Kent Academic Repository
Full text document (pdf)

Citation for published version

Patrascoiu, Octavian and Thompson, Simon and Rodgers, Peter (2005) Tableaux for Diagrammz
Reasoning. In: Cox, Philip and Smedley, Trevor, eds. Proceedings of the 2005 International
Workshop on Visual Languages and Computing. pp. 279-286. ISBN 1-891706-17-9.

DOl

Link torecord in KAR
https://kar.kent.ac.uk/14260/

Document Version
UNSPECIFIED

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR =

Kent Academic Repository

Tableaux for Diagrammatic Reasoning

Octavian PatrascoipSimon Thompsoh and Peter Rodgérs

1 Computing Laboratory, University of Kent, United Kingdom
{O.Patrascoiu, SJ.Thompson, P.J.Rodger s} @kent.ac.uk
http: //www.cs.kent.ac.uk/rwd/

Abstract

Diagrammatic notations, such as the Unified
Modeding Language (UML), are in common use in
software development. They allow many aspects of
software systems to be described diagrammatically,
but typically they rely on textual notations for logical
congtraints. In contrast, spider diagrams provide a
visual notation for expressing a natural class of set-
theoretic statements in a diagrammatic form. In this
paper we present a tableau system for spider
diagrams, and describe an implementation of the
system. In a software development context, the system
allows users to explore the implications of design
choices, and thus to validate specifications;, beyond
this, the tableau algorithm and system are of general
interest to visual reasoners.

1. Introduction

Tableaux provide an intuitive mechanism for therefore be

a routine way. In order to understand the semauofics
the formulas, other mechanisms are needed. A decisi
procedure will allow a user to find out whether a
specification is satisfiable, but this does notvasrsthe
question of whether the intention of the specifias
been realized. To achieve this it is necessargage
out the significance of the formula, and specifical

e to investigate the possible models of the

formula, and
* to explore the consequences of the formula: in
other words, to discover its ‘implications’.

Tableaux can provide both of these for the language
of spider diagrams. A spider diagram gives a
diagrammatic representation of a statement about a
finite number of sets, their membership and their
interrelationships. For instance, in the context of
specification such diagrams can be used to desttrébe
relations between objects and classes.

The language of spider diagrams is equivalent to
monadic predicate logic with equality [18]. It wdul
possible to turn diagrammatic

exploring the models and counter-models of logical repr_e_sentations into textual statements and toyappl
formulas, and in particular they give mechanisms fo decision procedures or tableau methods to the

deciding satisfaction and validity for a wide clasfs

translations of diagrams. This would be perfectly

logics. To users, tableaux are of value not only as@dequate in the case of a decision procedure, lettev
decision procedures but also by providing a feedback to the user is necessary — about the é6rm
mechanism by which a user can explore the Mmodels, or the consequences of a formula, sayr-ithe

consequences of a statement or set of statements.

is crucial to work with a visual representationoiaer

This is particularly important when a statement is © provide recogn@zabl_e visual feedback. Hence the
used as the specification of or a constraint on aSystem developed in this paper.

software system. In software development, it isefl-w

The paper begins in Section 2 with an overview of

known problem that specifications can suffer from diagrammatic reasoning, tableaux and spider diagram
incompleteness, inconsistency, or inappropriatetess 2nd their reasoning rules. Section 3 presentsehtal
the problem domain. It is therefore crucial that tableau algorithm for spider diagrams, illustratdsy a

specification writers have the chance to engage andumber of —examples, discusses heuristics and

interact with their specifications in as many diffiet

ways as possible.

optimizations and concludes by evaluating the syste
The conclusion reviews the work presented in the

Obviously specifications should be checked for Paper, and explores prospects for future work.

