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Chapter 1

Software Metrics: Measuring
Haskell
Chris Ryder1, Simon Thompson1

Abstract: Software metrics have been used in software engineering as a mecha-
nism for assessing code quality and for targeting software development activities,
such as testing or refactoring, at areas of a program that will most benefit from
them. Haskell [PJ03] has many tools for software engineering, such as testing,
debugging and refactoring tools, but software metrics have been neglected.

This paper identifies a collection of software metrics for use with Haskell pro-
grams. These metrics are subjected to statistical analysis to assess the correlation
between their values and the number of bug fixing changes occurring during the
development of two case study programs. In addition, the relationships between
the metrics are also explored, showing how combinations of metrics can be used
to improve their accuracy.

1.1 INTRODUCTION

Currently, most software engineering research for functional programs is focused
on tracing and observation techniques, although recent work by Li and others
[LRT03] has also looked at refactoring for functional programs. Such work is a
valuable addition to the field, but can be hard to effectively apply to large pro-
grams because of the difficulty of choosing appropriate application points.

In order to make effective use of such techniques it is typically necessary to
concentrate their application into areas of a program most likely to contain bugs.
However, the task of selecting such areas is often left to human intuition. Impera-
tive and object oriented languages have used software measurement (also known
as software metrics) to aid this task [GKMS00, Hal77, FP98], and so this work
examines the applicability of metrics to functional programs written in Haskell.

1Computing Laboratory, University Of Kent, Canterbury, Kent, CT2 7NF, UK;
Email: C.Ryder@kent.ac.uk, S.J.Thompson@kent.ac.uk



1.1.1 Prior Work

Software metrics have been an active area of research since the early 70’s so there
is a large body of prior work for OO and imperative languages, such as that by
Fenton, Pfleeger and Melton [FP98, Mel96]. Some of the early work attracted
criticism for its lack of validation, but in recent years this has been addressed, for
instance by Briand and his co-workers [BEEM95]. Barnes and Hopkins [BH00]
addressed the issue of validation by examining the correlation between metric
values and the number of bug fixes over a programs development lifetime.

Surprisingly, there is little work exploring metrics for functional languages.
One of the few pieces is a thesis by Van Den Berg [VdB95] which examines the
use of metrics to compare the quality of software written in Miranda 2 with that
written in Pascal. However, little consensus was found among programmers on
how to rate the quality of Miranda programs, so it is not discussed further here.

1.1.2 Motivation

The motivation for investigating software metrics for functional programming lan-
guages comes from three common software engineering tasks, software testing,
code reviews and refactoring.

Currently, these tasks rely on either human intuition, e.g. to decide which
refactoring to apply to a function, or brute force, e.g. by reviewing every func-
tion. Each of these tasks can be helped by using software metrics to concentrate
programmer’s effort on areas of the program where most benefit is likely to be
gained. For instance, functions which exhibit high metric values might be tested
more rigorously, may be subject to an in-depth code review, or may be refactored
to reduce their complexity. Conversely, functions which exhibit low metric values
may not require as much testing, reviewing or refactoring. Targeting programmer
effort using metrics in this manner can improve the quality of software by making
more efficient use of programmer’s time and skills.

In many ways metrics are analogous to compiler warnings. They indicate un-
usual features in the code, but there may be legitimate reasons for those features.
Like warnings, metrics give a hint that part of the code may need to be inspected.

1.1.3 Overview of this paper

The remainder of this paper is divided into the following sections: Section 1.2
introduces a selection of metrics that can be used with Haskell. Section 1.3 de-
scribes the way in which we attempt to validate the metrics. Section 1.4 presents
the results from the validation of the metrics. Section 1.5 presents the conclusions
we draw from this work.

2Miranda is a trademark of Research Software Ltd.



1.2 WHAT CAN BE MEASURED

There is a large body of work describing metrics for imperative languages. Some
of those metrics, such as pathcount which counts the number of execution paths
through a function, may directly translate to Haskell. Other features of Haskell,
such as pattern matching, may not be considered by imperative metrics so it is
necessary to devise metrics for such features.

