

THREAT MODELLING FOR ACTIVE
DIRECTORY

David Chadwick
ISI, University of Salford, Salford, M5 4WT, England.

Abstract: This paper analyses the security threats that can arise against an Active
Directory server when it is included in a Web application. The approach is
based on the STRIDE classification methodology. The paper also provides
outline descriptions of countermeasures that can be deployed to protect against
the different threats and vulnerabilities identified here.

Key words: security, LDAP, active directory, threats, vulnerabilities

1. INTRODUCTION

Active Directory (AD) is Microsoft’s LDAP product offering, first
introduced with Windows 2000 servers. Whilst being reasonably conformant
to many of the LDAP set of standards e.g. [1,2,3], nevertheless it is non-
conformant in some aspects. For example, it does not support some
standardized features, such as multi-valued relative distinguished names
(RDNs) or country based naming, but it does support many proprietary
features, such as a tight coupling with the operating system and Microsoft’s
DNS server. It has also replaced several standardized features with its own
proprietary ones. For these reasons customers using Microsoft’s operating
systems are well advised not to try to replace Active Directory with an
alternative more standards’ conformant LDAP product such as OpenLDAP.

Active Directory is a core service holding user and server account details
and security information. For example, Windows authentication uses
credentials stored in the Active Directory. Active Directory is therefore
fundamental to the correct operation of a Microsoft domain. For this reason

204 David Chadwick

most Microsoft based Web applications will need to access Active Directory
either directly or indirectly at some point during their business processing,
often during the authentication and/or authorization phases, but also at
different stages of the business process.

Access to Active Directory therefore needs to be well controlled and
protected, otherwise an attacker could severely impair the correct
functioning of both the Web application and the back office by successfully
launching an attack on Active Directory. Web application builders need to
understand the vulnerabilities of Active Directory and the threats that can
potentially exploit these vulnerabilities. In common with the other papers in
this series [4, 5, 6, 7] we use the STRIDE approach [8] to categorize the
most frequent or damaging threats that can arise against Active Directory
when deployed as part of the generic model for Web applications described
in [9]. Finally we describe the countermeasures that can be used to prevent
these threats or to mitigate against the damages subsequent to a successful
attack.

2. ASSUMPTIONS

The guidelines discussed in this paper will be effective only if the Active
Directory is properly installed, configured and patched with the latest
updates and service packs as released by Microsoft.

Correct configuration requires that that the Access Control Lists (ACLs),
that are used to control access to objects in the Active Directory, are set up
to give minimum privileges to the users (and to the Application Server
acting as a user or a proxy for the users).

The assumption is that the Application Server will communicate with the
Active Directory server by RPC messages generated by the Active Directory
Service Interfaces (ADSI), using one of the various scripting or
programming languages that it supports e.g. C++, Visual Basic or Java.

It is assumed that there is only a limited amount of trust between the
Active Directory Server and the Application Server, and between the
Application Server and the Web Server. By this, we mean that the Active
Directory Server will not let the Application Server have unrestricted access
to its resources, but will impose some controls on what the Application
Server can do. For example, the AD server may have an administrative limit
on the number of LDAP entries that can be returned to any ADSI request;
the AD server may have controls on the complexity and number of filter
items that can be included in a Search filter; and the AD server will have
properly configured access controls that limit which directory entries and
which operations the Application Server (and its users) are allowed to

Threat Modelling for Active Directory 205

access. Likewise, the Application Server will have some controls on the
messages originating from the Web Server and will validate and restrict their
contents. From a security perspective, the less trust that there is between the
AD server and the Application Server, and between the latter and the Web
Server, the better, as more controls will be imposed by the AD server on
what the Application Server is allowed to do, and by the Application Server
on what the Web Server can do. For example, at one extreme the AD server
may forbid any modification operations to originate from the Application
Server. The more trust that there is, the more careful the application
developer will need to be to ensure that this trust is not abused by an
application server that may become compromised, or that is just badly
programmed.

The final assumption is that there is no (or very little) trust between the
Web Server and the client, or between the Web Server and the network over
which the client’s http messages are transported. Thus eavesdropping of
messages on the network is possible, and in extreme cases, message
modifications. Furthermore, the Web Server must expect the client to try to
circumvent whatever client controls are placed on the messages that it sends.
Consequently the Web Server and all subsequent servers that receive client
messages, for example SOAP messages that are relayed through the Web
Server, must be designed to protect against threats emanating from modified
or badly formed client messages, by rigorously validating their contents.

3. SECURITY REQUIREMENTS

We can look at security requirements from two perspectives: the security
requirements placed on the design of the web application because it has little
or no trust in the client and the external network, and the security
requirements placed on the Active Directory because it only has limited trust
in the web application.

The security requirements placed on the web application i.e. the web
server and the Application Server, partially depend upon the type of
application that is being built. At one extreme, we may have an application
that is only retrieving public information from the AD server. At the other
extreme we may have an application that is accessing highly confidential
directory information and writing to the AD server by adding, modifying and
deleting objects in the Directory Information Tree (DIT).

In the former case the web application may have very few security
requirements placed on it, and may allow unauthenticated user access over
unsecured http links. Example applications might be: one that accesses the
contact information of people in the marketing and sales department, or one

206 David Chadwick

that retrieves certificate revocation lists (CRLs) for a PKI application. The
main security function of the web application will be to validate the contents
of the client requests (see below) and ensure that only a predefined limited
set of Search requests, and no modification requests, are sent to the Active
Directory.

In the latter case the web application will have very strict security
requirements placed on it. An example application might be one that
supports single sign on (SSO) and user authorisation by checking user
credentials in and retrieving their privileges from the AD server, whilst
simultaneously supporting dynamic provisioning and management of user
rights. In such cases, the web application will demand strong authentication
of the user to prevent masquerade, and will require all messages to be carried
across encrypted links to protect against eavesdropping and message
modification. The web application should never request nor accept user
passwords passed in the clear from the client. This will facilitate password
capture over an insecure network. The application should always require
passwords to be sent over an encrypted link e.g. using SSL or IPsec, or use
HMAC hashing which creates one-time passwords. When using SSL, the
web server should check that the SSL cipher suite that has been negotiated
with the client is a minimum of 128 bit encryption, and that it has not been
negotiated down to plain text (no encryption) or weak encryption. The same
holds true for the Application Server if it is using an insecure link to
communicate with the Web Server. In addition rigorous checking and
validation of all client provided fields and requests should take place as
described next.

Preferably, and whenever possible, limit the choices that are available to
the client by having picking lists of predefined values so that the client
cannot create its own values (this is very important for attribute type names,
matching rules, the distinguished names of subtree roots, the name of the AD
server and its connection details, although the latter of these will usually be
pre-configured into the Application Server and the client will not have any
control over them). For fields where the client must usually have complete
freedom of choice over the input values, for example, attribute values for
Search filters, then the Application Server should perform rigorous
validation of these values. Firstly determine the maximum length of each
field and check that it has not been exceeded by the client. Reject client
operations in which fields are too long. Secondly, treat each field as a literal
and make sure that it is encoded as such, for example by enclosing the user’s
input in quotation marks. Consider the following: say that the client
interface had separate input fields for attribute types and values when
creating a Search filter. The code might put them together to create a filter
such as (<user type>=<user value>). An attacker might place the following

Threat Modelling for Active Directory 207

in the Attribute Type field

&(objectCategory=person)(!salary>=10000)(commonName
and the code would then create the following valid complex filter
(&(objectCategory=person)(!salary>=10000)(commonName=<user value>)

thereby allowing the attacker to create whatever Search filters they want
to. Input field validation and checking is thus extremely important.

Because the Active Directory only has limited trust in the web
application, the security requirements placed on the Active Directory and on
the design of the web application are common, regardless of the type of
application that is being built. Firstly the Active Directory should be
configured so that the Application Server has no (or very limited) access
privileges to data in the Active Directory. This will help to protect against
elevation of privileges, whereby a user gains the access privileges of the
application rather than his/her own. Secondly the Active Directory should
limit the types of request from and the volume of data returned to the
Application Server. Finally, the Application Server should Bind to the
Active Directory using the client’s user context rather than its own.

