
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Welch, Peter H. and Vinter, Brian (2002) Cluster Computing and JCSP Networking. In: Pascoe,
James and Welch, Peter H. and Loader, Roger and Sunderam, Vaidy, eds. Communicating Process
Architectures 2002. Concurrent Systems Engineering, 60. IOS Press, IOS Press, Amsterdam,
The Netherlands pp. 203-222. ISBN 1-58603-268-2.

DOI

Link to record in KAR

https://kar.kent.ac.uk/13732/

Document Version

UNSPECIFIED

Communicating Process Architectures 2002 203

James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)

IOS Press, 2002

Cluster Computing and JCSP Networking

Brian Vinter

Department of Mathematics and Computer Science

University of Southern Denmark, Odense, Denmark
vinter@imada.sdu.dk

Peter H. Welch

Computing Laboratory, University of Kent at Canterbury, CT2 7NF, England
P.H.Welch@ukc.ac.uk

Abstract. Hoare�s algebra of Communicating Sequential Processes (CSP) enables a

view of systems as layered networks of concurrent components, generating and

responding to events communicated to each other through channels, barriers and

other (formally defined) synchronisation primitives. The resulting image and

discipline is close to hardware design and correspondingly easy to visualise, reason

about, compose and scale. JCSP is a library of Java packages providing an (occam)

extended version of this model that may be used alongside, or as a replacement for,

the very different threads-and-monitors concurrency mechanisms built into Java.

The current release (JCSP 1.0) supports concurrency within a single Java Virtual

Machine (which may be multi-processor). This paper reports early experiments with

JCSP.net, an extension of JCSP for the dynamic construction of CSP networks

across distributed environments. The aims of JCSP.net are to simplify the

construction and programming of dynamically distributed and parallel systems. It

provides high-level support for CSP architectures, unifying concurrency logic within

and between processors. The experiments are on some classical HPC problems, an

area of work for which JCSP.net was not primarily designed. However, low

overheads in the supporting infrastructure were a primary consideration � along with

an intuitive and high-level distributed programming model (based on CSP). Results

reported show JCSP holding up well against � and often exceeding � the

performance obtained from existing tools such as mpiJava and IBM�s TSpaces. The

experimental platform was a cluster of 16 dual-processor PIII Linux machines. It is

expected that future optimisations in the pipeline for the JCSP.net infrastructure will

improve the results presented here. JCSP and JCSP.net were developed at the

University of Kent.

1 Introduction

The aims of JCSP.net[1] are to provide simple ways to build efficient, richly functional,

scalable, distributed and dynamically evolving systems. Its primitives are based on Hoare�s

algebra of Communicating Sequential Processes (CSP[2, 3, 4]), allowing applications to be

formally and directly modelled. It enables the expression of concurrency at all levels of

system � for example between parallel running devices (whether home, cluster or Internet

distributed) or within a single machine (which may be multi-processor). The same concepts

and theory are used regardless of the physical realisation of the concurrency � shared

memory and distributed memory systems are modelled and programmed in the same way.

This is especially useful for exploiting the mixed parallel architecture (CLUMPS) of our

target platform, with no different programming techniques needed to deal with each style.

mailto:vinter@imada.sdu.dk
mailto:P.H.Welch@ukc.ac.uk

204 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

JCSP[5, 6, 7, 8, 9] views the world as layered networks of communicating processes,

each layer itself being a process. Processes do not interact directly with other processes �

only with CSP sychronisation objects (such as communication channels, event barriers,

shared-memory CREW locks) to which groups of processes subscribe. In this way, race

hazards are largely designed out and deadlock/livelock analysis simplified (and, if

necessary, formalised in CSP for mechanically assisted verification). The strong de-

coupling of the logic of each process from all others means we only have to consider one

thing at a time � regardless of whether that thing is a process with a serial implementation

or a network layer of concurrent sub-processes. A consequence is that CSP concurrency

logic scales well with complexity (as well as distributing naturally across physically

parallel systems). Such properties are not held by the built-in Java concurrency model (nor

by parallel machine models such as MPI or Linda).

JCSP follows the CSP model pioneered by the occam[10, 11] concurrency language in

the mid-1980s, which was the first commercial realisation of the theory that was both

efficient and secure. It extends the occam model by way of some of the proposed extras

(such as shared channels) for the never implemented occam3[12] language � and by taking

advantage, carefully, of the dynamic features of Java.

The channel mechanism of CSP lends itself naturally to distributed memory computing �

indeed, this was one of the most exciting capabilities of occam systems mapped to

transputer networks. Currently, JCSP provides support for shared-memory multiprocessors

and, of course, for uniprocessor concurrency.

This paper presents work with an early (alpha) release of JCSP.net, an extension of

JCSP that extends the CSP concurrency model to networked systems. It enables the

dynamic distribution and connection of JCSP processes with no central or pre-planned

control (although that is easy to impose if necessary). Details of the underlying network

fabric and control (such as multiplexing, flow-control, network addresses) are hidden from

the JCSP programmer, who works entirely at the application level using CSP

communication and synchronisation primitives.

A simple brokerage service � based on channel names (the Channel Name Server, CNS)

� is provided to let distributed JCSP components find and connect to each other.

