Abstract

This document describes LDAP schema features that are needed to support X.509 Public Key Infrastructures. Specifically, X.509 attribute types, object classes, matching rules, attribute value syntaxes and attribute value assertion syntaxes needed for PKIs are defined.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [5].

1. Introduction

2. Subschema Publishing

LDAPv3 allows the subschema supported by a server to be published in a subschema subentry. Clients following this profile which support the Search operation containing an extensible matching rule SHOULD use the subschemaSubentry attribute in the root DSE to find the subschemaSubentry, and SHOULD use the matchingRule and matchingRuleUse operational attributes in the subschema subentry in order to determine whether the server supports the various matching rules described below. Servers that support extensible matching SHOULD publish the matching rules they support in the matchingRule and matchingRuleUse operational attributes.

3. PKI Attributes and Syntaxes

3.1 userCertificate Attribute

The userCertificate attribute type contains the public-key certificates a user has obtained from one or more CAs. The LDAP-specific encoding for values of this attribute is described in section 3.3.

```
( 2.5.4.36 NAME 'userCertificate'
    EQUALITY certificateExactMatch
    SYNTAX 1.3.6.1.4.1.1466.115.121.1.8 )
```

3.2 cACertificate Attribute

The cACertificate attribute of a CA's directory entry shall be used to store self-issued certificates (if any) and certificates issued to this CA by CAs in the same realm as this CA. The LDAP-specific encoding for values of this attribute is described in section 3.3.

```
( 2.5.4.37 NAME 'cACertificate'
    EQUALITY certificateExactMatch
    SYNTAX 1.3.6.1.4.1.1466.115.121.1.8 )
```

3.3 Certificate Syntax

The LDAP-specific encoding for a certificate value is the octet string that results from the BER and/or DER-encoding of an X.509 public key certificate. The following string states the OID assigned to this syntax:

```
( 1.3.6.1.4.1.1466.115.121.1.8 DESC 'A BER and/or DER encoded public key certificate' )
```

Servers MUST preserve values in this syntax exactly as given to them by the client, when storing and retrieving certificates. Transformation of these values between storage and retrieval MUST NOT take place.

Note. The BNF notation in RFC 1778 [12] for "User Certificate" MUST NOT be used. Values in this syntax MUST be transferred as BER and/or DER encoded octets.

3.4 authorityRevocationList Attribute

A value of this attribute is a list of CA certificates that are no longer valid. The LDAP-specific encoding for values of this attribute
is described in section 3.7.

(2.5.4.38 NAME 'authorityRevocationList'
EQUALITY certificateListExactMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.9)

3.5 certificateRevocationList Attribute

A value of this attribute is a list of user certificates that are no longer valid. The LDAP-specific encoding for values of this attribute is described in section 3.7.

(2.5.4.39 NAME 'certificateRevocationList'
EQUALITY certificateListExactMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.9)

3.6 deltaRevocationList Attribute

This attribute contains a list of revoked certificates (user or CA) that is an addition to a previous certificate revocation list. The LDAP-specific encoding for values of this attribute is described in section 3.7.

(2.5.4.53 NAME 'deltaRevocationList'
EQUALITY certificateListExactMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.9)

3.7 Certificate List Syntax

The LDAP-specific encoding for a certificate list value is the octet string that results from BER/DER-encoding an X.509 certificate revocation list. The following string states the OID assigned to this syntax:

(1.3.6.1.4.1.1466.115.121.1.9 DESC 'Certificate List')

Servers MUST preserve values in this syntax exactly as given when storing and retrieving them. The BNF notation in RFC 1778 [12] for "Authority Revocation List" MUST NOT be used.

3.8 crossCertificatePair Attribute

The following definition is taken from X.509(2000) [9]. The term forward was used in earlier editions of X.509 for issuedToThisCA and the term reverse was used in earlier editions for issuedByThisCA.

The issuedToThisCA elements of the crossCertificatePair attribute of a CA's directory entry shall be used to store all, except self-issued certificates, issued to this CA. Optionally, the issuedByThisCA elements of the crossCertificatePair attribute, of a CA's directory entry may contain a subset of certificates issued by this CA to other CAs. If a CA issues a certificate to another CA, and the subject CA is not a subordinate to the issuer CA in a hierarchy, then the issuer CA shall place that certificate in the issuedByThisCA element of the crossCertificatePair attribute of its own directory entry. When both the issuedToThisCA and the issuedByThisCA elements are present in a single attribute value, issuer name in one certificate shall match the subject name in the other and vice versa, and the subject public key in one certificate shall be capable of verifying the digital signature on the other certificate and...
vice versa.

The LDAP-specific encoding for values of this attribute is described in section 3.9.

(2.5.4.40 NAME 'crossCertificatePair'
 EQUALITY certificatePairExactMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.10)

3.9 Certificate Pair Syntax

The LDAP-specific encoding for a certificate pair value is the octet string that results from the BER/DER-encoding an X.509 public key certificate pair. The following string states the OID assigned to this syntax:

(1.3.6.1.4.1.1466.115.121.1.10 DESC 'Certificate Pair')

Servers MUST preserve values in this syntax exactly as given when storing and retrieving them. The BNF notation in RFC 1778 [12] for "Certificate Pair" MUST NOT be used. Servers must preserve values in this syntax exactly as given when storing and retrieving them.

3.10 PKI Path Attribute

The PKI path attribute is used to store certification paths, each consisting of a sequence of cross-certificates. The LDAP-specific encoding for values of this attribute is described in section 3.11.

(2.5.4.70 NAME 'pkiPath'
 SYNTAX 1.2.826.0.1.3344810.7.19)

The following description is copied from X.509 (2000) [9].

"This attribute can be stored in the CA directory entry and would contain some certification paths from that CA to other CAs. This attribute, if used, enables more efficient retrieval of cross-certificates that form frequently used certification paths. As such there are no specific requirements for this attribute to be used and the set of values that are stored in the attribute will likely not represent the complete set of forward certification paths for any given CA."

3.11 PKI Path Syntax

The LDAP-specific encoding for a PKI path value is the octet string that results from the BER/DER-encoding of a sequence of cross certificates. The following string states the OID assigned to this syntax:

(1.2.826.0.1.3344810.7.19 DESC 'PKI Path')

Servers MUST preserve values in this syntax exactly as given when storing and retrieving them.

3.12 CPS Attribute

The CPS attribute is used to store a certification authority's certification practice statement.
3.13 CPS Pointer Attribute

The CPS pointer attribute is used to store a pointer to a certification authority's certification practice statement in the form of a URI.

3.14 Certificate Policy Attribute

The certificatePolicy attribute is used to store information about a certification authority's certificate policy (either directly or indirectly). The LDAP-specific encoding for values of this attribute is described in section 3.15.

3.15 Certificate Policy Syntax

The LDAP-specific encoding for a certificate policy value is the octet string that results from the BER encoding of a sequence of the policy object identifier and policy information. The following string states the OID assigned to this syntax:

 (1.2.826.0.1.3344810.7.20 DESC 'CA certificate policy')

3.16 Certificate Policy Pointer Attribute

The CP pointer attribute is used to store a pointer to a certification authority's certificate policy in the form of a URI.

3.17 Supported Algorithms Attribute

This attribute is used to support the selection of an algorithm for use when communicating with a remote end entity using certificates. The LDAP-specific encoding for values of this attribute is described in section 3.17.

3.18 Supported Algorithm Syntax

The LDAP-specific encoding for a supported algorithm value is the octet string that results from the BER encoding of a SupportedAlgorithm ASN.1 value. The following string states the OID assigned to this syntax:

 (1.3.6.1.4.1.1466.115.121.1.49 DESC 'Supported Algorithm')

4. Public Key Certificate Matching Rules and Assertion Syntaxes
X.509 [9] supports both equality and flexible certificate matching rules by the server, via the certificateExactMatch and certificateMatch matching rules respectively. (For example, a client may flexibly search for certificates with a particular validity time, key usage, policy or other field.) LDAP servers MUST support the certificateExactMatch matching rule. Clients MAY support certificateExactMatch values for equalityMatch filters. LDAPv3 servers SHOULD support the certificateMatch matching rule. If the server does support flexible matching (either via certificateMatch or some other matching rule), then the extensibleMatch filter of the Search request MUST be supported. Clients MAY support the extensibleMatch filter and one or more of the optional elements of certificateMatch.

The LDAP-specific (i.e. string) encodings for the assertion syntaxes defined in this document are specified by the Generic String Encoding Rules (GSER) [13]. The ABNF in this document for these assertion syntaxes is provided only as a convenience and is equivalent to the encoding specified by the application of [13]. (The only exception to this is the alternative simple encoding for certificateExactMatch.) Since the associated ASN.1 types for the assertion syntaxes described here may be extended in future editions of X.509 [9], the provided ABNF should be regarded as a snapshot in time. The LDAP-specific encoding for any extension to a syntax's underlying ASN.1 type can be determined from [13]. In the event that there is a discrepancy between the ABNF in this document and the encoding determined by [13], [13] is to be taken as definitive.

4.1 Certificate Exact Match

Certificate exact match is defined in 11.3.1 of [9]. The string description of the certificateExactMatch matching rule is:

```
( 2.5.13.34 NAME 'certificateExactMatch'
  SYNTAX 1.2.826.0.1.3344810.7.1)
```

The LDAP syntax definition of the above is:

```
(1.2.826.0.1.3344810.7.1
  DESC 'Certificate Serial Number and Issuer Name'
)
```

The LDAP-specific encoding of an assertion value of this syntax is a choice between
- the GSER encoding defined by [13]<GSERCertificateExactAssertion> and
- the simple encoding defined by <SimpleCertificateExactAssertion>.

The full syntax is described by the following Augmented BNF [10]:

CertificateExactAssertion = GSERCertificateExactAssertion /
 SimpleCertificateExactAssertion

SimpleCertificateExactAssertion = CertificateSerialNumber "$" LDAPDN

<LDAPDN> is a string encoding of a distinguished name as defined in [6].

```
GSERCertificateExactAssertion = "{" sp cea-serialNumber "," sp cea-issuer sp "}"
```

```
cea-serialNumber = id-serialNumber msp CertificateSerialNumber
```
Note. [14] states that CAs MUST force the serialNumber to be a non-negative integer. Non-conforming CAs MAY issue certificates with serial numbers that are negative, or zero. Certificate users SHOULD be prepared to handle such certificates.

The <sp>, <msp>, <RDNSequence> and <INTEGER> rules are given in [16].

4.2 Certificate Match

Certificate match is defined in 11.3.2 of [9]. The string description of the certificateMatch matching rule is:

(2.5.13.35 NAME 'certificateMatch'
 SYNTAX 1.2.826.0.1.3344810.7.2)

The syntax definition is:

(1.2.826.0.1.3344810.7.2 DESC 'Certificate Assertion')

The ASN.1 for CertificateAssertion is defined in 11.3.2 of [9], as are the semantics of each of its component types.

The LDAP-specific encoding of an assertion value of this syntax is defined by [13] and described by the following ABNF:

CertificateAssertion = "{" [sp ca-serialNumber]
 [sep sp ca-issuer]
 [sep sp ca-subjectKeyIdentifier]
 [sep sp ca-authorityKeyIdentifier]
 [sep sp ca-certificateValid]
 [sep sp ca-privateKeyValid]
 [sep sp ca-subjectPublicKeyAlgID]
 [sep sp ca-keyUsage]
 [sep sp ca-subjectAltName]
 [sep sp ca-policy]
 [sep sp ca-pathToName]
 [sep sp ca-subject]
 [sep sp ca-nameConstraints]
 sp "}")

The <sep> rule is given in [16].
ca-certificateValid = certificateValid msp Time
ca-privateKeyValid = id-privateKeyValid msp GeneralizedTime
ca-subjectPublicKeyAlgID = id-subjectPublicKeyAlgID msp
OBJECT-IDENTIFIER
ca-keyUsage = id-keyUsage msp KeyUsage
c-a-subjectAltName = id-subjectAltName msp AltNameType
c-policy = id-policy msp CertPolicySet
c-pathToName = id-pathToName msp Name
c-subject = id-subject msp Name
c-nameConstraints = id-nameConstraints msp
 NameConstraintsSyntax

id-subjectKeyIdentifier = %x73.75.62.6A.65.63.74.4B.65.79.49.64.65
 %x6E.74.69.66.69.65.72
; "subjectKeyIdentifier"

id-authorityKeyIdentifier = %x61.75.74.68.6F.72.69.74.79.4B.65.79.41.6C.67.49.44
; "authorityKeyIdentifier"

SubjectKeyIdentifier = KeyIdentifier
KeyIdentifier = OCTET-STRING

AuthorityKeyIdentifier = "(" [sp aki-keyIdentifier]
 [sep sp aki-authorityCertIssuer]
 [sep sp aki-authorityCertSerialNumber]
 sp ")"

aki-keyIdentifier = id-keyIdentifier msp KeyIdentifier
aki-authorityCertIssuer = id-authorityCertIssuer msp GeneralNames

GeneralNames = "(" sp GeneralName *("," sp GeneralName) sp ")"
GeneralName = gn-otherName
 / gn-rfc822Name
 / gn-dNSName
 / gn-x400Address
 / gn-directoryName
 / gn-ediPartyName
 / gn-uniformResourceIdentifier
 / gn-iPAddress
 / gn-registeredID

gn-otherName = id-otherName ":" OtherName
gn-rfc822Name = id-rfc822Name ":" IA5String
gn-dNSName = id-dNSName ":" IA5String
gn-x400Address = id-x400Address "":" ORAddress
gn-directoryName = id-directoryName "": "Name
gn-ediPartyName = id-ediPartyName "": EDIPartyName
gn-iPAddress = id-iPAddress "": OCTET-STRING
gn-registeredID = gn-id-registeredID "": OBJECT-IDENTIFIER

gn-uniformResourceIdentifier = id-uniformResourceIdentifier "": IA5String

id-otherName = %x6f.74.68.65.72.4e.61.6d.65 ; "otherName"

OtherName = "{" sp on-type-id "," sp on-value sp ")"
on-type-id = id-type-id msp OBJECT-IDENTIFIER
on-value = id-value msp Value
id-type-id = %x74.79.70.65.2d.69.64 ; "type-id"
id-value = %x76.61.6c.75.65 ; "value"

The <Value> rule is defined in [13].

EDIPartyName = "{" [sp nameAssigner ","] sp partyName sp ")"
nameAssigner = id-nameAssigner msp DirectoryString
partyName = id-partyName msp DirectoryString
id-nameAssigner = %x6e.61.6d.65.41.73.73.69.67.6e.72 ; "nameAssigner"
id-partyName = %x70.61.72.74.79.4e.61.6d.65 ; "partyName"

aki-authorityCertSerialNumber = id-authorityCertSerialNumber msp CertificateSerialNumber

id-keyIdentifier = %x6b.65.79.49.64.65.6e.74.69.66.69.65.72 ; "keyIdentifier"
id-authorityCertIssuer = %x61.75.74.68.6f.72.69.74.79.43.65.72.65.72
%73.73.75.65.72 ; "authorityCertIssuer"

id-authorityCertSerialNumber = %x61.75.74.68.6f.72.69.74.79.43.65.72
%74.53.65.72.69.61.6c.4e.75.6d.62
%65.72 ; "authorityCertSerialNumber"

Time = time-utcTime / time-generalizedTime
time-utcTime = id-utcTime "": UTCTime
time-generalizedTime = id-generalizedTime "": GeneralizedTime
id-utcTime = %x75.74.63.54.69.6d.65 ; "utcTime"
id-generalizedTime = %x67.65.6e.65.72.61.6c.69.7a.65.64.54.69.6d.65
"generalizedTime"

KeyUsage = BIT-STRING / key-usage-bit-list
key-usage-bit-list = "{" [sp key-usage *("," sp key-usage)] sp ")"

The <key-usage-bit-list> rule encodes the one bits in a KeyUsage value as a comma separated list of identifiers. The <BIT-STRING> rule is given in [16].

key-usage = id-digitalSignature
 / id-nonRepudiation
 / id-keyEncipherment
 / id-dataEncipherment
 / id-keyAgreement
 / id-keyCertSign
id-digitalSignature = %x64.69.67.69.74.61.6C.53.69.67.6E.61.74.75.72
 %x65 ; "digitalSignature"
id-nonRepudiation = %x6E.6F.6E.52.65.70.75.64.69.61.74.69.6F.6E
 ; "nonRepudiation"
id-keyEncipherment = %x6B.65.79.45.6E.63.69.70.68.65.72.6D.65.6E.74
 ; "keyEncipherment"
id-dataEncipherment = %x64.61.74.61.45.6E.63.69.70.68.65.72.6D.65.6E
 %x74 ; "dataEncipherment"
id-keyAgreement = %x6B.65.79.41.67.72.74.65.6E.67.6E.74
 ; "keyAgreement"
id-keyCertSign = %x6B.65.79.43.65.72.74.53.69.67.6E
 ; "keyCertSign"
id-cRLSign = %x63.52.4C.53.69.67.6E ; "cRLSign"
id-encipherOnly = %x65.6E.63.69.70.68.65.72.4F.6E.6C.79
 ; "encipherOnly"
id-decipherOnly = %x64.65.63.69.70.68.65.72.4F.6E.6C.79
 ; "decipherOnly"

AltNameType = ant-builtInNameForm / ant-otherNameForm

ant-builtInNameForm = id-builtInNameForm ":" BuiltInNameForm
ant-otherNameForm = id-otherNameForm ":" OBJECT-IDENTIFIER

id-builtInNameForm = %x62.75.69.6C.38.32.32.4E.61.6D.65 ; "builtInNameForm"
id-otherNameForm = %x6F.74.68.65.72.4E.61.6D.65.46.6F.72.6D
 ; "otherNameForm"

BuiltInNameForm = id-rfc822Name
 / id-dNSName
 / id-x400Address
 / id-directoryName
 / id-ediPartyName
 / id-uniformResourceIdentifier
 / id-iPAddress
 / id-registeredId

id-rfc822Name = %x72.66.63.38.32.32.4E.61.6D.65 ; "rfc822Name"
id-dNSName = %x64.4E.53.4E.61.6D.65 ; "dNSName"
id-x400Address = %x78.34.30.30.41.64.64.72.65.73.73
 ; "x400Address"
id-directoryName = %x64.69.72.65.63.74.6F.72.79.4E.61.6D.65
 ; "directoryName"
id-ediPartyName = %x65.64.69.50.61.72.74.79.4E.61.6D.65
 ; "ediPartyName"
id-iPAddress = %x69.50.41.64.64.72.65.73.73 ; "iPAddress"
id-registeredId = %x72.65.67.69.73.74.65.72.65.64.49.64
 ; "registeredId"

id-uniformResourceIdentifier = %x75.6E.69.66.6F.72.6D.52.65.73.6F.75
 %x72.63.65.49.64.65.6E.74.69.66.69.65
 %x72 ; "uniformResourceIdentifier"

CertPolicySet = "{" sp CertPolicyId *("," sp CertPolicyId) sp "}")"
CertPolicyId = OBJECT-IDENTIFIER

NameConstraintsSyntax ="{" [sp ncs-permittedSubtrees]
 [sep sp ncs-excludedSubtrees]
ncs-permittedSubtrees = id-permittedSubtrees msp GeneralSubtrees
ncs-excludedSubtrees = id-excludedSubtrees msp GeneralSubtrees
id-permittedSubtrees = \%x70.65.72.6D.69.74.74.65.64.53.75.62.74.72.72 \
\%x65.65.73 ; "permittedSubtrees"
id-excludedSubtrees = \%x65.78.63.6C.75.64.65.64.53.75.62.74.72.65 \
\%x65.73 ; "excludedSubtrees"

GeneralSubtrees = "{" sp GeneralSubtree
 * ("," sp GeneralSubtree) sp "}"
GeneralSubtree = "{" sp gs-base
 ["," sp gs-minimum]
 ["," sp gs-maximum]
 sp "}"

gs-base = id-base msp GeneralName
gs-minimum = id-minimum msp BaseDistance
gs-maximum = id-maximum msp BaseDistance
id-base = \%x62.61.73.65 ; "base"
id-minimum = \%x6D.69.6E.69.6D.75.6D ; "minimum"
id-maximum = \%x6D.61.78.69.6D.75.6D ; "maximum"
BaseDistance = INTEGER - 0 - MAX

The <OBJECT-IDENTIFIER>, <OCTET-STRING>, <IA5String>, <DirectoryString>,
<RelativeDistinguishedName>, <UTCTime>, <GeneralizedTime>, <INTEGER-0-MAX>
and <ORAddress> rules are given in [16].

4.3 Certificate Pair Exact Match

Certificate pair exact match is defined in 11.3.3 of [9]. The string
description of the certificatePairExactMatch matching rule is:

(2.5.13.36 NAME 'certificatePairExactMatch'
 SYNTAX 1.2.826.0.1.3344810.7.8)

The LDAP syntax definition is:

(1.2.826.0.1.3344810.7.8
 DESC 'Certificate Pair Exact Assertion')

The ASN.1 for CertificatePairExactAssertion is defined in 11.3.3 of [9],
as are the semantics of each of its component types.

The LDAP-specific encoding of an assertion value of this syntax is
defined by [13] and described by the following Augmented BNF [10]:

CertificatePairExactAssertion = "{" [sp cpea-issuedTo]
 [sep sp cpea-issuedBy]
 sp "}"

At least one of <cpea-issuedTo> or <cpea-issuedBy> MUST be present.

cpea-issuedTo = id-issuedToThisCAAssertion msp
 CertificateExactAssertion
cpea-issuedBy = id-issuedByThisCAAssertion msp
 CertificateExactAssertion

id-issuedToThisCAAssertion = \%x69.73.73.75.65.64.54.6F.54.68.69.73.43 \
\%x41.41.73.73.65.72.74.69.6F.6E
4.4 Certificate Pair Match

Certificate pair match is defined in 11.3.4 of [9]. The string description of the certificatePairMatch matching rule is:

```
( 2.5.13.37 NAME 'certificatePairExactMatch'  
   SYNTAX 1.2.826.0.1.3344810.7.9)
```

The LDAP syntax definition is:

```
(1.2.826.0.1.3344810.7.9  
   DESC 'Certificate Pair Assertion' )
```

The ASN.1 for CertificatePairAssertion is defined in 11.3.4 of [9], as are the semantics of each of its component types.

The LDAP-specific encoding of an assertion value of this syntax is defined by [13] and described by the following Augmented BNF [10]:

```
CertificatePairAssertion = "{"   
   [ sp cpa-issuedTo ]  
   [sep sp cpa-issuedBy ]  
   sp "}"
```

At least one of <cpa-issuedTo> and <cpa-issuedBy> MUST be present.

```
cpa-issuedTo = id-issuedToThisCAAssertion msp CertificateAssertion  
cpa-issuedBy = id-issuedByThisCAAssertion msp CertificateAssertion
```

5 Certificate Revocation List Matching Rules

X.509[9] defines both equality and flexible matching rules for CRLs, via the certificateListExactMatch and certificateListMatch MATCHING-RULES respectively. LDAP servers MUST support the certificateListExactMatch matching rule. Clients MAY support certificateListExactMatch values for equalityMatch filters. LDAPv3 servers MAY support the certificateListMatch matching rule. If the server does support flexible matching (either via certificateListMatch or some other matching rule), then the extensibleMatch filter of the Search request MUST be supported. Clients MAY support the extensibleMatch filter and one or more of the optional elements of certificateListMatch.

5.1 Certificate List Exact Match

Certificate List exact match is defined in 11.3.5 of [9]. The string description of the certificateListExactMatch matching rule is:

```
( 2.5.13.38 NAME 'certificateListExactMatch'  
   SYNTAX 1.2.826.0.1.3344810.7.3)
```

The syntax definition is:

```
(1.2.826.0.1.3344810.7.3 DESC 'Certificate List Exact Assertion (Issuer
name, time and distribution point name')

The ASN.1 for CertificateListExactAssertion is defined in 11.3.5 of [9], as are the semantics of each of its component types.

The LDAP-specific encoding of an assertion value of this syntax is defined by [13] and described by the following ABNF:

CertificateListExactAssertion = "{"  sp clea-issuer
   [""  sp clea-thisUpdate
   [""  sp clea-distributionPoint ]
   sp "}"

  clea-issuer            = id-issuer msp Name
  clea-thisUpdate        = id-thisUpdate msp Time
  clea-distributionPoint = id-distributionPoint msp
                         DistributionPointName

  id-thisUpdate          = %x74.68.69.73.55.70.64.61.74.65
                         ; "thisUpdate"
  id-distributionPoint   = %x64.69.73.74.72.69.62.75.74.69.6F.6E
                         %x50.6F.69.6E.74 ; "distributionPoint"

  DistributionPointName  = dpn-fullName / dpn-nameRelativeToCRLIssuer

  dpn-fullName           = id-fullName ":" GeneralNames
  dpn-nameRelativeToCRLIssuer = id-nameRelativeToCRLIssuer ":"
                         RelativeDistinguishedName

  id-fullName            = %x66.75.6C.6C.4E.61.6D.65 ; "fullName"
  id-nameRelativeToCRLIssuer = %x6E.61.6D.65.52.65.6C.61.74.69.76.65
                            %x54.6F.43.52.4C.49.73.73.75.65.72
                            ; "nameRelativeToCRLIssuer"

5.2 Certificate List Match

Certificate List match is defined in 11.3.6 of [9]. The string description of the certificateListMatch matching rule is:

( 2.5.13.39 NAME 'certificateListMatch'
   SYNTAX 1.2.826.0.1.3344810.7.4)

The syntax definition is:

(1.2.826.0.1.3344810.7.4 DESC 'Certificate List Assertion')

The ASN.1 for CertificateListAssertion is defined in 11.3.6 of [9], as are the semantics of its components.

The LDAP-specific encoding of an assertion value of this syntax is defined by [13] and described by the following ABNF:

CertificateListAssertion = "{"  [ sp cla-issuer ]
                        [ sep sp cla-minCRLNumber ]
                        [ sep sp cla-maxCRLNumber ]
                        [ sep sp cla-reasonFlags ]
                        [ sep sp cla-dateAndTime ]
                        [ sep sp cla-distributionPoint ]
                        [ sep sp cla-authorityKeyIdentifier ]
sp "})"

cla-issuer = id-issuer msp Name
cla-minCRLNumber = id-minCRLNumber msp CRLNumber
cla-maxCRLNumber = id-maxCRLNumber msp CRLNumber
cla-reasonFlags = id-reasonFlags msp ReasonFlags
cla-dateAndTime = id-dateAndTime msp Time
cla-distributionPoint = id-distributionPoint msp DistributionPointName
cla-authorityKeyIdentifier = id-authorityKeyIdentifier msp AuthorityKeyIdentifier

id-minCRLNumber = %x6D.69.6E.43.52.4C.4E.75.6D.62.65.72 ; "minCRLNumber"
id-maxCRLNumber = %x6D.61.78.43.52.4C.4E.75.6D.62.65.72 ; "maxCRLNumber"
id-reasonFlags = %x72.65.61.73.6f.6E.46.6C.61.67.73 ; "reasonFlags"
id-dateAndTime = %x64.61.74.65.41.6E.64.54.69.6D.65 ; "dateAndTime"

CRLNumber = INTEGER-0-MAX
ReasonFlags = BIT-STRING
   / "{" [ sp reason-flag
   *{ "", sp reason-flag ) ] sp "}"
reason-flag = id-unused
   / id-keyCompromise
   / id-cACompromise
   / id-affiliationChanged
   / id-superseded
   / id-cessationOfOperation
   / id-certificateHold
   / id-privilegeWithdrawn
   / id-aACompromise

id-unused = %x75.6E.75.73.65.64 ; "unused"
id-keyCompromise = %x6B.65.79.43.6F.6D.70.72.6F.6D.69.73.65 ; "keyCompromise"
id-cACompromise = %x63.41.43.6F.6D.70.72.6F.6D.69.73.65 ; "cACompromise"
id-affiliationChanged = %x61.66.66.69.6C.69.61.74.69.6F.6E.43.68 %x61.6E.67.65.64 ; "affiliationChanged"
id-superseded = %x73.75.70.65.72.73.65.64.65.64 ; "superseded"
id-cessationOfOperation = %x63.65.73.73.61.74.69.6F.6E.4F.66.4F.70 %x65.72.61.74.69.6F.6E ; "cessationOfOperation"
id-certificateHold = %x63.65.72.74.69.66.69.63.61.74.65.48.6F %x6C.64 ; "certificateHold"
id-privilegeWithdrawn = %x70.72.69.76.69.6C.65.67.65.57.69.74.68 %x64.72.61.77.6E ; "privilegeWithdrawn"
id-aACompromise = %x61.41.43.6F.6D.70.72.6F.6D.69.73.65 ; "aACompromise"

6. PKI Object Classes
6.1 PKI user object class
The PKI user object class MAY be used in defining entries for objects
that may be the subject of public-key certificates.

( 2.5.6.21 NAME 'pkiUser' SUP top AUXILIARY
MAY userCertificate )

6.2 PKI CA object class

The PKI CA object class MAY be used in defining entries for objects that act as certification authorities.

( 2.5.6.22 NAME 'pkiCA' SUP top AUXILIARY
MAY ( cACertificate $ certificateRevocationList $ authorityRevocationList $ crossCertificatePair ) )

6.3 CRL Distribution Point object class

The CRL Distribution Point object class MAY be used in defining entries for objects which act as CRL Distribution Points

( 2.5.6.19 NAME 'cRLDistributionPoint' SUP top STRUCTURAL MUST cn
MAY (certificateRevocationList $ authorityRevocationList $ DeltaRevocationList ) )

6.4 Delta CRL object class

The delta CRL object class is used in defining entries for objects that hold delta revocation lists (e.g. CAs, AAs etc.).

( 2.5.6.23 NAME 'deltaCRL' SUP top AUXILIARY
MAY deltaRevocationList )

6.5 Certificate Policy and CPS object class

The CP CPS object class MAY be used in defining entries for objects that contain certificate policy and / or certification practice information

( 2.5.6.30 NAME 'cpCPS' SUP top AUXILIARY MAY ( certificatePolicy $ certificationPracticeStmt ) )

6.6 PKI Certification Path object class

The PKI certification path object class MAY be used in defining entries for objects that contain PKI certification paths. It will generally be used in conjunction with entries of structural object class pkiCA.

( 2.5.6.31 NAME 'pkiCertPath' SUP top AUXILIARY MAY pkiPath)

7. Filter Examples

The following examples are written using the string representation of Search filters defined in [18]. Line-breaks have been added as an aid to readability.

i) To match on the serial number of a PKI certificate using extensibleMatch with component matching

(userCertificate:componentFilterMatch:=
item:( component "serialNumber", rule integerMatch,
value 12345 ))
ii) To exactly match one certificate using extensibleMatch with certificateExactMatch and GSERCertificateExactAssertion

\[
\text{(userCertificate:certificateExactMatch:= \{serialNumber 12345 , issuer rdnSequence: "O=truetrust ltd, C=GB" \}}
\]

iii) To exactly match one certificate using equalityMatch with certificateExactMatch and GSERCertificateExactAssertion

\[
\text{(UserCertificate= \{serialNumber 12345 , issuer rdnSequence: "O=truetrust ltd, C=GB" \}}
\]

iv) To exactly match one certificate using equalityMatch with certificateExactMatch and SimpleCertificateExactAssertion

\[
\text{(UserCertificate=12345$O=truetrust ltd, C=GB)}
\]

v) To exactly match one certificate using extensibleMatch with component matching

\[
\text{(userCertificate:componentFilterMatch:=and:\{ item:{ component "serialNumber", rule integerMatch, value 12345 }, item:{ component "issuer.rdnSequence", rule distinguishedNameMatch, value "O=truetrust ltd, C=GB" } \}}
\]

vi) To match on certificates containing a certain email address as a subjectAltName

\[
\text{(userCertificate:componentFilterMatch:=item:{ component "toBeSigned.extensions.*.extnValue.content.(2.5.29.17).*.rfc822Name", rule caseIgnoreIA5Match, value "person@email.address.com" }}
\]

8. Security Considerations

This [Internet Draft/Standard] describes the schema for the storage and matching of attribute certificates and revocation lists in an LDAP directory server. It does not address the protocol for the retrieval of this information.

LDAP servers SHOULD use access control information to protect the information during its storage. In addition, clients MAY choose to encrypt the attributes in the attribute certificates before storing them in an LDAP server.

9. References

Normative


Informative


10. Intellectual Property Notice

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. [BCP-11] Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard.

Please address the information to the IETF Executive Director.
11. Copyright

Copyright (C) The Internet Society (2001). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

12. Authors' Addresses

David Chadwick
IS Institute
University of Salford
Salford
England
M5 4WT

Email: d.w.chadwick@salford.ac.uk

Steven Legg
Adacel Technologies Ltd.
405-409 Ferntree Gully Road,
Mount Waverley,
Victoria, 3149
Australia

Email: steven.legg@adacel.com.au

13. Changes

From <draft-pkix-ldap-schema-00.txt>

i) Added ABNF notation for all of the syntaxes.

ii) Removed the restriction on the syntax of Distribution Point Names.
iii) Removed constraints on IssuerSerial.

iv) Bug detected in X.509 AttributeCertificateExactMatch that will need resolving.

v) Changed the string encodings for non-exact matches to keywords for each component instead of $ separators.

From <draft-pkix-ldap-schema-01.txt>

i) Added and corrected all X.509 PKI schema definitions, since these have been removed from RFC2252-bis.

ii) Changed assertion syntaxes to use the syntax defined by Component Matching Rules

iii) Included all the matching rules for AC extensions

From <draft-pkix-ldap-schema-02.txt>

i) Separation in PKI and PMI IDs.

ii) Examples of filters have been added

iii) Text has been added to mandate that servers must store and retrieve many of the syntaxes defined in this ID exactly as given.

iv) The ;binary encoding option has been removed in accordance with work in the LDAPBIS group. A new LDAP-specific encoding has been defined which has exactly the same syntax as the old ;binary encoding.

v) We have obsoleted RFC 2587 and RFC 2256 and copied the relevant schemas into this document.

vi) We have added some new PKI schema appearing for the first time in X.509(2000) e.g. pkiPath

14. Outstanding Issues

i. We need to decide if userSMIMECertificates should also be supported as part of this profile or not.

ii. We have added a CPS attribute and a CPS pointer attribute. These are adapted from the certificationPracticeStmt attribute in the X.509 standard which is a choice of either the CPS or a pointer to it. However our pointer is simply a URI (as in the CPS qualifier extension in the PKIX profile) whereas the X.500 pointer is a GeneralName and an optional hash. Are these changes sensible and acceptable?

iii. We have added a matching rule to the certificatePolicy attribute. No matching rule is defined in X.509, so we have reported this as a defect. Should we stick with the X.509 syntax or create two alternative attributes (a pointer and a policy) as in the CPS case.

iv. We have made the matching rule for supportedAlgorithms as the objectIdentifierFirstComponentMatch. RFC2256 did not specify any matching rule and X.509(2001) specifies a more complex matching rule. Should we align with X.509 or not?

15. Table of Contents

1. Introduction 1
2. Subschema Publishing 2
3. PKI Attributes and Syntaxes 2
   3.1 userCertificate Attribute 2
   3.2 cACertificate Attribute 2
   3.3 Certificate Syntax 2
   3.4 authorityRevocationList Attribute 3
   3.5 certificateRevocationList Attribute 3