syntactic and type correctness, and this can be don

2. Spider Diagrams intersection, union and complementation, arzdre is
a region which properly contains no other regions.

The motivation for spider diagrams comes from the ~ The figure contains regions correspondingate,
belief that visual representations of logical stetats &b and so forth but not tanc, say;anb is a zone,
can aid understanding of the underlying meaning, an but &b is not, since it properly contains the zone
are more acceptable to people who are unfamilitir wi representing anb (amongst others). The figure
standard textual mathematical notations. A further contains a singlepider, which has twdeet, and which
reason is that many essentially visual systems k@ave inhabits the regiora, with a foot in the zoneanb and
resort to textual notation for indicating logical a-b. Spiders have a single foot in each of one or more
expressions over visual diagrams. An example is thezones.
Unified Modeling Language (UML) [19], which is Applied to UML, relationships between classes and
used for describing the design of object-oriented states can be expressed as contours. Constramts ar
systems. UML is entirely diagrammatic, except feg t represented as graphs where nodes appear in
language used to describe complex constraints onappropriate set intersections.

collections of objects: this is the Object Consirai The interpretation of Figure 1 is given by thretsse
Language (OCL) [12]. Researchers in diagrammatic a, b andc, which are subsets of a universal set, U, say.
reasoning are developing candidates for replaciég O The absence of a region corresponding to a set-
with a visual notation; spider diagrams are onehsuc theoretic combination, such asc, implies that the
example. combination must be empty: in this case the aetsd

€ must be disjoint.
2.1. Background Spiders provide lower bounds on the cardinality of

sets: the spider that inhabits the regiooimplies that

The work described here is performed as part of thethe region contains at least one element.
Reasoning with Diagrams project [15], which engaged Shading is used to provide upper bounds. The
in developing spider diagrams and similar shading of the zonénc implies thatb andc are
diagrammatic reasoning methods. Spider diagrams argjisjoint. The shading of the zomab implies that it
an extension to work of Shin [16]. Shin presented contains at most one element, that potential elemen
formal systems of Venn-Peirce diagrams: Venn peing given by the spider with one foot in the zone
diagrams extended with annotations to indicate gmpt There are no upper bounds on the cardinality of any
and non-empty sets. Venn-Peirce diagrams admitynshaded zone in a spider diagram. In this paaicul
purely diagrammatic reasoning and Shin proved thatcage it is possible for the set(alc) to contain any
they could be equipped with sets of logical ruleatt ymper of elements (including none).
are both sound and complete. The diagram shown in the Figure 1 Usitary; a

In related work, Hammer [6] presented a sound andgeneral spider diagram is given by a propositional
complete system of Euler diagrams [3]. Sound and compination — using conjunction, disjunction and

complete sets of diagrammatic inference rules havenegation — of unitary diagrams. A full formal
also been developed for several systems of spidefgefinition of the syntax and semantics of spider
diagrams [7]. diagrams is given in [18].

2.2 Semantic Tableaux

d

B

{ @1 b \\F Semantic tableaux, [1] Section 2.6, provide an

\\7_/ . /] intuitive and efficient mechanism for deciding
— satisfiability and validity for a variety of logicsA

))) semantic tableau for a formula is a tree, labetezhah

Figure 1 A spider diagram node by a set of formulas: branches of the tree

. . represent possible models for the formula.
Spider diagrams [S] are themselves a subset of the 'the tapleau for a propositional formula is built by

constraint diagram nqtation_ [8]. Spider diagrams repeatedly applying decomposition rules to any
represent the interrelationships and membership of compound formula, until only literals and their
finite collection of sets. In Figure 1 diagrahtontains negations (oatoms) remain.

three sets, b andc which are represented bgntours « A conjunction, such as B, will be replaced by
(simple closed plane curvesegions are given by the pair of formulas A, B; this reflects that fact

that any model of B will have to make both Building this tableau has shown that the root
conjuncts true. formula is satisfiable; we can also conclude thnat t
« A disjunction like @D, will give rise to a split: un-negated formula (&C)=((A[B)=C) is not valid,
one branch labeled C and the other D, reflecting since its negation is satisfiable. In this way,l¢abx
that to satisfy a disjunction it is sufficient to provide a decision procedure for validity as wellfar
satisfy one of the disjuncts. satisfiability.
Rules which do not cause a branch are callediles For completeness we include the rules for
and branching rules are calleBtrules. For each conjunction, disjunction and negation here:
connective (e.g. implications>) there are two rules:

one that decomposes the formula%X) and the other (B A C) (B v C) --B
decomposing its negatior,(X=Y). In this case, we | / \ |
have the rules: B B c B
(X=Y) - (X=Y) o
/ \ I -(B v C)
-X Y X ~(B A C) |