Distributed JCSP networks may securely evolve, as components join, leave and migrate at

run-time with no centralised or pre-planned control.

Processes themselves need not be aware that they are networked, which enables simple

re-configuration and load balancing. The seamless unification of external and internal

concurrency models, the dynamic construction of networked applications and the formal

compositional basis of the underlying CSP model (which may either be ignored by users or

employed directly for formal analysis and/or model checking) will be of interest, we hope,

to workers in the field of HPC.

This paper assumes some familiarity with core JCSP mechanisms � channel interfaces,

concrete channels (one-one, any-one etc.), synchronised communication, buffered plugins

for channels, processes, parallel process constructors and alternation (i.e. the passive

waiting for one from a set of events to happen).

The paper is structured as follows. Section 2 presents the basic model, semantics and

API provided by JCSP.net, along with some generic templates for standard parallel

decomposition paradigms (farming and space division). Section 3 describes the design aims

for the DANISH benchmark suite. Section 4 outlines the alternative parallel mechanisms

used for comparison (mpiJava and IBM�s TSpaces). Section 5 presents the applications

benchmarked in this work and Section 6 gives the results. Finally, some concluding

remarks are made in Section 7.

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 205

2 Motivation

We want to use the same concurrency model regardless of the physical distribution of the

processes of the system.

A D

EB

C F

M

Figure 1(a). Single processor system

P Q

A D

EB

C F

Figure 1(b). Two processor system

Figure 1(a) shows a six process system running on a single processor (M). Figure 1(b)

shows the same system mapped to two machines (P and Q), with some of its channels

stretched between them. The semantics of the two configurations should be the same � only

performance characteristics may change.

2.1 Basic Infrastructure

JCSP.net provides mechanisms similar to the Virtual Channel Processor (VCP) of the

T9000 transputer [13]. Users just name networked channels they wish to use. Details of

how the connections are established, the type of network used, machine addresses, port

numbers, the routing of application channels (e.g. by multiplexing on to a limited supply of

socket connections) and the generation and processing of acknowledgement packets (to

preserve synchronisation semantics for the application) are hidden. The same concurrency

model is used for networked systems as for internal concurrency. Processes may be

designed and implemented without caring whether the synchronisation primitives

(channels, barriers etc.) on which they will operate are networked or local. This is as it

should be.

The user does not need to know how, for example, Figure 1(b) is implemented. In fact, a

bi-directional link is established between the two machines and the application-level

channels are multiplexed over this � see Figure 2.

206 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

P Q

A D

EB

C F

link

Figure 2. Channel multiplexing over a link

JCSP.net establishes one � and only one � such link between each pair of machines that

contain processes wishing to communicate. Details of the underlying mechanisms

(including a very simple software crossbar connecting application-level processes with link

driver processes) may be found in [1].

2.2 Semantic Integrity

JCSP.net designers and programmers need no knowledge of the infrastructure outlined in

the previous subsection. JCSP processes only see channel interfaces � for the most part,

they need not even be aware whether the actual channels plugged into them are local or

networked.

It is essential, however, that link multiplexing preserves the independence of the

channels carried. So, the semantics of the networks in Figures 2 and 1(b) remain identical.

For example, if process E is slow at taking (or simply refuses to take) input from its

networked channel, this must not block communications from A to D nor from F to C.

Like normal JCSP channels, users may specify any amount (and several varieties) of

buffering for networked channels � with zero buffering being the default. The link

infrastructure introduces no additional buffering. Hence, the synchronisation semantics of

Figures 1(b) and 1(a) are identical.

However, there are two caveats. Firstly, current JCSP.net network drivers use Java

serialisation to transmit and receive objects � so objects for networked communication

must implement the Java serializable interface.

Secondly, networked channel communication has copy-semantics � whereas across

internal channels, communication is by reference. Fortunately, for secure JCSP designs (i.e.

those free from shared-reference race-hazards), this will make no difference.

2.3 Establishing Network Channels

JCSP.net does not require applications to be pre-configured statically. For example, the

number of participating machines or application processes need not be known in advance �

nor the mapping of the latter to the former. The model is very dynamic � processes find

each other by knowing (or finding out) the names (or locations) of the network channels

they need to use. This is much more flexible than the static configuration offered, for

example, by MPI.

At the lowest level, this mechanism is brokered by the JCSP.net Channel Name Server

(CNS), which maintains a table of network addresses (e.g. IP-address/port-number,

depending on the type of network), de-multiplexing keys (for navigating the software

crossbar implementing the JCSP.net infrastructure on each node) and channel types (e.g.

streamed, overwriting) against user-defined channel names (which can have a rich structure

akin to URLs).

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 207

Within a processing node, which may itself be SMP, networked application channels are

either to-the-net or from-the-net. These channels may have one or any number of

application processes attached � which gives us the set {One2NetChannel,
Any2NetChannel, Net2OneChannel, Net2AnyChannel}.

The �2Net� channels implement only write methods and the �Net2� channels only

reads. In line with core JCSP[5, 6], only the �2One� channels may be used as guards in an

Alternative.

