
Woodcock, Jim and Cavalcanti, Ana L. C. (2004) A tutorial introduction
to unifying theories of programming. In: Integrated Formal Methods 4th
International Conference. Lecture Notes in Computer Science . Springer,
Berlin, Germany, pp. 40-66. ISBN 978-3-540-21377-2.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/14036/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/978-3-540-24756-2_4

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/14036/
https://doi.org/10.1007/978-3-540-24756-2_4
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Tutorial Introduction to Designs in

Unifying Theories of Programming

Jim Woodcock and Ana Cavalcanti

University of Kent
Computing Laboratory

Canterbury UK
{J.C.P.Woodcock,A.L.C.Cavalcanti}@kent.ac.uk

Abstract. In their Unifying Theories of Programming (UTP), Hoare &
He use the alphabetised relational calculus to give denotational seman-
tics to a wide variety of constructs taken from different programming
paradigms. A key concept in their programme is the design: the familiar
precondition-postcondition pair that describes the contract between a
programmer and a client. We give a tutorial introduction to the theory
of alphabetised relations, and its sub-theory of designs. We illustrate the
ideas by applying them to theories of imperative programming, including
Hoare logic, weakest preconditions, and the refinement calculus.

1 Introduction

The book by Hoare & He [6] sets out a research programme to find a common
basis in which to explain a wide variety of programming paradigms: unifying
theories of programming (UTP). Their technique is to isolate important language
features, and give them a denotational semantics. This allows different languages
and paradigms to be compared.

The semantic model is an alphabetised version of Tarski’s relational calculus,
presented in a predicative style that is reminiscent of the schema calculus in
the Z [14] notation. Each programming construct is formalised as a relation
between an initial and an intermediate or final observation. The collection of
these relations forms a theory of the paradigm being studied, and it contains
three essential parts: an alphabet, a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the
theory being studied. Names are chosen for any relevant external observations
of behaviour. For instance, programming variables x , y , and z would be part of
the alphabet. Also, theories for particular programming paradigms require the
observation of extra information; some examples are a flag that says whether the
program has started (okay); the current time (clock); the number of available
resources (res); a trace of the events in the life of the program (tr); or a flag that
says whether the program is waiting for interaction with its environment (wait).
The signature gives the rules for the syntax for denoting objects of the theory.
Healthiness conditions identify properties that characterise the theory.

Each healthiness condition embodies an important fact about the computational
model for the programs being studied.

Example 1 (Healthiness conditions).

1. The variable clock gives us an observation of the current time, which moves
ever onwards. The predicate B specifies this.

B =̂ clock ≤ clock ′

If we add B to the description of some activity, then the variable clock
describes the time observed immediately before the activity starts, whereas
clock ′ describes the time observed immediately after the activity ends. If we
suppose that P is a healthy program, then we must have that P ⇒ B .

2. The variable okay is used to record whether or not a program has started.
A sensible healthiness condition is that we should not observe a program’s
behaviour until it has started; such programs satisfy the following equation.

P = (okay ⇒ P)

If the program has not started, its behaviour is not described. 2

Healthiness conditions can often be expressed in terms of a function φ that makes
a program healthy. There is no point in applying φ twice, since we cannot make
a healthy program even healthier. Therefore, φ must be idempotent: P = φ(P);
this equation characterises the healthiness condition. For example, we can turn
the first healthiness condition above into an equivalent equation, P = P ∧ B ,
and then the following function on predicates andB =̂ λX • P ∧ B is the
required idempotent.

The relations are used as a semantic model for unified languages of speci-
fication and programming. Specifications are distinguished from programs only
by the fact that the latter use a restricted signature. As a consequence of this
restriction, programs satisfy a richer set of healthiness conditions.

Unconstrained relations are too general to handle the issue of program ter-
mination; they need to be restricted by healthiness conditions. The result is
the theory of designs, which is the basis for the study of the other program-
ming paradigms in [6]. Here, we present the general relational setting, and the
transition to the theory of designs.

In the next section, we present the most general theory of UTP: the alpha-
betised predicates. In the following section, we establish that this theory is a
complete lattice. Section 4 discusses Hoare logic and weakest preconditions. Sec-
tion 5 restricts the general theory to designs. Next, in Section 6, we present an
alternative characterisation of the theory of designs using healthiness conditions.
After that, we rework the Hoare logic and weakest preconditions definitions; we
also outline a novel formalisation of Morgan’s calculus based on designs. Finally,
we conclude with a summary and a brief account of related work.

2 The alphabetised relational calculus

The alphabetised relational calculus is similar to Z’s schema calculus, except that
it is untyped and rather simpler. An alphabetised predicate (P ,Q , . . . , true) is an
alphabet-predicate pair, where the predicate’s free variables are all members
of the alphabet. Relations are predicates in which the alphabet is composed
of undecorated variables (x , y , z , . . .) and dashed variables (x ′, a ′, . . .); the
former represent initial observations, and the latter, observations made at a
later intermediate or final point. The alphabet of an alphabetised predicate P is
denoted αP , and may be divided into its before-variables (inαP) and its after-
variables (outαP). A homogeneous relation has outαP = inαP ′, where inαP ′

is the set of variables obtained by dashing all variable in the alphabet inαP . A
condition (b, c, d , . . . , true) has an empty output alphabet.

Standard predicate calculus operators can be used to combine alphabetised
predicates. Their definitions, however, have to specify the alphabet of the com-
bined predicate. For instance, the alphabet of a conjunction is the union of the
alphabets of its components: α(P ∧ Q) = αP ∪ αQ . Of course, if a variable is
mentioned in the alphabet of both P and Q , then they are both constraining
the same variable.

A distinguishing feature of UTP is its concern with program development,
and consequently program correctness. A significant achievement is that the
notion of program correctness is the same in every paradigm in [6]: in every
state, the behaviour of an implementation implies its specification.

If we suppose that αP = {a, b, a ′, b′}, then the universal closure of P is
simply ∀ a, b, a ′, b′ • P , which is more concisely denoted as [P]. The correctness
of a program P with respect to a specification S is denoted by S v P (S is
refined by P), and is defined as follows.

S v P iff [P ⇒ S]

Example 2 (Refinement). Suppose we have the specification x ′ > x ∧ y ′ = y ,
and the implementation x ′ = x + 1 ∧ y ′ = y . The implementation’s correctness
is argued as follows.

x ′ > x ∧ y ′ = y v x ′ = x + 1 ∧ y ′ = y [definition of v]

= [x ′ = x + 1 ∧ y ′ = y ⇒ x ′ > x ∧ y ′ = y] [universal one-point rule, twice]

= [x + 1 > x ∧ y = y] [arithmetic and reflection]

= true

And so, the refinement is valid. 2

As a first example of the definition of a programming constructor, we consider
conditionals. Hoare & He use an infix syntax for the conditional operator, and
define it as follows.

P C b B Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ

α(P C b B Q) =̂ αP

Informally, P C b B Q means P if b else Q .