Y /7 \ ~B
-B -~C

Taking a larger example, we next draw the tableau f -C

the formula -((A=C)=((A[B)=C)). First we Next we look at logical equivalences between
decompose the formula itself, giving the two forasul ~ spider diagrams which will form the basis of the
-((AOB)=C) and (A=C). Either could be expanded, e€xtension of tableaux to spider diagrams.

but it is usually sensible to appty-rules before3—

rules, thus delaying branching; we therefore expand2.3 Reasoning Rulesfor spider diagrams

= ((AOB)=C). At the next stage, two formulas remain,

both withB-rules; we expand &C) and then (AB). To build. tableaux for spider diagrams we use
transformation rules that allow us to transform one
= ((A=C)= ((AVB)=C)) diagram into another logically equivalent diagragn b
removing, adding, or modifying diagrammatic
I elements. The rules are summarized below; they are
= ((AvB)=C) based on the rules given by Shin in [16], which
(A=C) developed earlier work of Pierce [13].
I Rule 1: Add a contour. A new contour can be
(AVB) drawn inside a bounding rectangle without changing

the meaning of the diagram if each zone is sptit in
—C two zones, inside and outside of the new contoachE
/ \ foot of a spider is replaced with a connected péir
-2 c feet, one in each new zone. Shaded zones become
corresponding shaded regions.
/ \ Rule 2: Add a zone. The rule is used to add a zone
absent from a diagram. The added zone is shaded to
A B indicate that it is empty.
The tableau has three branches, and so embodées thr Rule 3: Split a spider. If a unitary diagrand has a
potential models. Not all give models: consider the spider whose habitat is formed Imyzones, then we
leftmost branch: that has atoms-A4, C, which can’t may replacel with a disjunction ofi unitary diagrams
be satisfied simultaneously; similarly the righttnos di, ..., d,, each of which contains a one-footed spider
branch is closed. inhabiting one of the zones touched by the spder
The central branch has atom#\, B, - C, indicating Rule 4: Expand negation. The explicit negation of
that the formula at the root is satisfied when Al &h a unitary diagram containing only one-footed spgder
are false and B true. Note that in building thétigost replaced by a disjunction of (un-negated) unitary
branch it was unnecessary to expan@B)Asince the diagrams. The constraints placed on the models by
branch was already closed, shading and one footed spiders represent a coiganct

d

of simple constraints; hence the disjunction résgit d
from expanding the negation. T = e
(/ I‘ /_4 . \\/h ‘/ I,f/_\r“ \\.h
Rules 1-4 provide the basis for diagrammatic \') oy \\;
reasoning with spider diagrams. Other rules used in N G : /)
building the tableau are the standard equivalenées e

propositional logic and compound rules built by Rule 1: Adding contoue to diagram d
iteratively applying combinations of rules 1-4. ’
Rule 5: Expand a compound diagram. This rule
encapsulates the application of the tableau rubes f P
propositional and adds the children associatethby ([\ \

)

1 1 H ‘) — M
reasoning process to ‘and’ and ‘or’ nodes. It also \. / N
applies the de Morgan laws to transfer the negation — (/
unitary diagrams. The children are computed acogrdi \\,J

to propositional tableau rules [1].

Rule 6: Add contours. This rule applies Rule 1 Rule 2: Adding zone bc to diagram d
repeatedly to add a list of contours to a collectid
unitary diagrams.