To construct networked channels using the CNS, we only need to know their names. For

example, at the reading end, the statement:

 Net2OneChannel foo = new Net2OneChannel ("ukc.foo");

constructs the channel and necessary local multiplexing infrastructure, registering the name

"ukc.foo" with the CNS (along with the network address of the constructing node and

navigation information to enable correct de-multiplexing). If the CNS cannot be found or

the name is already registered, an exception is thrown. Details of that supporting local

infrastructure are reported in [1]. Note that this foo channel only has a read method.

At the writing end, the statement:

 One2NetChannel foo = new One2NetChannel ("ukc.foo");

interrogates the CNS for registration details on "ukc.foo", blocking until that registration

has happened (time-outs may be set that throw exceptions), and constructs the channel

together with its supporting infrastructure. This foo channel, which is in a different process

and on a different machine to the previous one, only has a write method.

Each node maintains a table of machines to which it has open links. If a link does not

exist to the machine registered as the reading-end of "ukc.foo", that machine is

contacted and the link is made (and the tables at each end updated).

If network channels are being constructed sequentially by an application, all input

channels should be set up first � otherwise, there will be deadlock!

JCSP.net channels are unidirectional and support any-one communication across the

network. This means that processes on any number of remote machines may open a named

output network channel and use it safely � their messages being interleaved at the input

end.

2.4 Networked Connections (Client-Server)

Establishing two-way communication, especially for a prolonged conversation between one

of many remote clients and a common server, can be done with channels � but is not

particularly simple or elegant. Individual network reply channels to each remote machine

process are needed, together with a network sync channel to queue the conversations and a

network question channel.

So, JCSP.net provides connections, which give a high-level abstraction for two-way

channels for use in networked client-server applications.

For example, at the server end:

 Net2OneConnection bar0 = new Net2OneConnection ("ukc.bar0");

sets up the infrastructure needed to service a bidirectional network connection, registering

the name "ukc.bar0" (and all relevant type and location information) with the CNS.

208 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

At each client end of the connection, the statement:

 One2NetConnection bar0 = new One2NetConnection ("ukc.bar0");

sets up the network client infrastructure, getting the server details from the CNS.

Application processes only see client and server interfaces (rather than writer and reader

ones) to these connections. Each provides two-way communications with support for an

extended and uninterrupted conversation:

 interface ConnectionClient {
 public void writeRequest (Object o);
 public Object readReply ();
 public boolean stillOpen (); // if unsure
 }

 interface ConnectionServer {
 public Object readRequest ();
 public void writeReply (Object o); // keep open
 public void writeReplyAndClose (Object o); // close
 }

JCSP.net connections are bi-directional and support any-one client-server transactions

across the network. This means that any number of remote machines may open a named

client network connection and use it safely � transactions being dealt with atomically at the

server end [1].

A transaction consists of a sequence of request-reply pairs, ending with the server

making a write-request-and-close reply. If it doesn�t know, the client can find out when the

transaction is finished by invoking stillOpen() on its end of the connection. The server

infrastructure locks the server application process to the remote client for the duration of

the transaction. Other clients have to wait. Any application process attempt to violate the

alternating request-reply sequence will raise a (run-time) exception.

A client must commit to read reply messages from its server (and, if the transaction

was kept open, make a follow-on request). A server must commit to read follow-on

request messages from its client, if it kept the transaction open with its last reply. This

is sufficient to keep them synchronised with no additional system acknowledgements

generated across the network � connection transactions are self-synchronising. Note that

connections may not be buffered.

Note, also, that a connection is not open until the first reply has been received. Clients

may open several connections at a time � but only if all clients opening intersecting sets of

connections open them in an agreed sequence. Otherwise, the classic deadlock of partially

acquired resources will strike.

Many transactions consist only of a single request-reply pair. Often this is used to set up

an anonymous (see Section 2.5) channel or connection for subsequent private conversation

� see [1] � or simply to get data from a shared server (see Section 2.6). The lack of (system

generated) network acknowledgements makes this more efficient than a pair of channels.

Network connections are ALTable at their server ends � i.e. �2One� connections may be

used as guards in an Alternative. For example, the Server process in Figure 3 may wait on

events from any of its three networked server connections (indicated by the double-arrowed

lines), its networked input channel and its local input channel.

Finally, we note that core JCSP is extended to support connections within an application

node (i.e. they do not have to be networked). As for channels, processes only see the

interfaces to their connections and do not need to know whether they are networked.

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 209

UKC

Server Freeze

ìukc.bar0î bar0

ìukc.bar1î bar1

ìukc.bar2î bar2

ìukc.fooî foo

Figure 3. Servicing many events (network connections, network and local channels)

2.5 Anonymous Network Channels/Connections

Networked channels and connections do not have to be registered with the CNS. Instead,

input-ends of channels (or server-ends of connections) may be constructed anonymously.

For example:

 Net2OneChannel glik = new Net2OneChannel ();
 Net2OneConnection huey = new Net2OneConnection ();

Remote processes cannot find them by name using the CNS. But they can be told their

location by communication over channels (or connections) previously set up with the

processes that created them. �Net2� channels and connections contain location information

(network address and VCN). This can be extracted and distributed:

 NetChannelLocation glikLocation = glik.getLocation ();
 NetConnectionLocation hueyLocation = huey.getLocation ();

 toMyFriend.write (glikLocation);
 toMyOtherFriend.write (hueyLocation);

Remember that your friends may distribute these further!