The presentation of conditional as an infix operator allows the formulation of
many laws in a helpful way.

L1 P C b B P = P idempotence

L2 P C b B Q = Q C ¬ b B P symmetry

L3 (P C b B Q) C c B R = P C b ∧ c B (Q C c B R) associativity

L4 P C b B (Q C c B R) = (P C b B Q) C c B (P C b B R)distributivity

L5 P C true B Q = P = Q C false B P unit

L6 P C b B (Q C b B R) = P C b B R unreachable branch

L7 P C b B (P C c B Q) = P C b ∨ c B Q disjunction

L8 (P � Q) C b B (R � S) = (P C b B R) � (Q C b B S) interchange

In the Interchange Law (L8), the symbol � stands for any truth-functional op-
erator.

For each operator, Hoare & He give a definition followed by a number of
algebraic laws as those above. These laws can be proved from the definition. As
an example, we present the proof of the Unreachable Branch Law (L6).

Example 3 (Proof of Unreachable Branch (L6)).

(P C b B (Q C b B R)) [L2]

= ((Q C b B R) C ¬ b B P) [L3]

= (Q C b ∧ ¬ b B (R C ¬ b B P)) [propositional calculus]

= (Q C false B (R C ¬ b B P)) [L5]

= (R C ¬ b B P) [L2]

= (P C b B R) 2

Implication is, of course, still the basis for reasoning about the correctness
of conditionals. We can, however, prove refinement laws that support a compo-
sitional reasoning technique.

Law 1 (Refinement to conditional)

P v (Q C b B R) = (P v b ∧ Q) ∧ (P v ¬ b ∧ R) 2

This result allows us to prove the correctness of a conditional by a case analysis
on the correctness of each branch. Its proof is as follows.

Proof of Law 1

P v (Q C b B R) [definition of v]

= [(Q C b B R) ⇒ P] [definition of conditional]

= [b ∧ Q ∨ ¬ b ∧ R ⇒ P] [propositional calculus]

= [b ∧ Q ⇒ P] ∧ [¬ b ∧ R ⇒ P] [definition of v, twice]

= (P v b ∧ Q) ∧ (P v ¬ b ∧ R) 2

A compositional argument is also available for conjunctions.

Law 2 (Separation of requirements)

((P ∧ Q) v R) = (P v R) ∧ (Q v R) 2

We can prove that an implementation satisfies a conjunction of requirements by
considering each conjunct separately. The omitted proof is left as an exercise for
the interested reader.

Sequence is modelled as relational composition. Two relations may be com-
posed, providing that the output alphabet of the first is the same as the input
alphabet of the second, except only for the use of dashes.

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) if outαP = inαQ ′ = {v ′}

inα(P(v ′) ; Q(v)) =̂ inαP

outα(P(v ′) ; Q(v)) =̂ outαQ

Composition is associative and distributes backwards through the conditional.

L1 P ; (Q ; R) = (P ; Q) ; R associativity

L2 (P C b B Q) ; R = ((P ; R) C b B (Q ; R)) left distribution

The simple proofs of these laws, and those of a few others in the sequel, are
omitted for the sake of conciseness.

The definition of assignment is basically equality; we need, however, to be
careful about the alphabet. If A = {x , y , . . . , z} and αe ⊆ A, where αe is the set
of free variables of the expression e, the assignment x :=A e of expression e to
variable x changes only x ’s value.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

α(x :=A e) =̂ A ∪ A′

There is a degenerate form of assignment that changes no variable: it’s called
“skip”, and has the following definition.

IIA =̂ (v ′ = v) if A = {v}

αIIA =̂ A ∪ A′

Skip is the identity of sequence.

L5 P ; IIαP = P = IIαP ; P unit

We keep the numbers of the laws presented in [6] that we reproduce here.
In theories of programming, nondeterminism may arise in one of two ways: ei-

ther as the result of run-time factors, such as distributed processing; or as the
under-specification of implementation choices. Either way, nondeterminism is
modelled by choice; the semantics is simply disjunction.

P u Q =̂ P ∨ Q if αP = αQ

α(P u Q) =̂ αP

The alphabet must be the same for both arguments.

The following law gives an important property of refinement: if P is refined by
Q , then offering the choice between P and Q is immaterial; conversely, if the
choice between P and Q behaves exactly like P , so that the extra possibility of
choosing Q does not add any extra behaviour, then Q is a refinement of P .

Law 3 (Refinement and nondeterminism)

P v Q = (P u Q = P) 2

Proof

P u Q = P [antisymmetry]

= (P u Q v P) ∧ (P v P u Q) [definition of v, twice]

= [P ⇒ P u Q] ∧ [P u Q ⇒ P] [definition of u, twice]

= [P ⇒ P ∨ Q] ∧ [P ∨ Q ⇒ P] [propositional calculus]

= true ∧ [P ∨ Q ⇒ P] [propositional calculus]

= [Q ⇒ P] [definition of v]

= P v Q 2

Another fundamental result is that reducing nondeterminism leads to refinement.

Law 4 (Thin nondeterminism)

P u Q v P 2

The proof is immediate from properties of the propositional calculus.
Variable blocks are split into the commands var x , which declares and intro-

duces x in scope, and end x , which removes x from scope. Their definitions are
presented below, where A is an alphabet containing x and x ′.

var x =̂ (∃ x • IIA)

end x =̂ (∃ x ′ • IIA)

α(var x) =̂ A \ {x}

α(end x) =̂ A \ {x ′}

The relation var x is not homogeneous, since it does not include x in its alphabet,
but it does include x ′; similarly, end x includes x , but not x ′.

The results below state that following a variable declaration by a program Q
makes x local in Q ; similarly, preceding a variable undeclaration by a program
Q makes x ′ local.

(var x ; Q) = (∃ x • Q)

(Q ; end x) = (∃ x ′ • Q)

More interestingly, we can use var x and end x to specify a variable block.

(var x ; Q ; end x) = (∃ x , x ′ • Q)

In programs, we use var x and end x paired in this way, but the separation is
useful for reasoning.

The following laws are representative.

L6 (var x ; end x) = II

L8 (x := e ; end x) = (end x)

Variable blocks introduce the possibility of writing programs and equations like
that below.

(var x ; x := 2 ∗ y ; w := 0 ; end x)
= (var x ; x := 2 ∗ y ; end x) ; w := 0

Clearly, the assignment to w may be moved out of the scope of the the declara-
tion of x , but what is the alphabet in each of the assignments to w? If the only
variables are w , x , and y , and suppose that A = {w , y ,w ′, y ′}, then the assign-
ment on the right has the alphabet A; but the alphabet of the assignment on
the left must also contain x and x ′, since they are in scope. There is an explicit
operator for making alphabet modifications such as this: alphabet extension. If
the right-hand assignment is P =̂ w :=A 0, then the left-hand assignment is
denoted by P+x .

P+x =̂ P ∧ x ′ = x for x , x ′ /∈ αP

α(P+x) =̂ αP ∪ {x , x ′}

If Q does not mention x , then the following laws hold.