Rule 7: Split spiders. Splits all the spiders used in [~ or
a collection of unitary diagrams; Rule 3 is invoked =/~ ™ ™ =
several times. Savi / = O
Rule 8: Equalize contours. This rule is applied to a S U\ J
collection of unitary diagrams, which will appeara —

number of different logical combinations within a
tableau. Contours are added to the individual diagr e
so that each diagram contains the same set of wento (.
the union of the initial contour sets. This rule is N /&;_,/
therefore equivalent to repeated application oeRul
Rule 9: Equalize zones. This is the analogue of Rule 3: Splitting a spider
Rule 8 for zones rather than contours, and it
corresponds to repeated application of Rule 2. igefo

adding an extra zone, contours in the diagrams teed — or

be equalized. TSN | = e .
Rule 10: Equalize diagrams. Invokes Rule 8 and “ &fﬂ I ' \\

Rule 9 to equalize both the contours and the zones. A \ n
Rule 11: Expand all compound diagrams. Uses . 4

Rule 5 repeatedly until there are no more ‘and’ and
‘or’ compound diagrams.

-2
. o o e @ Y
Every unitary spider diagram is satisfiable; { P
contradictions only occur in compound diagrams. In _J, \.,/
particular, from a unitary diagram we can read aff
model by collapsing each spider to one of its tret
reading that as element of the model. Rule 4: Negate a unitary diagram

Contradictions can be explicit, as in the situation]
where a compound diagram contains both a diagramFigure 2 lllustrating Rules 1-4
and its explicit negation; on the other hand, apliert o
contradiction occurs in a conjunction of diagranitiw 3. System Definition
conflicting constraints on a particular zone. Shgdi
gives an upper bound on the cardinality of a zone This section presents a tableau system for the
whereas spiders provide lower bounds, and these twaliagrammatic reasoning framework presented in
can conflict. Section 2. We begin with the definition of somenter
and then we present the rules used in the systeem T

we present the algorithm that decides whether aanegative literal. Any diagram d is theomplement of

diagram is satisfiable and analyze the satisfigbdf
some formulas to illustrate the algorithm. In order

= d and- d is thecomplement of d. For any diagram
d, (d,= d) is acomplementary pair of literals.

design the algorithm that builds the diagrammatic Definition 2. A diagram that only contains spiders
tableau for spider diagrams we refer to the work with one foot is asingle-footed diagram. Otherwise it
presented in [1], as a framework for propositional is anon-single-footed diagram.

tableaux, and [4], which presents a reasoning syste Definition 3. Two diagramsi;, andd, areequalized

for spider diagrams. if they contain the same set of zones and contours.
As presented in Section 2.2, a tableau is a tree,Otherwise they areon-equalized.

labeled with sets of formulas at each node. When

spider diagrams, with diagrams as literals, replace3 o Algorithm Definition

formulas it is necessary to present the tree in a

different form. We have chosen to use the JTree This section presents a tableau algorithm for

mechanism, which presents trees using the file geciging satisfiability and hence validity for spid
browser’ metaphor. _ _diagrams as presented in Section 2. This method
The tableau system is shown in the screenshots ingyiends semantic tableaux for the propositional

Figure 3 and Figure 4. The upper panes of the windo .5\c,1ys. We now give the construction of the setnan
show the constituent unitary spider diagrams of the (spieau for our diagrammatic reasoning system; the

diagram in question; in the lower pane the tablsau gigorithm derives from the one presented in [1],
shown as a JTree. Figure 3 shows a contradictionggction 2.6.

between the two diagrams d1 and d2 by outlining in

bold the zone (ab) with contradictory constraints. Algorithm 1 (Construction of a diagrammatic

Figure 4 shows the effect of equalizing contourd an 5p1eau for spider diagrams)

Input: A diagramd of the spider diagrams calculus
Output: A diagrammatic tableall for d with all
the leaves marked.

zones between two diagrams (Rule 10 above).

