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Artificial Immune Systems: 
A Novel Paradigm to Pattern Recognition 
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Abstract 

This chapter introduces a new computational intelligence paradigm to perform 
pattern recognition, named Artificial Immune Systems (AIS). AIS take inspiration 
from the immune system in order to build novel computational tools to solve 
problems in a vast range of domain areas. The basic immune theories used to 
explain how the immune system perform pattern recognition are described and 
their corresponding computational models are presented. This is followed with a 
survey from the literature of AIS applied to pattern recognition. The chapter is 
concluded with a trade-off between AIS and artificial neural networks as pattern 
recognition paradigms. 

Keywords: Artificial Immune Systems, Negative Selection, Clonal Selection, 
Immune Network. 

1 Introduction 

The vertebrate immune system (IS) is one of the most intricate bodily systems and its 
complexity is sometimes compared to that of the brain. With the advances in the 
biology and molecular genetics, the comprehension of how the immune system behaves 
is increasing very rapidly. The knowledge about the IS functioning has unravelled 
several of its main operative mechanisms. These mechanisms have demonstrated to be 
very interesting not only from a biological standpoint, but also under a computational 
perspective. Similarly to the way the nervous system inspired the development of 
artificial neural networks (ANN), the immune system has now led to the emergence of 
artificial immune systems (AIS) as a novel computational intelligence paradigm.  

Artificial immune systems can be defined as abstract or metaphorical computational 
systems developed using ideas, theories, and components, extracted from the immune 
system. Most AIS aim at solving complex computational or engineering problems, such 
as pattern recognition, elimination, and optimisation. This is a crucial distinction 
between AIS and theoretical immune system models. While the former is devoted 
primarily to computing, the latter is focused on the modelling of the IS in order to 
understand its behaviour, so that contributions can be made to the biological sciences. It 
is not exclusive, however, the use of one approach into the other and, indeed, theoretical 
models of the IS have contributed to the development of AIS. 



This chapter is organised as follows. Section 2 describes relevant immune theories 
for pattern recognition and introduces their computational counterparts. In Section 3, we 
briefly describe how to model pattern recognition in artificial immune systems, and 
present a simple illustrative example. Section 4 contains a survey of AIS for pattern 
recognition, and Section 5 contrast the use of AIS with the use of ANN when applied to 
pattern recognition tasks. The chapter is concluded in Section 6. 

2 Biological and Artificial Immune Systems 

All living organisms are capable of presenting some type of defence against foreign 
attack. The evolution of species that resulted in the emergence of the vertebrates also 
led to the evolution of the immune system of this species. The vertebrate immune 
system is particularly interesting due to its several computational capabilities, as will be 
discussed throughout this section. 

The immune system of vertebrates is composed of a great variety of molecules, cells, 
and organs spread all over the body. There is no central organ controlling the 
functioning of the immune system, and there are several elements in transit and in 
different compartments performing complementary roles. The main task of the immune 
system is to survey the organism in the search for malfunctioning cells from their own 
body (e.g., cancer and tumour cells), and foreign disease causing elements (e.g., viruses 
and bacteria). Every element that can be recognised by the immune system is called an 
antigen (Ag). The cells that originally belong to our body and are harmless to its 
functioning are termed self (or self antigens), while the disease causing elements are 
named nonself (or nonself antigens). The immune system, thus, has to be capable of 
distinguishing between what is self from what is nonself; a process called self/nonself 
discrimination, and performed basically through pattern recognition events.  

From a pattern recognition perspective, the most appealing characteristic of the IS is 
the presence of receptor molecules, on the surface of immune cells, capable of 
recognising an almost limitless range of antigenic patterns. One can identify two major 
groups of immune cells, known as B-cells and T-cells. These two types of cells are 
rather similar, but differ with relation to how they recognise antigens and by their 
functional roles. B-cells are capable of recognising antigens free in solution (e.g., in the 
blood stream), while T-cells require antigens to be presented by other accessory cells.  

Fig. 1(a) illustrates that antigens are covered with molecules, named epitopes. These 
allow them to be recognised by the receptor molecules on the surface of B-cells, called 
antibodies (Ab). In contrast, Fig. 1(b) shows how for an antigen to be recognised by a 
T-cell receptor, it has to be processed and presented by an accessory cell.  
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Figure 1: Pattern recognition in the immune system. (a) B-cell recognising an antigen 
(Ag) free in solution. (b) T-cell recognising an antigen presented by an accessory cell.  



Antigenic recognition is the first pre-requisite for the immune system to be activated 
and to mount an immune response. The recognition has to satisfy some criteria. First, 
the cell receptor recognises an antigen with a certain affinity, and a binding between the 
receptor and the antigen occurs with strength proportional to this affinity. If the affinity 
is greater than a given threshold, named affinity threshold, then the immune system is 
activated. The nature of antigen, type of recognising cell, and the recognition site also 
influence the outcome of an encounter between an antigen and a cell receptor.  

The human immune system contains an organ called thymus that is located behind 
the breastbone, which performs a crucial role in the maturation of T-cells. After T-cells 
are generated, they migrate into the thymus where they mature. During this maturation, 
all T-cells that recognise self-antigens are excluded from the population of T-cells; a 
process termed negative selection. If a B-cell encounters a nonself antigen with a 
sufficient affinity, it proliferates and differentiates into memory and effector cells; a 
process named clonal selection. In contrast, if a B-cell recognises a self-antigen, it 
might result in suppression, as proposed by the immune network theory. In the following 
subsections, each of these processes (negative selection, clonal selection, and network 
theory) will be described separately, along with their computational algorithms 
counterparts. 

2.1 Negative Selection 

The thymus is responsible for the maturation of T-cells; and is protected by a blood 
barrier capable of efficiently excluding nonself antigens from the thymic environment. 
Thus, most elements found within the thymus are representative of self instead of 
nonself. As an outcome, the T-cells containing receptors capable of recognising these 
self antigens presented in the thymus are eliminated from the repertoire of T-cells 
through a process named negative selection [34]. All T-cells that leave the thymus to 
circulate throughout the body are said to be tolerant to self, i.e., they do not respond to 
self. 

From an information processing perspective, negative selection presents an 
alternative paradigm to perform pattern recognition by storing information about the 
complement set (nonself) of the patterns to be recognised (self). A negative selection 
algorithm [14] has been proposed in the literature with applications focused on the 
problem of anomaly detection, such as computer and network intrusion detection, time 
series prediction, image inspection and segmentation, and hardware fault tolerance.  

Given an appropriate problem representation (Section 3), define the set of patterns to 
be protected and call it the self- set (P). Based upon the negative selection algorithm, 
generate a set of detectors (M) that will be responsible to identify all elements that do 
not belong to the self-set, i.e., the nonself elements. The negative selection algorithm 
runs as follows (Fig 2(a)): 

1. Generate random candidate elements (C) using the same representation adopted; 
2. Compare (match) the elements in C with the elements in P. If a match occurs, 

i.e., if an element of P is recognised by an element of C, then discard this 
element of C; else store this element of C in the detector set M. 

After generating the set of detectors (M), the next stage of the algorithm consists in 
monitoring the system for the presence of nonself patterns (Fig 2(b)). In this case, 
assume a set P*  of patterns to be protected. This set might be composed of the set P 
plus other new patterns, or it can be a completely novel set.  
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Figure 2: Pattern recognition via the negative selection algorithm. (a) Generating the set 
of detectors. (b) Monitoring for the presence of undesired (nonself) patterns. 

For all elements of the detector set, that corresponds to the nonself patterns, check if it 
recognises (matches) an element of P*  and, if yes, then a nonself pattern was recognised 
and an action has to be taken. The resulting action of detecting nonself varies according 
to the problem under evaluation and extrapolates the pattern recognition scope of this 
chapter.  

2.2 Clonal Selection 

Complementary to the role of negative selection, clonal selection is the theory used to 
explain how an immune response is mounted when a nonself antigenic pattern is 
recognised by a B-cell [1]. Fig. 3 illustrates the clonal selection, expansion 
(proliferation), and affinity maturation processes. In brief, when a B-cell receptor 
recognises a nonself antigen with a certain affinity, it is selected to proliferate and 
produce antibodies in high volumes. The antibodies are soluble forms of the B-cell 
receptors that are released from the B-cell surface to cope with the invading nonself 
antigen. Antibodies bind to antigens leading to their eventual elimination by other 
immune cells. Proliferation in the case of immune cells is asexual, a mitotic process; the 
cells divide themselves (there is no crossover). During reproduction, the B-cell 
progenies (clones) undergo a hyper mutation process that, together with a strong 
selective pressure, result in B-cells with antigenic receptors presenting higher affinities 
with the selective antigen. This whole process of mutation and selection is known as the 
maturation of the immune response [35] and is analogous to the natural selection of 
species [20]. In addition to differentiating into antibody producing cells, the activated B-
cells with high antigenic affinities are selected to become memory cells with long life 
spans. These memory cells are pre-eminent in future responses to this same antigenic 
pattern, or a similar one.  

Other important features of clonal selection relevant from the viewpoint of 
computation are: 

1. An antigen selects several immune cells to proliferate. The proliferation rate of 
each immune cell is proportional to its affinity with the selective antigen: the 
higher the affinity, the higher the number of offspring generated, and vice-versa; 

2. In complete opposition to the proliferation rate, the mutation suffered by each 
immune cell during reproduction is inversely proportional to the affinity of the 
cell receptor with the antigen: the higher the affinity, the smaller the mutation, 
and vice-versa. 
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Figure 3: Clonal selection, expansion (proliferation), affinity maturation, and 
maintenance of memory cells. The highest affinity cells are selected to proliferate. Their 
progenies (clones) suffer mutation with high rates and those whose receptors present 
high affinity with the antigen are maintained as memory cells. 

Some authors [15] have argued that a genetic algorithm without crossover is a 
reasonable model of clonal selection. However, the standard genetic algorithm does not 
account for important properties such as affinity proportional reproduction and 
mutation. Other authors [10] proposed a clonal selection algorithm, named CLONALG, 
to fulfil these basic processes involved in clonal selection. This algorithm was initially 
proposed to perform pattern recognition and then adapted to solve multi-modal 
optimisation tasks. Given a set of patterns to be recognised (P), the basic steps of the 
CLONALG algorithm are as follows: 

1. Randomly initialise a population of individuals (M); 
2. For each pattern of P, present it to the population M and determine its affinity 

(match) with each element of the population M; 
3. Select n1 of the best highest affinity elements of M and generate copies of these 

individuals proportionally to their affinity with the antigen. The higher the 
affinity, the higher the number of copies, and vice-versa; 

4. Mutate all these copies with a rate proportional to their affinity with the input 
pattern: the higher the affinity, the smaller the mutation rate, and vice-versa.  

5. Add these mutated individuals to the population M and re-select n2 of these 
maturated (optimised) individuals to be kept as memories of the system; 

6. Repeat Steps 2 to 5 until a certain criterion is met, such as a minimum pattern 
recognition or classification error. 

 
Note that this algorithm allows the artificial immune system to become increasingly 
better at its task of recognising patterns (antigens). Thus, based upon an evolutionary-
like behaviour, CLONALG learns to recognise patterns. 

2.3 Immune Network 

The immune network theory proposes that the immune system has a dynamic behaviour 
even in the absence of external stimuli [24]. It is suggested that the immune cells and 
molecules are capable of recognising each other, what endows the system with an eigen-
behaviour that is not dependent on foreign stimulation. Several immunologists have 
refuted this theory, e.g. [32], however its computational aspects are relevant and it has 
proved itself to be a powerful model for computational systems. 
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Figure 4: Immune network theory. The recognition of antigen by an antibody (cell 
receptor) leads to network activation, while the recognition of an idiotope by another 
antibody results in network suppression. Antibody Ab2 is said to be the internal image of 
the antigen Ag, because Ab1 is capable of recognising the antigen and also Ab2. 

According to the immune network theory, the receptor molecules contained in the 
surface of the immune cells present markers, named idiotopes, which can be recognised 
by receptors on other immune cells. These idiotopes are displayed in and/or around the 
same portions of the receptors that recognise nonself antigens. Fig. 4 provides a simple 
illustration of the immune network theory. To explain the network theory, assume that a 
receptor (antibody) Ab1 on a B-cell recognises a nonself antigen Ag. Assume now, that 
this same receptor Ab1 also recognises an idiotope i2 on another B-cell receptor Ab2. 
Keeping track of the fact that i2 is part of Ab2, Ab1 is capable of recognising both Ag and 
Ab2. Thus, Ab2 is said to be the internal image of Ag, more precisely, i2 is the internal 
image of Ag. The recognition of idiotopes on a cell receptor by other cell receptors, lead 
to ever increasing sets of connected cell receptors and molecules. Note that the network 
in this case, is a network of affinities, which different from the ‘hardwired’  network of 
the nervous system. As a result of the network recognition events, it was suggested that 
the recognition of a cell receptor by another cell receptor results in network suppression, 
whilst the recognition of an antigen by a cell receptor results in network activation and 
cell proliferation. The original theory did not account explicitly for the results of 
network activation and/or suppression, and the various artificial immune networks 
found in the literature model it in a particular form.  

Recently, the most influential artificial immune network models found in the 
literature are [9] and [43]. Due to limited space, we will restrict ourselves to the 
description of only one of these two network models, for an overview of [43] refer to 
[44]. The work presented in [8] makes use of the clonal selection algorithm 
(CLONALG), described in Section 2.2 to explain how the immune network model 
responds to nonself antigens i.e. becomes activated. The recognition of cell receptors by 
other cell receptors results in network suppression. This is modelled by eliminating all 
but one of the self-recognising cells. Given a set of patterns (P) to be recognised, the 
basic algorithm runs as follows: 

1. Randomly initialise the network population; 
2. For each antigenic pattern in P apply the CLONALG algorithm that will return a 

set of memory cells (M* ) and their co-ordinates for the current antigen; 
3. Determine the affinity (degree of matching) among all the individuals of M* ; 
4. Eliminate all but one of the individuals in M*  whose affinities are greater than a 

given threshold. The purpose of this process is to eliminate redundancy in the 
network by suppressing self-recognising elements; 

5. Concatenate the remaining individuals of the previous step with the remaining 
individuals found for each antigenic pattern presented. This will result in a large 
population of memory individuals M; 



6. Determine the affinity of the whole population M and suppress all but one of the 
self-recognising elements. This will result in a reduced final population of 
memory cells that recognise and follow the spatial distribution of the antigens. 

7. Repeat Steps 2 to 6 until a pre-defined stopping criterion is met, such as a 
minimum pattern recognition or classification error. 

 
Affinity in this case can be taken to mean the degree of recognition or match, between 
the elements of the artificial immune system itself (self), and among them and the 
environment (nonself). 

3 Modelling Pattern Recognition in AIS 

Up to this point, the most relevant immune principles and their corresponding 
computational counterparts to perform pattern recognition have been presented. In order 
to apply these algorithms to computational problems, there is a need to specify a limited 
number of other aspects of artificial immune systems, not as yet covered. The first 
aspect to introduce is the most relevant representations to be applied to model self and 
nonself patterns. Here the self-patterns correspond to the components of the AIS 
responsible for recognising the input patterns (nonself). Secondly, the mechanism by 
which the evaluation of the degree of match (affinity), or degree of recognition, of an 
input pattern by an element of the AIS has to be discussed. 

To model immune cells, molecules, and the antigenic patterns, the shape-space 
approach proposed in [37] is usually adopted. As illustrated in Figs. 1 and 3, recognition 
of antigens by cell receptors occurs through a complementarity in the antigenic shape 
with relation to the shape of the cell receptor. Although AIS model recognition through 
pattern matching, given certain affinity functions to be described further, performing 
pattern recognition through complementarity or similarity is based more on practical 
aspects than on biological plausibility.  

The shape-space approach proposes that an attribute string s = 〈s1, s2,…,sL〉 in an L-
dimensional shape-space, S, (s ∈ SL), can represent any immune cell or molecule. Each 
attribute of this string is supposed to represent a feature of the immune cell or molecule, 
such as its charge, van der Wall interactions, etc. In the development of AIS the 
mapping from the attributes to their biological counterparts is usually not relevant. The 
type of attributes used to represent the string will define partially the shape-space under 
study, and is highly dependent on the problem domain. Any shape-space constructed 
from a finite alphabet of length k constitutes a k-ary Hamming shape-space. As an 
example, an attribute string built upon the set of binary elements { 0,1}  corresponds to a 
binary Hamming shape-space [11]. It can be thought of, in this case, of a problem of 
recognising a set of characters represented by matrices composed of 0’s and 1’s. Each 
element of a matrix corresponds to a pixel in the character. 

If the elements of s are represented by real-valued vectors, then we have an 
Euclidean shape-space. Most of the AIS found in the literature employ binary Hamming 
or Euclidean shape-spaces. Other types of shape-spaces are also possible, such as 
symbolic shape-spaces, which combine different (symbolic) attributes in the 
representation of a single string s. These are usually found in data mining applications, 
where the data might contain symbolic information like age, name, etc., of a set of 
patterns.  

Another important characteristic of the artificial immune systems is that most of 
them are population based. It means that they are composed of a set of individuals, 
representing immune cells and molecules, which have to perform a given role; in our 



context, pattern recognition. If we recapitulate the three immune processes reviewed, 
negative selection, clonal selection, and immune network, all of them rely on a 
population M of individuals to recognise a set P of patterns. The negative selection 
algorithm has to define a set of detectors for nonself patterns; clonal selection 
reproduces, maturates, and selects self-cells to recognise a set of nonself; and the 
immune network maintains a set of individuals, connected as a network, to recognise 
self and nonself. 

Assume now the availability of a set of N patterns (antigens) pi, i = 1,…N (pi ∈ P) to 
be recognised, and a set of M immune cells and/or molecules (antibodies) mj, j = 1,…M 
(mj ∈ M) to be used as pattern recognisers (via negative, clonal or network algorithms). 
Assume also, that both have the same length L (pi,mj ∈ SL).  

Consider first the binary Hamming shape-space case, which is the most widely used. 
There are several expressions that can be employed in the determination of the degree of 
match or affinity between an element of P and an element of M. The simplest case is to 
simply calculate the Hamming distance (DH) between these two elements, as given by 
Eq. (1). Another approach is to search for a sequence of r-contiguous bits [13], and if 
the number of r-contiguous matches between the strings is greater than a given 
threshold, then recognition is said to have occurred. As the last approach to be 
mentioned here, we can describe the affinity measure of Hunt [22], given by Eq. (2). 
This last method has the advantage that it favours sequences of complementary 
matches, thus searching for similar regions between the attribute strings (patterns).  
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where l i is the length of the i-th sequence of matching bits longer than 2. 
In the case of Euclidean shape-spaces, the Euclidean distance can be used to evaluate 

the affinity between any two components of the system. Other approaches such as the 
Manhattan distance may also be employed.  

Note that all the methods described rely basically, on determining the match between 
strings. However, there are AIS in the literature that take into account other aspects, 
such as the number of patterns matched by each antibody (e.g. [8]). 

3.1 A Simple Illustrative Example 

Assume that an AIS capable of recognising the binary patterns illustrated in Fig. 5 needs 
to be designed. Each of these characters represent an attribute string of length L = 400 
(resolution 20×20). The matrix P of patterns to be recognised has a dimension 
P ∈ S5×400. It is now possible to use any of the three algorithms described to design a 
pattern recogniser for these characters. 

Consider first the negative selection algorithm. Using any of the affinity measures 
described above for binary Hamming shape-spaces, the algorithm runs as follows. 
Generate (randomly) a set of candidate recognisers C using the same representation as 
that of P, and match them against the patterns in P. Select as detectors M all those 
elements from C that do not match any element of P given an affinity threshold. The 
affinity threshold controls the specificity of the elements of M: the higher the threshold, 
the more specific the elements, thus the more elements are required to recognise P. Note 
that, in this case, the detectors generated recognise every element that does not belong 
to P, instead of those who belong. 



 
Figure 5: Illustrative input data set for an AIS pattern recogniser. 

The clonal selection algorithm (CLONALG) would learn to recognise the patterns in 
P by reproducing, mutating, and selecting individuals already present in an initial 
population M. 

Finally, the immune network model would learn to recognise the patterns in P by 
selecting randomly initialised elements from M, applying CLONALG to learn the 
patterns, and then performing the network activities to define inter-cell connectivity and 
the final number of individuals in the population. 

4 A Survey of AIS for Pattern Recognition 

The applications of artificial immune systems are vast, ranging from machine learning 
to robotic autonomous navigation. This section will review some of the works from the 
AIS literature applied to the pattern recognition domain. The rationale is to provide a 
guide to the literature and a brief description of the scope of applications of the 
algorithms. The section is divided into two parts for ease of comprehension: 1) 
computer security, and 2) other applications. 

The problem of protecting computers (or networks of computers) from viruses, 
unauthorised users, etc., constitutes a rich field of research for pattern recognition 
systems. Due, mainly, to the appealing intuitive metaphor of building artificial immune 
systems to detect computer viruses, there has been a great interest from the computer 
science community to this particular application. The use of the negative and clonal 
selection algorithms have been widely tested on this application. The former because it 
is an inherent anomaly (change) detection system, constituting a particular case of a 
pattern recognition device. The latter, the clonal selection algorithm, has been used in 
conjunction to negative selection due to its learning capabilities. 

Other more classical pattern recognition tasks, such as character recognition, and 
data analysis have also been studied within artificial immune systems. Section 4.2 
reviews AIS applications to these problems. 

4.1 Computer Security 

Using the r-contiguous bit rule, the work presented in [14] compared the problem of 
protecting computer systems to that of learning to distinguish between self and nonself, 
and proposed the negative selection algorithm described in Section 2.1. Therefore, 
pattern recognition was performed by generating a set of patterns complementary to the 
ones to be recognised.  

In the system developed in [25,26], a set of antibodies to previously not encountered 
computer viruses or worms (agents) was generated so as to promote a faster and 
stronger response to future infecting agents. The author was also concerned with 
minimising the risk of the computer immune system mistakenly identifying legitimate 
software as being undesirable (nonself). Thus, this particular AIS accounted for the 
recognition of self and nonself patterns. 

In [42] the authors articulated a broad vision for the development of a computer 
immune system by discussing the immune system in terms of a set of organising 
principles and possible architectures for implementation. From a computational 



standpoint, given the many interesting properties of the immune system, the authors 
described several possibilities to design pattern recognition systems based on direct 
mappings between immune components and current computer system architectures.  

In [36], the authors proposed a distributed approach to computer virus detection and 
neutralisation by autonomous and heterogeneous immune agents. Their system detects 
viruses by matching a self-information, like the first few bytes of the head of a file, the 
file size and path, etc., against the current host files. Viruses were neutralised by 
overwriting the self-information on the infected files, and the recovering was attained 
by copying the same file from other uninfected hosts through the computer network. 
One of the interesting aspects of this work is that it accounts not only for the pattern 
recognition problem, but also for pattern elimination. 

In [16], the authors proposed a new prevention AIS, called antibody layer, to 
actively recognise and put down various Internet hackers and viruses, i.e., Internet 
antigens. Additionally, they implemented a number of security classes for the antibody 
layer to efficiently counteract Internet antigens according to system and network 
resources. The aim of the antibody layer is to timely pre-empt the intruder and quickly 
recover the system on the basis of mechanisms extracted from the IS. 

Several works have been published [13,18,19] pursuing the problem of developing 
an artificial immune system that is distributed, robust, dynamic, diverse and adaptive, 
with applications to computer network security. In these AIS, the several immune 
system cells and molecules were simplified by the definition of a basic type of detector 
that combined useful properties from these elements. The detectors were represented by 
bit strings in a binary Hamming shape-space. Detection was performed by a string 
match process that took into account the number of r-contiguous bits between two 
strings. The definition of self was performed by the negative selection algorithm 
described in Section 2.2. The maturation of naive detectors into memory detectors, 
together with the negative selection, was responsible for the learning part of the system. 

Based on the works above, other authors [28] have also been trying to develop a 
network intrusion detection system inspired in the immune system. The authors 
reviewed and assessed the analogy between the vertebrate immune system and network 
intrusion detection systems. They aimed at unravelling the significant features of the IS 
that would be successfully applied to the task of detecting intrusions in computer 
networks. In a later work [27], the authors proposed that a hybridisation of negative 
selection with a clonal selection algorithm could result in more powerful AIS for 
network intrusion detection. 

Framed on an agent-based paradigm, other authors [7] proposed a system for 
intrusion/anomaly detection and response in networked computers. In his approach, the 
immunity-based agents roamed around the nodes and routers monitoring the situation of 
the network. The most appealing properties of this system were mobility, adaptability 
and collaboration. The immune agents were able to interact freely and dynamically with 
the environment and each other. 

4.2 Other Applications 

In [2], the authors proposed an AIS aiming at integrating the distributed search of new 
agents and constraint relaxation among them. The authors applied a continuous immune 
network model, based upon a dynamic equation, to study the interactions among 
antibodies and among antibodies and antigens. The dynamic equation adopted took into 
account the stimulation and suppression among antibodies, their stimulation by antigens 
and a natural death rate. 



In [33], the authors suggested that the pattern recognition task performed by the 
immune system has much in common with the aerial image segmentation problem. 
They used the negative selection algorithm to construct a set of detectors capable of 
recognising (detecting) everything but the desired class. 

In [5], the authors proposed to apply the negative selection algorithm to detect 
novelties in time series data. They employed a binary Hamming shape-space to 
represent the elements of the system and the r-contiguous bit rule to determine the 
degree of recognition among the detectors and the encoded data. The authors reported 
results for two data sets: a simulated cutting dynamics of a milling operation and a 
synthetic signal. They observed that the number of r-contiguous bits chosen by the 
matching function was responsible for tuning the reliability of detection against the risk 
of false positives.  

Hardware fault tolerance seeks to address the challenge of designing hardware 
systems that provide a high degree of reliability even in the presence of errors. The 
system must be protected from a variety of potential faults, manifesting in such forms as 
permanent stuck at faults or intermittent faults. In [3], the authors proposed what they 
called Immunotronics (immunological electronics) in order to implement a finite state 
machine based counter using immune principles. Their system relied upon the negative 
selection algorithm that was responsible for creating a set of tolerance conditions to 
monitor changes in hardware states. They employed a binary Hamming shape-space to 
represent the tolerance conditions.  

A general form of a chemical reaction maps a set of reactants into a set of products. 
In [6], the authors used a binary Hamming shape-space, to describe each of the reactants 
and products for spectra recognition in chemical analysis.  

Use was made of the immune network theory to produce a pattern recognition and 
classification system in [4]. This model consisted of T-cells, B-cells, antibodies, and an 
amino-acid library. The T-cells were used to control the production of B-cells. The B-
cells would then compete for the recognition of the “unknowns” . The amino-acid library 
acts as a library of epitopes (or variables) currently in the system. When a new antigen 
(pattern) is introduced into the system, its variables are entered into this library. The T-
cells then use the library to create their receptors that are used to recognise the new 
antigen. During the recognition stage of the algorithm, T-cells are matched against the 
antigen, and then a B-cell is created that match the antigen. 

In [8], the authors proposed an artificial immune network model, summarised in 
Section 2.3, with the main goals of performing data clustering and filtering redundant 
data. An Euclidean shape-space model was used, in which the network units 
corresponded to antibodies and the input patterns were the antigens to be recognised and 
clustered. This network model was successfully applied to several clustering problems, 
including non-linearly separable tasks. Classification results comparable to supervised 
neural networks for the Iris data set of Fisher were presented in [9]. 

In [10], the authors applied the clonal selection algorithm of Section 2.2 to recognise 
a set of binary characters represented in a binary Hamming shape-space. This algorithm 
was then adapted to solve multi-modal optimisation tasks. 

A version of clonal selection was used in [8] as an inspiration to develop a novel 
learning algorithm for a Boolean neural network. The resultant network, named ABNET 
(AntiBody NETwork), was applied to several binary and real-valued machine-learning 
and pattern recognition tasks. The results were compared to the self-organising feature 
map (SOM) introduced by [29], and to a pruning version of the SOM proposed in [12]. 

Work in [48] proposed an AIS that could be used for pattern discovery and 
classification in data. This AIS employed a number of high-level metaphors drawn from 
the immune system.  These are: A B-cell is capable of recognising pathogens (antigenic 



recognition); similar B-cells are linked together and these links form a network of B-
cells (immune network theory); cloning and mutation operations are performed on B-
cells (clonal selection and somatic hypermutation).  A number of B-cells can be 
represented by an ARB (Artificial Recognition Ball) given the theory of shape space. 
The AIS evolves a network of ARBs that can be viewed via a specially developed tool 
aiVis [45].  This work was then investigated in [30] in an attempt to apply the AIS to a 
ore complex and large-scale domain.  However, this work identified a different 
behavioural pattern not seen in the previous work, which in turn lead to a further 
investigation into the nature of the algorithm.  The subsequent investigation discovered 
that the algorithm would naturally discover the strongest pattern within the data set that 
it was applied to.  This new behaviour was deemed not to make a significant difference 
in the algorithms capability to discover patterns in data, but it was argued, enhances the 
usefulness of this algorithm.  

  

5 AIS and ANN for Pattern Recognition 

Similar to the use of artificial neural networks, performing pattern recognition with an 
AIS usually involves three stages: 1) defining a representation for the patterns; 
2) adapting (learning or evolving) the system to identify a set of typical data; and 3) 
applying the system to recognise a set of new patterns (that might contain patterns used 
in the adaptive phase).  

Refering to the three immune algorithms presented (negative selection, clonal 
selection, and immune network), coupled with the process of modelling pattern 
recognition in the immune system, as described in Section 3, this section will contrast 
AIS and ANN focusing the pattern recognition applications. Discussion will be based 
on computational aspects, such as basic components, adaptation mechanisms, etc. 
Common neural networks for pattern recognition will be considered, such as single and 
multi-layer perceptrons [40], associative memories [21], and self-organising networks 
[29]. All these networks are characterised by set(s) of units (artificial neurons); they 
adapt to the environment through a learning (or storage) algorithm, they can have their 
architectures dynamically adapted along with the weights, and they have the basic 
knowledge stored in the connection strengths [17]. 

Component: The basic unit of an AIS is an attribute string s (along with its connections 
in network models) represented in the appropriate shape-space. This string s might 
correspond to an immune cell or molecule. In an ANN, the basic unit is an artificial 
neuron composed of an activation function, a summing junction, connection strengths, 
and an activation threshold. While artificial neurons are usually processing elements, 
attribute strings representing immune cells and molecules are information storage and 
processing components. 

Location of the components: In immune network models, the cells and molecules 
usually present a dynamic behaviour that tries to mimic or counteract the environment. 
This way, the network elements will be located according to the environmental stimuli. 
Unlike the immune network models, ANN have their neurons positioned in fixed pre-
defined locations in the network. Some neural network models (e.g., [29]) also adopt 
fixed neighbourhood patterns for the neurons. If a network pattern of connectivity is not 
adopted for the AIS, each individual element will have a position in the population that 
might vary dynamically. Also, a metadynamic process might allow the introduction 
and/or elimination of particular units.   



Structure: In negative and clonal AIS, the components are usually structured around 
matrices representing repertoires or populations of individuals. These matrices might 
have fixed or variable dimensions. In artificial immune networks and artificial neural 
networks, the components of the population are interconnected and structured around 
patterns of connectivity. Artificial immune networks usually have an architecture that 
follows the spatial distribution of the antigens represented in shape-space, while ANN 
usually have pre-defined architectures, and weights biased by the environment.  

Memory: The attribute strings representing the repertoire(s) of immune cells and 
molecules, and their respective numbers, constitute most of the knowledge contained in 
an artificial immune system. Furthermore, parameters like the affinity threshold can also 
be considered part of the memory of an AIS. In artificial immune network models, the 
connection strengths among units also carry endogenous and exogenous information, 
i.e., they quantify the interactions of the elements of the AIS themselves and also with 
the environment. In most cases, memory is content-addressable and distributed. In the 
standard (earliest) neural network models, knowledge was stored only in the connection 
strengths of individual neurons. In more sophisticate strategies, such as constructive and 
pruning algorithms [31,39], and networks with self-adaptive parameters, the final 
number of network layers, neurons, connections, and the shapes of their respective 
activation functions are also part of the network knowledge. The memory is usually 
self-associative or content-addressable, and distributed. 

Adaptation: Adaptation usually refers to the alteration or adjustment in the structure or 
behaviour of a system so that its pattern of response to other components of the system 
and to the environment changes. Although both evolutionary and learning processes 
involve adaptation, there is a conceptual difference between them. Evolution can be 
seen as a change in the genetic composition of a population of individuals during 
successive generations. It is a result of natural selection acting on the genetic variation 
among individuals. In contrast, learning can be seen as a long lasting change in 
behaviour as a result of previous experience. While AIS might present both types of 
adaptation, learning and evolution, ANNs adapt basically through learning procedures. 

Plasticity and diversity: Metadynamics refers basically to two processes: 1) the 
recruitment of new components into the system, and 2) the elimination of useless 
elements from the system [46]. As consequences of metadynamics, the architecture of 
the system can be more appropriately adapted to the environment, and its search 
capability (diversity) increased. In addition, metadynamics reduces redundancy within 
the system by eliminating useless components. Metadynamics in the immune algorithms 
corresponds to a continuous insertion and elimination of the basic elements 
(cells/molecules) composing the system. In ANN, metadynamics is equivalent to the 
pruning and/or insertion of new connections, units, and layers in the network. 

Interaction with other components: The interaction among cells and molecules in AIS 
occurs through the recognition (matching) of attribute strings by cell receptors (other 
attribute strings). In immune network models, the cells usually have weighted 
connections that allow them to interact with (recognise and be recognised by) other 
cells. These weights can be stimulatory or suppressive indicating the degree of 
interaction with other cells. Artificial neural networks are composed of a set (or sets) of 
interconnected neurons whose connection strengths assume any positive or negative 
values, indicating an excitatory or inhibitory activation. The interaction with other 
neurons in the network occurs explicitly through these connection strengths, where a 
single neuron receives and processes inputs from the environment (or network neurons) 
in the same or other layer(s). An individual neuron can also receive an input from itself. 



Interaction with the environment: In pattern recognition applications, the environment is 
usually represented as a set of input patterns to be learnt, recognised, and/or classified. 
In AIS, an attribute string represents the genetic information of the immune cells and 
molecules. This string is compared with the patterns received from the environment. If 
there is an explicit antigenic population to be recognised (set of patterns), all or some 
antigens can be presented to the whole or parts of the AIS. At the end of the learning or 
recognition phase, each component of the AIS might recognise some of the input 
patterns. The artificial neurons have connections that receive input signals from the 
environment. These signals are processed by neurons and compared with the 
information contained in the artificial neural network, such as the connection strengths. 
After learning, the whole ANN might (approximately) recognise the input patterns.  

Threshold: Under the shape-space formalism, each component of the AIS interacts with 
other cells or molecules whose complements lie within a small surrounding region, 
characterised by a parameter named affinity threshold. This threshold determines the 
degree of recognition between the immune cells and the presented input pattern. Most 
current models of neurons include a bias (or threshold). This threshold determines the 
neuron activation, i.e., it indicates how sensitive the neuron activation will be with 
relation to the input signal. 

Robustness: Both paradigms are highly robust due mainly to the presence of populations 
or networks of components. These elements, cells, molecules, and neurons, can act 
collectively, co-operatively, and competitively to accomplish their particular tasks. As 
knowledge is distributed over the many components of the system, damage or failure to 
individual elements might not significantly deteriorate the overall performance. Both 
AIS and ANN are highly flexible and noise tolerant. An interesting property of immune 
network models and negative selection algorithms is that they are also self-tolerant, i.e., 
they learn to recognise themselves. In immune network models, the cells interact with 
each other and usually present connection strengths quantifying these interactions. In 
negative selection algorithms, the self-knowledge is performed by storing information 
about its complement. 

