
Johnson, Colin G. (2004) Using tabu search and genetic algorithms in mathematics
research. In: Lotfi, Ahmed, ed. Proceedings of the Fifth International Conference
on Recent Advances in Soft Computing. . pp. 243-248. Nottingham Trent
University ISBN 1-84233-110-8.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14050/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14050/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Using Tabu Search and Genetic Algorithms in Mathematics
Research

Colin G. Johnson
Computing Laboratory

University of Kent
Canterbury, Kent, CT2 7NF, England

e-mail: C.G.Johnson@kent.ac.uk

Abstract: This paper discusses an ongoing project which uses computational heuristic search
techniques such as tabu search and genetic algorithms as a tool for mathematics research. We
discuss three ways in which such search techniques can be useful for mathematicians: in finding
counterexamples to conjectures, in enumerating examples, and in finding sequences of trans-
formations between two objects which are conjectured to be related. These problem-types are
discussed using examples from topology.

Keywords: experimental mathematics, genetic algorithms, tabu search, heuristics,
heuristic search, topology

1 Introduction

This paper describes an ongoing project which is concerned with the application of computational
search methods, such as genetic algorithms and tabu search, to mathematical problems.

Pure mathematics is typically concerned with the properties of particular types of mathemati-
cal objects. Many topics in mathematics (particularly the more algebraic and geometric topics)
begin by defining a particular kind of object: a group, a ring, a manifold, a knot, a continuous
function, From this definition we investigate the properties held by examples of the defini-
tion. For example we might ask questions of the form: when should we regard two objects as
being the same? Given a way of transforming an object, when can we transform one object into
another? How many objects are there of that kind, perhaps under some constraints?

In this paper we suggest that these kinds of questions can be approached by what could be
thought of as a “data mining” approach: generate a search space of lots of examples of the
objects in question, then use a computational search technique to search for objects with the
properties of interest.

2 An example search space: topological knots

As an example search space we have been looking at an area of topology called knot theory
which is concerned with knotted shapes (see [1, 7] for an introduction). These are of interest
for several reasons: as interesting pure mathematical objects, because the underlying algebraic
structures turn up in physics [2, 11], and because we can use them to understand problems in
chemistry such as knotted DNA strands and polymeric materials [9].

A knot is an embedding of a loop in space; we can think of it as a closed loop of string which is
tangled in some fashion. These are most easily represented by using two dimensional diagrams,
which can be thought of as a projection of the three-dimensional diagram onto a two-dimensional

Figure 1: Forming a diagram from a knot via projection.

Figure 2: The Dowker-Thistlethwaite notation.

plane (diagram 1).

The collection of these diagrams, up to a certain number of crossings, forms our search space.
There are a number of ways of storing these on the computer. One standard way of doing this
is known as Dowker-Thistlethwaite notation [3]. In this notation we take a diagram and convert
it into a sequence of numbers that track the over- and under-crossings as we move along the
strand; each crossing point ends up with one even and one odd number associated with it. The
process is illustrated in figure 2.

There are other ways of representing such knots; for example we can “stretch” the knot out into
a sequence of linear strands, as illustrated in figure 3, and note the list of numbers corresponding
to which strand crosses over which. To convert this sequence of strands into a conventional knot
diagram we connect the two ends of each strand together to make a loop.

The aim of both of these processes is to convert a complex two-dimensional diagram into a
sequence of numbers which capture the essence of the topology of the diagram; i.e. those parts
of the diagram which are unchanged if we make continuous changes to the diagram, without
cutting the strands or changing the crossovers.

Now that we have a way of notating these knots, we have a search space; this consists of all
sets of numbers which define knots according to the above procedures. In order to carry out a
computational search technique we need to be able to do three things.

Initialize. We need to be able to pick an initial point or population of points (depending on the
technique) from the search space. In the case of the knot search space we can do this in a
number of ways: e.g. choosing a list of numbers at random and using these as the crossing-

Figure 3: The braid notation.

Figure 4: Genetic algorithm-style moves in knot-space

sequence of a braid, or doing a random walk on a two-dimensional grid then reading off the
notation.

Move. We need to be able to do moves in the search space. For example in genetic algorithms
we need to do crossover and mutation operators; in hillclimbing and tabu search we need
to be able to do some local exploratory moves. There is a large choice of such moves for
these kinds of problems (indeed choosing the best kinds of moves is an interesting challenge,
beyond the scope of this paper). An example of such moves is given in figure 4.

Select We need some way of selecting the “best” example(s) after the move has been made.
This will depend on the kind of problem that we are solving.

3 Counterexample Searching

The first kind of mathematical problem that we can tackle using these techniques is searching for
counterexamples. This is where we are looking for a specific example of an object in our data-set
which proves that some statement is false. For example the number 2 is a counterexample to the
statement “all prime numbers are odd”. Clearly to apply a search technique to counterexample
finding, we need to be able to get more feedback from the system; it is unlikely that a problem
like the one above would be solvable using search; knowing that, say, 3, 19, 29, . . . are prime
and odd doesn’t give us any “direction” to find the number 2. Nonetheless we shall see below
examples of other mathematical problems that do give more feedback to feed into a fitness
function.