At the time this project was started we were unable to implement type-based
metrics, such as measuring the complexity of a function’s type, because we were
unable to find a stand-alone implementation of the Haskell type system. There-
fore the metrics presented here are a first step in assessing metrics for Haskell.
Recently, the Glasgow Haskell Compiler (GHC) [MPJ04] has begun to provide a
programming interface to its internal components, such as its type checker. This
allows type-based metrics to be implemented, which we hope to pursue in future.

In the remainder of this section we present a selection of the Haskell metrics
we analysed and discuss their relationship to imperative or OO metrics.

1.2.1 Patterns

Because patterns are widely used in Haskell programs it is interesting to investi-
gate how they affect the complexity of a program. To do this it is necessary to
consider which attributes of patterns might be measured, and how these attributes
might affect the complexity. We discuss these case by case now:-

• Pattern size (PSIZ). There are many ways one might choose to measure the
size of a pattern, but the simplest is to count the number of components in the
abstract syntax tree of the pattern. The assumption is that as patterns increase
in size they become more complex.

• Number of pattern variables (NPVS). Patterns often introduce variables into
scope. One way in which this might affect complexity is by increasing the
number of identifiers a programmer must know about in order to comprehend
the code. Studies [Boe81, McC92, FH79] have shown that at least 50% of the
effort of modifying a program is in comprehending the code being changed.

• Number of overridden pattern variables or Number of overriding pattern vari-
ables. Variables introduced in patterns may override existing identifiers, or be
overridden by those in a where clause for instance. Overriding identifiers can
be confusing and can lead to unintended program behaviour, particularly if the
compiler is unable to indicate the conflict because the identifiers have the same
type. Therefore one hypothesis is that high numbers of variables involved in
overriding may indicate potential points of error.

• Number of constructors (PATC). Patterns are often used when manipulating
algebraic data types by using the constructors of the data type in the pattern.
Like NPVS, the hypothesis is that the higher the number of constructors in a
pattern the more information a programmer needs to consider to understand it.
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foo :: Int −> Int
foo a = a*a

bar :: [Int] −> [Int] −> [Int]

  where
    c = zip a b

bar a b = map fn c

    fn = \(x,y) −> foo (x+y)

Number of items

FIGURE 1.1. Measuring distance by the number of declarations brought into scope
for the function foo.

• Number of wildcards (WILD). When initially considering patterns it was sug-
gested that wildcards should be ignored because they state that the item they
are matching is of no interest. However, wildcards convey information about
the structure of items in the pattern, e.g. the position of constructor arguments.
Therefore it was decided that we should measure WILD to clarify their effect.

• Depth of nesting. Patterns are frequently nested, which can lead to compli-
cated patterns. When measuring the depth of nesting one must consider how
to measure the depth in patterns such as [(a,b),(c,d)], which contain
more than one nested pattern. This study uses two ways, Sum of the depth of
nesting (SPDP) andMaximum depth of nesting, however the sum method may
also be measuring the size of the pattern.

1.2.2 Distance

In all but the most trivial program there will be several declarations which will in-
teract. The interactions between declarations are often described by def-use pairs
[RW85]. For instance, the def-use pair (a,b) indicates that b uses the declaration
a. Metrics that use def-use pairs are most often concerned with the testability of
programs, because def-use pairs indicate interactions that might require testing.

When one considers a def-use pair, there will inevitably be a distance between
the location of the use and the declaration in the source code. One hypothesis is
that the larger the distance, the greater the probability that an error will occur in
the way that declaration is used. Distance may be measured in a number of ways:

• Number of new scopes. One way to measure the distance between the use and
declaration of an identifier is by how many new scopes have been introduced
between the two points. This gives a “conceptual” distance which may indi-
cate how complex the name-space is at that use. This leads to a hypothesis that
a more complex name-space may make it harder to avoid introducing errors.

• Number of declarations brought into scope. An extension to the previous
distance metric is to count how many declarations have been introduced into
the name-space by any new scopes. This technique, illustrated in Figure 1.1,
may give an idea of how “busy” the nested scopes are.
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FIGURE 1.2. Measuring distance across module boundaries.