When an application Binds to an object in the Active Directory, the access
privileges that the application has to that object are based on the user context
specified during the Bind operation. For the ADSI binding functions and
methods (IADsOpenDSObject::OpenDSObject, ADsOpenObject,
ADsGetObject, GetObject) an application can implicitly use the credentials
of the caller, or explicitly specify the credentials of a user account, or use an
unauthenticated user context (Guest). The Application Server should never
Bind to the AD server using a stronger form of authentication than that used
by the client, nor should it use a user account that has higher privileges than
the client’s (for example, the LocalSystem account on a domain controller
has complete access to Active Directory whereas a typical user has only
limited access to some of the objects in the directory). Ideally, the
Application Server should either use the credentials provided by the user,
and validate them by passing them to the AD server either implicitly or
explicitly, or should discard the user credentials altogether and use the Guest
context. In the former case the Application Server is acting as a proxy for the
client and will thus only have the same access rights to the directory data as
if the client were binding directly. In the latter case, the Application Server
will only gain minimum/public access rights to the directory data. For
example, an application policy might say that local users who access the
Active Directory when they are at a remote site should only have Guest
access to public data in the directory, in which case their credentials would
be discarded by the Application Server when they contact it from a remote
location.

208 David Chadwick

4. ACTIVE DIRECTORY THREATS AND

COUNTERMEASURES

4.1 Spoofing

Spoofing can take one of two forms. Either an attacker attempts to spoof
a user or an attacker attempts to spoof the Active Directory. In the former
case the attacker captures or guesses a user’s credentials and then
masquerades as the user when accessing the Active Directory. In the latter
case the attacker tricks a client into believing that information came from the
Active Directory when it did not, or tricks the client into sending
confidential data to it that should have been sent to the Active Directory.
Spoofing results from vulnerabilities in the client or in the network.
Spoofing the directory could be achieved by social engineering (e.g. sending
a wrong URL to users), misdirecting operations or modifying data in transit.
The use of SSL links will counteract the latter two, and user education will
help to protect against social engineering, although this is notoriously
difficult to fully protect against.

Spoofing a user can be aided by vulnerabilities in the network,
vulnerabilities in the Active Directory Information Base and vulnerabilities
in the Application Server. An attacker can sniff the network to obtain user
account names and passwords, or access the Active Directory to retrieve
valid user account names and then find the password by either a dictionary
attack or modifying the password attribute in the directory. Since the Active
Directory is often designed to return user account names, it may be difficult
to stop attackers from gaining this information, but if clients generally don’t
need to know user account names, then these should not be returned to the
client interface. The use of encrypted connections such as SSL or IPsec will
stop network sniffing, as will the use of HMAC [10] or Kerberos
authentication. Dictionary attacks can be prevented by having the
Application Server count the number of failed login attempts per user
account name, writing them to audit trails, and then disabling the account
when a threshold number is exceeded. Modification of password attributes
can be prevented by the Application Server not providing a modification
capability to the client, but if this is essential, then the server should
carefully validate all modification operations and trap ones that try to modify
the password attribute.

4.2 Tampering

With this threat, an attacker tries to modify directory data either in transit

Threat Modelling for Active Directory 209

to the client, or whilst it is stored in the AD server. This can be due to
vulnerabilities in the network, vulnerabilities in the Active Directory
Information Base or vulnerabilities in the Application Server. Threats to the
AD server can arise from masquerade, poorly configured access controls and
the injection of modification operations via the Application Server.
Countermeasures include protecting data in transit by using either SSL or
IPsec. Masquerade has been dealt with in Section 4.1. The Application
Server should be configured to reject all Modification operations, or if this is
not possible, to very carefully validate all user input fields and to reject
operations with “invalid” arguments. The Application Server should Bind to
the AD server using the user provided credentials so that the user does not
inherit the possibly higher privileges of the Application Server process.