=13

% Diagrammatic Reasoning

& Diagrammatic Reasoning
ener

ol H|

Elas

] swider diagramz

[[GlClelx]eln/e/x

4

] Tableau
; <>(<m(:1”‘dddzz>)) @) {(dt and d2)}
¢ Cldiagrams @ @ (1, d2}

9 [diagrams
dl 42
L L
aa T
~ 7 ~
/ b / . JJ
/ | [
f) /
/ ; J
fa (s
| T | / (
/ o o
@ 3 contradieti _
an,
Farsing -
Converting logical expression to diagrams: £ Parsing . fost
IEu\\d\"E‘hEtab\Eau = IConverting logi B

-

Figure 3 Equalized single-footed literals Figwe4Equaizngrae

A diagrammatic tableall for d is a tree for which
all the nodes will be labeled with a non-empty clet
diagrams. At the beginning the consists of a single

3.1. Definitions

Definition 1. A literal is a unitary diagram or the
negation of a unitary diagram. A unitary diagramais
positive literal and the negation of a unitary déag is

node, the root, labeled with the ¢d}. The tableau is
built by choosing an unmarked Idlafabeled with the
set of diagram®(l) and applying one of the following

rules. The construction terminates when all thedea
are marked witf® or x .

e If D(l) contains at least one compound diagram,
choose a compound diagramd from D(l).
Iteratively create children for ledfapplying the
a- and Brules rules for propositional logic, as
presented in [1].

« If D(I) contains at least one negative literal,
choose a negative literalnd from D(l). Create
children for leafl applying thenegation rule on
nd.

« If D(l) contains only positive literals, and they are
not equalized, create children for Idafising the
equalizing rule presented above, by which
contours are introduced into diagrams.

« If D(I) contains at least one non-single-footed
literal, create children for ledfusing thesplitting
spiders rule presented above, under which a
diagram containing a spider is split into a
disjunction of diagrams containing only single-
footed spiders.

« If D(l) is a set of positive single-footed literals use
the contradiction rules to mark the Ieéaff there is
a contradiction among the diagrams frih,) the
leaf is closed and marked wix. Otherwise, it is
open and marked wil®.

The algorithm is not deterministic since during th

¢ Using heuristics can make the tableau smaller. For
example it is best to use-rules beforefrules,
and to split spiders only after the diagrams are
equalized to avoid duplication of formulas.
Adding some derived rules will shorten
contradiction checking process. Examples include:
« If D(l) is a set of literals and contains at least a
false diagram, the leaf is closed and marked with
x . Otherwise other rules should be applied.
If D(l) is a set ofrue literals, the leaf is closed and
marked with®. Otherwise other rules should be
applied.
If D(l) contains both a diagram and its negation,
then the leaf should be closed and marked x*ith

the

3.3. System Features

In this section we review the design of the tableau
system, drawing attention to the various featured a
the motivation for their inclusion. A key aspect af
system of this sort is its usability, and to suppbis
the system can be driven both automatically ant wit
user intervention. We discuss system featuresrigeth
broad categories now.

Logical aspects

Comprehensive set of literals and logical
operators. The implemented system supports true,

expansion process of compound diagrams there is galse, and user-defined unitary diagrams togethitir w

choice of which formula to expand within the labél

compound diagrams built using the propositional

chosen leaf. Beside this, equalizing, negation, andoperators ‘not, ‘and’, (inclusive) ‘or’, implicatn and
spider-splitting rules generate compound diagrams, equivalence. It can easily be extended to supphero

which generates non-determinism.

A diagrammatic tableau whose construction has

terminated is calledompleted diagrammatic tableau.
A completed diagrammatic tableaud®sed if all the
leaves are marked witlx. If at least one leaf is
marked @, the diagrammatic tableau @pen. Nodes

logical operators like exclusive or,xor’.

Mixed visual and textual notation. Unitary
diagrams are created using a diagram editor whée t
compound diagrams are described using a textual
notation. A parser reads the textual notation arilti®
an internal representation. The internal model bk

below which the tableau is not completely expanded ysing Model Driven Architecture [10] and the Kent

are marke(?.