We have applied heuristic search to a counterexample finding-problem in knot theory. In partic-
ular we consider the question “when is a knot not a knot?”; i.e. when do we have a complicated
tangle of strands which, nonetheless, can be untangled into an unknotted loop. This is not a
simple question. One way to understand this kind of question is through the calculation of so-
called invariants of diagrams. An invariant is an object, e.g. a number or a polynomial, which

can be calculated from the knot diagram, and which is the same regardless of which diagram is
used for a particular 3-D knot. There are many such invariants. One yet-unresolved problem
is to find an invariant which takes on a particular value when and only when the diagram is
unknotted.

An early conjecture was that a particular invariant, called the Alexander polynomial, might play
such a role. Eventually counterexamples were found: knots which had the same polynomial
as the unknotted loop, but which were genuinely knotted. Can we use a computational search
technique to rediscover this counterexample?

The fitness function for this problem needs to do two things. Firstly it needs to look for knots
that have the same Alexander polynomial as the unknotted loop. However if we use that as our
only fitness criterion, then the algorithm rapidly converges on just unknotted loops. Therefore
we need to include a second fitness measure and do a multicriterion optimization. The important
feature that this second measure must have is that it measures the complexity of the knot in
some way, but measures that complexity in a different way to the Alexander invariant. To
decide upon this second invariant we calculated the statistical correlation of a measure of the
complexity of the polynomial (number and size of terms) against various other invariants. We
then chose the least well correlated of these (this was a measure called the hyperbolic volume of
the knot complement.

To summarize: to find a counterexample to the conjecture we are trying to find a knot with
Alexander polynomial the same as an unknotted loop, yet which really is knotted. To do this we
use a multicriterion fitness function to both decrease the complexity of the Alexander polynomial
whilst increasing another measure of knot complexity: the hyperbolic volume.

The search strategy is a tabu search. We begin by randomly generating a knot with 60 crossings,
and at each generation make six attempted moves, moving if possible to a solution which lowers
the polynomial complexity whilst not reducing the hyperbolic volume. The algorithm was tested
ten times: all runs found a counterexample between 2 and 9 rounds. Output from a typical run
of the program is given in table 1.

4 Enumerating Equivalence Classes

A second type of problem is enumerating the different types of objects. An example of this
from the knot search space is that of tabulating knots, that is finding one representative 2-D
diagram for each possible 3-D knot. This activity dates back a long way [6], and was considered
particularly important to nineteenth century mathematicians due to a popular theory [10] which
suggested that atoms consisted of knots in the aether!

Again we can frame this as a search problem. In this case we are searching the set of all
possible knot diagrams for diagrams which represent different knots to the previous stages in
the search. In order to carry this out we use a GA with an adaptive fitness function which gives
a positive rating to areas of the search space when there are still novel solutions being found,
but applies penalties to population members which produce knots which are of the same type
as those already discovered. This technique is discussed in general in [4, 5]. A comparison of
this diversity-seeking GA with random search is given in figure 5.

5 Finding Sequences of Transformations

A final problem type, which is the subject of our current work, is finding sequences of transfor-
mations from one object to another. For example it is known that any two knot diagrams that
represent the same underlying knot can be transformed between one another by a sequence of

initial fitness is Volume: 53.014083, polynomial complexity: 3528.0

About to make a move:
Fitness of move 0 is this. Volume: 31.267518, polynomial complexity: 744.0
Fitness of move 1 is this. Volume: 53.336667, polynomial complexity: 14404.0
Fitness of move 2 is this. Volume: 28.850185, polynomial complexity: 192.0
Fitness of move 3 is this. Volume: 55.256613, polynomial complexity: 21024.0
Fitness of move 4 is this. Volume: 50.544457, polynomial complexity: 3640.0
Fitness of move 5 is this. Volume: 56.492307, polynomial complexity: 33592.0
Best is 2
Lowest complexity is 192.0

About to make a move:
Fitness of move 0 is this. Volume: 52.273302, polynomial complexity: 13816.0
Fitness of move 1 is this. Volume: 49.313944, polynomial complexity: 10512.0
Fitness of move 2 is this. Volume: 56.550171, polynomial complexity: 11048.0
Fitness of move 3 is this. Volume: 51.509364, polynomial complexity: 12972.0
Fitness of move 4 is this. Volume: 34.726442, polynomial complexity: 516.0
Fitness of move 5 is this. Volume: 57.00492, polynomial complexity: 1444.0
No change
Lowest complexity is 192.0

About to make a move:
Fitness of move 0 is this. Volume: 51.924411, polynomial complexity: 9728.0
Fitness of move 1 is this. Volume: 34.008854, polynomial complexity: 40.0
Fitness of move 2 is this. Volume: 53.997257, polynomial complexity: 1484.0
Fitness of move 3 is this. Volume: 49.971012, polynomial complexity: 556.0
Fitness of move 4 is this. Volume: 56.816054, polynomial complexity: 12500.0
Fitness of move 5 is this. Volume: 44.194888, polynomial complexity: 392.0
Best is 1
Lowest complexity is 40.0