• Number of source lines. The distance metrics described previously have mea-
sured the “conceptual” distance, however it is also important to consider the
“spatial” distance in the source code. The hypothesis is that the further away
items are in the source code, the harder it is to recall how they should be used.
The simplest way to measure spatial distance is by the number of source lines.

• Number of parse tree nodes. A problem with counting source lines as a mea-
sure of distance is that source lines contain varying amounts of program code.
One way to overcome this problem is to count the number of parse tree nodes
on the path between two points of the parse tree instead. This may give a more
consistent measure of the amount of code between the use and the declaration.

Measuring distance between modules using scope-based measures is straightfor-
ward, because imported identifiers will be in a top level scope of their own.

When measuring distance using source lines it is less clear how distance be-
tween modules should be calculated. For this work we have chosen to measure the
cross-module distance by measuring the distance between the use of an identifier
and the import statement that brings it into scope, plus the distance between the
declaration and the start of the module in which it is defined. This is illustrated in
Figure 1.2. This method reflects the number of lines a programmer may have to
look through, first finding the module the identifier is imported from, then find-
ing the identifier in the imported module. A variation of this method might be to
measure only the distance in the imported module, for instance.

Because a function is likely to call several functions there will be several dis-
tance measures, one for each called function, which must be aggregated in some
way to produce a single value for the calling function. This work examines three
methods: summing, taking the maximum and taking the mean.

1.2.3 Callgraph Attributes

Because function calls form a crucial part of Haskell it appears that some interest-
ing properties may be measured from the callgraph of a Haskell program. Some
of these are described below.



• Strongly connected component size (SCCS). Because parts of a callgraph may
be cyclic it is possible to find the strongly connected components. A strongly
connected component (SCC) is a subgraph in which all the nodes (functions)
are connected (call) directly or indirectly to all the other nodes. Because all
functions that are part of a SCC depend directly or indirectly upon each other,
one might expect that as the size of the SCC increases, the number of changes
is likely to increase as well, because a change to a single function may cause
changes to other functions in the SCC. This is often known as the ripple effect.
SCCS is a measure of coupling, similar to imperative and OO coupling metrics
such as the Coupling between object classes (CBO) metric used by Chidamber
and Kemerer [CK94]. The main difference is that CBO measures only direct
coupling between objects, e.g. A calls B, while SCCS also measures indirect
coupling between functions, e.g. A calls X which calls B.

• Indegree (IDEG). The indegree of a function in the callgraph is the number of
functions which call it, and thus IDEG is a measure of reuse. Functions with
high IDEG values may be more important, because they are heavily reused
in the program and therefore changes to them may affect much of the pro-
gram. This metric is inspired by the Fan-Inmetric of Constantine and Yourdon
[YC79], which measures how many times a module is used by other modules.
Thus IDEG is Fan-In used on individual functions, rather than whole modules.

• Outdegree (OUTD). The outdegree of a function in the callgraph is the number
of functions it calls. One might assume that the larger the OUTD, the greater
the chance of the function needing to change, since changes in any of the
called functions may cause changes in the behaviour of the calling function.
Like the IDEG metric, the OUTD is inspired by the work of Constantine and
Yourdon, in this case by their Fan-Out metric which measures the number
of modules used by a module. As with IDEG, the OUTD metric is used on
individual functions, rather than on whole modules.

It is possible to isolate the subgraph that represents the callgraph rooted at a single
function. One hypothesis is that the greater the complexity of the subgraph, the
more likely the function is to change, because it is harder to comprehend the
subgraph. Therefore one might measure several attributes from these subgraphs:

• Arc-to-node ratio (ATNR). The arc-to-node ratio is a useful indicator of how
“busy” a graph is. If a callgraph has a high ATNR, there is greater complex-
ity in the interaction of the functions, and therefore one might hypothesise,
a greater chance of errors occurring. This is similar to the FIFO metric sug-
gested by Constantine and Yourdon, but FIFO looks only at the direct depen-
dents and dependencies of the module being measured, while ATNR looks at
the complexity of all the interdependencies of the entire subgraph.