Processes receiving this location information can construct the output (or client) ends of

the networked channels (or connections). For example:

 NetChannelLocation glikLocation =
 (NetChannelLocation) fromMyFriend.read ();
 One2NetChannel glik =
 new One2NetChannel (glikLocation);

and on, perhaps, another machine:

 NetConnectionLocation hueyLocation =
 (NetConnectionLocation) fromMyOtherFriend.read ();
 One2NetConnection huey =
 new One2NetConnection (hueyLocation);

210 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

2.6 Process Farms

Figure 4 shows an example use of anonymous channels to build a typical process farm:

myrtle

...

ìjcsp://farmer.myrtle.ukc.ac.ukî

ìjcsp://harvester.myrtle.ukc.ac.ukî
Harvester

Farmer

Figure 4. Process farming

On the (UKC) myrtle machine, the Farmer process services requests from a CNS-

published connection. The task of the Farmer is to generate independent packets of work

and distribute them, on request, to volunteer Worker processes (indicated by the smiley

faces) residing on different machines. In general, requests need only be null packets.

The task of the Harvester process is to accept result packets from a CNS-published

channel (shared and written to by the Workers) and assemble them into a solution to the

problem addressed by the Farmer. The Farmer and Harvester may need to

communicate with each other (and with other processes � not shown in Figure 4). They

may also reside on different machines, which would require no change to their

implementation.

Neither the Farmer nor Harvester processes know how many Worker processes

are available � which number may vary during the course of execution. The Worker
processes are unaware of each other.

 A crucial optimisation is to install a small buffering capacity (say of size 1) into both

ends of all network channels. These are indicated by the small boxes on either side of the

Worker processes in Figure 4 and are standard components provided by JCSP.

So long as it generally takes longer to solve a work packet than receive it, the next work

packet will always be immediately available when required � in the local farmer connection

buffer (which has pro-actively requested it). So long as it generally takes longer to solve a

work packet than transmit its result, the local harvester channel buffer will always be

empty when the next result is ready. Thus, the worker communications will always return

without blocking and almost all processor time will be spent doing the solve.

If the above timing conditions are not met, then the problem is not suitable for farming

in any case. If they are, this system will yield high levels of efficiency.

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 211

2.7 Process Chains (and Rings)

Many problems do not decompose into the independent sub-problems necessary for process

farming. Typical are those for which the problem space can be divided into adjacent

regions and processes allocated to work on each region � but for which work, regular

exchange of boundary information is needed between neighbouring processes.

myrtle

Chainer

ìjcsp://chainer.myrtle.ukc.ac.ukî

...

Figure 5. Process chaining

Figure 5 shows a dynamically constructed chain (or, in this case, ring) of networked

processes. The Chainer process is only used to set up the chain and plays no part in the

resulting computation (unless nodes are lost or added). It services a CNS-published

channel, whose name is known to all volunteers for the chain gang. All other channels are

anonymous � shown in Figure 5 as dotted arrows.

Each Worker node creates an anonymous network input channel (with a small buffering

capacity � say 1) and sends its location to the Chainer. The latter, on receipt of such a

location, saves it and creates the output-end of the channel. When the Chainer has enough

such volunteers, it closes registration and � using the channels just received � sends to each

Worker the location of the output channel to use. Simple on-the-fly construction code is:

 final int N_NODES = ... ; // (e.g. from command line)

 Net2OneChannel fromWorkers =
 new Net2OneChannel ("jcsp://chainer.myrtle.ukc.ac.uk");

 NetChannelLocation lastL = (NetChannelLocation) fromWorkers.read ();
 One2NetChannel lastC = new One2NetChannel (lastL);

 for (int nWorkers = 1; nWorkers < N_NODES; nWorkers++) {
 NetChannelLocation nextL = (NetChannelLocation) fromWorkers.read ();
 One2NetChannel nextC = new One2NetChannel (nextL);
 nextC.write (lastL);
 lastL = nextL;
 }

 lastC.write (lastL); // completes the network ring
 lastC.write (new int[] {0, N_NODES})); // final ring synchronisation

The Chainer�s work is now done � unless it is to coordinate the removal or addition of

Worker nodes. More clever code may connect the nodes together in a way that takes into

account neighbourliness (e.g. inter-node latency and bandwidth). However, that is not

needed for a cluster of nodes on a symmetrically switched ethernet (Section 6.1).

212 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

The final ring sync is to prevent premature execution of the Worker processes. The first

communication a Worker node receives is the network location of its output channel. It

must not start working yet, though, since an application communication may then race the

network ring completion message on that lastC channel. Instead, it waits for a second

communication which must be forwarded round the ring once � starting from lastC.

