
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions 

for further reuse of content should be sought from the publisher, author or other copyright holder. 

Versions of research

The version in the Kent Academic Repository may differ from the final published version. 

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the 

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: 

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down 

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Iqbal, Musaddar and Freitas, Alex A. and Johnson, Colin G.  (2005) Varying the Topology and
Probability of Re-Initialization in Particle Swarm Optimization.    In: Talbi, El-Ghazali, ed. Evolution
Artificielle 2005.

DOI

Link to record in KAR

https://kar.kent.ac.uk/14249/

Document Version

UNSPECIFIED



 

Varying the Topology and the Probability of  

Re-initialization in Dissipative Particle Swarm 

Optimisation 

 
Mudassar Iqbal, Alex A.Freitas, Colin G. Johnson 

 
Computing Laboratory 

University of Kent, Canterbury, UK 
{mi26,aaf,cgj}@kent.ac.uk 

 

 
Abstract. This paper introduces two new versions of dissipative particle 

swarm optimization. Both of these use a new time-dependent strategy for 

randomly re-initializing the positions of the particles. In addition, one 

variation also uses a novel dynamic neighbourhood topology based on small 

world networks. We present results from applying these algorithms to two 

well-known function optimization problems. Both algorithms perform 

considerably better than both standard PSO and the original dissipative PSO 

algorithms. In particular one version performs significantly better on high-

dimensional problems that are inaccessible to traditional methods. 
 

1 Introduction 

 
Particle swarm optimisation, PSO, is a heuristic search/optimisation technique first 

proposed by Kennedy and Eberhart [1,2,3].  The underlying motivation for the 

algorithm is drawn from the collective behaviour of social animals, phenomena such 

as bird flocking, fish schooling etc. as well elements of social psychology. After this 

first proposal forwarded by Kennedy et al., several researchers have analysed the 

performance of PSO with different parameter settings, and PSO so far has been used 

across number of applications [4]. 

In this paper we propose two novel variants on the kind of PSO algorithm known 

as dissipative PSO [7]. The basic idea of dissipative PSO is to introduce chaotic 

perturbations into the system, by randomly initialising the particle positions with a 

small probability. In this algorithm the probability of re-initialisation remains 

constant. By contrast, our new algorithm introduces a time-dependence to this 

probability. In addition we discuss variants of dissipative PSO which use a local 

neighbourhood topology drawing inspiration from small world networks [11]. 

The remainder of this paper is organised as follows. Section 2 presents an 

overview of standard particle swarm optimisation, and reviews the core ideas of 

dissipative PSO. Section 3 describes our two new dissipative PSO algorithms. In 

section 4 we present computational results which apply these algorithms to function 

optimisation. Finally section 5 concludes the paper and mentions directions for future 

work. 

 



2    Standard and Dissipative Particle Swarm Optimisation 
 

Like other population-based search algorithms, Particle Swarm Optimisation (PSO) is 

initialised with a population of random solutions (particles). Each particle flies in D-

dimensional problem space with a velocity, which is adjusted at each time step. The 

particle flies towards a position, which depends on its own past best position and the 

position of the best of its neighbours. The quality of a particle position depends on a 

problem-specific objective function (fitness). 

The position of the ith particle is represented by a vector Xi = (xi1, � , xid, � , xiD), 

where xid ∈[ld,ud] , d=1�.D.  ld  and ud  are the lower and upper bounds for the dth 

dimension, respectively, and D represents the number of dimensions of the search 

space. 

The best position (i.e. that with the best fitness, the so-called pbest) of particle i is 

recorded as Pi = (pi1, � , pid, � , piD). Similarly the location of the best particle among 

the population is recorded by the index g and the location Pg is called gbest (global 

best) in the case of a global neighbourhood topology, where each particle is connected 

to all of the other particles. It is also possible to use a local neighbourhood topology, 

in which case the location of  the best local neighbour is called Pl (local best). The 

velocity of the ith particle Vi = (vi1, � , vid, � , viD), is limited to a maximum velocity 

Vmax = (vmax 1, � , vmax d, � , vmax D).  

At each time step, the particles� positions are updated depending on their pbest 

and gbest (or lbest) according to following equations: 

11

2211

1 )()(*

++

+

+=

−+−+=
t

id

t

id

t

id

t

idgd

t

idid

t

id

t

id

vxx

xprcxprcvwv
                                  (1)       

 

Where t is the iteration index, and w (0≤w<1) is the inertia weight, determining how 

much of the previous velocity of the particle is preserved. This plays the role of 

balancing the global and local search ability of PSO [12]. c1, c2 are two positive 

acceleration constants, r1, r2 are two uniform random numbers sampled from U(0,1). 

