
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Stapleton, Gem and Thompson, Simon and Fish, Andrew and Howse, John and Taylor, John
(2005) A New Language for the Visualization of Logic and reasoning. In: Cox, Philip and Smedley,
Trevor, eds. Proceedings of the 2005 International Workshop on Visual Languages and Computing.
 pp. 287-292. ISBN 1-891706-17-9.

DOI

Link to record in KAR

https://kar.kent.ac.uk/14261/

Document Version

UNSPECIFIED

A New Language for the Visualization of Logic and Reasoning

Gem Stapleton and Simon Thompson
University of Kent
Canterbury, UK

{g.e.stapleton,s.j.thompson}@kent.ac.uk

Andrew Fish, John Howse and John Taylor
Visual Modelling Group
University of Brighton

Brighton, UK
{andrew.fish,john.howse,john.taylor}@brighton.ac.uk

Abstract

Many visual languages based on Euler diagrams have
emerged for expressing relationships between sets. The ex-
pressive power of these languages varies, but the major-
ity can only express statements involving unary relations
and, sometimes, equality. We present a new visual language
called Visual First Order Logic (VFOL) that was developed
from work on constraint diagrams which are designed for
software specification. VFOL is likely to be useful for soft-
ware specification, because it is similar to constraint dia-
grams, and may also fit into a Z-like framework. We show
that for every First Order Predicate Logic (FOPL) formula
there exists a semantically equivalent VFOL diagram. The
translation we give from FOPL to VFOL is natural and, as
such, VFOL could also be used to teach FOPL, for example.

1 Introduction

There is a growing interest in the use of languages based
on Euler diagrams for expressing and reasoning about log-
ical statements [1, 3, 4, 6, 7, 11, 12, 13]. The majority of
these languages are monadic (meaning they can only ex-
press statements involving unary relations) and, hence, very
limited in expressive power.Constraint diagrams[9] can
make statements involving binary relations (as well as unary
relations) and have been used to model object oriented soft-
ware systems [8, 10]. They have been designed to com-
plement the diagrammatic theme of the Unified Modeling
Language (UML). In this paper we present a new diagram-
matic language called Visual First Order Logic (VFOL) that
grew out of work on constraint diagrams. VFOL is likely to
be useful for software specification in the context of UML,
because it is similar to constraint diagrams, and may also fit
naturally into a Z-like framework. Another potential appli-
cation domain is for teaching logic to computer scientists.

In figure 1 there are two constraint diagrams. The aster-

isks, labelleds, represent universal quantification and the
nodes, labelledt, represent existential quantification. In or-

d
1 d

2

A B
r

s t

s t

A B
p

s t

s t

Figure 1. Two constraint diagrams.

der to disambiguate the diagrams, areading tree[5] is used
to indicate the order in which the quantifiers are to be inter-
preted. The reading trees both assert thats is read beforet
andd1 expresses thatA andB are disjoint, every element
in A is related to precisely one element, under the relation
r, which is inB. The diagramsd1 andd2 are examples of
unitary diagramswhich can be joined together using logical
connectives such as ‘and’ and ‘or’.

In the constraint diagram language, it is difficult (if not
impossible) to express statements such as

A ∩ B = ∅ ∧ ∀s ∈ A∃t ∈ B

{s}.r = {t} ∨ {s}.p = {t} (1)

where{s}.r (which is called anavigation expression) de-
notes the relational image ofr when the domain is restricted
to {s} (similarly for {s}.p). One reason that (1) is difficult
to express is because of the disjunctive formula inside the
scope of the universal quantifier. The two diagrams in fig-
ure 1 can be taken in disjunction, givingd1 ∨ d2, to express

A ∩ B = ∅ ∧ (∀s ∈ A∃t ∈ B {s}.r = {t}

∨ ∀s ∈ A∃t ∈ B{s}.p = {t}),

but this is not semantically equivalent to (1).
Constraint diagrams are good at expressing conjunctive

information inside unitary diagrams. All of the quantifica-
tion occurs inside unitary diagrams, which means that First

1

Order Predicate Logic (FOPL) sentences involving univer-
sal quantification followed by disjunctive formulae (such as
(1)) may not be realizable as constraint diagrams.