• Callgraph Depth (CGDP) and Callgraph Width (CGWD). The subgraph of
a function may be cyclic but can be transformed into a tree by breaking its
cycles, as is illustrated in Figure 1.3. Such a tree represents all the direct or
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FIGURE 1.3. An example of a sub-callgraph for a function readFile.

indirect dependencies of the function, and as such it is interesting to measure
the size of this tree. Two common measures of size are the depth and the
width. The deeper or wider the tree grows, the more complex it is likely to be.
The depth and width metrics described here are inspired by the Depth of In-
heritance Tree (DIT) and Number of Children (NOC) metrics suggested by
Chidamber and Kemerer for OO programs.
The DIT metric measures how deep a class is in the inheritance hierarchy of
an OO program. The deeper a class is, the greater the number of methods
it is likely to inherit, and hence the harder it is to predict its behaviour. In
Haskell we model this by measuring the depth of the subgraph, because a
deep subgraph is likely to be hard to comprehend than a shallow subgraph.
The NOC metric is the number of immediate children in the inheritance hier-
archy of the class being analysed. The number of children indicates how much
the class is reused, and thus how important the class is to the design of the pro-
gram. Our width measure looks superficially similar to the NOC metric, but in
fact measures dependencies, much like our depth metric. The Haskell metric
most closely resembling NOC is the IDEG metric, which also measures reuse.

1.2.4 Function Attributes

As well as the specific attributes highlighted in previous sections, one may also
measure some more general attributes such as the following.

• Pathcount (PATH). Pathcount is a measure of the number of logical paths
through a function. Barnes and Hopkins showed pathcount to be a good pre-
dictor of faults in Fortran programs, so it is interesting to investigate pathcount
metrics for Haskell programs. Implementing pathcount for Haskell is mostly
straightforward, although there are some places where the pathcount value is
not obvious. For instance, consider Example 1.1.
In this example there are three obvious execution paths, one for each pattern
expression, but there is also a fourth, less obvious execution path. If the second
pattern (x:xs) matches, the guard x > 0 will be tested. If this guard fails
execution will drop through to the third pattern expression, creating a fourth



execution path. Although this is a contrived example, this kind of “hidden
path” can occur quite easily, for instance by omitting an otherwise guard.

Example 1.1 (Hidden execution paths when using patterns and guards).

func :: [Int] -> Int
func [] = 0
func (x:xs) | x > 0 = func xs
func (x:y:xs) = func xs

• Operators (OPRT) and Operands (OPRD). Having discussed various metrics
previously it is important not to ignore less sophisticated measures such as
function size. A large function is more likely to be complex than a small one.
There are many ways to measure program size. Van Den Berg used a variation
of Halstead’s [Hal77] operator and operand metrics in his work with Miranda.
This work updates Van Den Berg’s metrics for Haskell by defining all literals
and identifiers that are not operators as operands. Operators are the standard
operators and language keywords, such as :, ++, where, etc. Delimiters such
as () and [], etc, are also included as operators. Although OPRT and OPRD
were implemented as separate metrics, they are really a connected pair.

In this section we have presented a selection of metrics which cover a wide range
of attributes of the Haskell language. With the exception of the WILD metric,
these metrics are expected to increase in value as the complexity increases.

The metrics introduced here are all measuring distinct attributes, and it may
be that some of these can be combined to produce more sophisticated and accu-
rate measures. However it is important to validate these “atomic” metrics before
attempting to combine them.

1.3 VALIDATION METHODOLOGY

To validate the metrics described in Section 1.2 a number of case studies were
undertaken. For this work we followed the methodology described by Barnes and
Hopkins and took a series of measurements from a program over its development
lifetime, and then correlated those measures with the number of bug fixing or
refactoring changes occurring during that time. Metrics that correlate well with
the bug fix counts may be good indicators of targets for testing or refactoring.

