preserving program transformations are used

for reasoning about programs [13], for deriving efficient implementations from

program specifications [1, 12], and for compiler optimisation [5]. This paper in-

vestigates the formal specification of refactorings as well as the proof of their

functionality preservation within our context of refactoring. Two representative

refactorings are examined in detail, and they are generalise a definition and move

a definition from one module to another. The former, which is typical of the class

2

module M1(foo,sq) where module M1(sq) where

sq x = x ˆ 2 sq x = x ˆ 2

foo x y = sq x + sq y module M2 where

import M1(sq)

module M2 where

import M1(sq) foo x y = sq x + sq y

bar x y = x + y bar x y = x + y

module Main where module Main where

import M1 import M1

import M2(bar) import M2(bar,foo)

main x y main x y

= print $ foo x y + bar x y = print $ foo x y + bar x y

FIGURE 1.2. Move the definition of foo to module M2

of structural refactorings, generalises a definition by making an identified expres-

sion of its right-hand side into a value passed into the function via a new formal

parameter, therefore improves the usability of the definition, as illustrated by the

trivial example shown in Figure 1.1, where the program before generalisation ap-

pears in the left-hand column and the program after generalisation appears in the

right-hand column; the later, which is typical of the class of module refactorings,

moves a top-level definition from its current module to a specified module. To-

gether with the move of the definition is the modification to the imports/exports of

the affected modules, which compensates for the changes caused by moving the

definition, as shown in the example in Figure 1.2. By these two refactorings, we

aim to illustrate how a number of structural refactorings and module refactorings

can be formalised in a similar way. The formalisation of data-oriented refac-

torings and how type information can be used in the formalisation need further

research, and are not covered in this paper.

For each refactoring, we give its formal definition consisting of the represen-

tation of the program before the refactoring, the side-conditions that should be

met by the program in order for the refactoring to preserve behaviour and the

representation of the program after the refactoring, and prove that the programs

before and after the refactoring are equivalent in functionality under the given

side-conditions.

While HaRe is targeted at Haskell 98, our first formalisation of refactorings

is based on the simple λ-calculus augmented with letrec-expressions (denoted as

λLetrec). By starting from λLetrec, we could keep our specifications and proofs

simple and manageable, but still reflect the basic characteristics of refactorings.

In the case that a refactoring involves features not covered by λLetrec, such as data

3

constructors, the type system, etc, we could extend λLetrec accordingly. Another

reason for choosing λLetrec is that although Haskell has been evolved to maturity

in the last two decades, an officially defined, widely accepted semantics for this

language does not exist yet.

The remainder of this paper is organised as follows. Section 1.2 gives on

overview of the related work. Section 1.3 introduces λLetrec. Section 1.4 presents

some definitions and lemmas needed for working with λLetrec and for the speci-

fication of refactorings. Section 1.5 studies the formalisation of the generalise a

definition refactoring. In Section 1.6 , we extend λLetrec to λM to accommodate

a simple module system. Some fundamental definitions with the simple module

system are given in Section 1.7, and definitions are also used by the following

formalisation of refactoring. Then the formalisation of the move a definition from

one module to another refactoring is given in Section 1.8, and conclusions are

drawn in Section 1.9.

1.2 RELATED WORK

Refactorings should preserve the behaviour of software. Ideally, the most funda-

mental approach is to formally prove that refactorings preserve the full program

semantics. This requires a formal semantics for the target language to be defined.

However, for most complex languages such as C++, it is very difficult to define a

formal semantics. Even for a functional programming language like Haskell 98,

there is still a lack of an officially defined semantics. In this case, people usu-

ally adopt the idea of invariants, pre-conditions or post-conditions, to ensure the

preservation of semantics.

Opdyke [11] proposed a set of seven invariants to preserve behaviour for

object-oriented programming language refactorings. These invariants are: unique

superclass, distinct class names, distinct member names, inherited member vari-

ables not redefined, compatible signatures in member function redefinition, type-

safe assignments and semantically equivalent reference and operations. Opdyke’s

refactorings were accompanied by proofs which demonstrated that the enabling

conditions he identified for each refactoring preserved the invariants. Opdyke did

not prove that preserving these invariants preserves program behaviour. In [16],

Tokuda et al. also made use of program invariants to preserve behaviour of refac-

torings.