L1 var x ; Q+x ; P ; end x = Q ; var x ; P ; end x
L2 var x ; P ; Q+x ; end x = var x ; P ; end x ; Q

Together with the laws for variable declaration and undeclaration, the laws of
alphabet extension allow for program transformations that introduce new vari-
ables and assignments to them.

3 The complete lattice

The refinement ordering is a partial order: reflexive, anti-symmetric, and tran-
sitive. Moreover, the set of alphabetised predicates with a particular alphabet
A is a complete lattice under the refinement ordering. Its bottom element is de-
noted ⊥A, and is the weakest predicate true; this is the program that aborts, and
behaves quite arbitrarily. The top element is denoted >A, and is the strongest
predicate false; this is the program that performs miracles and implements every
specification. These properties of abort and miracle are captured in the following
two laws, which hold for all P with alphabet A.

L1 ⊥A v P bottom element

L2 P v >A top element

The least upper bound is not defined in terms of the relational model, but by

the law L1 below. This law alone is enough to prove laws L1A and L1B , which
are actually more useful in proofs.

L1 P v (u S) iff (P v X for all X in S) unbounded nondeterminism

L1A (u S) v X for all X in S lower bound

L1B if P v X for all X in S , then P v (u S) greatest lower bound

These laws characterise basic properties of least upper bounds.
A function F is monotonic if and only if P v Q ⇒ F (P) v F (Q). Operators

like conditional and sequence are monotonic; negation and conjunction are not.
There is a class of operators that are all monotonic.

Example 4 (Disjunctivity and monotonicity). Suppose that P v Q and that �
is disjunctive, or rather, R � (S u T) = (R � S) u (R � T). From this, we can
conclude that P � R is monotonic in its first argument.

P � R [assumption (P v Q) and Law 3]

= (P u Q) � R [assumption (� disjunctive)]

= (P � R) u (Q � R) [thin nondeterminism]

v Q � R

A symmetric argument shows that P�Q is also monotonic in its other argument.
In summary, disjunctive operators are always monotonic. The converse is not
true: monotonic operators are not always disjunctive. 2

Since alphabetised relations form a complete lattice, every construction de-
fined solely using monotonic operators has a fixed-point. Even more, a result by
Tarski says that the set of fixed-points form a complete lattice themselves. The
extreme points in this lattice are often of interest; for example, > is the strongest
fixed-point of X = P ; X , and ⊥ is the weakest.

The weakest fixed-point of the function F is denoted by µF , and is simply
the greatest lower bound (the weakest) of all the fixed-points of F .

µF =̂ u{X | F (X) v X }

The strongest fixed-point νF is the dual of the weakest fixed-point.
Hoare & He use weakest fixed-points to define recursion. They write a re-

cursive program as µX • C(X), where C(X) is a predicate that is constructed
using monotonic operators and the variable X . As opposed to the variables in
the alphabet, X stands for a predicate itself, and we call it the recursive vari-
able. Intuitively, occurrences of X in C stand for recursive calls to C itself. The
definition of recursion is as follows.

µX • C(X) =̂ µF where F =̂ λX • C(X)

The standard laws that characterise weakest fixed-points are valid.

L1 µF v Y if F (Y) v Y weakest fixed-point

L2 [F (µF) = µF] fixed-point

L1 establishes that µF is weaker than any fixed-point; L2 states that µF is

itself a fixed-point. From a programming point of view, L2 is just the copy rule.

Proof of L1

F (Y) v Y [set comprehension]

= Y ∈ {X | F (X) v X } [lattice law L1A]

⇒ u{X | F (X) v X } v Y [definition of µF]

= µF v Y 2

Proof of L2

µF = F (µF) [mutual refinement]

= µF v F (µF) ∧ F (µF) v µF [fixed-point law L1]

⇐ F (F (µF)) v F (µF) ∧ F (µF) v µF [F monotonic]

⇐ F (µF) v µF [definition]

= F (µF) v u{X | F (X) v X } [lattice law L1B]

⇐ ∀X ∈ {X | F (X) v X } • F (µ f) v X [comprehension]

= ∀X • F (X) v X ⇒ F (µF) v X [transitivity of v]

⇐ ∀X • F (X) v X ⇒ F (µF) v F (X) [F monotonic]

⇐ ∀X • F (X) v X ⇒ µF v X [fixed-point law L1]

= true 2

The while loop is written b ∗P : while b is true, execute the program P . This
can be defined in terms of the weakest fixed-point of a conditional expression.

b ∗ P =̂ µX • ((P ; X) C b B II)

Example 5 (Non-termination). If b always remains true, then obviously the loop
b ∗ P never terminates, but what is the semantics for this non-termination?
The simplest example of such an iteration is true ∗ II , which has the semantics
µX • X .

µX • X [definition of least fixed-point]

= u{Y | (λX • X)(Y) v Y } [function application]

= u{Y | Y v Y } [relexivity of v]

= u{Y | true } [property of u]

= ⊥ 2

A surprising, but simple, consequence of Example 5 is that a program can
recover from a non-terminating loop!

Example 6 (Aborting loop). Suppose that the sole state variable is x and that c

is a constant.

(b ∗ P); x := c [Example 5]

= ⊥; x := c [definition of ⊥]

= true; x := c [definition of assignment]

= true; x ′ = c [definition of composition]

= ∃ x0 • true ∧ x ′ = c [predicate calculus]

= x ′ = c [definition of assignment]

= x := c 2

Example 6 is rather disconcerting: in ordinary programming, there is no recov-
ery from a non-terminating loop. It is the purpose of designs to overcome this
deficiency in the programming model; we return to this in Section 5.

4 Theories of program correctness

In this section, we apply the theory of alphabetised relations to two key ideas in
imperative programming: Hoare logic and the weakest precondition calculus.

4.1 Hoare logic

Hoare logic provides a way to decompose the correctness argument for a pro-
gram. The Hoare triple p {Q} r asserts the correctness of program Q against
the specification with precondition p and postcondition r :

p {Q} r =̂ (p ⇒ r ′) v Q

The logical rules for Hoare logic are very famous. We reproduce some below.

L1 if p {Q} r and p {Q} s then p {Q} (r ∧ s)

L3 if p {Q} r then (p ∧ q){Q} (r ∨ s)

L4 r(e) {x := e} r(x) assignment

L6 if p {Q1} s and s {Q2} r then p {Q1 ; Q2 } r sequence

L8 if (b ∧ c){Q} c then c { νX • (Q ; X) C b B II } (¬ b ∧ c) iteration

L9 false {Q} r and p {Q} true and p {false} false and p {II} p

The proof rule for iteration uses strongest fixed-points. The implications of this
are explained below. First, we present a proof for the rule.