A limitation of this method of validation is that all bug fixing changes are
considered to be of equal importance. In reality it is likely that some bug fixes
might be considered “trivial” because they were easy to implement or had only
minimal impact on the operation of the program, while others may be considered
to be much more serious because they were hard to implement or had a significant
impact on the operation of the program. It is not clear how the relative seriousness
of a bug fix should be incorporated into this analysis, for example, should serious
bug fixes be counted as multiple trivial bug fixes? or should trivial bug fixes be



discarded? Furthermore, it would be difficult to objectively assess the seriousness
of the changes. Therefore, we do not include “bug seriousness” in our analysis.

We experienced some difficulty in finding suitable case study programs. Can-
didate programs needed to have source code stored in a CVS repository with a
change history that contained enough changes to allow for meaningful analysis.

Most of the programs investigated had no clear separation between bug fixes,
refactorings and feature additions, with different types of changes often being
committed to CVS in the same commit. Unfortunately it is not possible to au-
tomatically classify these changes, e.g. by assuming small changes are bug fixes
and large changes are feature additions, with any degree of accuracy because the
sizes of the changes are not uniform. For instance, a feature addition may involve
lots of small changes to lots of functions, and thus be indistinguishable from a
collection of small bug fix changes, while conversely a bug fixing change may
require a large change to a function and thus look like a feature addition.

Because it was not possible to automatically classify changes it was necessary
to manually inspect each change in the CVS history of the programs to determine
the type of change, a very time-consuming process. However, this issue only
affects the validation process, not the use of the metrics.

The need to manually inspect changes necessitated choosing programs that
were small enough to be able to inspect manually within a reasonable amount of
time, but choosing smaller programs causes problems if there are too few changes
for statistically significant results to be obtained. The first of our case study pro-
grams, a Peg Solitaire program described later, suffers from this to some extent.

The use of a revision control system that uses fine grained commits, such as
darcs, may encourage programmers to clearly and individually record bug fixes.

The two programs chosen for the case study are both products of another re-
search project at the University of Kent. The programs were both maintained
in a CVS repository, giving easy access to the change histories. The programs
were developed separately from our work and we had no influence in their devel-
opment, other than to request that changes be committed to the CVS repository
individually, making it significantly easier to classify the types of the changes.

1.3.1 Peg Solitaire Case Study

The first case study program was a Peg Solitaire game [TR03] with both textual
and graphical interfaces, consisting of a number of modules which did not neces-
sarily all exist simultaneously. The module sizes are shown in Table 1.1.

1.3.2 Refactoring Case Study

The second case study program was a tool for refactoring Haskell programs [LRT03].
The program used a parser library which was not examined in this study, there-
fore only the code that manipulated parse trees was analysed. Table 1.1 shows
this program was approximately twice the size of the Peg Solitaire program.



Module Min Size (LOC) Max Size (LOC) Num. Changes
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Board 86 220 9
Main 25 27 38
Solve 39 101 7
Stack 26 31 0
GPegSolitaire 228 350 78
TPegSolitaire 98 177 16

Total Number of Changes 148
Re

fa
ct

or
in

g

EditorCommands 198 213 4
PFE0 332 337 2
PfeRefactoringCmds 18 24 5
PrettySymbols 23 23 0
RefacAddRmParam 142 434 56
RefacDupDef 62 157 19
RefacLocUtils 201 848 88
RefacMoveDef 322 796 56
RefacNewDef 77 478 58
RefacRenaming 67 236 23
RefacTypeSyn 20 21 0
RefacUtils 764 1088 126
ScopeModule 222 222 0
TiModule 140 140 0
Main 36 103 7

Total Number of Changes 444

TABLE 1.1. Summary of the Peg Solitaire and Refactoring case study programs.

1.3.3 Analysing change histories and metrics

The change histories of the two programs were manually examined to determine
the nature of the changes, such as feature additions, bug fixes, etc, and the num-
ber of bug fixing changes occurring for every function during the development
lifetime was recorded. It is important to note that the programs did compile after
every change, therefore the change counts do not include errors that would have
been caught by the compiler, except where they are part of a larger change.

The metrics described in Section 1.2 were then run on each version of each
program, and the maximum value of each metric was taken for every function.
The measurements were then correlated with the number of bug fixing changes
for each function using the statistical macros of Excel. Although it is possible that
taking the maximum value may introduce artifacts, the metric values for a given
function tend not to change very often so we do not believe this to be a problem.