In [15], F. Tip et al. explored the use of type constraints to verify the precon-

ditions and to determine the allowable source code modifications for a number of

generalisation related refactorings in an object-oriented program language con-

text.

Using a different approach, Tom Mens et al. [10] explored the idea of using

graph transformation to formalise the effect of refactorings and prove behaviour

preservation in the object-oriented programming paradigm. This approach pro-

posed to use graph to represent those aspects (access relation, update relation and

call relation) of the source code that should be preserved by a refactoring, and

graph rewriting rules as a formal specification for the refactoring transformations.

4

1.3 THE λ-CALCULUS WITH LETREC (λLET REC)

The syntax of λLetrec terms is:

V ::= x | λx.E

E ::= V | E1 E2 | letrec D in E

D ::= ε | xi = Ei | D,D

where V represents the set of values, E represents expressions, and D is a se-

quence of bindings. A value is a variable or an abstraction. For letrec expressions,

we require that the variables xi in the same binding sequence are pairwise distinct.

Recursion is allowed in a letrec expression and the scope of xi in the expression,

letrec x1 = E1, ...,xn = En in E, is E and all the Eis. No ordering among the bind-

ings in a letrec expression is assumed. As a notation, we use ≡ to represent

syntactical equivalence, and = to represent semantic equivalence.

As to the reduction strategy, one option for calculating lambda expressions

with letrec is call-by-need [9], which is an implementation technique for the

call-by-name [13] semantics that avoids re-evaluating expressions multiple times

by memorising the result of the first evaluation. In the case that behaviour-

preservation does not care about introducing/removing sharing of computation,

strictly call-by-need might invalidate many refactorings which preserve the ob-

servable behaviour, but change the sharing of computation. Therefore, in this

study, we use call-by-name for reasoning about program transformations, so that

sharing could be lost or gained during the transformation. However, comments

about the change of sharing during a refactoring will be given.

Instead of developing the call-by-name calculus for λLetrec from scratch, we

make use of the research results from the paper Lambda Calculi plus Letrec [17],

in which Z. M. Ariola and S. Blom developed a call-by-name cyclic calculus (λ◦name)

and proved some results. λ◦name defines exactly the same set of terms as λLetrec

does, only with slightly different notation. Figure 1.3 lists the λ◦name’s axioms

expressed using the λLetrec notation of terms.

In the axioms shown in Figure 1.3, a ′ attached to a term indicates that some

bound variables in the term might be renamed to avoid name capture during the

transformation; A context C[] is a term with a hole in the place of one subterm.

The two substitution axioms require that the x in the hole occurs free in C[x].
FV (E) means the set of free variables in term E. D1⊥D2 means that the set of

variables that occur as the left-hand side of an equation in D does not intersect

with the set of free variables of D2. In the copying axiom, σ is a function from

recursion variable to recursion variables, and Eσ is the term obtained by replacing

all occurrence of recursion variables x by σ(x) (leaving the free variables of E

unchanged), followed by a reduction to normal form with the unification rule:

x = E,x = E → x = E within the resulting letrec bindings.

5

β◦ :

(λx. E) E1 = letrec x = E1 in E, if x 6∈ FV (E).

Substitution :

letrec x = E,D in C[x] = letrec x = E,D in C′[E]

letrec x = C[x1],x1 = E1,D in E = letrec x = C′[E1],x1 = E1,D in E

Lift :

(letrec D in E) E1 = letrec D′ in (E ′ E1)

E1 (letrec D in E) = letrec D′ in (E1 E ′)

λx.(letrec D1,D2 in E)

= letrec D2 in λx.(letrec D1 in E), if D1 ⊥ D2 and x 6∈ FV (D2).

Merge :

letrec x = letrec D in E1,D1 in E = letrec x = E ′
1,D

′
,D1 in E

letrec D1 in (letrec D in E) = letrec D1, D′ in E ′

Garbage collection :

letrec ε in E = E

letrec D,D1 in E = letrec D in E, if D1⊥D and D1⊥E.

Copying :

E = E1, if ∃σ : ν → ν,Eσ ≡ E1.