Proof of L8 Suppose that (b ∧ c){Q} c, and let Y be the overall specification,

so that Y =̂ c ⇒ ¬ b ′ ∧ c′.

c { νX • (Q ; X) C b B II } (¬ b ∧ c) [definition of Hoare triple]

= Y v νX • (Q ; X) C b B II [strongest fixed-point L1]

⇐ Y v (Q ; Y) C b B II [refinement to conditional (Example 1)]

= (Y v (b ∧ Q) ; Y) ∧ (Y v ¬ b ∧ II) [definition of v]

= (Y v (b ∧ Q) ; Y) ∧ [¬ b ∧ II ⇒ (c ⇒ ¬ b ′ ∧ c′)]

[propositional calculus & definition of II]

= (Y v (b ∧ Q) ; Y) ∧ true [definition of Hoare triple]

= c { b ∧ Q ; Y } (¬ b ∧ c) [sequential composition (Hoare L6)]

⇐ (c { b ∧ Q } c) ∧ (c { c ⇒ ¬ b ′ ∧ c′ }¬ b ∧ c)

[assumption and predicate calculus]

= true 2

This simple proof is the advantage in defining the semantics of a loop using the
strongest fixed-point. The next example shows its disadvantage.

Example 7 (Non-termination and Hoare logic).

p {true ∗ II} q [strongest fixed-point semantics]

= p {νX • (II ; X) C true B II} q [strongest fixed-point]

= p {>} q [definition of Hoare triple]

= ((p ⇒ q ′) v >) [top element]

= true 2

This shows that a non-terminating loop is identified with miracle, and so imple-
ments any specification. This drawback is the motivation for choosing weakest
fixed-points as the semantics of recursion. We have already seen, however, that
this also leads to problems.

An example on the use of Hoare logic is presented below.

Example 8 (Hoare logic proof for Swap). Consider the little program that swaps
two numbers, using a temporary register.

Swap =̂ t := a; a := b; b := t

A simple specification for Swap names the initial values of a and b, and then
requires that they be swapped. The correctness assertion is therefore given by
the Hoare triple below.

a = A ∧ b = B {t := a; a := b; b := t} a = B ∧ b = A

This assertion can be discharged using the rules of Hoare logic. First, we apply
the rule for sequence L6 to decompose the problem into two parts corresponding

to the two sub-programs t := a; a := b and b := t . This involves inventing
an assertion for the state that exists between these two programs. Our choice is
a = B ∧ t = A to reflect the fact that a now has the value of b, and t holds the
original value of a.

a = A ∧ b = B {t := a; a := b; b := t} a = B ∧ b = A

⇐

a = A ∧ b = B {t := a; a := b} a = B ∧ t = A (i)
∧

a = B ∧ t = A{b := t} a = B ∧ b = A (ii)

Now we use L6 again; this time to decompose the first sub-program (i).

(i) ⇐

a = A ∧ b = B {t := a} b = B ∧ t = A (iii)
∧

b = B ∧ t = A{a := b} a = B ∧ t = A (iv)

Each of the remaining assertions (ii–iv) is discharged by an application of the
rule for assignment, L4 . 2

This example shows how the correctness argument is structured by the ap-
plication of each rule. Another way of using the rules is to assert only the post-
condition; the precondition may then be calculated using the rules. We address
this topic below.

4.2 Weakest precondition calculus

If we fix the program and the postcondition, then we can calculate an appropriate
precondition to form a valid Hoare triple. As there will typically be many such
preconditions, it is useful to find just one that can lead us to the others. From
Hoare Logic Law L3 , we have that if p {Q} r , then (p ∧ q){Q} r . If we find
the weakest precondition w that satisfies the Hoare triple w {Q} r , then this law
states that every stronger precondition must also satisfy the assertion.

To find w , we must manipulate the assertion to constrain the precondition
to be at least as strong as some other condition. We parametrise p, Q , and r
to make their alphabets explicit. The derivation expands the definition of the
triple and of refinement, so that the precondition p(v) can be pushed into the
antecedent of an implication. The rest of the derivation is simply tidying up.

p(v){Q(v , v ′)} r(v) [definition of Hoare triple]

= (p(v) ⇒ r(v ′)) v Q(v , v ′) [definition of v]

= [Q(v , v ′) ⇒ (p(v) ⇒ r(v ′))] [trading antecedents]

= [p(v) ⇒ (Q(v , v ′) ⇒ r(v ′))] [restricting the quantification of v ′]

= [p(v) ⇒ (∀ v ′ • Q(v , v ′) ⇒ r ′)] [De Morgan’s quantifier rule]

= [p(v) ⇒ ¬ (∃ v ′ • Q(v , v ′) ∧ ¬ r(v ′))] [change of variable]

= [p(v) ⇒ ¬ (∃ v0 • Q(v , v0) ∧ ¬ r(v0))] [definition of sequence]

= [p(v) ⇒ ¬ (Q(v , v ′) ; ¬ r(v))]

This says that if p holds, then it is impossible for Q to arrive in a state where r

fails to hold. Every precondition must have this property; including, of course,
¬ (Q ; ¬ r) itself. We can summarise this derivation as follows.

if w = ¬ (Q ; ¬ r) then w {Q } r

The condition w is the weakest solution for the precondition for program Q to be
guaranteed to achieve postcondition r . This useful result motivates and justifies
the definition of weakest precondition.

Q wp r =̂ ¬ (Q ; ¬ r)

The laws below state the standard weakest precondition semantics for the pro-
gramming operators.

L1 ((x := e)wp r(x)) = r(e) assignment

L2 ((P ; Q)wp r) = (P wp(Q wp r)) sequential composition

L3 ((P C b B Q)wp r) = ((P wp r) C b B (Q wp r)) conditional

L4 ((P u Q)wp r) = (P wp r) ∧ (Q wp r) nondeterministic choice

Weakest precondition and Hoare logic, however, do not solve the pending issue
of non-termination, to which we turn our attention now.

5 Designs

The problem pointed out in Section 2 can be explained as the failure of general
alphabetised predicates P to satisfy the equation below.

true ; P = true

In particular, in Example 6 we presented a non-terminating loop which, when
followed by an assignment, behaves like the assignment. Operationally, it is as
though the non-terminating loop could be ignored.

The solution is to consider a subset of the alphabetised predicates in which a
particular observational variable, called okay , is used to record information about
the start and termination of programs. The above equation holds for predicates
P in this set. As an aside, we observe that false cannot possibly belong to this
set, since false = false ; true.

The predicates in this set are called designs. They can be split into precond-
ition-postcondition pairs, and are in the same spirit as specification statements
used in refinement calculi. As such, they are a basis for unifying languages and
methods like B [1], VDM [7], Z, and refinement calculi [8, 2, 9].

In designs, okay records that the program has started, and okay ′ records that
it has terminated. These are auxiliary variables, in the sense that they appear
in a design’s alphabet, but they never appear in code or in preconditions and
postconditions.

In implementing a design, we are allowed to assume that the precondition holds,
but we have to fulfill the postcondition. In addition, we can rely on the program
being started, but we must ensure that the program terminates. If the precon-
dition does not hold, or the program does not start, we are not committed to
establish the postcondition nor even to make the program terminate.

