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Abstract isks, labelleds, represent universal quantification and the
nodes, labelled, represent existential quantification. In or-
Many visual languages based on Euler diagrams have

emerged for expressing relationships between sets. The ex- *ﬁ ﬁ
pressive power of these languages varies, but the major-
ity can only express statements involving unary relations
and, sometimes, equality. We present a new visual language
called Visual First Order Logic (VFOL) that was developed
from work on constraint diagrams which are designed for d, d,
software specification. VFOL is likely to be useful for soft-
ware specification, because it is similar to constraint dia- Figure 1. Two constraint diagrams.
grams, and may also fit into a Z-like framework. We show

that for every First Order Predicate Logic (FOPL) formula ey to disambiguate the diagramseading tree[5] is used
there exists a semantically equivalent VFOL diagram. The g jndicate the order in which the quantifiers are to be inter-
translation we give from FOPL to VFOL is natural and, as preted. The reading trees both assert thiatread before
such, VFOL could also be used to teach FOPL, for example. 309 d; expresses that and B are disjoint, every element
in A is related to precisely one element, under the relation
r, which is in B. The diagramsl; andd, are examples of
unitary diagramswhich can be joined together using logical
1 Introduction connectives such as ‘and’ and ‘or’.
In the constraint diagram language, it is difficult (if not
There is a growing interest in the use of languages basedmpossible) to express statements such as
on Euler diagrams for expressing and reasoning about log- ANB=0AVse A3te B
ical statements [1, 3, 4, 6, 7, 11, 12, 13]. The majority of {str = {t} v {s}.p = {t} 1)
these languages are monadic (meaning they can only ex-
press statements involving unary relations) and, hence, verywhere{s}.r (which is called anavigation expressigrde-
limited in expressive powerConstraint diagramg9] can notes the relational image efwvhen the domain is restricted
make statements involving binary relations (as well as unaryto {s} (similarly for {s}.p). One reason that (1) is difficult
relations) and have been used to model object oriented softio express is because of the disjunctive formula inside the
ware systems [8, 10]. They have been designed to com-scope of the universal quantifier. The two diagrams in fig-
plement the diagrammatic theme of the Unified Modeling ure 1 can be taken in disjunction, gividg V dq, to express
Language (UML). In this paper we present a new diagram-
matic language called Visual First Order Logic (VFOL) that ANB=0A (Vs e A3t € B{s}.r = {t}
grew out of work on constraint diagrams. VFOL is likely to VVs e AJt € B{s}.p = {t}),
be useful for software specification in the context of UML,
because it is similar to constraint diagrams, and may also fitbut this is not semantically equivalent to (1).
naturally into a Z-like framework. Another potential appli- Constraint diagrams are good at expressing conjunctive
cation domain is for teaching logic to computer scientists. information inside unitary diagrams. All of the quantifica-
In figure 1 there are two constraint diagrams. The aster-tion occurs inside unitary diagrams, which means that First




Order Predicate Logic (FOPL) sentences involving univer-
sal quantification followed by disjunctive formulae (such as
(1)) may not be realizable as constraint diagrams.

VFOL retains many features of constraint diagrams that
are useful for modelling software systems. In particular,
navigation expressions can still be made in VFOL. In order
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Figure 2. A VFOL diagram.
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2.2. Syntax of VFOL

Relation symbols with arity oneR; = {r; € R :
a(r;) = 1}, will be used to label contours, and we call
themgiven contour labels Function symbols with arity O,
Fo ={fi € F:a(f;) = 0}, are constants. The remaining
relation and function symbols will be used to label arrows.
A special symboli/, represents the universal set.

ry s l'fz 7.1y L
@), &
7Ty
d, d,

to represent relations that have arity three or greater we use

multi-sourced arrows and quantification is an explicit oper-
ation which does not appear symbolically within a (unitary)
diagram. Performing quantification outside diagrams also
removes the need for reading trees to accompany the dia
grams: the order of quantification is automatically explicit.
An example of a VFOL diagram is shown in figure 2, which
is semantically equivalent to statement (1) above. Unlike
constraint diagrams, in VFOL distinct nodes do not neces-
sarily denote distinct elements. This is similar to the in-
terpretation of constant sequences in Euler/Venn diagrams
distinct constant sequences do not necessarily denote di
tinct individuals [13].

The syntax of VFOL and FOPL are given in section 2.
The semantics of VFOL and FOPL are specified in section 3
and in section 4 we map FOPL formulae to semantically
equivalent VFOL diagrams.

2. Syntax

2.1. An Alphabet

In this section, we introduce an alphabet that will be
common to VFOL and FOPL. Firstly, we have a countably
infinite set ofvariables, V = {x1,x2,...}. We define a
set of function symbols F = {fi, f2,...}, and a set of
relation symbols R = {ry,rs,...}. These two sets may
be finite. A functiona: 7 U R — N returns the arity
of each symbol. Relation symbols have arity at least one.
Every variable is germ. If f; is a function symbol and
t1, ..., to(y,) are terms therf;(t1, ..., t(s,)) is aterm. The
set of terms is denoted.