For the velocity update equation, the second part represents the private thinking by 

itself; the third part is the social part, which represent the cooperation among the 

individuals. In the case described by equation 1, a global neighborhood was used; 

later we shall explore an alternative, which uses a local neighborhood. 

A PSO algorithm consists of the following steps: 

1) Initialize a population of m particles, assigning random location between      

(-Xmax, Xmax) and random velocity (-Vmax, Vmax) for each dimension. 

2) Evaluate the desired fitness function for each particle and update pbest and 

gbest if needed.  

3) Change the velocity and position of each particle according to equation 1 

4) Loop to step 2 until a stopping criterion is met (i.e. a good fitness value is 

obtained, or a predefined number of iterations is performed). 

 

 

 



2.1    Random Re-initialisations in Dissipative PSO 

 

A peculiar property of the standard PSO algorithm is that, although it finds reasonable 

quality solutions much faster than many other population-based optimisation 

algorithms, it does not continue to improve on the quality of solutions after a certain 

number of generations have passed [6].  That is, it is lacking enough capability to 

achieve �sustainable development� [7]. The swarm becomes stagnated after a certain 

number of iterations. 

Xie et al. (2002) devised one solution to this by introducing additional randomness 

into the system. This is done by randomly re-initialising particle positions with very 

small probability (~0.001) at every iteration, which improves the performance quite 

significantly with respect to standard PSO. In this way particles are not only referring 

to their historical positions and those of their fellows, but also they are affected by 

small changes in their environment. This chaotic perturbation, or negative entropy 

(i.e. considering swarm as an �open dissipative system� [7]) brings aspects of the 

outside world into the system (swarm) which prevents the system from settling at an 

equilibrium. Then self-organization of this complex interacting system leads to 

sustainable development from the fluctuations. The additional entropy put into the 

system is added by the following two equations, which are executed in the simple 

PSO after the velocity and position update equations have been evaluated (eqn.1). 

The chaotic perturbation for the velocity of the particle in each dimension is 

computed by: 

didv vrandvTHENcrandIF max,*() )()( =<           (2a) 

The chaotic perturbation for the position of the particle in each dimension is 

computed by: 

),( )()( ddidl ulRandomxTHENcrandIF =<         (2b) 

where Cv and Cl are the chaotic factors in the range [0,1] and Random(ld,ud) is a 

uniform random number between ld and ud. 

 

3   Dissipative PSO with Variable Probability of Adding Chaotic 

Perturbations 
 

Putting forward the same argument as in dissipative version, our analysis reveals that 

this scheme, despite improving results significantly with respect to standard PSO and 

being competitive to many other variants, has some limitations and can be made much 

more effective. 

We found that adding this chaotic perturbation to the system is most effective 

when done with a time dependant strategy. We specifically discovered that in the 

early iterations (approximately the first third) of the algorithm, it is better to re-

initialise the particles with a high probability (~0.5 for each particle). By contrast, in 

the later iterations it is better to use a much smaller probability (~0.001), as used in 

dissipative PSO.  

The underlying idea is that in the early iterations the overall fitness of the particles 

is low, so that it is effective to perform more exploration by using random re-

initialisations. In this way particles find good quality local solutions, which they keep 



on improving in the later iterations, so obtaining sustained development [7]. In other 

words, in earlier swarm iterations, particles are more vulnerable to environmental 

effects, whilst later on they rely more on the acquired knowledge of their best 

neighbours. Therefore their mutual non-linear interaction helps them to find better 

and better intermediate positions.  

We have developed two versions of PSO based upon the idea of time-dependant 

random re-initialisation of particle positions. The first version uses the global 

neighbourhood topology, denoted as gbest; the second version uses a local 

neighbourhood topology, denoted as lbest. However, instead of keeping the 

neighbourhood constant as in conventional PSO, we introduce a dynamic 

neighbourhood topology.  

In addition, we argue that for these two versions of global and local 

neighbourhoods, a dynamic and time varying local topology can make better use of 

the idea of randomly re-initialising particles to slow down the premature convergence.  