A design with precondition P and postcondition Q , for predicates P and Q
not containing okay or okay ′, is written (P ` Q). It is defined as follows.

(P ` Q) =̂ (okay ∧ P ⇒ okay ′ ∧ Q)

If the program starts in a state satisfying P , then it will terminate, and on
termination Q will be true.

Abort and miracle are defined as designs in the following examples. Abort
has precondition false and is never guaranteed to terminate.

Example 9 (Abort).

false ` false [definition of design]

= okay ∧ false ⇒ okay ′ ∧ false [false zero for conjunction]

= false ⇒ okay ′ ∧ false [vacuous implication]

= true [vacuous impliciation]

= false ⇒ okay ′ ∧ true [false zero for conjunction]

= okay ∧ false ⇒ okay ′ ∧ true [definition of design]

= false ` true 2

Miracle has precondition true, and establishes the impossible: false.

Example 10 (Miracle).

true ` false [definition of design]

= okay ∧ true ⇒ okay ′ ∧ false [true unit for conjunction]

= okay ⇒ false [contradiction]

= ¬ okay 2

A reassuring result about a design is the fact that refinement amounts to
either weakening the precondition, or strengthening the postcondition in the
presence of the precondition. This is established by the result below.

Law 5 Refinement of designs

P1 ` Q1 v P2 ` Q2 = [P1 ∧ Q2 ⇒ Q1] ∧ [P1 ⇒ P2] 2

Proof

P1 ` Q1 v P2 ` Q2 [definition of v]

= [(P2 ` Q2) ⇒ (P1 ` Q1)] [definition of design, twice]

= [(okay ∧ P2 ⇒ okay ′ ∧ Q2) ⇒ (okay ∧ P1 ⇒ okay ′ ∧ Q1)]

[case analysis on okay]

= [(P2 ⇒ okay ′ ∧ Q2) ⇒ (P1 ⇒ okay ′ ∧ Q1)] [case analysis on okay ′]

= [((P2 ⇒ Q2) ⇒ (P1 ⇒ Q1)) ∧ (¬ P2 ⇒ ¬ P1)] [propositional calculus]

= [((P2 ⇒ Q2) ⇒ (P1 ⇒ Q1)) ∧ (P1 ⇒ P2)] [predicate calculus]

= [P1 ∧ Q2 ⇒ Q1] ∧ [P1 ⇒ P2] 2

The most important result, however, is that abort is a zero for sequence. This
was, after all, the whole point for the introduction of designs.

L1 true ; (P ` Q) = true left-zero

Proof

true ; (P ` Q) [property of sequential composition]

= ∃ okay0 • true ; (P ` Q)[okay0/okay] [case analysis]

= (true ; (P ` Q)[true/okay]) ∨ (true ; (P ` Q)[false/okay])

[property of design]

= (true ; (P ` Q)[true/okay]) ∨ (true ; true) [relational calculus]

= (true ; (P ` Q)[true/okay]) ∨ true [propositional calculus]

= true 2

In this new setting, it is necessary to redefine assignment and skip, as those
introduced previously are not designs.

(x := e) =̂ (true ` x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

II D =̂ (true ` II)

Their existing laws hold, but it is necessary to prove them again, as their defi-
nitions changed.

L2 (v := e ; v := f (v)) = (v := f (e))

L3 (v := e ; (P C b(v) B Q)) = ((v := e ; P) C b(e) B (v := e ; Q))

L4 (II D ; (P ` Q)) = (P ` Q)

As as an example, we present the proof of L2 .

Proof of L2

v := e ; v := f (v) [definition of assignment, twice]

= (true ` v ′ = e) ; (true ` v ′ = f (v)) [case analysis on okay0]

= ((true ` v ′ = e)[true/okay ′] ; (true ` v ′ = f (v))[true/okay]) ∨

¬ okay ; true [definition of design]

= ((okay ⇒ v ′ = e) ; (okay ′ ∧ v ′ = f (v))) ∨ ¬ okay [relational calculus]

= okay ⇒ (v ′ = e ; (okay ′ ∧ v ′ = f (v))) [assignment composition]

= okay ⇒ okay ′ ∧ v ′ = f (e) [definition of design]

= (true ` v ′ = f (e)) [definition of assignment]

= v := f (e) 2

If any of the program operators are applied to designs, then the result is also
a design. This follows from the laws below, for choice, conditional, sequence, and
recursion. The choice between two designs is guaranteed to terminate when they
both are; since either of them may be chosen, then either postcondition may be
established.

T1 ((P1 ` Q1) u (P2 ` Q2)) = (P1 ∧ P2 ` Q1 ∨ Q2)

If the choice between two designs depends on a condition b, then so do the
precondition and the postcondition of the resulting design.

T2 ((P1 ` Q1) C b B (P2 ` Q2))
= ((P1 C b B P2) ` (Q1 C b B Q2))

A sequence of designs (P1 ` Q1) and (P2 ` Q2) terminates when P1 holds, and
Q1 is guaranteed to establish P2. On termination, the sequence establishes the
composition of the postconditions.

T3 ((P1 ` Q1) ; (P2 ` Q2))
= ((¬ (¬ P1 ; true) ∧ (Q1 wp P2)) ` (Q1 ; Q2))

Preconditions can be relations, and this fact complicates the statement of Law
T3 ; if the P1 is a condition instead, then the law is simplified as follows.

T3′ ((p1 ` Q1) ; (P2 ` Q2)) = (p1 ∧ (Q1 wp P2)) ` (Q1 ; Q2))

A recursively defined design has as its body a function on designs; as such, it
can be seen as a function on precondition-postcondition pairs (X ,Y). Moreover,
since the result of the function is itself a design, it can be written in terms of a
pair of functions F and G , one for the precondition and one for the postcondition.

As the recursive design is executed, the precondition F is required to hold
over and over again. The strongest recursive precondition so obtained has to
be satisfied, if we are to guarantee that the recursion terminates. Similarly, the
postcondition is established over and over again, in the context of the precon-
dition. The weakest result that can possibly be obtained is that which can be
guaranteed by the recursion.

T4 (µX ,Y • (F (X ,Y) ` G(X ,Y))) = (P(Q) ` Q)

where P(Y) = (νX • F (X ,Y)) and Q = (µY • P(Y) ⇒ G(P(Y),Y))

Further intuition comes from the realisation that we want the least refined fixed-

point of the pair of functions. That comes from taking the strongest precondition,
since the precondition of every refinement must be weaker, and the weakest
postcondition, since the postcondition of every refinement must be stronger.

Like the set of general alphabetised predicates, designs form a complete lat-
tice. We have already presented the top and the bottom (miracle and abort).

>D =̂ (true ` false) = ¬ okay

⊥D =̂ (false ` true) = true

The least upper bound and the greatest lower bound are established in the
following theorem.