In this paper, we will use symbols of the forfpandr;
in our examples. We expect users of the notation will prefer
to choose sensible names for their functions and relations.

S_

Figure 3. Two VFOL diagrams.

Example 2.1 The diagrami;, in figure 3 contains one given
contour, labelledr;. The other two contours amerived
contourswhich represent the image of a relation or func-
tion under certain restrictions. The function symlfplhas
arity 0 and is, therefore, a constant. Locatifiginsider;
expresses that; € r;. The arrow sourced ony, labelled
with the unary function symbofs, targets a derived con-
tour. This arrow expresses that f, (the image off; when

the domain is restricted te,) is disjoint fromr;. This
derived contour is labelled with the navigation expression
r1.fa. The arrow labelled with the binary relation symbol
ro expresses thaf .ro equalsr,.rs. By the use of shading

we have expressed that.r; is disjoint fromr;. fo.

Derived contour labels allow us to talk about the image
of a relation or function without using arrows. These labels
provide an efficiency and flexibility of notation that was not
present in constraint diagrams (where derived contours are
never labelled). To make statements about the image in con-
straint diagrams, one had to first construct the image using
sequences of arrows. The benefits of our new approach be-
come apparent when constructing complex navigation ex-
pressions.

In the example above, id; the derived contour la-
bel 1. f5 is redundant, since the arrow targeting f> is
sourced onr; and labelledf;. We will not force users of
the notation to label derived contours, unless a label is es-
sential for the interpretation of the diagram. For example,
ds in figure 3 contains a derived contour with labglrs.
Without this label, we could not interprét in a first or-
der manner. The other derived contourdinhas not been
labelled, since it represents the $et.r3).f>. For space
reasons, we omit the conditions under which a derived con-
tour label is required, but they are similar to the readability
criteria given for constraint diagrams in [5].



Further examples of derived contour labels &ig. f5
and ({z} x r1).f;3 where f5 is a binary function symbol.

From these simple derived contour labels we can construct

more complex expressions, such(ésc} x r1).f3).f2. In
order to formally define derived contour labels, we start
with the setDCy = {r : r € R; UT } U{U}. The elements

of DC, are not derived contour labels but are essential for
our inductive definition below.

1. If fis afunction symbol iF — Fy and Dy, ..., D y)

are inDC; then((Dy x ... X Dqypy).f)isinDCiy 1.

If ris a relation symbol iR —R1 andDy, ..., Dy (r)—1
are inDC; then((Dy x ... X Dg(r)—1).7) iSINDC; 1.

3. Every element oDC; isinDC; .

The set ofderived contour labelsis

DC = | | DC,, — DCo.
neN

We defineCL = R; U DC to be the set ofontour labels

The definition ofDC could be simplified if we went against
convention and defined the arity of each function symbol
to be the number of inputs plus 1: we could treat relation
symbols and function symbols in the same way. This is also
the case for several other definitions given later in the paper.

Figure 4. Multi-sourced arrows and equality.

Example 2.2 The diagramd; in figure 4 contains a func-
tion labelf; that has arity 2. The arrow has two sources and
the order in which these are read is indicated by labelling
the arrow. The diagram expresses thath r, = ) and

(r1 X 14).f3 = fa(x), wherez is a variable which is free

in dy. Here, in our informal explanation, we have identified

fa(x) with { f2(z)}.

2. If r is a relation symbol iR — R, s € AST(")~1
andt € AST then(r, s, t) is anarrow.

The set of all arrows is denotedR. Thelabel of arrow
(1,s,t) isl, thesourceis s and thetarget is ¢; the compo-
nentsof s are the elements of the s€bm(s) = {a; : s =
(@1, ..;an) N1 <i<mn}.

We assume that the seéfs F, R, DC, AR, and{l{} are
pairwise disjoint.

Example 2.3 The diagramds, in figure 4, expresses that
f f2(x), by the use of a pair of parallel straight line
segments, like an equals sign. We say tfiand f>(z)
areidentified Similarly, z # f, and we say that and

f4 areseparated The termf,(z) has a location that con-
sists of twozones In a drawn diagram, a zone can be de-
scribed by a two-way partition of the contour label set. In
our formalization, a zone is an ordered pair of disjoint sets
of contour labels{a,b), wherea contains the zone arid
excludes the zone. The diagrain expresses thagh (z) is
inry ord —rq. Sincefy(x) = f1, we can deduce from
ds that fo(z) € U — r1. Finally, dy contains adashed ar-
row. Dashed arrows, which are not part of the constraint
diagram language, allow us to represent partial information.
In the particular case here, the arrow expresses{thgai,
includesf;. In other wordsg is related to (at leasy), under
T9.