VFOL retains many features of constraint diagrams that
are useful for modelling software systems. In particular,
navigation expressions can still be made in VFOL. In order

A B

t

r

s

r

s t

p

s
Ù Ú

s" AÎ t$ BÎ

Figure 2. A VFOL diagram.

to represent relations that have arity three or greater we use
multi-sourced arrows and quantification is an explicit oper-
ation which does not appear symbolically within a (unitary)
diagram. Performing quantification outside diagrams also
removes the need for reading trees to accompany the dia-
grams: the order of quantification is automatically explicit.
An example of a VFOL diagram is shown in figure 2, which
is semantically equivalent to statement (1) above. Unlike
constraint diagrams, in VFOL distinct nodes do not neces-
sarily denote distinct elements. This is similar to the in-
terpretation of constant sequences in Euler/Venn diagrams:
distinct constant sequences do not necessarily denote dis-
tinct individuals [13].

The syntax of VFOL and FOPL are given in section 2.
The semantics of VFOL and FOPL are specified in section 3
and in section 4 we map FOPL formulae to semantically
equivalent VFOL diagrams.

2. Syntax

2.1. An Alphabet

In this section, we introduce an alphabet that will be
common to VFOL and FOPL. Firstly, we have a countably
infinite set ofvariables, V = {x1, x2, ...}. We define a
set of function symbols, F = {f1, f2, ...}, and a set of
relation symbols, R = {r1, r2, ...}. These two sets may
be finite. A functionα : F ∪ R → N returns the arity
of each symbol. Relation symbols have arity at least one.
Every variable is aterm. If fi is a function symbol and
t1, ..., tα(fi) are terms thenfi(t1, ..., tα(fi)) is a term. The
set of terms is denotedT .

In this paper, we will use symbols of the formfi andri

in our examples. We expect users of the notation will prefer
to choose sensible names for their functions and relations.

2.2. Syntax of VFOL

Relation symbols with arity one,R1 = {ri ∈ R :
α(ri) = 1}, will be used to label contours, and we call
themgiven contour labels. Function symbols with arity 0,
F0 = {fi ∈ F : α(fi) = 0}, are constants. The remaining
relation and function symbols will be used to label arrows.
A special symbol,U , represents the universal set.

d
1

r
1

r
1
. f
2

f
1

f
2

r
1
. r

3

r
2

d
2

f
2

r
1
. r

3

Figure 3. Two VFOL diagrams.

Example 2.1 The diagramd1 in figure 3 contains one given
contour, labelledr1. The other two contours arederived
contourswhich represent the image of a relation or func-
tion under certain restrictions. The function symbolf1 has
arity 0 and is, therefore, a constant. Locatingf1 insider1

expresses thatf1 ∈ r1. The arrow sourced onr1, labelled
with the unary function symbolf2, targets a derived con-
tour. This arrow expresses thatr1.f2 (the image off2 when
the domain is restricted tor1) is disjoint from r1. This
derived contour is labelled with the navigation expression
r1.f2. The arrow labelled with the binary relation symbol
r2 expresses thatf1.r2 equalsr1.r3. By the use of shading
we have expressed thatr1.r3 is disjoint fromr1.f2.

Derived contour labels allow us to talk about the image
of a relation or function without using arrows. These labels
provide an efficiency and flexibility of notation that was not
present in constraint diagrams (where derived contours are
never labelled). To make statements about the image in con-
straint diagrams, one had to first construct the image using
sequences of arrows. The benefits of our new approach be-
come apparent when constructing complex navigation ex-
pressions.

In the example above, ind1 the derived contour la-
bel r1.f2 is redundant, since the arrow targetingr1.f2 is
sourced onr1 and labelledf2. We will not force users of
the notation to label derived contours, unless a label is es-
sential for the interpretation of the diagram. For example,
d2 in figure 3 contains a derived contour with labelr1.r3.
Without this label, we could not interpretd2 in a first or-
der manner. The other derived contour ind2 has not been
labelled, since it represents the set(r1.r3).f2. For space
reasons, we omit the conditions under which a derived con-
tour label is required, but they are similar to the readability
criteria given for constraint diagrams in [5].

Further examples of derived contour labels are{x}.f2

and ({x} × r1).f3 wheref3 is a binary function symbol.
From these simple derived contour labels we can construct
more complex expressions, such as(({x} × r1).f3).f2. In
order to formally define derived contour labels, we start
with the setDC0 = {r : r ∈ R1 ∪T }∪{U}. The elements
of DC0 are not derived contour labels but are essential for
our inductive definition below.

1. If f is a function symbol inF −F0 andD1, ..., Dα(f)

are inDCi then((D1 × ... × Dα(f)).f) is in DCi+1.

2. If r is a relation symbol inR−R1 andD1, ..., Dα(r)−1

are inDCi then((D1 × ...×Dα(r)−1).r) is inDCi+1.