FIGURE 1.3. The call-by-name cyclic calculus (λ◦name) axioms

1.4 THE FUNDAMENTALS OF λLET REC

Definition 1 Given two expressions E and E ′, E ′ is a sub-expression of E (notation

E ′ ⊆ E), if E ′ ∈ sub(E), where sub(E), the collection of sub-expressions of E, is

defined inductively as follows:

sub(x) = {x}
sub(λx.E) = {λx.E}∪ sub(E)
sub(E1 E2) = {E1 E2}∪ sub(E1)∪ sub(E2)
sub(letrec x1 = E1, ...,xn = En in E) =
{ letrec x1 = E1, ...,xn = En in E}∪ sub(E) ∪ sub(E1) ∪ ... ∪ sub(En)

Definition 2 Given an expression E and a context C[], we define sub(E,C) as

those sub-expressions of C[E] which contain the hole filled with the expression E,

that is: e ∈ Sub(E,C) iff ∃ C1[], C2[], such that e ≡C2[E]∧C[] ≡C1[C2[]].

Definition 3 The result of substituting N for the free occurrences of x in E with

automatic renaming is defined as:

x[x := N] = N

y[x := N] = y; where y 6≡ x

6

(E1E2)[x := N] = E1[x := N]E2[x := N]
(λx.E)[x := N] = λx.E

(λy.E)[x := N] = λz.E[y := z][x := N] , where (y 6≡ x), and y ≡ z if

x 6∈ FV (E)∨ y 6∈ FV (N), otherwise z is a fresh variable.

(letrec x1 = E1, ...,xn = En in E)[x := N]

= letrec z1 = E1[
→
x i:=

→
z i][x := N], ...,zn = En[

→
x i:=

→
z i][x := N]

in E[
→
x i:=

→
z i][x := N],

where zi ≡ xi if x 6∈ FV (letrec x1 = E1, ...,xn = En in E)∨ xi 6∈ FV (N),
otherwise zi is a fresh variable (i=1..n).

Definition 4 Given x ∈ FV (E) and a context C[], we say that x is free over C[E]
only if ∀e,e ∈ sub(E,C) ⇒ x ∈ FV (e). Otherwise we say x becomes bound over

C[E].

Lemma 1 Let E ′, E be expressions, and E ≡C[z], where z is a free variable in E

and does not occur free in C[]. If none of the free variables in E ′ will become

bound over C[E ′], then E[z := E ′] ≡C[E ′].

Proof. Proof by induction on the structure of E.

1.5 FORMALISATION OF GENERALISING A DEFINITION

1.5.1 Definition of generalise a definition

Definition 5 Given an expression letrec x1 = E1, ...,xi = Ei, ...,xn = En in E0, as-

sume E ′ is a sub-expression of Ei, and Ei ≡C[E ′]. Then the condition for gener-

alising the definition xi = Ei on E ′ is:

xi 6∈ FV (E ′)∧∀x,e : (x ∈ FV (E ′)∧ e ∈ sub(Ei,C) ⇒ x ∈ FV (e)).

After generalisation, the original expression becomes:

letrec x1 = E1[xi := xiE
′], . . . ,xi = λz.(C[z][xi := xiz]), . . . ,xn = En[xi := xiE

′]

in E0[xi := xiE
′], where z is a fresh variable

What follows is some explanation about the above definition:

• The condition xi 6∈ FV (E ′) means that there should be no recursive calls to xi

within the identified sub-expression E ′. Allowing recursive calls in the iden-

tified expression would need extra care to make sure the generalised function

has the correct number of parameters at its call-sites.

• This specification replaces only the identified occurrence of E ′ in the definition

xi = Ei. Another variant is to replace all the occurrences of E ′ in xi = Ei. This

does not change the side-conditions for the refactoring, but it does change the

transformation within xi = Ei. According to this definition of generalising a

definition, the refactoring could introduce duplicated computation. One way

to avoid duplicating the computation of xiE
′ is to introduce a new binding

7

to represent the expression, instead of duplicating it at each call-site of xi.

This also reflects the fact that under the same refactoring name, for instance

generalising a definition, different people may mean different things, and the

choices is not unique.

1.5.2 Behaviour-preservation of generalising a definition

In order to prove that this refactoring is behaviour-preserving, we decompose the

transformation into a number of steps. If each step is behaviour-preserving, then

we can conclude that the whole transformation is behaviour-preserving.