We are now in a position to define unitary diagrams.
Definition 2.1 A unitary diagramis a tuple
d=(CL,T,SA, DA, Z,5Z,\,0)
whose component parts are as follows.
1. CL C CLis afinite set of contour labels.
2. T C T is afinite set of terms.

3. SA C AR is a finite set ofolid arrowsand DA C
AR is afinite set oflashed arrowsuch that each ar-
row (I,s,t) € SAU DA satisfiesCom(s) U {t} C
CLUT U {U}.

Z < {(a,b)
zones

:aUb=CLAanb=0}is a set of

SZ C Z is a set oshaded zones

The arrows in a diagram can be sourced and targeted on 5.
6. A function\: T — PZ — {0} returns thelocation of

terms, contours and the rectangle which encloses the dia-
gram. In our formal syntax, this rectangle is denotedty
and represents the universal set. We define the set of sources

and targets of the arrows to b&S7 =7 UCL U {U}. Ar- 7.
rows are defined as follows.
1. If fis a function symbol itF — Fy, s € AST*) and 8.

t € AST then(f, s, t) is anarrow.

each term.

Arelation. C T x T. We say that termg andt, are
identifiedin d if (t1,t2) € v Or (ta,t1) € ¢.

Arelationoc C T x T. We say that termg andt, are
separatedn d if (¢1,t2) € o or (ta,t1) € 0.



Vxe AVye A U for eachf € Fy, a functionS(f): U~Y) — U for each
f € F — Fy, and arelationS(r) C U~(") for eachr € R.

x{ - \j&y = xoe—ey Arrows give information about the image of a relation
e (or function) when the domain is restricted to the (set repre-
sented by) the arrows source.

Figure 5. A compound diagram. Definition 3.2 Let U denote the universal set and Igtbe
a function. Themageof f is the set

Unitary diagrams form the basic building blocksomim- im(f) = {aa(p)+1 : Fai, ., aar) (@1, aa(py41) € [}
pound diagrams
Let A be a subset af7*(/). We defined. f to be the image
of f with the domain restricted tdl: A.f = im(f|a). Let
r be a relation. We define thmageof r to be

Example 2.4 The compound diagram in figure 5 expresses
that the relation; is anti-symmetric when restricted tb.

To allow us to quantify over sets outside unitary dia-
grams, we defineet expressionsAny contour label (given im(r) = {aa(r) : 301, -, Ga(r)-1 (a1, -, da(r)) €7}
or derived) is a set expression allds a set expression. If
A andB are set expressions theéA o B) is a set expression
whereo € {U,N, —}.

Let A be a subset dff*(")—1. We define the image efwith
the domain restricted tel to be

Definition 2.2 A diagramis defined as follows. A unitary Ar =im(rn(AxU)).
diagram is a diagram. Ifi; andd, are diagrams themd;
and(dy o da) whereo € {V,A,=, <} are diagrams. Ad-
ditionally, if z;; is a variable andA is a set expression then
(Vz; € A) dy and(3z; € A) d; are diagrams.

We wish to identify when a structure satisfies a VFOL
diagram. In order to do so, we will interpret the component
parts of the diagram, illustrated in the following example.

Example 3.1 Let S be a structure and consider the dia-
grams in figure 4. Some componentsdgfare interpreted
in S: S(r1), S(r4), S(f3) andS(f2). We interpre/ as the
universal setS (i) = U. The termf,(x) is located outside
bothr; andr, and we associate witth aterms condition

2.3. Syntax of FOPL

We briefly summarize the syntax of FOPL. The variables
and terms are elements bfand7 respectively. Atomic
formulae are of two kinds. Ifs and¢ are terms then
(s = t) is an atomic formula. If- is a relation symbol {2}.S(f2) € SU) — (S(r1) U S(rs)).
andty, ..., to () are terms them(ty, ..., t,(,)) iS @an atomic
formula. Formulae are of four kinds. Atomic formulae are  The solid arrow expresses
formulae. Ifp andq are formulae themp and(p o ¢) are a
formulae where € {V, A, =, <}. Additionally, if z; is a (S(r1) x S(rs)).S(f3) = {z}.S(f2)
variable therdz; p andVz; p are formulae.