Theorem 1. Meets and joins

u
i
(Pi ` Qi) = (

∧
i Pi) ` (

∨
i Qi)

ti(Pi ` Qi) = (
∨

i Pi) ` (
∧

i Pi ⇒ Qi)

As with the binary choice, the choice u
i
(Pi ` Qi) terminates when all the

designs do, and it establishes one of the possible postconditions. The least upper
bound models a form of choice that is conditioned by termination: only the
terminating designs can be chosen. The choice terminates if any of the designs
does, and the postcondition established is that of any of the terminating designs.

6 Healthiness conditions

Another way of characterising the set of designs is by imposing healthiness con-
ditions on the alphabetised predicates. Hoare & He identify four healthiness
conditions that they consider of interest: H1 to H4 . We discuss each of them.

6.1 H1: unpredictability

A relation R is H1 healthy if and only if R = (okay ⇒ R). This means that
observations cannot be made before the program has started. A consequence is
that R satisfies the left-zero and unit laws below.

true ; R = true and II D ; R = R

We now present a proof of these results.

Designs with left-units and left-zeros are H1

R [assumption (IID is left-unit)]

= II D ; R [IID definition]

= (true ` II D) ; R [design definition]

= (okay ⇒ okay ′ ∧ II) ; R [relational calculus]

= (¬ okay ; R) ∨ (II ; R) [relational calculus]

= (¬ okay ; true ; R) ∨ (II ; R) [assumption (true is left-zero)]

= ¬ okay ∨ (II ; R) [assumption (II is left-unit)]

= ¬ okay ∨ R [relational calculus]

= okay ⇒ R 2

H1 designs have a left-zero

true ; R [assumption (R is H1)]

= true ; (okay ⇒ R) [relational calculus]

= (true ; ¬ okay) ∨ (true ; R) [relational calculus]

= true ∨ (true ; R) [relational calculus]

= true 2

H1 designs have a left-unit

II D ; R [definition of IID]

= (true ` II D) ; R [definition of design]

= (okay ⇒ okay ′ ∧ II) ; R [relational calculus]

= (¬ okay ; R) ∨ (okay ∧ R) [relational calculus]

= (¬ okay ; true ; R) ∨ (okay ∧ R) [true is left-zero]

= (¬ okay ; true) ∨ (okay ∧ R) [relational calculus]

= ¬ okay ∨ (okay ∧ R) [relational calculus]

= okay ⇒ R [R is H1]

= R 2

This means that we could use the left-zero and unit laws to characterise H1 .

6.2 H2: possible termination

The second healthiness condition is [R[false/okay ′] ⇒ R[true/okay ′]]. This
means that if R is satisfied when okay ′ is false, it is also satisfied then okay ′

is true. In other words, R cannot require nontermination, so that it is always
possible to terminate.

The designs are exactly those relations that are H1 and H2 healthy. First we
present a proof that relations that are H1 and H2 healthy are designs.

H1 and H2 healthy relations are designs Let Rf = R[false/okay ′] and Rt =
R[true/okay ′].

R [assumption (R is H1)]

= okay ⇒ R [propositional calculus]

= okay ⇒ (¬ okay ′ ∧ Rf) ∨ (okay ′ ∧ Rt) [assumption (R is H2)]

= okay ⇒ (¬ okay ′ ∧ Rf ∧ Rt) ∨ (okay ′ ∧ Rt) [propositional calculus]

= okay ⇒ (((¬ okay ′ ∧ Rf) ∨ okay ′) ∧ Rt) [propositional calculus]

= okay ⇒ ((Rf ∨ okay ′) ∧ Rt) [propositional calculus]

= okay ⇒ (Rf ∧ Rt) ∨ (okay ′ ∧ Rt) [assumption (R is H2)]

= okay ⇒ Rf ∨ (okay ′ ∧ Rt) [propositional calculus]

= okay ∧ ¬ Rf ⇒ okay ′ ∧ Rt [design definition]

= ¬ Rf ` Rt
2

It is very simple to prove that designs are H1 healthy; we present the proof
that designs are H2 healthy.

Designs are H2

(P ` Q)[false/okay ′] [definition of design]

= (okay ∧ P ⇒ false) [propositional calculus]

⇒ (okay ∧ P ⇒ Q) [definition of design]

= (P ` Q)[true/okay ′] 2

While H1 characterises the rôle of okay , H2 characterises okay ′. Therefore, it
should not be a surprise that, together, they identify the designs.

6.3 H3: dischargeable assumptions

The healthiness condition H3 is specified as an algebraic law: R = R ; II D . A
design satisfies H3 exactly when its precondition is a condition. This is a very
desirable property, since restrictions imposed on dashed variables in a precondi-
tion can never be discharged by previous or successive components. For example,
x ′ = 2 ` true is a design that can either terminate and give an arbitrary value
to x , or it can give the value 2 to x , in which case it is not required to terminate.
This is a rather bizarre behaviour.

A design is H3 iff its assumption is a condition

((P ` Q) = ((P ` Q) ; II D)) [definition of design-skip]

= ((P ` Q) = ((P ` Q) ; (true ` II D))) [sequence of designs]

= ((P ` Q) = (¬ (¬ P ; true) ∧ ¬ (Q ; ¬ true) ` Q ; II D)) [skip unit]

= ((P ` Q) = (¬ (¬ P ; true) ` Q)) [design equality]

= (¬ P = ¬ P ; true) [propositional calculus]

= (P = P ; true) 2

The final line of this proof states that P = ∃ v ′ • P , where v ′ is the output
alphabet of P . Thus, none of the after-variables’ values are relevant: P is a
condition only on the before-variables.

6.4 H4: feasibility

The final healthiness condition is also algebraic: R ; true = true. Using the
definition of sequence, we can establish that this is equivalent to ∃ v ′ • R, where
v ′ is the output alphabet of R. In words, this means that for every initial value
of the observational variables on the input alphabet, there exist final values for
the variables of the output alphabet: more concisely, establishing a final state is
feasible. The design >D is not H4 healthy, since miracles are not feasible.

7 Theories of program correctness revisited

In this section, we reconsider our theories of program correctness in the light of
the theory of designs. We start with assertional reasoning, which we postponed
until we had an adequate treatment of termination. We review Hoare logic and
weakest preconditions, before introducing the refinement calculus.

7.1 Assertional reasoning

A well-established reasoning technique for correctness is that of assertional rea-
soning. It uses assumptions and assertions to annotate programs: write condi-
tions that must, or are expected to, hold in several points of the program. If
the conditions do hold, assumptions and assertions do not affect the behaviour
of the program; they are comments. If the condition of an assumption does not
hold, the program becomes miraculous; if the condition of an assertion does not
hold, the program aborts.

c> =̂ II D C c B >D [assumption]

c⊥ =̂ II D C c B ⊥D [assertion]

For simplicity, we ignore the alphabets in these definitions.
The following law establishes that a sequence of assertions can be joined.