1.4 RESULTS

This section presents some of the results of correlating the measurements taken
from the case study programs with their change histories. Metrics whose values
increase with increased complexity would be expected to show a positive cor-
relation with the number of changes, while metrics whose values decrease with



Metric Correlation (r) r2

PS OUTD 0.4783 0.229
SCCS 0.3446 0.119

RE

Distance by the sum of number of scopes 0.632 0.399
Distance by the maximum number of scopes 0.6006 0.361
NPVS 0.5927 0.351
OPRD 0.5795 0.336
OUTD 0.5723 0.328

TABLE 1.2. Highest correlations for Peg Solitaire (PS) and Refactoring (RE).

increased complexity are likely to have negative correlations.
We also investigated the correlation between different metrics to see if any

metrics were related. The full and detailed results for this work are not presented
here due to space constraints, but are analysed in detail in the thesis by Ryder
[Ryd04]. Instead, the following main observations are discussed:

• The OUTD metric is correlated with the number of changes.

• All the distance metrics show similar levels of correlation.

• Callgraphs tend to grow uniformly in both width and depth.

• Most of the pattern metrics are measuring the size of a pattern.

1.4.1 Correlation of individual metrics

The first results we analysed were those taken by correlating metric values against
the number of changes. Table 1.2 summarises the highest statistically significant
correlation values obtained from the two case studies, as well as their r 2 values.
The r2 values show the proportion of the variance in common between the metric
and the number of bug fixes. This gives an indication of the influence of the
correlation on the number of bug fixes. For instance, consider the OUTD metric
in Table 1.2. It has an r2 value of 0.229, which states that there is 22.9% of the
variance in common between OUTD and the number of bug fixes. In the rest of
this section correlation values will be followed by their r 2 values in parenthesis,
e.g. the correlation and r2 values of OUTD will be shown as 0.4783 (0.229).

These results show that, for most of the metrics, there was no statistically
significant correlation in the data taken from the Peg Solitaire program. Only the
SCCS and OUTD metrics show correlation that was statistically significant at the
5% level, with values of 0.3446 (0.119) and 0.4783 (0.229) respectively.

Conversely, the Refactoring program shows statistically significant correla-
tions for all the metrics except for the SCCS and IDEG metrics.

IDEG, which measures reuse, is not statistically significant for either program,
so one can assume that the reuse of a function has little effect on its complexity.

None of the distance measures were significant at the 5% level for the Peg
Solitaire program, however they were all significant for the Refactoring program.



Most of the measures resulted in correlations between 0.4 (0.16) and 0.55 (0.303),
but the greatest correlation was provided by the Distance by the sum of the num-
ber of scopes metric, with a correlation of 0.632 (0.399). These results seem to
confirm that the greater the distance between where something is used and where
it is declared, the greater the probability of an error occurring in how it is used.
The results also seem to suggest that it does not matter too much how the distance
is measured, with the “semantic” measures having slightly stronger correlation
with the number of bug fixes than the “spatial” measures on average.

However, we do not know what text editor was used in the development of
these case study programs. It may be that a “smart” editor that allows the pro-
grammer to jump directly to definitions may reduce the effect of distance.

From the callgraph measures, OUTD provided the greatest correlation for both
programs, with a correlation value of 0.4783 (0.229) for the Peg Solitaire program
and 0.5723 (0.328) for the Refactoring program. This provides some evidence
that functions that call lots of other functions are likely to change more often than
functions that do not call many functions. This is also known to occur for the
related Fan-Out OO metric described previously in Section 1.2.3.

Of the other callgraph measures, SCCS has significant correlation for the Peg
Solitaire program, but not for the Refactoring program, as was discussed earlier.
Although none of the other callgraph measures have significant correlation for
the Peg Solitaire program, they do have significant values for the Refactoring
program, ranging from 0.3285 (0.108) for CGWD, to 0.4932 (0.243) for CGDP.