and this is called theolid arrows condition The placement

of r; andr, expresses thaf(r1) N S(r4) = 0. To capture
this, we define th@lane tiling condition which asserts that

h ) h q the union of the sets represented by the zones is the univer-
So far, we have given the syntax of VFOL and FOPL. We sal set. Forl, , the plane tiling condition is:

shall assume the standard semantic interpretation of FOPL

formulae (see, for example, [2]). In VFOL, we briefly note (SU)=(S(r1)US(ra)))U(S(r)N(SU) =S (ra)))U
that contour labels represent sets, terms represent elements (S(ra) N(SU) — S(r1))) = SU).
(although in our formalization they represent singleton sets)

and arrow labels represent relations or functions. An arrow, In do, the dashed arrow expressgs}.S(r2) 2 S(f1).
together with its source and target, represents a property offhe terms f; and f,(x) are identified, which asserts
the relation or function represented by its label. We note S(f1) = {z}.5(f2). Separated terms denote distinct ele-
that dashed arrows are syntactic sugar. This section formaliments (strictly, singleton sets), $a} # S(f4). Addition-
izes the semantics. ally, d, has the terms condition

Definition 3.1 Astructure, S, is a non-empty séf, called {z} € S@) = S(r1) A S(fa) € SWU) = 5(r)
the domain of S, together with a single element subset of AS(fr) € SU) = 5(r) Aa}.5(f2) € SU).

3. Semantics



To facilitate the construction of a set of conditions that 3. Dashed Arrows ConditionEach dashed arrow ex-
will allow us to determine whether a structure is a model presses that, when the domain is restricted to the
for a diagram , we overloa#. The result will include sym- source, the image of the label is a superset of the tar-
bolic statements since, in general, the overloading contains get:
uninterpreted variables. /\ S(s).5(1) 2 S(t).

Definition 3.3 Let S be a structure with domait/. We (Leneba
overload$S and define the following. 4. Plane Tiling Condition The union of the sets repre-
1. Universe:S(U) = U. sented by the zones is the universal set:
2. Set expressions: I o B is a set expression where U S(z) =SU).
oe{u,N,—}thenS(Ao B) = (S(A) o S(B)). z€Z
3. Variables: for eachr; € V, S(z;) = {z:}. 5. Shading ConditionThe sets represented by shaded
L i zones contain only elements represented by terms in
4. Terms: for eacht € 7, if ¢t is a constant or vari- the diagram:
able thenS(t) is already defined. Otherwiseis of '
the form f;(t1, ..., ta(y,)) for somef; € F — Fy and /\ S(z) C U S(b).
termsty, ..., to (s, and we define 2657 er
S(t) = ((S(t1) x ... X S(tas))-S(fi))- 6. Equality ConditionTerms that are identified represent
. ) the same elements:
5. Derived contour labels: leD be a derived contour
label. ThenD is of the form((D; x ... x D,,).g) and /\ S(t;) = S(t;).
we defineS(D) recursively: (ti ;)€
S(D) = ((S(D1) x ... x 5(Dn))-5(9))- 7. Distinctness ConditioriTerms that are separated rep-

6. Zones: for each zong, b) we define

S(a,b) = (S N (SU) - | JSW)).

l€a leb

resent distinct elements:

N\ S(t) # S(t).

(tistj)eo

We define the union (intersection) over the empty settolf d = —di for somed, then Py(S) = Py, (S5). If

be the empty set (the domain).

7. Sets of zones: for each set of zongs, S(Z) =

U S(a,b).

(a,b)eZ

Definition 3.4 Letd be a diagram. Theemantics predi-
cate denotedP,(S), for d is defined as follows. i is a
unitary diagram thenP;(.S) is the conjunction of the fol-
lowing conditions.

1. Terms ConditionTerms denote elements (strictly, sin-
gleton sets) in the sets represented by their locations:

A S(t) € S(At)).

teT

2. Solid Arrows ConditionEach solid arrow expresses

d = (dy o dg) for somedy, d2 ando € {V,A,=, <} then
Pd(S) = (Pdl(S) ° sz(s)>
some@ < {V,3}, variable z; and set expressior then
Pi(S) = (Qx; € S(A)) Py, (). If Py(S) is true thenS'is
a modelfor d.

Ifd = (Qx; € A)d; for

4. Mapping from FOPL to VFOL

A FOPL formula and a VFOL diagram asemantically

equivalent when they have the same models. In order to
show that FOPL is at most as expressive as VFOL we will
map formulae to semantically equivalent diagrams. For ex-
ample, the FOPL formula,

Jzy —(z =y) = (ri(z) Ara(z,y,2))

is semantically equivalent to the diagram in figure 6. There

that, when the domain is restricted to the source, the
image of the label equals the target:

N\ S(s).8(1) = S(1).

(I,s,t)€SA

is an obvious mapping from the atomic partspofo the
unitary parts of the diagram.

Definition 4.1 Define a functiong, which maps formula
to diagramd as follows.



IxeUIyelU Vp € Person

Person canBorrow Copy
T X .\‘1 7,
Xy | = A 5TTe D Store
y [ ]
Joined collection
Figure 6. Mapping FOPL to VFOL. Figure 7. Specifying Software Systems.
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