Law 6 (Composition of assertions)

b⊥ ; c⊥ = (b ∧ c)⊥ 2

Proof

b⊥ ; c⊥ [definition of assertion]

= (II D C b B ⊥D) ; c⊥ [composition left-distribution over conditional]

= ((II D ; c⊥) C b B (⊥D ; c⊥)) [left-unit for sequence (L4)]

= (c⊥ C b B (⊥D ; c⊥)) [⊥D left-zero for sequence (L1)]

= (c⊥ C b B ⊥D) [definition of assertion]

= ((II D C c B ⊥D) C b B ⊥D) [conditional associativity (L3)]

= (II D C b ∧ c B ⊥D) [definition of assertion]

= (b ∧ c)⊥ 2

Reasoning with assertions often involves distributing them through a program.

For example, we can move an assertion over an assignment.

Law 7 (Assertions and assignments)

(c(e)⊥ ; x := e) = (x := e; c(x)⊥) 2

Proof

c(e)⊥ ; x := e [definition of assertion]

= (II D C c(e) B ⊥D) ; x := e [sequence L2]

= II D ; x := e C c(e) B ⊥D ; x := e [x := e is a design (H1)]

= x := e C c(e) B ⊥D [x := e is H3 and H4]

= x := e ; II D C c(e) B x := e ; ⊥D [design assignment Law L3]

= x := e ; (II D C c(x) B ⊥D) [definition of assertion]

= x := e; c(x)⊥ 2

Finally, we present below a law for distributing assertions through a conditional.

Law 8 (Assertions and conditionals)

c⊥ ; (P C b B Q) = ((b ∧ c)⊥ ; P C b B (¬ b ∧ c)⊥ ; Q) 2

We leave the proof of this law as as exercise.

7.2 Hoare logic

In Section 4, we define the Hoare triple for relations as follows.

p {Q} r =̂ (p ⇒ r ′) v Q

The next two examples show that this is not appropriate for designs. First, we
consider which specifications are satisfied by an aborting program.

Example 11 (Abort).

p {⊥D}
D
r [definition of ⊥D]

= p { false ` true } r [definition of design]

= p { okay ∧ false ⇒ okay ′ ∧ true } r [propositional calculus]

= p {true}
D
r [definition of Hoare triple]

= [true ⇒ (p ⇒ r ′)] [propositional calculus]

= [p ⇒ r ′] 2

This is simply wrong, since it establishes the validity of

true {⊥D } true

Here the requirement is for the program to terminate in every state—which
abort clearly does fails to do. Next, we consider which specifications are satisfied
by a miraculous program.

Example 12 (Miracle).

p {>D}
D
r [definition of >D]

= p { true ` false } r [definition of design]

= p { okay ∧ true ⇒ okay ′ ∧ false } r [propositional calculus]

= p {¬ okay } r [definition of Hoare triple]

= [¬ okay ⇒ (p ⇒ r ′)] [case analysis]

= [¬ true ⇒ (p ⇒ r ′)] ∧ [¬ false ⇒ (p ⇒ r ′)] [propositional calculus]

= [p ⇒ r ′] [from Example 11]

= p {⊥D}
D
r 2

Again,this is simply wrong, since it is the same result as before—and a miracle
is surely different from an aborting program! So, we conclude that we need to
adjust the definition of Hoare triple for designs. For any design Q , we define the
Hoare triple as follows.

p {Q}
D
r =̂ (p ` r ′) v Q

If we replay our two examples, we get the expected results. First, what specifi-
cations are satisfied by an aborting program?

Example 13 (Abortive implementation).

p {⊥D}
D
r [definition of ⊥D]

= p { false ` true } r [definition of Hoare triple]

= [(false ` true) ⇒ (p ` r ′)] [definition of design, twice]

= [(p ⇒ false) ∧ (p ∧ true ⇒ r)] [propositional calculus]

= [¬ p ∧ (p ⇒ r ′)] [propositional calculus]

= [¬ p] 2

The answer is that the precondition must be a contradiction. Next, what speci-
fications are satisfied by a miraculous program?

Example 14 (Miraculous implementation).

p {>D}
D
r [definition of >D]

= p { true ` false } r [definition of Hoare triple]

= [(true ` false) ⇒ (p ` r ′)] [definition of design, twice]

= [(p ⇒ true) ∧ (p ∧ false ⇒ r ′)] [propositional calculus]

= [true] [predicate calculus]

= true 2

The answer is that a miracle satisfies every specification.

We now prove that Hoare logic rule L1 holds for the new definition.

(p {Q}
D
r) ∧ (p {Q}

D
s) [definition of design Hoare triple]

= ((p ` r ′) v Q) ∧ ((p ` s ′) v Q) [separation of requirements]

= (p ` r ′) ∧ (p ` s ′) v Q [definition of designs]

= (okay ∧ p ⇒ okay ′ ∧ r ′) ∧ (okay ∧ p ⇒ okay ′ ∧ s ′) v Q

[propositional calculus]

= (okay ∧ p ⇒ okay ′ ∧ okay ′ ∧ r ′ ∧ s ′) v Q [definition of design]

= (p ` r ′ ∧ s ′) v Q [definition of design Hoare triple]

= p {Q}
D
r ∧ s 2

Other rules may be proved in a similar way.

7.3 Weakest precondition

Once more, we can use our definition of a Hoare triple to derive an expression
for the weakest precondition of H3 healthy designs.

p {P ` Q}
D
r [definition of Hoare triple]

= (p ` r ′) v (P ` Q) [refinement of designs]

= [(p ⇒ P) ∧ (p ∧ Q ⇒ r ′)] [propositional calculus]

= [p ⇒ P ∧ (Q ⇒ r ′)] [predicate calculus]

= [∀ v ′ • p ⇒ P ∧ (Q ⇒ r ′)] [since v ′ not free in a]

= [p ⇒ ∀ v ′ • P ∧ (Q ⇒ r ′)] [assumption (P ` Q is H3): v ′ not free in P]

= [p ⇒ P ∧ (∀ v ′ • Q ⇒ r ′)] [De Morgan’s quantifier law]

= [p ⇒ P ∧ ¬ (∃ v ′ • ¬ (Q ⇒ r ′))] [propositional calculus]

= [p ⇒ P ∧ ¬ (∃ v ′ • Q ∧ ¬ r ′)] [definition of sequential composition]

= [p ⇒ P ∧ ¬ (Q ; ¬ r)] 2

This motivates our new definition for the weakest precondition for a design.

(P ` Q)wp
D
r = (P ∧ (Q wp r))

This new definition uses the wp operator introduced before.

7.4 Specification statements

Our final theory of program correctness is Morgan’s refinement calculus [8].
There, a specification statement is a kind of design. The syntax is as follows.

frame : [precondition, postcondition]

The frame describes the variables that are allowed to change, and the precondi-
tion and postcondition are the same as those in a design.

For example, the specification statement x : [y 6= 0, x ′ = x div y] is repre-
sented by the design y 6= 0 ` (x ′ = x div y)+y , providing that the only program
variables are x and y .

The refinement law for assignment introduction is as shown below.