The results for the function attributes showed that although none of the met-
rics were significant at the 5% level for the Peg Solitaire program, the OPRD and
OPRT measures were significant at the 10% level. For each program the OPRD
and OPRT measurements showed very similar correlation values. The PATH mea-
sure showed a small correlation of 0.286 (0.082) for the Refactoring program.

1.4.2 Cross-correlation of metrics

Having looked at the correlation of metric values with the number of changes, it is
interesting to look at the correlation between metric values, which might indicate
relationships between the attributes being measured.

Initially, the cross-correlation between metrics of the same class is examined,
but later we examine correlation across metrics of different classes. Table 1.3
shows the clusters of metrics which appear to be strongly correlated.

The cluster formed by the pattern metrics, C3 in Table 1.3, implies that the
pattern metrics are measuring a similar attribute, most likely the size of a pattern.

The distance measures form two clusters, C1 and C4 in Table 1.3. Cluster C1
suggests there is little difference between measuring distance by the number of
source lines or by the number of parse tree nodes, and shows that measuring the
sum of the number of scopes or declarations in scopes does not give much more
information than measuring the number of source lines. This might be because
declarations that are further away in scope tend to be further away in the source
code. Likewise, as the number of declarations increases, so the distances between



C1

Sum of the number of scopes

C3

NPVS
Sum of the number of declarations SPDP
Sum of the number of source lines PSIZ
Maximum number of source lines PATC (in Refactoring program only)
Average number of source lines

C4

Average number of scopes
Sum of the number of parse tree nodes Maximum number of declarations
Maximum number of parse tree nodes Maximum number of scopes
Average number of parse tree nodes Average number of declarations

C2 CGDP C5 OPRD
CGWD OPRT

TABLE 1.3. Strongly correlated metrics for the case study programs.

declarations and where they are used tend to increase.
Cluster C4 shows that distance measured by the maximum or average number

of scopes or declarations in scope is not strongly correlated with distance by the
sum of the number of scopes or declarations in scope. One reason for this might
be that the identifiers used in a function are generally a similar distance from
their declarations, e.g. all the uses of a pattern variable in a function might have a
similar distance measure. This would cause the average and maximum values to
be similar between functions, while the sum measure would vary much more.

Examining the cross-correlation of the callgraph metrics, cluster C2 in Table
1.3, shows that apart from the CGDP and CGWD metrics, there is very little
correlation between this class of metrics. This seems to confirm that they are
measuring distinct attributes of callgraphs. The correlation between the CGWD
and CGDP metrics is interesting because it seems to suggest that callgraphs for
individual functions tend to grow uniformly in both depth and width.

The cluster C5 is unsurprising since these metrics are really part of a pair of
interconnected metrics. However, the PATH metric does not appear to be part of
the cluster, showing that it is unlikely to be measuring the size of a function.

1.4.3 Cross-correlation of all the metrics

If the clusters of strongly correlated metrics are replaced with a representative of
each cluster, it is possible to analyse the correlation between the various classes
of metrics. For this work, each cluster was represented by the metric with the
highest correlation value in the cluster. The measurements from the Peg Solitaire
case study showed no correlation between the various classes of metrics, while
the cross-correlation for the Refactoring case study is shown in Table 1.4.

The correlation between NPVS and OPRD seen in cluster C1 of Table 1.4 is
probably because variables are counted as operands, so an increase in the number
of pattern variables will necessarily entail an increase in the number of operands.
The correlation with the Sum of number of scopesmeasure is less clear. It suggests
that as the number of pattern variables increases, the distance to any called func-
tions, measured by the sum of the number of scopes, also increases. This may be
because pattern variables are often introduced where new scopes are constructed.



C1
Number of pattern variables C2 Maximum number of scopes
Number of operands Outdegree
Sum of number of scopes

TABLE 1.4. Cross-correlated metrics for the Refactoring program.

Cluster C2 of Table 1.4 suggests that the largest distance to any function called
from any single function will increase as the number of called functions increases.
This may be because as more functions are called, they will tend to be further
away, since the called functions can not all be located in the same place.