State: At each iteration, time step or interval, the state of an AIS corresponds to the 
concentration of the immune cells and molecules, and/or their affinities. In the case of 
immune network models, the connection strengths among units are also part of the 
current state of the system. In artificial neural networks, the activation level of the 
output neurons determines the state of the system. Notice that this activation level of the 
output neurons takes into account the number of connection strengths and their 
respective values, the shape of activation functions and the network dimension. 

Control: Any immune principle, theory or process can be used to control the types of 
interaction among the many components of an AIS. As examples, clonal selection can 
be employed to build an antibody repertoire capable of recognising a set of antigenic 
patterns, and negative selection can be used to define a set of antibodies (detectors) for 
the recognition of anomalous patterns. Differential or difference equations can be 
applied to the control of how an artificial immune network will interact with itself and 
the environment. Basically, three learning paradigms can be used to train an ANN: 1) 
supervised, 2) unsupervised, and 3) reinforcement learning.  

Generalisation capability: In the AIS case, cells and molecules capable of recognising a 
certain pattern, can recognise not only this specific pattern, but also any structurally 
related pattern. This capability is attained by a process called cross-reactivity [41], and 
can be modelled using the affinity threshold. Any pattern lying in a ‘neighbourhood’  of 
a known pattern can be recognised by the same component of the AIS that recognise the 



known pattern. Thus, a component of the AIS can generally recognise any other element 
whose affinity with is superior to ε. In addition to cross-reactivity, some immunologists 
(e.g. [23]), speculate that antibodies can also be multi-specific, in the sense that they can 
recognise antigens of relatively different structures, as far as enough interactions are 
established between them. Therefore, multispecificity contributes to the generalisation 
capability of AIS. ANNs are known to be efficient in generalising the training patterns, 
provided that an appropriate learning is performed. There are basically two ways in 
which an ANN can attain a satisfactory generalisation performance [38]: 1) by reducing 
the number of dimensions of the parameter space, or 2) by reducing the effective size of 
each dimension. 

Non-linearities: Non-linearities in AIS appear basically in the use of activation 
functions that define the degree of recognition between two components of the system, 
proportionally to their affinity. As examples, a sigmoid or a simple threshold matching 
function might be used. Some immune network models [46] use Gaussian-like functions 
to make the maturation and proliferation probabilities dependent on the degree of 
connectivity of an immune cell with the current network configuration. Non-linearities 
in artificial neural networks reside basically in the activation functions of individual 
neurons. The ensemble operation of several non-linear neural units results in a network 
with great potentials to perform non-linear approximations and/or classifications.  

6 Concluding Remarks 

Artificial immune systems constitute an emergent biologically motivated computing 
paradigm. It is based upon the extraction of principles and metaphors from the immune 
system in order to design alternative computational tools to solve complex problems. 
Indeed, the main role of the immune system is to recognise what cells, molecules, and 
tissues belong to the organism and to distinguish them from the foreign elements. If the 
immune system were not so efficient in this self/nonself discrimination process, the 
body would have no problem with the rejection of graft tissues, for example. As a 
consequence, this great capability to recognise and eliminate specific patterns (nonself) 
serves as a good source of inspiration to develop novel computational paradigms for 
machine-learning and pattern recognition. 

In this chapter three classes of artificial immune system algorithms to perform 
pattern recognition: 1) negative selection, 2) clonal selection, and 3) immune network 
models, have been reviewed. In negative selection, a pattern recognition system is 
designed by learning information about the complement set of the patterns to be 
recognised - a brand new paradigm. Clonal selection algorithms learn to recognise 
patterns through an evolutionary-like procedure. Finally, immune network models are 
peculiar because they carry information about the patterns to be recognised and, also, 
they have knowledge of themselves, i.e., a notion of self-identification. All algorithms 
are population based with the knowledge distributed among the components of the 
system. 

The intuitive and appealing metaphor of engineering artificial immune systems to 
protect computers and networks of computers from viruses, unauthorised users, etc., led 
to the development of the so-called computational immunology. Most computational 
immunology algorithms, which compose particular cases of artificial immune systems, 
are based upon the negative selection algorithm. In the survey section of this chapter, 
the most influential works in computational immunology we reviewed. Additionally, the 
application of other models, including the immune network and clonal selection 



algorithms, to other types of pattern recognition applications, such as character 
recognition, data analysis, clustering and classification were discussed. 

The chapter followed with a theoretical comparison between artificial immune 
systems and neural network models for pattern recognition. Aspects such as the basic 
units composing each system, their respective types of adaptation mechanisms, the 
types of memory presented, and how they present generalisation capabilities were 
stressed. 

There are also several works in the literature hybridising neural networks with 
artificial immune systems; a good review can be found in [8]. Although these were not 
included here due to a lack of space, these authors strongly believe that both approaches 
have much to profit from one another. Stretching speculations, it could be suggested 
that novel paradigms will soon emerge, such as artificial neuroimmune systems.  

The aim of this chapter was to serve the purpose of introducing artificial immune 
systems to the neural network community, and also provided a basic guide to the 
literature. The algorithms presented could be directly employed and/or adapted as 
alternatives to solve the same types of pattern recognition problems as neural networks, 
or to complement their potentialities. 
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