Proof. Given the original expression:

letrec x1 = E1, . . . ,xi = Ei, . . . ,xn = En in E

Generalising the definition xi = Ei on the sub-expression E ′ can be decomposed

into the following steps:

Step 1. add definition x′i = λz.C[z], where x′i and z are fresh variables, and C[E ′] =
Ei, we get

letrec x1 = E1, . . . ,xi = Ei,x
′
i = λz.C[z], . . . ,xn = En in E

The equivalence of semantics is guaranteed by the garbage collection rule and

the commutability of bindings within letrec.

Step 2. By the side-conditions and axioms, we can prove

x′iE
′ ≡ (λz.C[z])E ′

i

= letrec z = E ′
i in C[z] by β◦

= letrec z = E ′
i in C[E ′

i] by substitution axiom and side-conditions

= C[E ′
i] by garbage collection axioms

≡ Ei

Therefore replacing Ei with x′iE
′ in the expression from step 1 does not change

its semantics, and we have:

letrec x1 = E1, . . . ,xi = x′iE
′
i ,x

′
i = λz.C[z], . . . ,xn = En in E

Step 3. Using the second substitution axiom, it is trivial to prove that substituting

x′iE
′
i for the free occurrences of xi in the right-hand-side of x′i does not change the

semantics of x′i. We get

letrec x1 = E1, . . . ,xi = x′iE
′
i ,x

′
i = (λz.C[z])[xi := x′iE

′], . . . ,xn = En in E

As z 6∈ FV (x′iE
′], we have:

letrec x1 = E1, . . . ,xi = x′iE
′
i ,x

′
i = λz.C[z][xi := x′iE

′], . . . ,xn = En in E

8

Step 4. In the definition of x′i, replace E ′ with z. we get:

letrec x1 = E1, . . . ,xi = x′iE
′
,x′i = λz.C[z][xi := x′iz], . . . ,xn = En in E

It is trivial to prove that the x′i defined in this step is not semantically equal to the

x′i defined in step 3. However, we can prove the equivalence of x′iE
′ from step 3

to step 4 in the context of the bindings for x1, ...,xn (note that x′i does not depend

on the definition of xi, so there is no mutual dependency between xi and x′i). We

omit the detailed proof for the lack of space, however, this should not affect the

explanation of the overall approach.

Step 5. Substitute x′iE
′ for the free occurrences of xi outside the definition of xi

and x′i does not change the semantics of the let-expression, as xi = x′
i(z)E

′ from

step 4.

letrec x1 = E1[xi := x′iE
′], . . . ,xi = x′iE

′
,x′i = λz.C[z][xi := x′iz], . . . ,xn = En[xi := x′iE

′]

in E[xi := x′iE
′]

Step 6. Remove the un-used definition of xi does not change the semantics, and

we get

letrec x1 = E1[xi := x′iE
′], . . . ,x′i = λz.C[z][xi := x′iz], . . . ,xn = En[xi := x′iE

′] in E[xi := x′iE
′]

Step 7. Rename x′i to xi, we have

letrec x1 = E1[xi := x′iE
′][x′i := xi], . . . ,xi = λz.C[z][xi := x′iz][x

′
i := xi],

. . . ,xn = En[xi := x′iE
′][x′i := xi]

in E[xi := x′iE
′][x′i := xi]

Capture free renaming of bound variables, i.e. α-renaming, does not change the

semantics. Finally, by the substitution lemma, we have

letrec x1 = E1[xi := xiE
′], . . . ,xi = λz.C[z][xi := xiz], . . . ,xn = En[xi := xiE

′] in E[xi := xiE
′]

1.6 FORMALISATION OF A SIMPLE MODULE SYSTEM λM

A module-aware refactoring will affect not only the definitions in a module, but

also the imports and exports of the module. More than that, it may potentially

affect every module in the system. In order to formalise module-aware refactor-

ings, we extend λLetrec with a simple module system. The definition of the new

language, which is called λM , is given next.

9

1.6.1 The Simple Module System λM

The syntax of λM terms is defined as:

Program ::= let Mod in (Exp; Imp; letrec D in E)

Mod ::= ε | Modid = (Exp; Imp;D) | Mod;Mod

Exp ::= ε | (Exp′1, ...,Exp′n) (n ≥ 0)

Exp′ = x | Modid.x | module Modid

Imp ::= (Imp′1, ..., Imp′n) (n ≥ 0)

Imp′ = import Qual Modid Alias ImpSpec

Modid ::= Mi (i ≥ 0)

Qual ::= ε | qualified

ImpSpec ::= ε | (x1, ...,xn) | hiding (x1, ...,xn) (n ≥ 0)

Alias ::= ε | as Modid

V ::= x | Modid.x | λx.E

E ::= V | E1 E2 | letrec D in E

D ::= ε | x = E | D,D

In the above definition, Program represents a program and Mod is a sequence of

modules. Each module has a unique name in the program. A module consists of

three parts: Exp, which exports some of the locally available identifiers for use

by other modules; Imp, which imports identifiers defined in other modules, and

D, which defines a number of value identifiers. The (Exp; Imp; letrec D in E)
part in the definition of Program represents the Main module of the program,

and the expression E represents the main expression. ε means omitted export list

and entity list respectively in the definitions of Exp and ImpSpec, and empty in

other definitions. Qualified names are allowed, and we assume that the usage of

qualified names follows the rules specified in the Haskell 98 Report [6].

The module system has been defined to model the Haskell 98 module system.

Because only value variables can be defined in λM , λM’s module system is ac-

tually a subset of the Haskell 98 module system. Therefore, we assume that the

semantics of this simple module system follows the semantics of the Haskell 98

module system.

A formal specification of the Haskell 98 module system has been described in

[2], where the semantics of a Haskell program with regard to the module system

is a mapping from the collection of modules to their corresponding in-scope and

export relations. The in-scope relation of a module represents the set of names

(with the represented entities) that are visible to this module, and this forms the

top-level environment of the module. The export relation of a module represents

the set of names (also with the represented entities) that are made available for

other modules to use by this module; in other words, it defines the interface of the

module.

In the following specification of module-aware refactorings, we assume that,

10

by using the module system analysis algorithm from the formal specification

given in [2], we are able to get the in-scope and export relation of each mod-

ule, and for each identifier in the in-scope/export relation, we can infer the name

of the module in which the identifier is defined. In fact, the same module analysis

system is used by HaRe in its implementation.

When only module-level information is relevant, i.e. the exact definition of

entities is not of concern, we can view a multi-module program in this way: a

program P consists of a set of modules and each module consists of four parts:

the module name, M, the set of identifiers defined by this module, D, the set of

identifiers imported by this module, I, and the set of identifiers exported by this

module, E. Each top-level identifier can be uniquely identified by the combination

of the identifier’s name and its defining module as (modid, id), where modid is

the name of the identifier’s defining module and id is the name of the identifier.

Two identifiers are the same if they have the same name and defining module.

Accordingly, we can use P = {(Mi,Di, Ii,Ei)}i=1..n to denote the program.

1.7 FUNDAMENTALS OF λM

Definition 6 A client module of module M is a module which imports M either

directly or indirectly; A server module of module M is a module which is imported

by module M either directly or indirectly.

Definition 7 Given a module M=(Exp, Imp, D), we say module M is exported by

itself if Exp is ε or module M occurs in Exp as an element of the export list.

Definition 8 The defining module of an identifier is the name of the module in

which the identifier is defined.

Definition 9 Suppose v is an identifier that is in scope in module M, we use de-

fineMod(v, M) to represent the name of the module in which the identifier is

defined.

Definition 10 We say that the identifier x defined in module N is used by module

M=(Exp, Imp, D) (M 6= N) if DefineMod(x,M) = N and either x ∈ FV(D) or x

is exported by module M, otherwise we say that the x defined in module N is not

used by module M.

Definition 11 Binding structure refers to the association of uses of identifiers with

their definitions in a program. Binding structure involves both top-level variables

and local variables. When analysing module-level phenomena, it is only the top-

level bindings that are relevant. When only top-level identifiers are concerned,

we define the binding structure, B, of a program P = {(Mi,Di, Ii,Ei)}i=1..n as:

B ⊂ ∪(Di X (Di ∪ Ii)i=1..n, and {((m1, id1),(m2, id2)) ∈ B| id2 occurs free in the

definition of id1; id1’s defining module is m1, and id2’s defining module is m2 }.

Definition 12 Given a set of identifiers Y and an export list Exp, rmFromExp(Exp,Y)

removes the occurrences of the identifiers of Y from Exp, and is defined as:

11

rmFromExp (ε,Y) = ε
rmFromExp ((),Y) = ()
rmFromExp ((e,Exp′2, ...,Exp′n),Y) (e 6∈ Y)

= (e,(rmFromExp(Exp′2, ...,Exp′n),Y))
rmFromExp ((e,Exp′2, ...,Exp′n),Y) (e ∈ Y)

= rmFromExp ((Exp′2, ...,Exp′n),Y)

Similar to the above definition, the following four definitions also involve syn-

tactical manipulation of the import/export list. Due to the space limit, we give

their descriptions, but omit the concrete definitions.

Definition 13 Given an identifier y which is defined in module M, and the export

list, Exp, of module M, addToExp (Exp, y, M) ensures that module M exports y.

Definition 14 Given an identifier y which is exported by module M and Imp which

is a sequence of imports, rmFromImp (Imp, y, M) removes the literal occurrences

of y in the import declarations that import M. The function can be used to remove

the uses of y in import declarations that import module M when y is no longer

exported by M.

Definition 15 Given an identifier y which is exported by module M (M is not nec-

essarily the module where y is defined) and Imp which is a sequence of imports,

then hideInImp(Imp, y, M) ensures that Imp does not bring this identifier into

scope by importing it from module M.

Definition 16 Suppose the same binding, say y, is exported by both module M1

and M2, and Imp is a sequence of import declarations, then chgImpPath(Imp, y,

M1, M2) switches the importing of y from M1 to M2.

1.8 FORMALISATION OF MOVE A DEFINITION FROM ONE MOD-

ULE TO ANOTHER IN λM

Like other refactorings, the realisation of Move a definition from one module to

another is non-unique. Suppose we would like to move the definition of foo

from module M to module N, the following design decisions were made during

the implementation of this refactoring in HaRe.

• If a variable which is free in the definition of foo is not in scope in module

N, then the refactorer will ask the user to refactor the program to make the

variable visible to module N first.

• If the identifier foo is already in scope in module N (either defined by module

N or imported from other modules), but it refers to foo other than the one

defined in module M, the user will be prompted to do renaming first.

• We avoid introducing mutually recursive modules during a refactoring due to

the fact that transparent compilation of mutually recursive modules are not yet

supported by the current working Haskell compilers/interpreters.

12

• Module N will export foo after the refactoring only if foo is either exported

by module M or used by the other definitions in module M before the refac-

toring. The imports of foo will be via M if module M still exports foo after

the refactoring; otherwise via N.

1.8.1 Definition of move a definition from one module to another

Next is the definition of move a definition from one module to another. A com-

mentary on the definition follows.

Definition 17 Given a valid program P:

P = let M1 = (Exp1; Imp1; x1 = E1, ...,xi = Ei, ...,xn = En);

M2 = (Exp2; Imp2; D2); . . . ;Mm = (Expm; Impm; Dm)

in (Exp0; Imp0; letrec D0 in E)

The conditions for moving the definition xi = Ei from module M1 to another

module, M2, are:

1. If xi is in scope at the top level of M2, then DefineMod(xi,M2) = M1.

2. ∀ v ∈ FV (xi = Ei), if DefineMod(v, M1)=N, then v is in scope in M2 and

DefineMod(v, M2)=N.

3. If M1 is a server module of M2, then {xi,M1.xi}∩FV (E j(j 6=i)) = /0.

4. If module M j(j 6=1) is a server module of M2, and xi ∈ FV (D j), then

De f ineMod(xi,M j) 6= M1 (xi could be qualified or not).

After moving the definition to module M2, the original program becomes:

P′ = let M1 = (Exp′1; Imp′1; x1 = E1, ...,xi−1 = Ei−1,xi+1 = Ei+1, ...,xn = En);

M2 = (Exp′2; Imp′2; xi = Ei[M1.xi := M2.xi],D2); . . . ;

Mm = (Expm; Imp′m; Dm)

in (Exp0; Imp′0; letrec D0 in E)

The specification of the imports/exports is given according to whether xi is ex-

ported by M1, and different situations are considered in each case. To save space,

only those imports/exports which are affected by the refactoring are given.