1.4.4 Regression analysis of metrics

In order to obtain a greater correlation with the number of changes it may be
possible to combine a number of metrics. Determining the best combination of
metrics can be done using a regression analysis. The regression analysis of the
results from both case studies showed that statistically significant correlation can
be achieved for both programs, with correlation values of 0.583 (0.34) for the
Peg Solitaire program and 0.6973 (0.487) for the Refactoring program, which are
higher than any of the individual metrics correlation values.

The coefficients of the regression analysis for the Peg Solitaire program show
that the largest contribution, with a coefficient of 0.4731, comes from OUTD,
suggesting that the most important attribute is the number of direct dependencies.

The coefficient for the Sum of number of source lines distance metric, −0.2673,
is negative which suggests that if the functions used are a long way away in the
source code it is less likely to introduce errors. This may be caused by cross-
module function calls, which imply that the calling function is using some well
defined and stable interface, and hence is less likely to have to be changed as a
result of the called function being changed. This suggests that cross-module calls
may need to be measured differently to intra-module calls.

The coefficients from the Refactoring program regression analysis shows that
the largest contribution by some margin comes from the Sum of number of scopes
metric with a coefficient of 0.315. This suggests that, for the Refactoring program,
it is important to know how complicated the name-space is for each function.

1.5 CONCLUSIONS AND FURTHERWORK

In this paper we have described a number of software metrics that can be used
on Haskell programs. Using two case study programs we have shown that it may
be possible to use some of these metrics to indicate functions that may have an
increased risk of containing errors, and which may therefore benefit from more
rigorous testing.

Unfortunately, because we were only able to assess two case study programs
there remain questions about the general applicability of these metrics to Haskell



programs. The authors would therefore welcome contributions of Haskell pro-
grams that would make suitable case studies in order to further expand this anal-
ysis. Nevertheless, we were still able to show interesting results.

By analysing the cross-correlation of the metrics we have shown that some of
the metrics measure similar or closely related attributes. The regression analysis
of the metrics has shown that combining the measurements does increase the cor-
relation, and therefore the accuracy, of the metrics. From this we can see that there
is no single attribute that makes a Haskell program complex, but rather a combina-
tion of features. However, good estimates can be obtained using only the OUTD
metric, which measures the dependencies of a function. This suggests that, in
common with OO and imperative programs, most of the complexity in a Haskell
program lies not within individual functions, but rather in their interaction. We
note also that the OUTD metric does not appear to be cross-correlated with the
measures of function size, OPRD and OPRT, therefore this result is unlikely to be
caused simply by larger functions being more likely to contain bugs.

Overall, this preliminary study using mostly translations of imperative or OO
metrics has shown that metrics can be used on Haskell programs to indicate areas
with increased probability of containing bugs. The success of this preliminary
work encourages further exploration, in particular, by designing metrics to analyse
Haskell specific features which may provide better predictors of bug locations.

As part of the thesis by Ryder, the results of this preliminary study of metrics
have been used to experiment with visualisation tools. These tools aim to exploit
the metrics to aid programmers in exploring the source code of their programs,
demonstrating one area where metrics can be of use.

1.5.1 Further Work

It is important to be realistic with the findings in this paper. They are based upon
two Haskell programs, which may not be representative of Haskell programs in
general. To clarify these results further it would be necessary to repeat these
studies on a larger range of programs, although the time and effort involved in
manually inspecting the change histories of the programs may be prohibitive.

What can be achieved much more easily is to further analyse the relationships
between the metrics. This further analysis has been performed as part of the thesis
by Ryder, but is not included here due to space constraints.

The metrics described in this paper are mostly translations of imperative or OO
metrics, but Haskell programs contain features not analysed by such metrics, e.g. a
powerful type system, higher-order and polymorphic functions, etc. Although we
were unable to implement metrics for these features during this project, recent de-
velopments in the Haskell community, such as the GHC API [MPJ04, RT05] and
Strafunski[LV03], have now made it possible. Therefore, one area to expand this
work is the design and evaluation of metrics for these advanced Haskell features.

We would also like to integrate the ideas of software metrics into the HaRe
[LRT03] refactoring tool. The aim of such a project would be to use metrics to
target refactorings, in line with Fowlers’ [FBB+99] work on “bad smells”.
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