Here is example Worker code:

 One2NetChannel toChainer =
 new One2NetChannel ("jcsp://chainer.myrtle.ukc.ac.uk");

 Net2OneChannel in = new Net2OneChannel ();
 NetChannelLocation inLocation = in.getLocation ();

 toChainer.write (inLocation); // only used once

 NetChannelLocation outLocation = (NetChannelLocation) in.read ();
 One2NetChannel out = new One2NetChannel (outLocation);

 int[] info = (int[]) in.read (); // wait for ring sync

 final int MY_ID = info[0]; // don’t really need this
 final int N_NODES = info[1]; // don’t really need this

 info[0]++;
 if (info[0] < info[1]) out.write (info); // pass on ring sync

 new WorkProcess (MY_ID, N_NODES, in, out); // run the application

The first two parameters to the application WorkProcess are luxuries � unless we want to

cater for the dynamic retirement and/or introduction of Worker nodes (or, of course, the

application being run really needs it). Finally, note that the application WorkProcess itself

takes no part in setting up the ring network and remains unchanged from its uni-processor

version.

The final ring sync would not be needed if each Worker node made two network (input)

channels � one for its ring input and one from which it received the location of its ring

output channel (and, possibly, subsequent control interventions) � and sent the locations of

both of them to the Chainer (in a single communication, wrapped in an array). In this

case, the Chainer would make a network output channel of only one of them and use that

to send the appropriate ring output location (and, possibly, subsequent control signals).

Of course, the ring network could be set up directly using CNS-registered named

channels � in which case no Chainer is needed. However, in that case each worker node

will need to know the size of the ring and its place in it (to generate, register and use unique

channel names). The Worker code, though, becomes quite trivial:

 final int MY_ID = ... ; // obtain somehow
 final int N_NODES = ... ; // (e.g. command line)

 final int NEXT_ID = ((MY_ID + 1) % N_NODES);

 Net2OneChannel in = new Net2OneChannel ("node-" + MY_ID);
 One2NetChannel out = new One2NetChannel ("node-" + NEXT_ID);

 new WorkProcess (MY_ID, N_WORKERS, in, out); // run the application

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 213

However, the freedom afforded to the Worker nodes � from not having to know (in

advance) the structure of the distributed application in which they are going to participate �

makes the use of anonymous channels very attractive. Also, we only have a single point of

dependency on the CNS (for the �jcsp://chainer.myrtle.ukc.ac.uk� registration)

and it�s good to be independent!

Two rings, giving bi-directional communication between nodes, can be set up with only

a little extra work. For the applications envisaged at the start of this subsection, that would

be better than a single ring of Connections � which also could provide bi-directional

communication. This is because the latter would serialise the exchange of data between the

nodes � i.e. first data flows one way (the request) and, then, the other (the reply). With a

pair of opposing direction rings of Channels, the exchange can happen in parallel.

3 The DANISH Benchmark Suite

The applications presented here are part of the benchmark suite DANISH (Danish

Applications for Networked IPC and SHared memory). It is important to stress that

DANISH[14, 15] is not designed to benchmark Java Virtual Machines, nor is it designed to

test the performance of physical machines. The idea behind DANISH is to provide

relatively simple means to test parallel programming APIs for Java, whether they are

targeted for distributed or shared-memory architectures. The primary measure for DANISH

is scalability rather than actual execution time or some measure of computations per

timeframe. Speedup is therefore chosen to enable the best possible comparisons between

published results and across different platforms.

Our own previous work with designing message-passing and distributed shared memory

systems identified the development of benchmark applications as a major contributor to

frustration. Once a parallel programming toolset and API has been developed, it is

unsatisfactory not to be able to test its performance straight away.

Finding and porting suitable applications is often much work and if one wishes to

compare the performance of a new system to existing ones, the applications must also be

ported to all toolsets that are used for comparison. Such a port by the authors of a new

toolset, is naturally distrusted by readers of the published results (ëAre the comparison APIs

utilised properly?í, ëAre the applications chosen to favour the new API?í, etc.).

Existing benchmarks are often not viable; they may be too specific towards testing

machine performance, or they may not be diverse enough in the type of applications that

they include. DANISH seeks to provide a suite of different applications, grouped into

application types, and kept simple enough so that porting is simple. In addition, benchmark

implementations are provided for a set of existing APIs, which can be used as the reference

base � thus reducing the problem of credibility of the results obtained for the new toolsets.

Users must port the DANISH benchmark suite to use a new API by hand. This can be

done by parallelising the sequential version in some appropriate (perhaps novel) way or by

using one of the existing parallel versions as a template. This approach was chosen over a

version where the user simply provides his or her own implementation of a set of generic

primitives, so as not to inhibit the range of APIs that may be tested and discourage

researchers from utilising radically different technologies. The applications in DANISH are

all well documented, both as an abstract description and inside the provided code.

Wherever applicable, there is the option of a graphic output that may help debugging if a

port goes wrong. We seek to keep all applications in DANISH as small as possible so as

further to ease porting. The parts of the code that require communication are kept isolated

from parts that do not � to the largest degree possible. All source codes are available [15].

214 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

4 Existing Parallel Toolsets

To compare the use and performance of JCSP with current state-of-the-art tools for parallel

computing, we have included versions of the chosen benchmarks programmed using

mpiJava and TSpaces.

4.1 mpiJava

The mpiJava[16] version that is presented here is an interface to a native code MPI version,

the MPICH[17] implementation of MPI. MPI, and with it mpiJava supports a multi-process

execution model, in fact the number of processes that should be used are specified at load-

time. The individual processes may then make calls to the runtime environment to inquire

on the number of processes in the execution as well as their own order in the process range.

4.2 TSpaces

TSpaces[18] is structured DSM (Distributed Shared Memory) system similar to

JavaSpaces[19] � both of which draw heavily on Linda[20]. Rather than supporting

communication between explicit processes TSpaces supports writing to and reading from an

associatively addressed shared memory area. Since this is a memory model and not a

communication model, there is no process concept provided with TSpaces and all processes

must be started by other means. An interesting feature of this model it that, being a memory

model, processes may be temporally disjoint (e.g. one process may read data written by a

process that has already terminated � even before the reading process had begun). However,

this effect can also be obtained in JCSP (by using buffered channels) and in MPI (by

asynchronous communication).

TSpaces is a very simple API to use, and except for the lack of a remote process creation

option, porting code to TSpaces is very straightforward.

5 Applications

The applications we have chosen to test the performance of JCSP.net are all taken from the

DANISH benchmark-suite. We have chosen a set of applications that represent distinct

behaviour found in high performance applications, with a special focus on data-dependency

and communication patterns.

5.1 n-Body Problem

The chosen n-body algorithm is a trivial O(n
2
) complexity simulation of celestial bodies.

...

Figure 6. N-Body simulation in a ring

The JCSP implementation divides the bodies amongst worker processes. Each worker

has channel connections to two others so that they form a ring (as shown in Figure 6). The

JCSP mechanisms for establishing this topology are described in Section 2.7 (process

chaining) and Figure 5.

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 215

In parallel, each worker sends (and receives) around the ring a copy of the relevant

information (e.g. positions and masses) pertaining to the bodies it was originally given. In

parallel with all this, each worker also computes the forces on its given bodies by each set

of passing bodies. After (p–1) such parallel operations, where p is the number of workers

in the ring, all bodies in all workers have had the forces on them calculated with respect to

all other bodies and their velocities and positions are updated (with each worker able to

compute independently in parallel). After this another iteration may begin.

The MPI version is based on all workers broadcasting their set and updating their bodies

with all the incoming bodies. The TSpaces version is implemented by each worker writing

its bodies to the shared tuple-space and all reading from the shared space.

5.2 Successive Over-Relaxation

Successive Over-Relaxation, SOR, is a frequently used technique for solving very large

systems of partial differential equations by successive approximations. The general idea is

to approximate each element in a matrix by reference to its nearest neighbours until the sum

of all changes within one iteration converges below a given epsilon value.

The red-black checker pointing version of SOR, shown in Figure 7, returns identical

results for the same system of equations; independent of the actual computing environment,

while at the same time providing sufficient parallelism that real speedup can be achieved.

The equation system is divided into alternating red and black points in a checker-board

fashion. Updating a red point depends only on black neighbouring points and vice versa.

Using this, an algorithm is derived where each worker-process updates all its red points and

then exchanges red border point values with its neighbours. Each worker then updates its

black points and repeats the communication for the black points. At the end of each

iteration, the global change in the system is calculated. This continues until the change is

below the given epsilon.

The SOR application is parallelised by striping the matrix, using one stripe per worker.

Each worker then has to exchange its left and right columns with its neighbours in each

iteration � except of course for the first and last workers, which have no left or right

neighbours respectively.

where

and

= black

= red

 Figure 7. Red-Black checker-pointing in SOR.

The JCSP version is implemented using a two-way pipeline as shown in Figure 8. This also

is set up as described in Section 2.7.

216 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

...

Figure 8. Double pipeline architecture of the SOR application for data-exchange.

The calculation of the sum-of-all-changes that is used as the halting criteria is implemented

using a JCSP library function that builds a tree of the workers and assembles and spreads

the sum along this tree as shown in Figure 9.

Figure 9. Summation tree for finding the total change in all workers

The TSpaces version is implemented by each worker storing its top and bottom row in

tuplespace, once per iteration. The global sum is calculated using a setup with two tuples;

(�Sum�, int cnt, float val) and (�Result�, int round, float val). Each worker

takes the �Sum� tuple from the tuplespace, adds a partial sum to the value and increases the

counter. If the worker is the last to write its sum, it writes back a new zero version of the

�Sum� tuple and writes out the new �Result� tuple. Otherwise, it waits to read the

�Result� tuple.

The MPI version of this application is straightforward as it is the kind of application for

which MPI is well suited. The workers exchange their rows using asynchronous message-

passing and find the global change using the MPI_Globalreduction function.

5.3 Travelling Salesman Problem

The Travelling Salesman Problem, TSP, is a classic representative for the class of global

optimisation problems. The TSP solution we use in this work is a depth-first branch-and-

bound algorithm. This makes the parallel version different from the other applications we

use by the fact that a static division of the work would result in a highly unbalanced

execution. Thus the parallel TSP is implemented as a bag-of-tasks (i.e. �farming�)

application. This paradigm that does not come naturally to the SPMD programming

paradigm around which MPI is designed, while it suits Tuple-Space models such as

JavaSpaces and TSpaces very well and is easily modelled with JCSP.

The parallel TSP is implemented as a global master process and set of worker processes

on each processor. Each worker communicates with the master to retrieve jobs and submit

results. A job is represented as a set of cities that have already been placed and a set that

needs to be placed, i.e. a sub-tree. Once a new candidate to the shortest route is found, the

master-process broadcasts this new bound variable to all of the workers.

The TSP, therefore, is not a straightforward farming application. The individual jobs

performed by the workers are not completely independent from each other � results from

each work packet may have determined better shortest path candidates and these must be

distributed to running workers, where they may impact the computation.

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 217

We use a combination of a simple version of a process farm (with the Master process

combining the roles of both farmer and harvester) and a process chain (but without the

chain channels!) � see Figure 10. The mechanism for setting this up are as described in

Section 2.7, minus the establishment of the actual chain.

myrtle

Master

...

ìjcsp://tsp.myrtle.ukc.ac.ukî

Figure 10. A controlled process farm.

The worker processes request jobs by sending their previous results (initially null).

Each recursive level in the iterative tree-spanning search algorithm is started with a poll on

their (anonymous network) input channel to check if a new bound variable has been

received.

The TSpaces and MPI versions use a similar approach, however without a polling

mechanism. Instead, they use an approach where the bound is only updated with each new

job the worker receives.

mpiJava does include an asynchronous read that could be used to receive updates at

runtime. When we used this technique, problems occurred with badly formatted packages

that caused the application to crash. There were similar problems with returning the result

from a job because, once more objects were sent to the master-process, it could not

distinguish between them. The application would then crash from a serialisation error. This

was fixed by returning only the length of the found path and not the complete path. In

principle, this means that the mpiJava version returns much less data than the JCSP.net and

TSpaces versions but, in reality, this is probably of minor consequences.

TSpaces does include a �tryToRead’ operation that may be used for polling for the

updated bound-variable. However, using this takes just as long as reading a shared version

of the bound-variable each time, and doing so brought the application to almost a complete

stop.

6 Performance

6.1 Experimental Platform

The test machine is a cluster of 16 dual Pentium III, 450 MHz nodes, each with 128-MB

memory. The machines are connected via Fast-Ethernet through a switch with a back-plane

capacity of 2.1 Gb/sec, e.g. enough to service all NICs at the same time. The JVM used is

Sun�s Java for Linux version 1.3.1 and the OS is Linux 2.2.14.

218 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

6.2 Latency Hiding

JCSP has the strong advantage that extra concurrency (i.e. channels and processes) may

easily be added within a processing node and that that concurrency conforms to exactly the

same model used for the physical parallelism of the distributed system. Further, since

processes interact only with channels and not with other processes, no re-design or re-

programming of existing processes is needed.

For example, we may add trivial buffer processes between the network channels and

worker processes in each physical node. Such buffers are shown in Figures 4 and 10 (for

process farms). The Worker nodes in Figure 5 (process chains/rings) are not currently

buffered. To do so, just change one line in the Worker code given in Section 2.7:

 new WorkProcess (MY_ID, N_WORKERS, in, out); // run the application

into:

 One2OneChannel p = new One2OneChannel ();
 One2OneChannel q = new One2OneChannel ();

 new Parallel (// run the application
 new CSProcess[] {
 new BufferProcess (1, in, p), // high priority
 new WorkProcess (MY_ID, N_WORKERS, p, q), // mid priority
 new BufferProcess (1, q, out) // high priority
 }
).run ();

and notice that the WorkProcess itself needs no modification.

We must beware that adding buffers can alter the semantics of a system (i.e. cause

different results to be produced). However, this is not the case for the simple interaction

patterns followed by all the applications presented here.

The point of all this buffering is as follows: so long as the underlying JVM and operating

system does sensible things regarding thread priorities � and so long as we take care to

ensure those buffers are not starved � and so long as the hardware (NICs, processors etc.)

enables it, we can drive the network links in parallel with productive computation. Thus,

the latency cost of network communication can be considerably hidden � and sometimes

completely eliminated. This issue was also discussed Section 2.6 (in the context of process

farms).

Buffering is such a common and useful technique that JCSP provides (several varieties)

of buffer plug-ins for its core (i.e. non-networked) channels. JCSP.net will provide buffer

plugins for networked channels � currently, these are only available for networked input

channels. In which case, the above Parallel construct can be removed and the original

one liner restored � the buffers being set up in the construction of the in and out channels.

The end result is logically the same, but with reduced code complexity and thread context-

switching.

The MPI version uses the asynchronous send operations (Isend) to obtain the buffered

communications that the JCSP solutions use. TSpaces do not have such functionality since

this is a shared memory model. Instead, the TSpaces version uses a write-early and read-

late approach that tries to ensure that, once a process is ready to read a tuple from another

process, this tuple is likely to exist in the Tuplespace.

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 219

6.3 n-Body problem

The n-Body benchmark was chosen to demonstrate the consequences of the lack of a

broadcast mechanism. The results, however, are quite surprising (Figure 11) since the ring-

approach we use with JCSP significantly outperforms the broadcast based MPI version and

the shared data version in TSpaces. At this time of writing, we have not had the time to re-

implement the MPI and TSpaces versions with an equivalent ring algorithm, which we

intend to do to better understand this quite surprising result.