About to make a move:
Fitness of move 0 is this. Volume: 43.368439, polynomial complexity: 460.0
Fitness of move 1 is this. Volume: 36.163213, polynomial complexity: 1180.0
Fitness of move 2 is this. Volume: 27.572854, polynomial complexity: 340.0
Fitness of move 3 is this. Volume: 22.662824, polynomial complexity: 60.0
Fitness of move 4 is this. Volume: 32.233932, polynomial complexity: 160.0
Fitness of move 5 is this. Volume: 38.972726, polynomial complexity: 584.0
No change
Lowest complexity is 40.0

About to make a move:
Fitness of move 0 is this. Volume: 34.214721, polynomial complexity: 120.0
Fitness of move 1 is this. Volume: 32.755526, polynomial complexity: 36.0
Fitness of move 2 is this. Volume: 43.197662, polynomial complexity: 464.0
Fitness of move 3 is this. Volume: 41.407491, polynomial complexity: 308.0
Fitness of move 4 is this. Volume: 34.372221, polynomial complexity: 368.0
Fitness of move 5 is this. Volume: 17.551978, polynomial complexity: 16.0
Best is 5
Lowest complexity is 16.0

About to make a move:
Fitness of move 0 is this. Volume: 33.702301, polynomial complexity: 40.0
Fitness of move 1 is this. Volume: 30.393301, polynomial complexity: 184.0
Fitness of move 2 is this. Volume: 36.205037, polynomial complexity: 48.0
Fitness of move 3 is this. Volume: 34.666526, polynomial complexity: 28.0
Fitness of move 4 is this. Volume: 51.151599, polynomial complexity: 4924.0
Fitness of move 5 is this. Volume: 38.672732, polynomial complexity: 132.0
No change
Lowest complexity is 16.0

About to make a move:
Fitness of move 0 is this. Volume: 31.918501, polynomial complexity: 592.0
Fitness of move 1 is this. Volume: 21.882483, polynomial complexity: 28.0
Fitness of move 2 is this. Volume: 26.71534, polynomial complexity: 44.0
Fitness of move 3 is this. Volume: 4.555919, polynomial complexity: 12.0
Fitness of move 4 is this. Volume: 26.352331, polynomial complexity: 36.0
Fitness of move 5 is this. Volume: 9.256363, polynomial complexity: 4.0
Best is 5
Lowest complexity is 4.0

About to make a move:
Fitness of move 0 is this. Volume: 9.256363, polynomial complexity: 4.0
Fitness of move 1 is this. Volume: 20.632373, polynomial complexity: 4.0
Fitness of move 2 is this. Volume: 18.941126, polynomial complexity: 0.0
Fitness of move 3 is this. Volume: 30.629161, polynomial complexity: 104.0
Fitness of move 4 is this. Volume: 23.883052, polynomial complexity: 60.0
Fitness of move 5 is this. Volume: 24.841542, polynomial complexity: 52.0
Best is 2
Lowest complexity is 0.0
Solution found

Table 1: A run of the counterexample-search program.

Figure 5: Number of distinct knots per generation: a comparison of the genetic algorithm and
random generation for five runs (GA: line; random search: dots).

transformations drawn from a set known as Reidermeister moves [8]. However it is not easy to
derive such a set of moves for a particular pair of knots. We are currently experimenting with
heuristic search techniques for this problem.

6 Conclusions

This paper has introduced an approach to mathematics research which uses heuristic search
as a way of exploring mathematical conjectures and studying mathematical objects. This is
part of a general programme to study some aspects of mathematics in a data-driven fashion,
and introduce techniques from heuristic search and data mining into mathematics research. In
our future work we will continue to investigate problems of the three types above, both in the
topological area and in other areas of mathematics such as graph theory.

References

[1] C. A. Adams. The Knot Book. W.H. Freeman, 1994.
[2] J. C. Baez, editor. Knots and Quantum Gravity. Oxford University Press, 1994.
[3] C. Dowker and M. B. Thistlethwaite. Classification of knot projections. Topology and its Applica-

tions, 16(1):19–31, 1983.
[4] C. G. Johnson. Finding qualitative examples with genetic algorithms. In R. John and R. Birkenhead,

editors, Developments in Soft Computing, pages 92–99. Springer, 2001.
[5] C. G. Johnson. Understanding complex systems through examples: a framework for qualitative

example-finding. Systems Research and Information Systems, 10:239–267, 2001.
[6] R. T. P. Kirkman. The enumeration, description, and construction of knots of fewer than ten

crossings. Transactions of the Royal Society of Edinburgh, XXXII, 1884.
[7] K. Murasugi. Knot Theory and its Applications. Birkhäuser, 1996.
[8] K. Reidermeister. Knotentheorie. Springer, 1932.
[9] D. W. Sumners. Untangling DNA. Mathematical Intelligencer, 12(3):71–80, 1990.

[10] S. W. Thompson. On vortex motion. Transactions of the Royal Society of Edinburgh, XXV, 1867.
[11] E. Witten. Quantum-field theory and the Jones polynomial. Communications in Mathematical

Physics, 121(3):351–399, 1989.