Case 1. xi is not exported by M1.

Case 1.1. xi is not used by other definitions in M1: {xi,M1.xi}∩FV (E j(j 6=i)) = /0.

Imp′j = hideInImp (Imp j,xi,M2) i f M2 is exported by itsel f ;

Imp j otherwise. (3 ≤ j ≤ m)

Case 1.2. xi is used by other definitions in M1.

Imp′1 = hideInImp (Imp1,xi,M2); import M2 as M1(xi)

13

Exp′2 = addToExp (Exp2,xi,M2)
Imp′j = hideInImp (Imp j,xi,M2) (3 ≤ j ≤ m)

Case 2. xi is exported by M1.

Case 2.1. M2 is not a client module of M1.

Imp′1 = Imp1; import M2 as M1(xi)
Exp′2 = addToExp (Exp2,xi,M2)
Imp′j = hideInImp (Imp j,xi,M2) (3 ≤ j ≤ m)

Case 2.2. M2 is a client module of M1.

Exp′1 = rmFromExport (Exp1,xi,M1)
Exp′2 = addToExp (Exp2,xi,M2)
Imp′2 = rmFromImp (Imp2,xi,M1)
Imp′j = i f M j is a server module o f M2 then rmFromImp (Imp j,xi,M1)

else rmFromImp (chgImportPath (Imp′′j ,xi,M1,M2),xi,M1) (3 ≤ j ≤ m)
Imp′′j = i f xi is exported by M2 be f ore re f actoring, then Imp j;

hideInImp (Imp j,xi,M2) otherwise. (3 ≤ j ≤ m)

What follows is some explanation about the above definition:

• As to the side-conditions, condition 1) means that if xi is in scope in the target

module, M2, then this xi should be the same as the xi whose definition is to be

moved, in order to avoid conflict/ambiguous occurrence [6] in M2; condition

2) requires that all the free variables used in the definition of xi are in scope in

M2. Conditions 3) and 4) guarantee that mutual recursive modules won’t be

introduced during the refactoring process.

• The transformation rules are complicated mainly due to the Haskell 98 module

system’s lack of control in the export list. For example, when a new identifier

is brought into scope in a module, the identifier could also be exported auto-

matically by this module, and then further exported by other modules if this

module is imported and exported by those modules. However, this is danger-

ous in some cases as the new entity could cause name conflict/ambiguity in

modules which import it either directly or indirectly. Two strategies are used

in the transformation in order to overcome this problem: the first strategy is to

use hiding to exclude an identifier from being imported by another module

when we are unable to exclude it from being exported, as in case 1.1; the sec-

ond strategy is to use alias in the import declaration to avoid the changes to

the export list as in case 1.2.

1.8.2 Behaviour-preservation of move a definition from one module to an-

other

We prove the correctness of this refactoring from four aspects: the refactoring

does not change the structure of individual definitions; the refactoring creates

a binding structure which is isomorphic to the one before the refactoring; the

14

refactoring does not introduce mutually recursive modules; and the refactoring

does not violate any syntactical rules. More details follow.

• The refactoring does not change the structure of individual definitions. This

is obvious from the transformation rules. Inside the definition of xi = Ei, the

uses of M1.xi have been changed to M2.xi, this is necessary as xi is now defined

in module M2. We keep the qualified names qualified in order to avoid name

capture inside the Ei. The uses of xi in module M2 will not cause ambiguous

reference due to condition a).

• The refactoring creates a binding structure which is isomorphic to the one

before the refactoring. Suppose the binding structures before and after the

refactoring are B and B′ respectively, then B and B′ satisfy:

B′ = {(f x, f y)|(x,y) ∈ B},
where f (M,x) = (M2,xi) if (M,x) ≡ (M1,xi); (M,x) otherwise.

The only change from B to B′ is that the defining module of xi has been

changed from the M1 to M2. This is guaranteed by conditions a) and b).