The idea of this dynamic, time-dependant neighbourhood is inspired by the concept of 

small world networks [10]. This local swarm is significantly more robust than the 

global version in much harder versions of the problem at hand, as shown later. 
 
3.1   Locally Interacting Swarm with Small World Topology 

 
As Mohan et al. ([8] and references therein) argue, particle positions in PSO oscillate 

in damped sinusoidal waves until they converge to the point in between their previous 

best and the global best position discovered by all particles so far. In this way 

particles converge to the global best position discovered so far. All particles following 

the same behaviour quickly converge to a good local minimum of the problem. It may 

be argued that many of the particles are wasting computational effort in moving 

toward the local minima already discovered. Whereas better results can be found if 

various particles explore other possible search directions. 

Reasonable choices for deciding the interaction relationship between the particles 

can be drawn from observations on the social behaviour of animals. Many species of 

social animals try to keep acquaintanceship with a very small number of relatively 

fitter individuals. Croft et al. [9] observed that the empirical network between guppies 

can be closely approximated by small world networks. 

Small world networks, as proposed by Watts (1998) [10], are networks, that lie in 

between regular lattice type structures and random networks. They tend to have a 

near-optimal trade-off between properties concerned with clustering and with the 

average distance between nodes. This can be seen in the examples given in figure 1. A 

comprehensive discussion of small world networks, their properties and examples can 

be found in [11]. 

  



 
 

Fig.1. Small world networks lie between order and chaos, as illustrated by increasing 

probability of rewiring in a graph (from [11]). 

 

We also believe that the agents should be �intelligent� enough to keep on 

breaking/making �friendships� based upon fitness. The rate at which particles change 

their neighbourhood relationships is specified by a probability of rewiring, i.e. taking 

an edge and connecting to a randomly chosen other node. 

However, in our work rewiring is not done entirely at random, rather by using a 

strategy where each particle selects its neighbours with a probability proportional to 

their fitness. So we define here a probability of selecting particle j as a 

friend/neighbour of particle i as follows: 

 

Pij =  Rank(j) / (total number of particles)                            (3) 

 

where all particles are ranked by assigning the highest number to the fittest individual, 

et cetera. For example in a population of twenty particles, the fittest particle would be 

assigned rank 20. Details of this process are explained in the pseudo-code below 

(Algorithm 1). 

 

 3.2 Edge Initialisation for Local PSO 

 

We initialise the connections between the particles using two practically equivalent 

schemes. One possible start is a ring with two nearest neighbours. Another, which is 

more consistent with the rewiring scheme as well, is to throw edges equal to double of 

the number of the agents so that the average connectivity is two. In this scheme, for 

each edge we select one node randomly and the probability with which another 

randomly selected node is connected to the first one is given by the equation (3). A 

pseudo-code description of our PSO is given as Algorithm 1. 



 

 

For each particle i, initialize the dth dimension randomly   

   in the range (-Xi,dmax, Xi,dmax). 

Initialize the edges among particles  

For each iteration t =1,�,Gmax 

     For each particle i =1,�,m 

          For each dimension d =1,�,D 

                Vid= w*Vid + C1 rand*(Pid-Xid)  

                    + C2 rand*(Pld-Xid);        

               //P is best position by current  

               //particle and Pl is the best   

              // Position in the current  

              // neighbourhood of the particle 

              // Limit velocity magnitude  

              V  = min (Vmax, max (-Vmax, V) ) ; 

             //  Update Position 

             Xid = Xid + Vid; 

         End for each dimension d 

      Compute fitness of current particle  

        and, if needed, update the  

        historical information. 

    End for each particle i 

   Rewire K randomly selected edges with probability p. 

End for each iteration t 

 

Algorithm 1. Pseudo-code for PSO with local time-varying topology 

 

4   Computational Results 

 
4.1   Experimental Design and Benchmark Function 

 
We have done experiments with two commonly used test functions (see e.g. [13]), 

which are very difficult to optimise. We have compared the two versions (global and 

local neighbourhood) of our new PSO algorithm�described in the previous section�

with two other PSO algorithms, namely Standard PSO and Dissipative PSO. The two 

functions reported here both have global minimum at origin. The first one is 

generalized Rastrigin function (f1): 

∑
=

+−=
D

d

dd ʌxxf
1

2

1 )10)2(cos10(                   (4) 

                 

Rastrigin's function is based on a function with the addition of cosine modulation to 

produce many local minima. Thus, the test function is highly multimodal. However, 

the locations of the minima are regularly distributed.  