Law 9 Assignment introduction in the refinement calculus

providing that [p ⇒ Q [e/w ′]]

w , x : [p,Q] v w := e 2

Proof

w := e [definition of assignment]

= true ` (w ′ = e)+{x ,y} [weaken precondition]

w p ` (w ′ = e)+{x ,y} [assumption]

= p ` (Q [e/w ′] ∧ w ′ = e)+{x ,y} [Leibniz]

= p ` (Q ∧ w ′ = e)+{x ,y} [alphabet extension]

= p ` (Q ∧ w ′ = e ∧ x ′ = x)+y [strengthen postcondition]

w p ` Q+y [definition of specification statement]

= w , x : [p,Q] 2

Another important law allows the calculation of conditionals.

Law 10 Conditional introduction in the refinement calculus

providing that [p ⇒
∨

i • gi]

w : [p,Q] v

if g1 −→ w : [g1 ∧ p,Q]
2 g2 −→ w : [g2 ∧ p,Q]
...
2 gn −→ w : [gn ∧ p,Q]
fi

2

This law uses a generalised form of conditional, present in Dijkstra’s language
of guarded commands [4] and in Morgan’s calculus. The conditions are called
guards, and the choice of branch to execute is nondeterministic among those
whose guards are true. The definition of this guarded conditional is not difficult,
but here we consider just the conditional operator we have presented before.

Proof of binary case : w : [p,Q] v (w : [g ∧ p,Q] C g B w : [¬ g ∧ p,Q]).
In order to prove this refinement, we can resort to Law 1 and proceed by

case analysis. In this case, we need to prove w : [p,Q] v g ∧ w : [g ∧ p,Q] and
w : [p,Q] v ¬ g ∧ w : [¬ g ∧ p,Q]. Below, we prove the first case; the second
case is similar.

g ∧ w : [g ∧ p,Q] [definition of specification statement]

= g ∧ (g ∧ p ` Q+x) [definition of alphabet extension]

= g ∧ (g ∧ p ` Q ∧ x ′ = x) [definition of design]

= g ∧ (okay ∧ g ∧ p ⇒ okay ′ ∧ Q ∧ x ′ = x) [propositional calculus]

= g ∧ (okay ∧ p ⇒ okay ′ ∧ Q ∧ x ′ = x) [propositional calculus]

⇒ (okay ∧ p ⇒ okay ′ ∧ Q ∧ x ′ = x) [definition of design]

= p ` Q+x [definition of specification statement]

= w : [p,Q] 2

Next, we present an example of the application of the refinement calculus. The
problem is to calculate the maximum and minimum of two numbers.

Example 15 (Finding the maximum and the minimum). The problem has a sim-
ple specification: x , y : [true, x ′ = max (x , y) ∧ y ′ = min(x , y)]. Our first step is
to use Law 10 to introduce a conditional statement that checks the order of the
two variables.

x , y : [true, x ′ = max (x , y) ∧ y ′ = min(x , y)]

v

x , y : [x < y , x ′ = max (x , y) ∧ y ′ = min(x , y)] (i)
C x < y B

x , y : [x ≥ y , x ′ = max (x , y) ∧ y ′ = min(x , y)] (ii)

The ‘then’ case is easily implemented using a multiple assignment, a generalised
assignment that updates a list of variables in parallel. Its semantics and proper-
ties are similar to those of the single assignment; in particular, Law 9 holds.

(i) v x , y := y , x

providing that

[x < y ⇒ (x ′ = max (x , y) ∧ y ′ = min(x , y))[y , x/x ′, y ′]]

which follows from substitution and properties of the max and min functions.
The ‘else’ case is even simpler, since the variables are already in the right order.

(ii) v skip

providing that

[x ≥ y ⇒ (x ′ = max (x , y) ∧ y ′ = min(x , y))[x , y/x ′, y ′]]

The development may be summarised as the following refinement.

x , y : [true, x ′ = max (x , y) ∧ y ′ = min(x , y)]

v

if x < y then x , y := y , x else skip fi

=

if x < y then x , y := y , x fi 2

There are many other laws in the refinement calculus; we omit them for the sake
of conciseness.

8 Conclusions

Through a series of examples, we have presented the alphabetised relational cal-
culus and its sub-theory of designs. In this framework, we have presented the
formalisation of four different techniques for reasoning about program correct-
ness. The assertional technique, the Hoare logic, and the weakest preconditions
are presented in [6]; our original contribution is a recasting of Hoare logic and
weakest preconditions in the theory of designs, and an outline of the formalisa-
tion of Morgan’s calculus.

We hope to have given a didactic and accessible account of this basic founda-
tion of the unifying theories of programming. We have left out, however, most of
the more elaborate programming constructs contemplated in [6]. These include
theories for concurrency, communication, and functional, logic, and higher-order
programming. We also have not discussed their account of algebraic and opera-
tional semantics, nor the correctness of compilers.

In our recent work, we have used the theory of communication and concur-
rency to provide a semantics for Circus [13], an integration of Z and CSP [11]
aimed at supporting the development of reactive concurrent systems. We have
used the semantics to justify a refinement strategy for Circus based on calcula-
tional laws in the style of Morgan [3].

In [10], UTP is also used to give a semantics to another integration of Z and
CSP, which also includes object-oriented features. In [12], UTP is extended with
constructs to capture real-time properties as a first step towards a semantic
model for a timed version of Circus. In [5], a theory of general correctness is
characterised as an alternative to designs; instead of H1 and H2 , a different
healthiness condition is adopted to restrict general relations.

Currently, we are collaborating with colleagues to extend UTP to capture
mobility, synchronicity, and object orientation. We hope to contribute to the
development of a theory that can support all the major concepts available in
modern programming languages.

Acknowledgements

This work is partially funded by QinetiQ and the Royal Society.

References

1. J-R. Abrial. The B-Book: Assigning Progams to Meanings. Cambridge University
Press, 1996.

2. R. J. R. Back and J. Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

3. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 – 3):146 – 181, 2003.

4. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

5. S. Dunne. Recasting Hoare and He’s Unifying Theories of Programs in the Context
of General Correctness. In A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish
Workshop in Formal Methods, BCS Electronic Workshops in Computing, Dublin,
Ireland, July 2001.

6. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

7. C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Inter-
national, 1986.

8. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
9. J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming

Calculus. Science of Computer Programming, 9(3):287 – 306, 1987.
10. S. Qin, J. S. Dong, and W. N. Chin. A Semantic Foundation for TCOZ in Uni-

fying Theories of Programming. In K. Araki, S. Gnesi, and D. Mandrioli, editors,
FME2003: Formal Methods, volume 2805 of Lecture Notes in Computer Science,
pages 321 – 340, 2003.

11. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

12. A. Sherif and He Jifeng. Towards a Time Model for Circus. In International
Conference in Formal Engineering Methods, pages 613 – 624, 2002.

13. J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specifi-
cation and Development in Z and B, volume 2272 of Lecture Notes in Computer
Science, pages 184—203. Springer-Verlag, 2002.

14. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