4.3 Repudiation

Repudiation is when users deny that they have performed specific actions
or transactions. Keeping adequate audit trails will provide evidence of who
did what and will help to counteract this type of threat. Auditing should be
performed by both the AD server and the Application Server, and in this way
insider attacks directed straight to the AD server will be more easy to
identify. Requiring relatively strong client authentication will minimize the
chances that an attacker can perform actions on behalf of a client which will
subsequently be repudiated.

4.4 Information Disclosure

Information disclosure occurs when a user gains read access to
information that (s)he is not supposed to have access to. This can be due to
vulnerabilities in the network, vulnerabilities in the Active Directory or
vulnerabilities in the Application Server. Vulnerabilities in the AD software,
other than those caused by badly configured access controls, are outside the
scope of this document. An attacker may sniff the network, masquerade as
another user, or generate valid or invalid search or modify requests. Network
sniffing and masquerade have already been dealt with in section 4.1.
Generating invalid search or modify requests may return useful error
diagnostic messages, which can provide the attacker with valuable
information. The countermeasure to this is for the Application Server to
scrub useful information from error messages and to return bland generic
error messages to the client, whilst writing the full error message to its audit
trail.

The Application Server should exert control over the Search requests that
clients can perform. In general only specific limited Searches should be

210 David Chadwick

allowed by clients, otherwise attackers may generate very broad searches
that trawl the entire directory. All user input should be validated, and only a
fixed subset of ADSI arguments should to be allowed. Searches with
“invalid” arguments should be rejected. However, a determined attacker may
even circumvent this by generating multiple valid Search requests that only
return snippets of information each time. If this is done a sufficient number
of times, the sum total of information gained by the attacker may be more
than the application designers ever intended to be revealed. For example,
retrieving details of individual users in each Search request, may enable an
attacker to retrieve details of the entire organizational workforce. Such
attacks are very difficult to stop. Even building an audit trial and refusing
access after a set number of searches might not stop the problem if the
attacker has access to multiple user accounts.

Similarly, the Application Server should exert tight control over
Modification operations. Ideally, it should refuse to allow any Modification
operation through the interface, or if this is not possible, it should ensure that
only authenticated users can perform modification operations, whilst
simultaneously very carefully validating all user input fields and rejecting
those with “invalid” arguments. For example, an attacker may try to modify
the heuristic status of attributes, by setting bit 1 (which will make the
attribute visible to unauthenticated users) or unsetting bit 3 (which removes
operational attribute status).

4.5 Denial of Service

In a denial of service attack, the attacker denies access to the AD server
for normal users. This can be aided by vulnerabilities in the Active Directory
server and vulnerabilities in the Application Server. Denial of Service
attacks are typically very hard to protect against.

 The attacker may try to crash the AD server, or more likely, consume
excessive resources. The easiest way to consume excessive resources is to
launch CPU or network intensive Search operations. The former can be
started by creating Searches with inefficient and/or complex filters, or ones
containing multiple ambiguous name resolution elements (i.e. those where
the attribute type is set to anr) [11]. Network intensive Searchers are
designed to return lots of entries – the entire AD contents if possible.

Countermeasures to the above are as follows. The Application Server
should validate all filters input by the user and only allow a predefined
subset of filters to get through. In addition, the AD server should be
configured to reject complex filters, and to only return a pre-defined
maximum number of entries for any Search request.

An attacker may try to open up multiple connections to the Application

Threat Modelling for Active Directory 211

Server and/or AD server, preferably using SSL which consumes more
resources. Countermeasures include timing out inactive sessions, keeping a
record of the usernames of each active session and only allowing a fixed
number of sessions per user at any one time.

More sophisticated attacks, which would normally require administrator
level privileges, include: switching off indexing which kills the performance
of most search operations; starting replication between AD servers which
again kills performance; or updating the schema which might actually crash
the AD server. Careful validation of the allowed modification operations by
the Application Server should trap operations such as these.