The second function is the Rosenbrock function (f2):  



2

1

1

22

12 )1()(100 −+−= −
=

−∑ d

D

d

dd XXXf                                            (5) 

 

Rosenbrock's valley is a classic optimisation problem, and this function is also known 

as the Banana function. The global optimum is inside a long, narrow, parabolic 

shaped flat valley. To find the valley is trivial, however convergence to the global 

optimum is difficult and hence this problem has been repeatedly used in assessing the 

performance of optimisation algorithms. 

For all the dimensions d=1,�,D,  xmax,d  = 500 for both functions and the 

initialization range is xd ɽ [-xmax,d , xmax,d]. Maximum velocity is Vmax = xmax,d ;  The 

acceleration constants are C1= 2 and C2 = 2 . The fitness value is the function value. 

The results of our experiments are averaged over 30 runs, except where stated 

otherwise. We report results for population sizes of 50 and 100 particles only, mainly 

to avoid bulky tables. In all versions, we used time decreasing inertia [13].  

In figure 2 we show performance results for varying the rewiring probability. 

From this we can see that the best performance is obtained when this probability is in 

the range 0.1�0.15. Therefore we have chosen to use 0.15 in the remainder of the 

experiments in the paper.  

 

4.2 Results and Discussion 

 

Tables 1 and 2 report the results for the Rosenbrock and Rastrigin function, 

respectively. Each table gives a detailed comparison of the results for standard PSO 

(SPSO) and dissipative PSO (DPSO), and the two PSO versions that we developed 

(GPSO and LPSO).  DPSO1 in the tables is a slight variation of dissipative PSO with 

inertia weight fixed at 0.4�a parameter value which was also used by Xie et al. [7]. 

GPSO stands for the gbest version of standard PSO with the chaotic perturbations 

introduced in section 3. LPSO stands for the lbest version with small world like 

topological relationship along with the same scheme of chaotic perturbation. Each cell 

of these tables shows the mean fitness value of the best particle found by the 

corresponding version of PSO. m denotes the number of particles in the population, 

and Gmax denotes the number of iterations of the PSO. 

It is clear from the table 1 that for different numbers of dimensions and numbers 

of iterations the two new algorithms outperform the standard and dissipative PSO in 

all settings. GPSO and especially LPSO are more robust as the number of dimensions 

is increased. In this case LPSO performs reasonably better than GPSO, due mainly to 

the strategy of adding perturbation to the system. 

Table 2 shows a similar analysis for the Generalized Rastrigin function and the 

same argument holds there, except that GPSO is closer in performance to LPSO, in 

this case. In more difficult settings, (i.e. higher number of dimensions of the 

Rosenbrock function), we see a clear advantage of the locally interacting LPSO over 

the globally interacting GPSO. Figure 3 shows such a comparison of LPSO with 

respect to GPSO and other PSO variants previously discussed. LPSO scales very well 

with the dimensionality (hardness) of the problem.  

Figure 2 shows the dependence of LPSO over the rewiring probability which 

indicates that a greater than zero (of course less than 1) rewiring probability is better 



than fixed topology (rewriting probability zero). Nonetheless, rewiring probability 

values in the range 0.15-0.20 are enough to achieve good results. 

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0 0.2 0.4 0.6 0.8 1 1.2

p

M
e
a
n

 F
it

n
e
s
s

20 dim

30 dim

50 dim

Fig.2. Average performance (over 50 runs) vs rewiring probability for LPSO 

 

Another point to note is that in [7], the authors found that dissipative PSO is more 

effective (at least for the Rastrigin function) if the inertia weight is fixed at 0.4 rather 

than decreasing with time. We used both versions of DPSO, as in tables 1 and 2, for 

both functions (Rastrigin and Rosenbrock). An inconsistency is that with same 

algorithm as described in [7], fixing w=0.4 performs similarly to original DPSO in 

case of the Rosenbrock function, while it does not in case of the Rastrigin function.  

This inconsistency is not present (on average) in GPSO and LPSO. Rather, time 

varying inertia is still a reasonably better candidate in our opinion, based on the 

experiments. 

Figure 3 shows the clear advantage of using LPSO over GPSO for the Rosenbrock 

function for a number of dimensions greater than 40. Even for fewer dimensions 

LPSO finds near-optimum solutions earlier than GPSO, as is clear from figure 3;while 

in case of the Rastrigin function both of the algorithms find the global minimum, but 

LPSO finds it in fewer iterations. 