The proof that the construction of a diagrammatic
tableau terminates is straightforward, and is simb
the proof for semantic tableau in propositionalidog
[1][2]. A corollary of that result is that the omdef
application of the tableau rules does not affee th
result of the decision procedure.

In practice, the construction of diagrammatic

Modeling Framework [9].
User interaction

Viewing and editing diagrams. It is possible to
view and edit a population of diagrams with eadés T
can be particularly important when debugging well-
formedness constraints expressed using diagrammatic

tableau can be made more efficient by using some ofjanguages.

the ideas presented in [1]:

Familiar browsing metaphor. The system uses the

* Significant savings in space terms can be obtainedj_Tree library which provides a standard interfeze
if all the nodes share a diagram repository and tree structures such as file hierarchies. This mime

reference elements using pointers.

familiar to users from file and directory browsers.

Application of rules over diagrams. It is possible concrete level. This increases the usability anel th
to apply transformation rules over diagrams. Silect extensibility of the reasoning system.
application is supported (e.g. adding a contougrze, Diagram storage. The system offers the possibility
or splitting a given spider), so that one can foons of persistent storage for diagrams. This is a usefu
particular diagrams, without being distracted byihg facility, especially in the case of large-scaleteyss.
to check ones which are not the current focus. The
feedback from rule application has been designdm:to 3.4. Example
as helpful as possible.

On-the-fly application of the rules. In developing Figure 5 contains the tableau after the expansion o
well-formedness constraints it is often very usaful the top-level “or” and some marking. A contradiatio
be able to experiment with constraints and sub-has been detected in one branch, in the zone shown
diagrams. The system is capable of reasoning aboutwith a thick border. However, the tableau as a @l®l
sub-diagrams that can be then integrated intogedar still in an “undefined” state: more rules need ® b
scale diagram. applied in order to decide if the tableau is openat.

Backtracking. The process of diagrammatic
tableau construction is non-deterministic. So, ahe & Diagrammatic Reasoning
point one might realize that the applied rule ig no |ieSeemer feesom o0 _Lane e

=] snider diagram &

appropriate. The system allows the user to go back —Ta : = e Tals T
previous step and choose another rule. — ; @] x[¢[n[¢[a]0]E]

System implementation and visualization

Diagram layout. Diagrams can be displayed using
automatic layout techniques [11][14]. However, the
layout process is time-consuming and so is optional
Instead, the user can view a fast embedding of aj
diagram, which is poorly laid out, or just view the
abstract syntax as a textual collection of zoned an
spiders.

Visual layout. Displaying trees is always a problem
because on the one hand the number of nodes ®nds § ., . Gisressrm
grow on lower levels whilst on the other the graghi e SENEE S
space is limited to a scrollable screen. In amgiteto T
deal with this, and to avoid under-use of screei re 7
estate, the system provides a mixture of vertical a T P

horizontal display directions: tree nodes whichni L /
contain graphic information are displayed using the Q ‘
vertical dimension while graphic information is e,
displayed on the horizontal dimension. e — .
Syntax checking for diagrams. The system detects Lo -
syntactic and semantic errors prior to the consitnc _ 0|
of the tableau. The graphic editor manages theagynt
errors that appear in unitary diagrams. The paiser
responsible for reporting the syntax errors in the
textual description of the compound diagrams. This
ensures the fact the system will process only well-
formed diagrams. .
Link between abstract and concrete levels. After 4. Conclusion and Further Work

a diagram has been read using concrete syntax i)
notations, it is transformed into an abstract [N this paper we have described a system that

representation. The reasoning is performed at theSUPPOItS reasoning with spider diagrams. This syste
abstract syntax level. The results obtained at thedllows users to construct their own spider diagrams

abstract level are then reported to the user at the?Nd to explore the construction of a diagrammatic
tableau. In addition, it can expand automaticallyhee

Figure5 Indicating a contradiction between unitary
diagrams

compounds diagrams within a tableau node. The
diagrammatic tableau is displayed using a mixture o
vertical and horizontal display directions: treedes
that do not contain graphic information are dispthy
using the vertical dimension while graphic inforioat

is displayed on the horizontal dimension.