4.6 Elevation of Privileges

Elevation of privileges can occur when an attacker either masquerades as
a user with higher privileges than his own, or modifies data in the directory,
for example, by adding a user to a group, or modifying ACLs in directory
objects. Masquerade has already been described in Section 4.1. Illegal
modification of directory data can be prohibited by disallowing any
Modification operation to originate from the Application Server, or if this is
not possible, by very carefully validating all user input fields and rejecting
operations with “invalid” arguments. Correctly configured Access Control
Lists in the AD server, and Binding with minimum privileges are also
essential.

5. CONCLUSIONS

Whilst many different vulnerabilities and threats exist, they can nearly all
be protected against by a few common countermeasures:
• Encrypt and authenticate messages that pass over insecure networks by

using either SSL or IPsec
• Always have the Application Server Bind to the Active Directory using

the same or lower privileges than those possessed by the client
• Ensure that the Access Control Lists in the AD server are correctly

configured to give minimum privileges to clients.
• Severely limit the number and scope of directory operations that the

Application Server sends to the AD server on behalf of the client. Always
try to restrict the range of parameters that can be set or chosen by the
client, and validate all user input fields for their content. If possible,
ensure that no Modification operations are ever sent.

• Restrict the error diagnostic messages that are returned to the client.

212 David Chadwick

With these countermeasures in place, it will significantly reduce the risk
that an attacker will be able to launch a successful STRIDE attack against an
Active Directory server.

6. ACKNOWLEDGEMENTS

The work reported in this paper was developed as part of the Designing
Secure Applications (DeSecA) project, funded by Microsoft. Partners within
this project were the Universita’ degli Studi di Milano, the Technical
University of Ilmenau, the University of Salford, and the COSIC and
DistriNet research groups of the Katholieke Universiteit Leuven.

7. REFERENCES

[1] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3), RFC 2251,
December 1997

[2] Wahl, M., Coulbeck, A., Howes, T., Kille, S. “Lightweight Directory Access Protocol
(v3): Attribute Syntax Definitions”. RFC 2252. December 1997.

[3] Kille, S et.al. “Using Domains in LDAP/X.500 Distinguished Names”, RFC 2247, Jan
1998

[4] E. Bertino, D. Bruschi, S. Franzoni, I. Nai-Fovino, and S. Valtolina. Threat modelling for
SQL Servers. Eighth IFIP TC-6 TC-11 Conference on Communications and Multimedia
Security (CMS 2004), September 2004, UK, pp189-201

[5] R. Grimm and H. Eichstädt. Threat modelling for ASP.NET – Designing Secure
Applications. Eighth IFIP TC-6 TC-11 Conference on Communications and Multimedia
Security (CMS 2004), September 2004, UK, pp175-187

[6] D. De Cock, K. Wouters, D. Schellekens, D. Singelee, and B. Preneel. Threat modelling
for security tokens in web applications. Eighth IFIP TC-6 TC-11 Conference on
Communications and Multimedia Security (CMS 2004), September 2004, UK, pp 213-223

[7] L. Desmet, B. Jacobs, F. Piessens, and W. Joosen. Threat modelling for web services
based web applications. Eighth IFIP TC-6 TC-11 Conference on Communications and
Multimedia Security (CMS 2004), September 2004, UK, pp161-174

[8] MSDN Library - Improving web application security: Threats and Countermeasures
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetsec/html/ThreatCounter.asp, 2003

[9] L. Desmet, B. Jacobs, F. Piessens, and W. Joosen. A generic architecture for web
applications to support threat analysis of infrastructural components, Eighth IFIP TC-6
TC-11 Conference on Communications and Multimedia Security (CMS 2004), September
2004, UK, pp155-160

[10] Wahl, M., Alverstrand, H., Hodges, J., Morgan, R. “Authentication Methods for
LDAP”, RFC 2829, May 2000

[11] MSDN Library - Creating More Efficient Microsoft Active Directory-Enabled
Applications.

 http://msdn.microsoft.com/library/en-us/dnactdir/html/efficientadapps.asp?frame=true