As can be observed in figure 4,our two new versions of PSO do not suffer from 

stagnation. They find good quality solutions in the earlier steps of the exploration, and 

then continue to find better solutions when the traditional variants of the algorithm 

have ceased improvement.  

Figure 4 shows a comparison of different variants of PSO for 30 dimensional 

Rosenbrock (4a) and Rastrigin (4b) functions. These illustrate that our two new 

algorithms both are capable of the desirable �sustained development� property. The 

variants illustrated are the standard PSO algorithm (SPSO), dissipative PSO (DPSO), 

a variant on dissipative PSO with inertia weight fixed at 0.4 (DPSO1), and our GPSO 

and LPSO algorithms. 



 

 
Table 1: Mean Fitness for Rosenbrock function 

 
m D i m G m a x S P S O D P S O D P S O 1 G P S O L P S O

1 0 0 0 3 4 1 . 1 4 1 4 8 . 3 3 4 1 1 6 3 . 3 2 4 9 0 . 4 8 0 3 0 4 0 . 3 0 4 0 6 1

2 0 0 0 1 9 1 . 1 0 3 5 7 1 . 0 3 8 1 1 7 0 . 2 6 7 5 3 0 . 1 1 8 3 2 2 0 . 0 0 0 0 7 4

3 0 0 0 2 7 3 . 6 1 8 7 6 . 7 0 4 3 7 1 2 1 . 0 4 5 2 6 0 . 0 0 0 3 6 2 0 . 0 0 0 0 0 5

1 0 0 0 2 6 4 1 . 2 4 3 1 9 2 . 2 8 2 7 1 8 3 . 4 0 4 4 2 . 1 6 7 0 3 9 1 . 4 3 7 1 8

2 0 0 0 3 8 1 . 8 3 1 3 1 5 8 . 2 8 2 2 1 2 2 . 8 9 4 1 0 . 4 9 5 2 6 7 0 . 0 0 1 1 0 6

3 0 0 0 2 3 1 . 5 8 6 7 3 8 . 8 0 0 0 4 5 2 . 3 0 6 4 0 . 0 0 1 0 1 3 0 . 0 0 0 1 5 6

1 0 0 0 1 2 8 0 7 . 1 1 5 2 7 . 6 0 2 5 2 5 0 . 2 1 5 7 3 . 8 0 0 3 3 3 3 . 6 9 6 7 4 6

2 0 0 0 7 6 8 . 2 4 4 7 2 . 6 2 1 0 8 2 3 9 . 0 6 6 3 0 . 0 2 5 8 5 2 0 . 0 0 0 3 7 2

3 0 0 0 6 9 8 . 2 1 2 3 2 . 4 2 2 1 3 4 9 . 9 8 7 3 8 0 . 8 3 7 8 8 3 0 . 0 0 0 4 4 3

1 0 0 0 2 3 2 . 2 6 9 7 2 4 . 5 1 0 2 7 1 0 8 . 5 6 6 8 0 . 1 3 1 9 5 7 0 . 0 0 0 1 1 7

2 0 0 0 1 5 8 . 6 7 1 5 2 . 6 3 5 0 0 7 3 4 . 7 6 8 9 3 0 . 0 0 0 2 7 7 0 . 0 0 0 0 0 1

3 0 0 0 1 4 4 . 2 2 4 1 1 0 . 5 6 0 7 1 1 9 . 3 7 4 2 6 0 . 0 0 0 0 8 2 0

1 0 0 0 5 6 2 . 5 3 0 5 8 2 . 6 5 4 9 9 1 1 0 . 8 0 9 3 0 . 5 1 9 8 0 . 5 0 0 9 4 7

2 0 0 0 3 3 0 . 7 4 6 5 1 8 . 8 8 9 4 6 2 4 . 3 0 8 0 1 0 . 0 0 0 6 9 0 . 0 0 0 0 5 9

3 0 0 0 2 3 8 . 1 9 1 6 2 4 . 7 0 2 7 3 4 0 . 6 7 0 2 8 0 . 0 0 0 4 1 7 0 . 0 0 0 0 0 2

1 0 0 0 1 4 2 2 9 . 1 8 4 2 8 . 8 4 8 8 2 6 0 . 2 0 6 0 . 1 6 4 0 1 1 0 . 0 1 1 9 1 5

2 0 0 0 6 0 1 . 6 4 9 7 5 0 . 9 4 2 1 7 5 8 . 0 9 0 4 7 0 . 0 0 2 2 1 3 0 . 0 0 0 6 7 9

3 0 0 0 4 8 1 . 4 7 6 2 3 . 6 5 1 5 5 1 8 . 8 2 1 6 4 0 . 0 0 0 5 8 8 0 . 0 0 0 0 2 2

2 0

3 0

5 0

1 0 0

1 0

2 0

3 0

1 0

 
 

Table 2: Mean Fitness for Rastrigin Function 

 
m D im G m a x S P S O D P S O D P S O 1 G P S O L P S O

1 0 0 0 4 .1 6 4 8 6 8 5 .0 1 6 6 5 8 4 .0 1 3 0 0 5 1 .2 6 0 2 8 5 1 .5 9 1 9 3 6

2 0 0 0 2 .8 8 6 9 8 2 2 .3 6 7 0 0 4 1 .9 9 2 3 8 3 0 .8 2 2 6 6 9 0 .6 3 0 1 4 1

3 0 0 0 2 .5 5 5 5 8 1 .6 0 6 7 9 7 1 .7 7 0 2 8 1 0 .1 6 5 8 2 7 0 .5 3 0 6 4 5

1 0 0 0 2 8 .1 9 7 0 1 8 2 9 .0 2 5 0 1 5 2 4 .1 2 4 8 4 1 2 .8 5 2 3 0 9 3 .9 1 3 5 1

2 0 0 0 2 1 .8 2 3 4 7 1 1 8 .4 0 7 0 8 5 1 5 .0 0 8 3 1 9 1 .6 9 1 5 7 8 0 .5 9 6 9 7 6

3 0 0 0 1 8 .6 3 0 0 0 7 1 5 .6 0 9 8 7 1 2 .6 4 2 5 3 8 1 .0 2 8 1 3 9 0

1 0 0 0 9 2 .0 6 4 6 5 2 7 1 .4 9 5 6 1 3 5 7 .1 9 8 9 6 5 9 .2 9 9 0 6 2 1 0 .9 1 1 3 9 9

2 0 0 0 5 1 .3 2 6 2 3 8 5 6 .9 3 2 7 7 6 4 7 .7 0 0 0 1 5 5 .2 4 1 5 8 9 1 .9 8 9 9 2

3 0 0 0 4 1 .1 0 9 0 7 1 4 3 .8 5 9 5 7 3 1 .7 4 6 4 9 9 3 .4 8 2 3 6 8 0 .9 6 2 4 2 3

1 0 0 0 2 .7 8 7 9 3 1 2 .5 5 5 4 1 3 2 .0 5 6 2 5 1 0 .6 3 0 1 4 1 0 .3 3 1 6 5 3

2 0 0 0 1 .3 9 2 9 4 4 1 .3 9 2 9 4 5 1 .0 6 1 2 9 1 0 0

3 0 0 0 0 .9 9 5 6 4 6 0 .9 7 1 9 9 6 0 .7 9 5 9 6 8 0 0

1 0 0 0 1 9 .5 6 3 3 0 7 2 1 .5 9 8 8 9 2 1 5 .2 2 5 2 8 8 2 .7 5 2 9 6 7 1 .2 2 7 1 1 8

2 0 0 0 1 4 .6 1 0 1 0 9 1 6 .3 2 9 3 7 6 9 .8 1 0 1 7 1 0 .5 6 3 8 1 1 0

3 0 0 0 1 1 .2 7 6 2 6 5 1 0 .5 6 9 5 4 4 6 .4 4 1 4 5 7 0 0

1 0 0 0 6 8 .3 2 1 1 9 8 5 8 .3 6 5 2 3 3 3 8 .6 0 7 1 2 1 3 .7 5 0 2 0 4 0 .9 6 1 7 9 5

2 0 0 0 3 9 .2 0 3 3 3 7 3 7 .3 4 2 4 9 3 2 5 .8 6 4 4 8 2 0 .8 9 5 4 6 4 0

3 0 0 0 3 2 .4 6 0 6 8 1 3 1 .9 6 2 5 8 1 8 .6 0 2 7 1 5 0 0

5 0

1 0 0

1 0

2 0

3 0

1 0

2 0

3 0

 



 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

Dimensions

M
e

a
n

 F
it

n
e

s
s

GPSO

LPSO

 
Fig. 3. Performance of GPSO and LPSO for increasing dimensions of the Rosenbrock function 

for m=100, Gmax = 3000. 

 

 

 

5 Conclusions 
 

We have proposed two new variants on dissipative PSO, based on time-dependent 

variation of the probability of re-initialising the particles. One of these two versions 

(LPSO) also incorporates additional ideas drawn from small world networks, which 

are used to adjust the topology of the particle neighbourhoods. We have compared 

these two new algorithms on two well-known function optimisation problems, and 

they have been shown to perform better than both standard PSO and the original 

dissipative PSO. In particular they demonstrate the �sustained development� property, 

the lack of which causes premature convergence to a local optimum. Furthermore, the 

local neighbourhood version performs better than the global neighbourhood version 

for problems with a large number of dimensions. 

Future work will focus on extending these ideas to more challenging problem 

domains, in particular moving beyond simple function optimisation problems. 

Another direction will be a more extensive analysis of how particular strategies for re-

initialisation influence the performance of the system. 



 
Fig. 4 (a). Rosenbrock function , dimension=30, m=100, Gmax=3000. 

 

 
Fig. 4 (b). Rastrigin function, dimension=30, m=100, Gmax=3000 

 

Table 3. Mean and standard deviation of final value for experiments in figure 4. 

 

 SPSO DPSO DPSO1 GPSO LPSO 
Rosenbrock 481.5, 

932.3 

23.6, 

29.8 

18.8, 

23.6 

0.00058, 

0.0008 

0.00002, 

0.0004 

Rastrigin 32.5, 

7.5 

32.0, 

21.2 

18.6, 

8.3 

0, 

0 

0, 

0 

 

 

 



 

Acknowledgements 
 

This work was supported by the EPSRC under grant GR/T11265/01 (eXtended 

Particle Swarms). The first author was additionally supported by a scholarship from 

the University of Kent Computing Laboratory. 

 

References 
 

1. J. Kennedy and R. Eberhart. Particle swarm optimization, Proc. IEEE Int. 

Conf. on Neural Networks, pp. 1942-1948, 1995. 

2. R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory, 

Proc. 6 th Int. Symposium on Micro Machine and Human Science, pp. 39-43, 

1995. 

3. Y. Shi and R. Eberhart. Parameter selection in particle swarm optimization, 

Proc. 7th Annual Conf. on Evolutionary Programming, pp. 591-600, 1998. 

4. R. Eberhart and Y. Shi. Particle swarm optimization: developments, 

applications and resources, Proc. IEEE Int. Conf. on Evolutionary 

Computation, pp. 81-86, 2001. 

5. J. Kennedy. Stereotyping: improving particle swarm performance with cluster 

analysis, Proc. IEEE Int. Conf. on Evolutionary Computation, pp. 1507-1512, 

2000. 

6. P. J. Angeline. �Evolutionary optimization versus particle swarm 

optimization: philosophy and performance difference,� Proc. 7th Annual Conf. 

on Evolutionary Programming, pp. 601-610, 1998. 

7. X, Xie, W, Zang and Z Yang. "A dissipative swarm optimisation, Proceedings 

of the IEEE Congress on Evolutionary Computing (CEC 2002), Honolulu, 

Hawaii USA, May 2002. 

8. E. Ozcan and C. Mohan.  Particle swarm optimization: surfing the waves.  

Proc. 1999 Congress on Evolutionary Computation, 1939�1944.  Piscataway, 

NJ: IEEE Service Center, 1999. 

9. D. P. Croft and J. Krause, and R. James. Social networks in the guppy 

(Poecilia reticulata). Proceedings of the Royal Society of London: Biology 

Letters, pp. S516-S519, 2004. 

10. D.J. Watts and S. Strogatz. Collective dynamics of �Small world� networks. 

Nature 393, pp. 440-442, 1998. 

11. D.J. Watts. Small Worlds: The Dynamics of Networks Between Order and 

Randomness. Princeton University Press, 1999. 

12. Y. Shi and R. Eberhart. A modified particle swarm optimizer, Proc. IEEE Int. 

Conf. on Evolutionary Computation, pp. 69-73, 1998. 

13. Y. Shi.  Particle swarm optimisation code, 
http://www.engr.iupui.edu/~shi 

 