3. Every element ofDCi is inDCi+1.

The set ofderived contour labelsis

DC =
⋃

n∈N

DCn −DC0.

We defineCL = R1 ∪ DC to be the set ofcontour labels.
The definition ofDC could be simplified if we went against
convention and defined the arity of each function symbol
to be the number of inputs plus 1: we could treat relation
symbols and function symbols in the same way. This is also
the case for several other definitions given later in the paper.

d 1

r 1

f 2 (x)

f 3

r 4

1

2

r 1

f 2 (x)

f 1x

f 4

r 2

d 2

Figure 4. Multi-sourced arrows and equality.

Example 2.2 The diagramd1 in figure 4 contains a func-
tion labelf3 that has arity 2. The arrow has two sources and
the order in which these are read is indicated by labelling
the arrow. The diagram expresses thatr1 ∩ r4 = ∅ and
(r1 × r4).f3 = f2(x), wherex is a variable which is free
in d1. Here, in our informal explanation, we have identified
f2(x) with {f2(x)}.

The arrows in a diagram can be sourced and targeted on
terms, contours and the rectangle which encloses the dia-
gram. In our formal syntax, this rectangle is denoted byU
and represents the universal set. We define the set of sources
and targets of the arrows to beAST = T ∪ CL ∪ {U}. Ar-
rows are defined as follows.

1. If f is a function symbol inF−F0, s ∈ AST α(f) and
t ∈ AST then(f, s, t) is anarrow .

2. If r is a relation symbol inR −R1, s ∈ AST α(r)−1

andt ∈ AST then(r, s, t) is anarrow .

The set of all arrows is denotedAR. The label of arrow
(l, s, t) is l, thesourceis s and thetarget is t; thecompo-
nentsof s are the elements of the setCom(s) = {ai : s =
(a1, ..., an) ∧ 1 ≤ i ≤ n}.

We assume that the setsT , F , R, DC, AR, and{U} are
pairwise disjoint.

Example 2.3 The diagramd2, in figure 4, expresses that
f1 = f2(x), by the use of a pair of parallel straight line
segments, like an equals sign. We say thatf1 andf2(x)
are identified. Similarly, x 6= f4 and we say thatx and
f4 areseparated. The termf2(x) has a location that con-
sists of twozones. In a drawn diagram, a zone can be de-
scribed by a two-way partition of the contour label set. In
our formalization, a zone is an ordered pair of disjoint sets
of contour labels,(a, b), wherea contains the zone andb
excludes the zone. The diagramd2 expresses thatf2(x) is
in r1 or U − r1. Sincef2(x) = f1, we can deduce from
d2 thatf2(x) ∈ U − r1. Finally, d2 contains adashed ar-
row. Dashed arrows, which are not part of the constraint
diagram language, allow us to represent partial information.
In the particular case here, the arrow expresses that{x}.r2

includesf1. In other words,x is related to (at least)f1 under
r2.

We are now in a position to define unitary diagrams.

Definition 2.1 A unitary diagram is a tuple

d = 〈CL, T, SA,DA, Z, SZ, λ, ι, σ〉

whose component parts are as follows.

1. CL ⊆ CL is a finite set of contour labels.

2. T ⊆ T is a finite set of terms.

3. SA ⊆ AR is a finite set ofsolid arrowsand DA ⊆
AR is a finite set ofdashed arrowssuch that each ar-
row (l, s, t) ∈ SA ∪ DA satisfiesCom(s) ∪ {t} ⊆
CL ∪ T ∪ {U}.

4. Z ⊆ {(a, b) : a ∪ b = CL ∧ a ∩ b = ∅} is a set of
zones.

5. SZ ⊆ Z is a set ofshaded zones.

6. A functionλ : T → PZ − {∅} returns thelocation of
each term.

7. A relationι ⊆ T × T . We say that termst1 andt2 are
identified in d if (t1, t2) ∈ ι or (t2, t1) ∈ ι.

8. A relationσ ⊆ T × T . We say that termst1 andt2 are
separatedin d if (t1, t2) ∈ σ or (t2, t1) ∈ σ.

x

r
2

Þyr
2

x y

x" AÎ AÎy"

Figure 5. A compound diagram.

Unitary diagrams form the basic building blocks ofcom-
pound diagrams.

Example 2.4 The compound diagram in figure 5 expresses
that the relationr2 is anti-symmetric when restricted toA.