Our plan is to extend the work in this paper to the
considerably more expressive constraint diagram
reasoning system [8]. Ideally, we will be able &sign
and implement an algorithm to construct tableaux fo
constraint diagrams. This is only possible for a
decidable system. Restricted forms of the condtrain
diagram notation, which include arrows and univiersa
spiders, yield decidable systems [17].

We also plan to use a heuristic approach to gemerat
even shorter tableaux. The heuristic algorithm woul
search for an optimal operation to apply. If itifatio
find a solution, it could be because more operateme
required, or because there is no solution.

Currently the output from our tool appears in
mixture of textual and diagrammatic notation. Idenr
to present tableaux to users as a tree of diagreens
need to create concrete diagrams from their alistrac
descriptions. In [3] the authors give an algoritfon
drawing a class of spider diagrams from abstract
descriptions. The quality of the diagram layout has
been improved using iterative methods and layout
metrics [11][14]. More research is required on dregv
strategies for diagrams in the context of tableaax
that the diagrams appear sufficiently similar aftde
application.

Acknowledgement. This work has been funded by
the UK EPSRC (Engineering and Physical Sciences
Research Council) under grants GR/R63509/01 and
GR/R 63516/01.

5. References

[1] Ben-Ari M. Mathematical logic for computer
science. Springer-Verlag 2001.

[2] Fitting M. First-order logic and automated theorem
proving, Springer-Verlag 1996.

[3] Flower, J., and Howse, J. Generating Euler
diagrams, In Proceedings of Diagrams 2002, pages
61-75, Springer-Verlag, 2002.

[4] Flower J, G. Stapleton G. Automated theorem
proving with spider diagrams CATS04,
Computing: The Australasian Theory Symposium ,
Dunedin, New Zealand, January 2004.

[5] Gil J., J. Howse, and S. Kent. Formalising Spider
Diagrams, Proc. IEEE Symp on Visual Languages
(VL99), IEEE Press, 130-137. 1999.

[6] Hammer E.M. Logic and Visual Information, CSLI
Publications. 1995.

[7] Howse J., F. Molina, and J. Taylor. SD2: A sound
and complete diagrammatic reasoning system,
Proc. IEEE Symp on Visual Languages (VL2000),
IEEE Press, 127-136. 2000.

[8] Kent S. Constraint Diagrams: Visualizing
Invariants in OO Modelling. In Proceedings of
OOPSLA97, pages 327-341. ACM Press, October
1997.

[9] Kent Modeling Framework.
www.cs.kent.ac.uk/projects/kmf

[10] Model Driven Architecture www.omg.org/mda

[11] Mutton P., P. Rodgers, and J. Flower. Drawing
Graphs in Euler Diagrams. Proc. Diagrams 2004,
pages 66-81. Springer-Verlag LNAI.

[12] Object Constraint Language. Object Management
Group http://www.omg.org document ad/03-01-07.

[13] Pierce C., Collected Papers. Vol. 4. Harvard
University Press.

[14] Rodgers P., P. Mutton and J.Flower. Dynamic
Euler Diagram Drawing. Proc. IEEE Symposium
on Visual Languages and Human-Centric
Computing (VL/HCC'04), pages 147-156. IEEE,
September 2004.

[15] The Reasoning with Diagrams
www.cs.kent.ac.uk/projects/rwd/

[16] Shin S-J. The Logical Status of Diagrams. CUP.
1994.

[17] Stapleton G., J. Howse, and J. Taylor. A constraint
diagram reasoning system. In Proceedings of
Distributed Multimedia Systems, International
Conference on Visual Languages and Computing
(VLC '03). pp. 263-270, Miami, USA, 2003.

[18] Stapleton G., J. Howse, J. Taylor and S Thompson.
What Can Spider Diagrams Say? Proc. Diagrams
2004, pages 112-127, Springer-Verlag LNAI.

[19] Unified Modeling Language. Object Management
Group http://www.omg.org.

project:

