Kent Academic Repository
Full text document (pdf)

Citation for published version
Linington, Peter F. (2004) What Foundations does the RM-ODP need? In: Vallecillo, Antonio

and Linington, Peter F. and Wood, B.M., eds. Workshop on ODP for Enterprise Computing (WOL
2004). |EEE Digital Library, Monterey, California, USA pp. 15-22.

DOl

Link torecord in KAR
https://kar.kent.ac.uk/14098/

Document Version
UNSPECIFIED

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

KAR =

Kent Academic Repository



What Foundations doesthe RM-ODP Need?

Peter F. Linington.

University of Kent,
Canterbury, Kent, CT2 7NF, UK.
pfl@kent.ac.uk

Abstract In reviewing how well the RM-ODP has stood the test
. . . . of time, we must be aware of the constraints on modifying
This position paper revisits the requirements for the setit Not only must the Parts of the reference model maintain
of Foundation Concepts for the ODP Reference Model andineir internal consistency, but the documents that reference
the approach originally taken to satisfying them. It then jt must not be undermined. This applies both to the 1SO
examines, in the light of experience, the areas where th&andards within the framework the reference model has
Foundations have subsided, and areas where extensmngreated' and to the work within bodies such as the ITU-T
need to be built. The aim is to provide a starting point for 5nq the OMG, and also the usage within the wider
discussion on requirements to change the Foundationscommunity_ We do not have a green field; we have a
document. responsibility to perform restoration, not demolition and
replacement. The Foundations may need to be strengthened,

1. Introduction but not relaid.

Even before the first draft of the Reference Model for 2. Objectsand Interactions
ODP was produced, the group of experts working on it had
found the need for a separate definition of a clear At the time that the Foundations was being debated, two
conceptual framework on which to base their work; almostformal description techniques were also being developed
ten years later, this became Part 2 of the published standandithin the same parent standards committee. These were
[1], and established the conceptual framework for the ODPLOTOS [4] and ESTELLE [5]; they differ significantly in
Architecture [2] [3]. The need for the RM-ODP their representation of interaction and this coloured the
Foundations document was clear; experts from a number ofliscussions in ODP. In LOTOS, the processes interact at
different backgrounds had come together to work on ODP,gates in a synchronous way, in that all the parties to an
and they brought with them a wide range of different interaction would agree on when the interaction occurs
vocabulary and usage, reflecting different assumptions(although basic LOTOS deals with action sequence, not
about how systems should be structured and specifiedtiming). In ESTELLE, on the other hand, modules are
Progress with a common reference model depended on thknked by communication links, which contain umbounded
creation of a common conceptual framework. gueues, so that interaction is represented by distinct sending

At the same time, no single notation or descriptive @d receiving actions that are sequenced but not
technique could be expected to dominate. The broad scop@imultaneous.
of the work was such that different techniques would be This led to a need for a common modelling basis that
needed to express different areas of concern. It wasvas capable of unifying both approaches. Interactions in
therefore necessary to express the Foundations in abstra@DP are synchronous, but are defined between an object
terms, bringing together the common features of existingand its environment. If we then constrain the way objects
styles of usage, so that each concrete notation is seen asaae composed so that each object binds directly to another
refinement of the foundation concepts. This is particularly object in its environment, the resulting communication is
the case in the areas of interaction and behaviour, which argynchronous, but if objects bind to link ends in their
discussed below. environment, the resulting communication is asynchronous.



One might feel that the asynchronous representation was d) object B can initiate interaction S at interface

slightly cumbersome, but the Foundations also provide the If, at any time; when S does occur, it is
less closely coupled concept of communication, which followed by Obj initiating interaction U with
represents a sequence of causally related interactions, so object C at If; the behaviour of C results in an
that channels between communicating objects can (but need interaction V with Obj at interface,lf

not) be completely hidden in this style of notation.

Currently, the Foundations do not distinguish between
different kinds of interaction, but leave it to the
specification using them to refine the basic concept. This,
together with the connotations in English of the work
“interaction”, may have given the impression that the
intension is something like a method call. This could be
avoided and the full generality demonstrated by including
in the standard non-exclusive definitions for some common
refinements of interaction, such as invocation, messagsg
transfer and event notificatidriFor brevity, these examples
are taken from a computational domain, but the definitions
added should be viewpoint-independent, with notes to
clarify their application, including examples in at least the
engineering and enterprise domains.

3. Interface

The Foundations define an interface in terms of a view
of the behaviour of an object, resulting from taking a subset|
of the interactions of the object and hiding all the other |  gigyre 1 — Interfaces and Object Behaviour
interactions and behavioural constraints that involve them.
This definition is basically sound, but there are some
subtleties that need to be taken into account in order to Now let us see how the definition of the interface
understand it fully. concept works. The first thing to note is that all the

Let us consider a computational application of the interactions of Obj are considered, and not just those in
definition to see some of the problems; assume a style oWvhich it acts as a responder. Thus we are dealing with four
interaction in which there is a clear causal initiative, so thatinterfaces, whereas a computational middleware might only
an object is invoked by its clients and may, as a result,consider interfaces 1 and 2 at which services are offered.
invoke other objects providing services (see figure 1). Secondly, the interactions here are action occurrences, and
not action types; actions P and Q could be of the same type,

ut the occurrences in the two interfaces are distinct. In
act, as a result of this, the sets of interactions are normally
infinite, because most objects will have a behaviour that

The object, Obj, has four interfaces and its complete
behaviour places constraints within and between them. It
environment contains four objects, A to D. The figure

shows that: : o
. o . . . allows arbitrary repetition of smaller fragments of
a) object A can initiate interaction P at interface penhaviour associated with some sort of thread or session;
If, at any time; almost all notations simplify this by considering as a unit
b) object B can initiate interaction Q at interface the sets of interactions with similar types and names (where
If, at any time; the naming domain is associated with the interface). Note
c) object B can initiate interaction R at interface that this idea of equivalence sets implies that the

If, but constraint Crequires Q to happen first; identification of interfaces is a design activity — the
when R does occur, it is followed by Obj interfaces cannot be deduced by examination of the overall

initiating interaction T with object D at,lf computational behaviour (although, once the decision has
' been made, it is generally reflected by the naming structure
used for interactions in the engineering viewpoint).

! The foundations originally avoided the use of the term event
because of the connotations arising from the world of discrete
event simulation; however, the use of the term event notification
seems to avoid this.



Now let us consider the individual interfaces in the 4. Components
example. Interface 1 consists of occurrence of members of

the set P without further constraint. One of the significant changed in the last ten years has
Interface 2 consists of the interaction sets Q, R, S and Vpeen the growth of interest in component-oriented

but subject to the constraint that an R must be preceded bgrchitectures, so a natural question to ask is whether the

an occurrence of Q. The constraints 2 and 3 are hidden ifroundations should include a general definition of what a

interface 2 because they involve interactions T and U,component is. If we consider, for example the CORBA

which are themselves hidden. The multi-step constraintComponents 3.0 Specification (figure 2), and ask what the

between S and V is hidden for the same reason — it dependsey properties of a component are, we find

on U and also on the behaviour of C, which are themselves 3)  encapsulation;

both hidden. These constraints only become apparent when

the full behaviour of the object is considered; the link from facets, receptacles, event sources, event sinks of

S to V depends on specific behaviour in the environment, o ' '

and so cannot be deduced from constraint 3 alone. attributes;

However, a constraint between S and V could have been €) @ component equivalent interface that provides

b) interactions at ports; the ports can be specialised as

stated in interface 3 in terms of locally available properties, metadata, navigation and control for the
such as the presence of a correlation identifier as a data component;
item in both the interactiorfs. d) an associated component home interface,
Interfaces 3 and 4 are again straightforward; apart from representing a container in which components of
the placement of the initiative for interaction, they are the given type can be instantiated.
structurally similar to interface 1.
What we have not yet considered is the dynamic ;3:::5““”“
lifecycle of an interface. Before interaction can take place,
there are normally two steps to be taken. First, the object component
must be in a state where it is willing to interact equiv. @

(corresponding to the creation of the interface and its
associated naming domain for interactions and initialisation
of related internal state of the object) and second any
interactions with the environment needed to establish
preconditions for interactions at the interface must have
been performed (corresponding to the establishment of a
binding and associated communication and resultant state
shared between the objects involved). After the first step,
there is potential for interaction, but no specific partner for
interaction has been selected, whilst after the second steE

interaction with specific partners can take place. Different©
kinds of object behaviour allow the description of one-to-

ports

Figure 2 — A component model

In fact, all of these can be modelled using the existing
undations. The general concept of interaction is rich
enough to be refined into any of the defined port types, and

one bindings or many-to-one client-server bindings. Similar the equivalent and home interfaces are just conventional

considerations apply to the deletion of a binding and ancomput_atiqnal interfaces_. The container property requ_ires a
interface. specialisation of the object concept to make explicit the

. . elation to the instantiation of templates involved when it
When the Foundations were being drafted, a number o

. . ; acts as a factory.
ways of modelling this process were considered, mostly . .
based on including an intermediate concept for the unbound The ability to support both facets (s_er_ver_lnterfaces) and
state, such as semi-interfaces or unbound interfaces, bUEceptacles (client interfaces) as specialisations of the ODP
none of them were successful. It would be worth revisiting CONCepPt of interface has already been mentioned above; it is

this issue, but a better solution might be to consider a mor@rimarily this generality, and the equivalent gapabilities for
general way of describing the potential behaviour of an'Nteraction support, that make the foundation concept of

object that is currently in a particular state (see section goPi€ct so flexible.

below). Perhaps a little more needs to be said about
encapsulation. The Foundations explain encapsulation as
the property of an object such that it can only have its state
2 This has different semantics, particularly with respect to the trustchanged by interactions or internal actions expressed in the
implications for C, but it may be equivalent for practical purposes. model. As such, the definition is more related to




completeness of description than to level of abstraction.the roles rather than the actors obviously makes the script
Indeed, the inability to guarantee encapsulation onmore reusable.

structural refinement is one of the problems in security The key idea is that some constraints on system
analysis (see figure 3), for example, since structuralpehayiour are associated with objects dynamically as a
refinements may introduce backdoors, and it is difficult to consequence of an earlier part of the behaviour, such as
apply constraints to the refinement process that prevent thisyerformance of a piece of negotiation. However, although
the potential behaviour can be referenced (and hence the
talk of an identifier in the definition) it is not associable
with an actual object until the template is instantiated and

w 1 the role bound to a specific obj&dit is thus impossible to

y represent what is going on within a static class hierarchy.

The solution to the misunderstandings is to remove the
idea of there being a parameter identifier in the template’s
behaviour to the explanatory note, and to focus the first
Figure 3 — Refinement breaks a security paragraph of the definition on the idea of parameter

boundary substitution. Perhaps more importantly, though, we need to
clarify the way the potential behaviour of an object is
restricted when it is bound to a role, and this needs a proper

However, there would be nothing to choose between arframework for the discussion of potential behaviour of the
object model and a component model built on the kind described in section 8 below.

Foundations in this respect, even if our common intuition is
that encapsulation of a component is a less abstract Cla”ﬂ/ith usage rather than definition. There has been

than encapsulation of an object. widespread discussion in ODP circles of community-roles
As a result there is no need for extension of thein the Enterprise Language, but unfortunately this has been
Foundations if it was felt that there was a need toexpressed the term using role without qualification, leading
incorporate a computational or engineering componentio an implicit assumption that saying role implies
model into the architecture. However, there could be meritcommunity-role. As shown above, role is defined as a
in adding derived definitions for component and factory, parameterization mechanism for templates, and so can
making it clear how the eXiSting definitions can be used tOpotentia”y be app“ed to anything for which a temp|a’[e can

The second problem with the role concept at present is

model them. be defined. Indeed, there are other places where the role
concept is not just useful but is vital to making necessary
5. Roles distinctions in the template definition.

Perhaps the clearest present need is in the definition of
The Foundations define a role as “an identifier for a action templates, particularly interaction templates. In an
behaviour, which may appear as a parameter in a templatéteraction between, say, a client and a server object, it is
for a composite object, and which is associated with one ofessential to know which is which. We can do this by saying
the component objects of the composite object”. Thisthat the two objects in this example fill client and server
definition has been much misunderstood, and some authorgoles in the interaction, and by associating necessary
have tried to rework the definition in terms of static class properties and constraints with these roles. At one point in a
structures, without much success. To attempt to do so is t@ystem’s behaviour, an object A can fill the buyer role in a
miss the point of the definition, but clearly it does not, in its purchase interaction, while object B fills the seller role, and
present form, convey the intent, which is indicated by thelater the roles can be reversed, so that B is the buyer and A
reference to templates and to the actualisation of parameteiis the seller. The richer the interaction, the more useful this
in its second paragraph (which is not quoted here).

The discussion here is based on the explanation in [6]s

The metaphor on which the role concept is based iSpay pe hound after the instantiation of the object defining them.
theatrical. The text of a play is expressed in terms of linesthjs is particularly true of objects representing potentially long-
and actions associated with various roles, which arelived structures like communities, where the behaviour will

declared initially in a cast-list. Putting the play on involves commonly include the dynamics of community-role bindings (e.g.

assigning actors to the various roles, although one actochanges of committee membership). However, the lifetime of the

may play several minor roles, and the actor playing a rolerole binding is always within the lifetime of the defining object, so

may change during the run of the production. Identifying that the objects created by a factory are not simply filling roles in
it.

Depending on the nature of the template involved, some roles



approach is likely to be; it is particularly effective, for particularly in various styles of policy-based management,

example, for expressing the capabilities and obligationssince the creation of the reference model, and the

associated with secure multi-way interactions, whererequirements are now much better understood. We can now
capabilities or access permissions are clearly associatedentify at least two stronger requirements for a rule to be

with a specific role. Another example is for distinguishing considered a policy.

between actor and artifact roles in enterprise interactions. The first of these is that there must be some element of

Users of the role concept should be encouraged always tenpice associated with any policy. Policies are identified in
qualify their use of role with the template type name, as ing specification wherever it is recognised that a rule may

action-role and community-role. need to be changed during the lifetime of the specification;
selecting a structure for the specification that emphasises
6. Obligations the scope of the policy makes it easier to modify it without

wholesale revision, and allows the likelihood of change to
The Foundations define a number of deontic conceptsP€ reflected in the implementation. This is generally done
particularly obligations, permissions and prohibitions, but Py éncapsulating associated decisions as the behaviour of a
this part of the framework was produced before there hadlistinct computational or engineering object that can be
been much experience with their application in ODP. TheePlaced whenever the policy is changed.
result is that the definitions were taken directly from the  Thus a rule that is universally true, and cannot be
Standard Deontic Logic (SDL), including a simple set of changed without wholesale replacement of the
relations between the concepts, such as the assertion thatspecification, is not a policy. The speed of light is not a
permission for something is an indication that there is notpolicy, but the setting of interest on credit at a certain
an obligation not to do it. percentage above base rate is. Whether an organization

There is nothing wrong with these as statements fromePerates with the status of a charity either might or might
the SDL, but experience has shown that the SDL approactot be a policy, depending on whether the specifiers
is somewhat brittle for enterprise modelling, and it would foresaw the possibility that the status might change and
be better to take a less prescriptive approach in thePlanned for it.

Foundations, allowing, for example, a style of modelling  The second thing to be said about policy is that the
based on Utilitarianism to be exploited if it proves specifiers who identify it will generally wish to limit the
effective. See [8] for a discussion of how obligations might range of behaviour that would be acceptable; this gives rise
be represented in this way. to the idea of a policy envelope [7], which limits the range
of behaviour any particular policy is allowed to specify.
Knowledge of the policy envelope allows the verification of
invariants on the specification that are independent of the
particular policy in use at any particular instant.

7. Thelifecycle of ODP specifications

It has always been a principle in the development of . I
ODP that the reference model is neutral with regard to the Another aspect of the lifecycle of an ODP specification

methodologies to be applied, and maintaining this position'S the relationship between specification and instantiation,
gives the most broadly applicable framework. which is discussed in [6]. This paper identifies the need to
enhance the ODP conformance model slightly so that it is

fi Howe\(/jerihlt IS (l:clear that mc()jstl SyStedetW'"t iVOht/ﬁ. ov_e{ able to distinguish between classes of use to which the
ime, an e reference model needs to take this into pecification is being put. The current ODP conformance

f\ccdount.'t')l'h?hFounda.tmnsh'lnﬁluci)gs tthe concefpt of ?n epo;: odel describes the relations between system the specifier,
0 describe the way In which ODJECts or contigurations of y, o implementor and the tester, and describes how

objects evolve through a series of stages. This concept cag,rrmance is deduced from observation during testing,
falso be u_sed to describe the e\_/olutlon of the .spec.'f'cat'onconfirming that the implementation is consistent with the
itself. This allows a new version of a specification to original specification. A proposal made in [6] is to
dtescndbte, fort'exafmplet,h how It might pe introduced as Qintroduce the role of system owner, so that statements of
staged transition from the previous version. _ rights to implement and use the design embodied in the
One area where there must be an expectation Ofspecification can be made and then interpreted during the

evolution and statements of constraints on it is in thetesting process to guide the interpretations made by the
definition of policies. The current Foundations definition of tester.

a policy is very weak. It is just defined as “a set of rules
related to a particular purpose”, with an indication that theway to a more formal model of licensing and rights to use

rules are expected to be expressed in deontic terms. .T.hert‘ﬁe design, and could help clarify the constraints on system
has been a great deal of work on the use of policies,

Making this comparatively minor extension opens the



evolution involving reuse of design libraries or b) a dyadic relation, R, representing the reachability

components. between members of W; R is true if,ws
accessible from yy and false otherwise;
8. Frames and unified semantics c) avalue assignments, V, that assigns truth values to

the attributes of each world in W.

Several of the areas examined so far have involved the This model captures in a mathematical way the intuition
need to describe the possibility of change or of the systenthat we can describe any situation of interest for ODP as a
responding to reaching a certain state of affairs or set oset of worlds with local states of affairs and a set of
objectives. Constraints of the same basic kind are involvedstatements as to whether any world can evolve into any
in basic behaviour like the interface and binding lifecycle, other. Something is possible in a world if there exist worlds
the definition of policies and the use or reuse of reachable from it in which that thing would be true, and
specifications. It would be a great aid to consistency ofsomething is necessary in a world if that thing would be
modelling if all these were based on a similar underlying true in all worlds reachable from it. Clearly, this kind of
model structure. structure is capably of defining concepts like obligation,

Most of the notations of practical interest here have theirWhich is the deontic version of necessity.

semantics defined denotationally, in terms of a mapping From such a model we can go a step further by dividing
from notational elements to some mathematical targetthe model into a set of related frames <W, R> and a
domain. For example, LOTOS is defined in terms of a separate set of value assignments, or markings, V. This is
labelled transition system. Other notations, such as UML,not quite as flexible as the general related worlds model,
still lack a uniform and consistent semantic mapping. Whatbut does separate the structural aspects of evolution from
is needed is a common target domain that is a naturathe constraints on variables, making it easier to reason
extension of those in common use but with the power to beabout. Frames of this kind are called Kripke Frames.

a target all the ODP-related notations, including the deontic |t would be possible to add such a frame definition to the

aspects of enterprise languages. clauses of the Foundations on basic interpretation concepts
(putting mathematical detail in an annex, if necessary, to

avoid possible intimidation of some readers) and thereby

establish a common framework for supporting the basic

behavioural and deontic aspects, and possibly the broader
conformance and evolutionary issues as well.

Let us consider some of the problems discussed earlier
in this light. First, consider the lifecycle of interfaces and
bindings. The ability of an object to be involved in a
particular kind of action or interaction can be represented as
a marking in any particular world, and the ability to create
an interface or perform a binding interaction is a special
case of this; the actual performance of the interaction would
result in changes to the markings between a world and any
of its successors that are reached by performing the
interaction.

Now, the existence of an interface can be deduced in a
particular world from the existence of paths of succession
One possible direction would be to introduce a frame- between that world and worlds that are marked as allowing
based model such as one based on Kripke Frames (see [#)e associated interactions without, in so doing, traversing
for an accessible review of these and other related system@ny successor step corresponding to interface creation —
able to support modal logics). The idea (see figure 4) is thathat is, if there is no creation between the point considered
the development or evolution of the system is representedind some point of use. Essentially, what this is saying is
by a model consisting of: that the property describing the existence of an interface is
a set, W, of possible worlds of interest; the form of ;hared .by all the worlds that can reach a world in which an
description of the world is not of interest here, interaction  at that int_erface takes pIa_ce (interaction is
except that it is decomposable into a set of pos.3|ble) wrghout passing between a pair of qulds whose
attributes that carry Boolean values: linking relationship corresponds to the creation of the
interface. Although this may sound trivial, it gives a basis

Figure 4 — A frame-based model

a)



for determining precisely the circumstances under which anthe specific relationships that are already defined in the
interface exists, and so interactions at it can happen. It alsé-oundations, such as thebtypeandsubclasgelationships.

implies some consistency conditions, in that, if two worlds  apother example is the omission of ODP specific detail
are reachable by multiple paths, either all of the paths mush; |ogical consequences of the existing definitions. Here
include a step representing interface creation or none ofne might consider the explicit definition of the concept of
them can. an inter-viewpoint correspondencejhich is not discussed

Similar conditions can be applied to the existence ofwhenviewpointis defined. It should, indeed, be obvious to
bindings. In this way we can describe the way in which everyone that a system is only defined if both the
objects are characterised by their potential to engage irviewpoints and the correspondences between them are
bindings or specific interactions with an unbounded set ofdetailed to a sufficient level to unify the overall
candidate peer objects, without requiring detail of the specification, but sets of viewpoint specifications are often
behaviour involved in their doing so. Clearly, the set of published without clear statements of correspondences, and
worlds that are equivalent in having the property that aa more balanced set of definitions would help just a little to
binding exists must be a subset of the possible worlds thaget this message across.

are equivalent in h_aving the property tha_t all the interfaces Finally, the clause on specification concepts should be
to be bound exist. However there is not a subsetreviewed to check whether residual restrictions on usage
relationship between the sets in which each of theyre necessary. Many of the concepts, such as type and class,
individual interfaces exist. can be applied to a wide range of basic concepts. Thus, for
In a similar approach, we can capture the way in whichexample, the concepype (of an <X>)can be applied to
the potential behaviour of an object is modified by creationany <X>. An individual specification can then declare
of a community and by the object filling a community-role; which kinds of terms in it can have types. At present,
filling the role results in a modification of the set of however, composition only applies to objects, and
accessible worlds. The performance of an action commitgefinement only applies to specifications. Discussion will
the objects involved to playing their action-roles, and the be needed to determine whether these two concepts should
preconditions for so doing can be derived from the beof an <X> or applied indirectly as relating specification
accessibility relations. fragments; either way, there would be a minor incompatible

Before leaving this issue, it should be stressed that whaghange to one or other of the concepts.
is being discussed here is a sketch of the definition of
semantics for the basic modelling and specification 10, Conclusions
concepts. There is no intention that the average user of
these concepts would be involved in such considerations, |+ seems that, in general terms, the ODP Foundations
but the unified underpinnings would give the basis for gocument has stood the test of time quite well. There is a
reasoning about the consistency of the framework and the,eeq for some clarification of the definitions of roles and
correctness of interpretations by tools in difficult or pgjicies, and for addition of clear definitions of a number of

potentially ambiguous cases. concepts originally assumed to be well known, such as
relation.
9. Gapsand omissions The most pressing need is for more explicit definitions

relating to evolution in time, relating both to system

Finally, there are a number of areas in which the currentbehaviour (for example the lifecycle of interfaces) and,
Foundations standard omits material on the grounds that itmore generally, of a set of ODP specifications to reflect
is self evident or sufficiently obvious to be taken as read.changes of requirement and policy. This can best be done
Experience has shown that it is worth making even by having an explicit representation of the possible worlds a
apparently well-understood concepts explicit if they are to specification applies to; this would need to be referenced as

be used in a formal way. part of the most fundamental support for modelling used to
technical usage, such aslationship or association Although the concept definitions are quite stable, they

definitions of which should be included on the basis of are not always used to best advantage in related standards.
significant usage in ODP specification, even if they seemin particular, because the ODP Architecture was developed
obvious. The Foundations should include genericin parallel with the Foundations, there are places where
definitions consistent with, but less detailed and restrictiveusage in Part 3 is incorrect or where rules could be
than those in the ISO General Relationship Model [10]. expressed more precisely by making best use of the
These generic definitions would then need to be related tdoundation concepts. Part 1 could be improved by making



the usage of the concepts from the Foundations morg5]

consistent and complete. It would also be possible to
improve Part 4 by interpreting some of the concepts directly

in terms of the semantic domain for the formal description 6]

techniques rather than writing them in the techniques

directly. However, it seems unlikely that there is enough
expert effort available to attempt so major a task on Part 4,
and the refinement of Parts 2 and 3 of the reference model
should be the primary target at present.

References

(1]
(2]
(3]

(4]

ISOMIEC IS 10746-2,0pen Distributed Processing —
Reference Model: Foundationk996.

ISOMIEC IS 10746-3,0pen Distributed Processing —
Reference Model: Architectyr&996.

P. F. Linington, RM-ODP: The Architecture In K.
Raymond and E. Armstrong, editor&pen Distributed
Processing: Experience with Distributed Environments
pages 15-33. IFIP, Chapman and Hall, February 1995.

ISOMEC IS 8807 Information processing systems -- Open
Systems Interconnection — TOS: A formal description
technique based on the temporal ordering of observational
behaviour 1989.

[7]

(8]

9]

[10

]

ISO/IEC IS 9074 |nformation technology -- Open Systems
Interconnection -- Estelle: A formal description technique
based on an extended state transition mati@d7.

P. F. Linington and W. F. Frank, Specification and
implementation in ODP, In J. Cordeiro and H. Kilov,
editors, Proceedings of the 1st Workshop on Open
Distributed = Processing: Enterprise, = Computation,
Knowledge, Engineering and Realisatiopages 69-80,
Setubal, Portugal, July 2001. ICEIS Press.

P. F. Linington and S. Nedlsing policies in the checking
of business to business contradts H. Lutfiyya, J. Moffat,
and F. Garcia, editor§ourth IEEE International Workshop
on Policies for Distributed Systems and Netwpnages
207-218, Lake Como, lItaly, June 2003. IEEE Computer
Society.

P. F. Linington, Z. Milosevic and K. Raymoriplicies in
Communities: Extending the ODP Enterprise Viewpdimt
Proceedings of 2nd International Workshop on Enterprise
Distributed Object Computing (EDOC9&an Diego, USA,
November 1998.

G.E.Hughes and M. J. Cresswell, Companion to Modal
Logic, Methuen, London, 1984

ISO/IEC IS 10165-7,Information Technology — Open
Systems Interconnection -Structure of management
information: General relationship model996.