To allow us to quantify over sets outside unitary dia-
grams, we defineset expressions. Any contour label (given
or derived) is a set expression andU is a set expression. If
A andB are set expressions then(A◦B) is a set expression
where◦ ∈ {∪,∩,−}.

Definition 2.2 A diagram is defined as follows. A unitary
diagram is a diagram. Ifd1 andd2 are diagrams then¬d1

and(d1 ◦ d2) where◦ ∈ {∨,∧,⇒,⇔} are diagrams. Ad-
ditionally, if xi is a variable andA is a set expression then
(∀xi ∈ A) d1 and(∃xi ∈ A) d1 are diagrams.

2.3. Syntax of FOPL

We briefly summarize the syntax of FOPL. The variables
and terms are elements ofV andT respectively.Atomic
formulae are of two kinds. Ifs and t are terms then
(s = t) is an atomic formula. Ifr is a relation symbol
andt1, ..., tα(r) are terms thenr(t1, ..., tα(r)) is an atomic
formula.Formulae are of four kinds. Atomic formulae are
formulae. Ifp andq are formulae then¬p and(p ◦ q) are a
formulae where◦ ∈ {∨,∧,⇒,⇔}. Additionally, if xi is a
variable then∃xi p and∀xi p are formulae.

3. Semantics

So far, we have given the syntax of VFOL and FOPL. We
shall assume the standard semantic interpretation of FOPL
formulae (see, for example, [2]). In VFOL, we briefly note
that contour labels represent sets, terms represent elements
(although in our formalization they represent singleton sets)
and arrow labels represent relations or functions. An arrow,
together with its source and target, represents a property of
the relation or function represented by its label. We note
that dashed arrows are syntactic sugar. This section formal-
izes the semantics.

Definition 3.1 A structure, S, is a non-empty setU , called
the domain of S, together with a single element subset of

U for eachf ∈ F0, a functionS(f) : Uα(f) → U for each
f ∈ F − F0, and a relationS(r) ⊆ Uα(r) for eachr ∈ R.

Arrows give information about the image of a relation
(or function) when the domain is restricted to the (set repre-
sented by) the arrows source.

Definition 3.2 Let U denote the universal set and letf be
a function. Theimageof f is the set

im(f) = {aα(f)+1 : ∃a1, ..., aα(f) (a1, ..., aα(f)+1) ∈ f}.

Let A be a subset ofUα(f). We defineA.f to be the image
of f with the domain restricted toA: A.f = im(f |A). Let
r be a relation. We define theimageof r to be

im(r) = {aα(r) : ∃a1, ..., aα(r)−1 (a1, ..., aα(r)) ∈ r}.

LetA be a subset ofUα(r)−1. We define the image ofr with
the domain restricted toA to be

A.r = im(r ∩ (A × U)).

We wish to identify when a structure satisfies a VFOL
diagram. In order to do so, we will interpret the component
parts of the diagram, illustrated in the following example.

Example 3.1 Let S be a structure and consider the dia-
grams in figure 4. Some components ofd1 are interpreted
in S: S(r1), S(r4), S(f3) andS(f2). We interpretU as the
universal set:S(U) = U . The termf2(x) is located outside
bothr1 andr4 and we associate withd1 a terms condition:

{x}.S(f2) ⊆ S(U) − (S(r1) ∪ S(r4)).

The solid arrow expresses

(S(r1) × S(r4)).S(f3) = {x}.S(f2)

and this is called thesolid arrows condition. The placement
of r1 andr4 expresses thatS(r1) ∩ S(r4) = ∅. To capture
this, we define theplane tiling condition, which asserts that
the union of the sets represented by the zones is the univer-
sal set. Ford1, the plane tiling condition is:

(S(U)−(S(r1)∪S(r4)))∪(S(r1)∩(S(U)−S(r4)))∪

(S(r4) ∩ (S(U) − S(r1))) = S(U).

In d2, the dashed arrow expresses{x}.S(r2) ⊇ S(f1).
The terms f1 and f2(x) are identified, which asserts
S(f1) = {x}.S(f2). Separated terms denote distinct ele-
ments (strictly, singleton sets), so{x} 6= S(f4). Addition-
ally, d2 has the terms condition

{x} ⊆ S(U) − S(r1) ∧ S(f4) ⊆ S(U) − S(r1)

∧ S(f1) ⊆ S(U) − S(r1) ∧ {x}.S(f2) ⊆ S(U).

To facilitate the construction of a set of conditions that
will allow us to determine whether a structure is a model
for a diagram , we overloadS. The result will include sym-
bolic statements since, in general, the overloading contains
uninterpreted variables.