• The refactoring does not introduce recursive modules. On one hand, moving

the definition does not add any import declarations to M2, therefore, there is

no chance for M2 to import any of its client modules. On the other hand, an

import declaration importing M2 is added to other modules only when it is

necessary and M2 is not a client module of them because of conditions c), d)

and the condition checking in case 2.2.

• The refactoring does not violate any syntactical rules. The only remaining

potential violations exist in the import/export lists of the modules involved. In

case 1.1, case 1.2 and case 2.1, except module M2, none of the modules’ in

scope/export relations have been changed; in case 2.2, M1 no longer exports xi,

and those modules which use xi now get it from module M2. rmFromExport,

addToExp, rmFromImp, and hideInImport are used to make manipulate the

program syntactically to ensure the program’s syntactic correctness.

1.9 CONCLUSIONS AND FUTURE WORK

This paper explores the formal specification and proof of behaviour-preservation

of refactorings in the context of refactoring Haskell programs. To this purpose,

we first defined the simple lambda-calculus called λLetrec, then augmented it with

a simple module system. Two representative refactorings are examined in this

paper, and they are generalise a definition and move a definition from one module

to another. We feel that this work can serve as a starting point for further study of

formalising the essence of Haskell refactorings. For future work, more structural

or module-related refactorings, such as renaming, specialise a definition, lifting

a definition, add an item to the export list, etc [14], can be formalised in this

framework without difficulty. This framework can be extended to accommodate

more features from the Haskell 98 language, such as constants, case-expressions,

data types, etc, so that more complex refactorings can be formalised.

15

REFERENCES

[1] R. M. Burstall and J. Darlington. A Transformation System for Developing Recursive

Programs. Journal of the ACM, 24(1):44–67, 1977.

[2] I. S. Diatchki, M. P. Jones, and T. Hallgren. A Formal Specification for the Haskell

98 Module System. In ACM Sigplan Haskell Workshop, 2002.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the

Design of Existing Code. Addison-Wesley, 1999. http://www.refactoring.

com/.

[4] J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98–107,

1989.

[5] S. P. Jones. Compiling Haskell by Program Transformation: A Report from the

Trenches. In ESOP, pages 18–44, 1996.

[6] S. P. Jones, L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel, K. Hammond,

R. Hinze, P. Hudak, J. Hughes, T. Johnsson, M. Jones, J. Launchbury, E. Meijer,

J. Perterson, A. Reid, C. Runciman, and P. Wadler. Haskell 98 Language and Li-

braries: the Revised Report. Cambridge University Press, 2003.

[7] H. Li, C. Reinke, and S. Thompson. Tool Support for Refactoring Functional Pro-

grams. In Johan Jeuring, editor, ACM SIGPLAN Haskell Workshop, Uppsala, Sweden,

August 2003.

[8] Huiqing Li, Simon Thompson, and Claus Reinke. The Haskell Refactorer: HaRe, and

its API. In John Boyland and Grel Hedin, editors, Proceedings of the 5th workshop

on Language Descriptions, Tools and Applications (LDTA 2005), April 2005.

[9] Manfred Schmidt-Schauß and Michael Huber. A Lambda-Calculus with letrec, case,

constructors and non-determinism. CoRR, cs.PL/0011008, 2000.

[10] T. Mens, S. Demeyer, and D. Janssens. Formalising Behaviour Preserving Program

Transformations. In ICGT ’02: Proceedings of the First International Conference on

Graph Transformation, pages 286–301. Springer-Verlag, 2002.

[11] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Univ. of Illi-

nois, 1992.

[12] H. Partsch and R. Steinbrüggen. Program Transformation Systems. ACM Computing

Surveys, 15(3), September 1983.

[13] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer

Science, 1:125–159, 1975.

[14] Refactor-fp. Refactoring Functional Programs. http://www.cs.kent.ac.uk/

projects/refactor-fp/.

[15] F. Tip, A. Kieżun, and D. Bäumer. Refactoring for Generalization Using Type Con-

straints. In Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA 2003), pages 13–26, Anaheim, CA, USA, November 6–8, 2003.

[16] L. Tokuda and D. Batory. Evolving Object-Oriented Applications with Refactorings.

Technical Report CS-TR-99-09, University of Texas, Austin, March 1, 1999.

[17] Z. M. Ariola and S. Blom. Lambda Calculi plus Letrec. Technical report, July 1997.

16