Definition 3.3 Let S be a structure with domainU . We
overloadS and define the following.

1. Universe:S(U) = U .

2. Set expressions: IfA ◦ B is a set expression where
◦ ∈ {∪,∩,−} thenS(A ◦ B) = (S(A) ◦ S(B)).

3. Variables: for eachxi ∈ V, S(xi) = {xi}.

4. Terms: for eacht ∈ T , if t is a constant or vari-
able thenS(t) is already defined. Otherwiset is of
the formfi(t1, ..., tα(fi)) for somefi ∈ F − F0 and
termst1, ..., tα(fi) and we define

S(t) = ((S(t1) × ... × S(tα(fi))).S(fi)).

5. Derived contour labels: letD be a derived contour
label. ThenD is of the form((D1 × ... × Dn).g) and
we defineS(D) recursively:

S(D) = ((S(D1) × ... × S(Dn)).S(g)).

6. Zones: for each zone(a, b) we define

S(a, b) =
⋂

l∈a

S(l) ∩ (S(U) −
⋃

l∈b

S(l)).

We define the union (intersection) over the empty set to
be the empty set (the domain).

7. Sets of zones: for each set of zones,Z, S(Z) =⋃
(a,b)∈Z

S(a, b).

Definition 3.4 Let d be a diagram. Thesemantics predi-
cate, denotedPd(S), for d is defined as follows. Ifd is a
unitary diagram thenPd(S) is the conjunction of the fol-
lowing conditions.

1. Terms ConditionTerms denote elements (strictly, sin-
gleton sets) in the sets represented by their locations:

∧

t∈T

S(t) ⊆ S(λ(t)).

2. Solid Arrows ConditionEach solid arrow expresses
that, when the domain is restricted to the source, the
image of the label equals the target:

∧

(l,s,t)∈SA

S(s).S(l) = S(t).

3. Dashed Arrows ConditionEach dashed arrow ex-
presses that, when the domain is restricted to the
source, the image of the label is a superset of the tar-
get: ∧

(l,s,t)∈DA

S(s).S(l) ⊇ S(t).

4. Plane Tiling Condition The union of the sets repre-
sented by the zones is the universal set:

⋃

z∈Z

S(z) = S(U).

5. Shading ConditionThe sets represented by shaded
zones contain only elements represented by terms in
the diagram:

∧

z∈SZ

S(z) ⊆
⋃

t∈T

S(t).

6. Equality ConditionTerms that are identified represent
the same elements:

∧

(ti,tj)∈ι

S(ti) = S(tj).

7. Distinctness ConditionTerms that are separated rep-
resent distinct elements:

∧

(ti,tj)∈σ

S(ti) 6= S(tj).

If d = ¬d1 for somed1 then Pd(S) = ¬Pd1
(S). If

d = (d1 ◦ d2) for somed1, d2 and◦ ∈ {∨,∧,⇒,⇔} then
Pd(S) = (Pd1

(S) ◦ Pd2
(S)). If d = (Qxi ∈ A) d1 for

someQ ∈ {∀,∃}, variable xi and set expressionA then
Pd(S) = (Qxi ∈ S(A)) Pd1

(S). If Pd(S) is true thenS is
a modelfor d.

4. Mapping from FOPL to VFOL

A FOPL formula and a VFOL diagram aresemantically
equivalent when they have the same models. In order to
show that FOPL is at most as expressive as VFOL we will
map formulae to semantically equivalent diagrams. For ex-
ample, the FOPL formula,p,

∃x∃y ¬(x = y) ⇒ (r1(x) ∧ r4(x, y, z))

is semantically equivalent to the diagram in figure 6. There
is an obvious mapping from the atomic parts ofp to the
unitary parts of the diagram.

Definition 4.1 Define a function,E , which maps formulap
to diagramd as follows.

x
r
4

Þy
r
1 x

y

yx UÎ UÎ

z
1

2

ÙØ
x

Figure 6. Mapping FOPL to VFOL.

1. p is atomic. Thenp can be one of three types and
E(p) = d is a unitary diagram. In each case we only
specify the non-empty components ofd.

(a) p is of the form (s = t) for terms s and t.
The terms areT = {s, t}. The zones are
Z = {(∅, ∅)}. The locations of the terms are
λ(s) = Z andλ(t) = Z. The terms are identi-
fied,τ = {(s, t)}.

(b) p is of the formr(t) for somer ∈ R1 and term
t. The labels areCL = {r}. The terms areT =
{t}. The zones areZ = {({r}, ∅), (∅, {r})}. The
location of the term isλ(t) = {({r}, ∅)}.

(c) p is of the form r(t1, ..., tα(r)) for somer ∈
R − R1 and termst1, ..., tα(r). The terms
are T = {t1, ..., tα(r)}. The zones areZ =
{(∅, ∅)}. The dashed arrows areDA =
{(r, (t1, ..., tα(r)−1), tα(r))}. The locations of
the terms are, for eachti (1 ≤ i ≤ α(r))
λ(ti) = {(∅, ∅)}.

2. p is of the form¬q whereq is a formula.E(p) = ¬E(q).

3. p is of the form(q ◦ s) whereq ands are formulae and
◦ ∈ {∨,∧,⇒,⇔}. E(p) = (E(q) ◦ E(s)).

4. p is of the formQxi q whereQ ∈ {∀,∃}, xi is a vari-
able andq is a formula. E(p) = (Qxi ∈ U) E(q).

Theorem 4.1 Any formulaf is semantically equivalent to
E(f).

5. Conclusion

In this paper we have introduced VFOL which is capable
of expressing any FOPL formula. We anticipate that VFOL
will be useful for software specification and may also be
useful for teaching logic and reasoning. An invariant we
may wish to write when modelling a video rental store can
be seen in figure 7. The diagram asserts that people can only
borrow copies from stores they have joined.

We are developing a set of sound and complete reason-
ing rules for VFOL. Some of these rules will transform a
diagram into a semantically equivalent diagram whose uni-
tary parts correspond to atomic formulae. We plan to write

p" P e r s o nÎ

p

P e r s o n

S t o r e

C o p yc a n B o r r o w

j o i n e d c o l l e c t i o n

Figure 7. Specifying Software Systems.

diagrammatic versions of FOPL rules to give a complete set
for VFOL and also extend to a second order language.

Acknowledgment This work is supported by the UK EP-
SRC grant numbers GR/R63516 and GR/R63509 for the
Reasoning with Diagrams project. Thanks to Chris John
for comments on earlier drafts of this paper.

References

[1] J. Barwise and E. Hammer. Diagrams and the concept of
logical system. In G. Allwein and J. Barwise, editors,Logi-
cal Reasoning with Diagrams. OUP, 1996.

[2] S. N. Burris.Logic for Mathematics and Computer Science.
Prentice Hall, 1998.

[3] L. Choudhury and M. K. Chakraborty. On extending Venn
diagrams by augmenting names of individuals. InProceed-
ings of Diagrams 2004, pages 142–146, Cambridge, UK,
March 2004. Springer-Verlag.

[4] A. Fish and J. Flower. Investigating reasoning with con-
straint diagrams. InVisual Languages and Formal Methods,
volume 127 ofENTCS, pages 63–69, Rome, Italy, 2004. El-
sevier.

[5] A. Fish, J. Flower, and J. Howse. The semantics of aug-
mented constraint diagrams.Journal of Visual Languages
and Computing, to appear, 2005.

[6] E. Hammer. Logic and Visual Information. CSLI Publica-
tions, 1995.

[7] J. Howse, F. Molina, J. Taylor, S. Kent, and J. Gil. Spider
diagrams: A diagrammatic reasoning system.Journal of Vi-
sual Languages and Computing, 12(3):299–324, June 2001.

[8] J. Howse and S. Schuman. Precise visual modelling.Journal
of Software and Systems Modelling, to appear, 2005.

[9] S. Kent. Constraint diagrams: Visualizing invariants in
object oriented modelling. InProceedings of OOPSLA97,
pages 327–341. ACM Press, October 1997.

[10] S.-K. Kim and D. Carrington. Visualization of formal spec-
ifications. In6th Aisa Pacific Software Engineering Confer-
ence, pages 102–109. IEEE Computer Society Press, 1999.

[11] S.-J. Shin. The Logical Status of Diagrams. Cambridge
University Press, 1994.

[12] G. Stapleton, J. Howse, and J. Taylor. A constraint diagram
reasoning system. InProceedings of International Confer-
ence on Visual Languages and Computing, pages 263–270.
Knowledge Systems Insitute, 2003.

[13] N. Swoboda and G. Allwein. Using DAG transformations to
verify Euler/Venn homogeneous and Euler/Venn FOL het-
erogeneous rules of inference.Journal of Software and Sys-
tem Modelling, 3(2):136–149, May 2004.