0

8

16

24

32

2 4 8 16 32

CPUs

S
p

e
e

d
u

p

mpiJava

Tspaces

JCSP

Figure 11. The performance of the n-Body benchmark (n = 10000)

For 10000 bodies (serial time = 1044 seconds), JCSP.net achieves a speedup of 26 with

32 CPUs. This is a quite respectable result, especially considering that there is a large

amount of object serialisation taking place. In fact, the number of serialisations that take

place per worker for each iteration grows linearly with the number of workers (and equals

the number of communications). The volume of data being serialised and communicated per

worker, however, stays the same (for a large number of workers).

6.4 Successive Over-Relaxation

The SOR application (7000 x 7000 matrix, serial time = 253 seconds) loaded the TSpaces

server so heavily that we did not succeed in getting the application to run on 32 CPUs.

Even without this, it is obvious that TSpaces is not well suited for this kind of application �

a likely cause being contention for its centrally serviced Tuplespace.

SOR is a typical matrix application and is, therefore, the kind of application for which

MPI is well-suited. With this in mind, the performance of JCSP is quite respectable (Figure

12), especially considering that MPI provides a built-in function for doing the necessary

global sum. This function is implemented in the NMI MPI-layer, while JCSP performs it

using standard channel communication.

The mpiJava curve tops at a speedup of 28 using 32 CPUs � with JCSP.net achieving a

speedup of 25 using the same.

220 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

0

8

16

24

32

2 4 8 16 32

CPUs

S
p
e
e
d
u
p

mpiJava

Tspaces

JCSP

Figure 12. The performance of the SOR benchmark (7000 x 7000 matrix)

6.5 Travelling Salesman Problem

The branch-and-bound approach adopted in the TSP solution is interesting from a

parallelisation perspective, since it may mean that the parallel solution may in fact end up

performing more or less work than the sequential version. The approach that is used with

MPI and TSpaces, however, cannot result in less work than the sequential version. One

should accordingly expect the JCSP version to perform better than the two others. This is

certainly true relative to TSpaces, but the MPI version performs significantly better than the

JCSP one. We are still in the process of identifying bottlenecks in the JCSP version.

0

8

16

24

32

2 4 8 16 32

CPUs

S
p

e
e

d
u

p

mpiJava

Tspaces

JCSP

Figure 13. The performance of the Travelling Salesman Problem (15 cities)

B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking 221

The MPI version seemed to identify an error in the mpiJava package. When many

processes were writing to the server, the serialisation of the objects went wrong which in

turn resulted in an ìObject not serializableî error. Based other experiences, we suspect that

this problem is inherent in our JVM and not located in mpiJava. So, we had to modify the

Java version to return only the length of the route and not the complete route.

The TSP benchmarked searches routes for 15 cities (serial time = 374 seconds). The

value and order of the cities in the list does impact on performance, so these were kept the

same for all trials.

Using 32 CPUs, mpiJava achieves a speedup of 21, JCSP.net reaches 14 and TSpaces

never gets above 7 (see Figure 13). JCSP follows the same speedup curve as MPI � but

does so from a much poorer origin. At two CPUs, we have an actual negative speedup of

0.9 (i.e. a CPU utilisation of 0.45). This is obviously not a good result and we will be taking

another look at this.

7 Conclusions and Future Work

This paper presents some of the key facilities of JCSP.net and the JCSP mechanisms used

to implement them. Application concepts include any-one networked channels and

connections (that enable extended client-server conversations), a Channel Name Server

(CNS) for the dynamic construction of application networks, and anonymous channels and

connections (that evade the normal CNS registration). For a fuller exposition � including

mobile processes (a.k.a. agents), mobile channel read-ends, mobile server connection-ends

and an outline of the implementing JCSP infrastructure � see [1].

In this work, we show preliminary results that indicate that high performance may be

achieved simply with this model. In fact, JCSP.net consistently outperforms the shared

memory approach found in TSpaces and compares favourably with mpiJava (even though

that is based on NMI, where much of the communication takes place outside the JVM).

Once one comes to terms with the simplicity of CSP-based concurrency, it is quite

attractive to use for high performance applications.

JCSP.net[1] is a very recent extension to JCSP[5, 6] and no serious effort, other than

that put into its fundamental design for lightness, has been made on optimisation. JCSP.net

is now being developed and supported commercially (by Quickstone Ltd.[21], under license

to the University of Kent) in collaboration with its originators[22]. Results reported here are

only for the alpha release of JCSP.net and should improve as implementations mature.

Some questions remain to be answered � especially the anomaly in the two CPU

performance of our TSP/JCSP implementation. The optimisation described in Section 2.3

(that promotes the overlapping of computation and communication) is not in the current

code. Other approaches to this problem will be considered including distributing new lower

bounds by chaining the workers into a ring (rather than via the central master process).

A major force in JCSP.net, which it derives from CSP, is the localisation of process

semantics behind a channel interface. Processes do not care whether their connected

channels are local or networked. Hence, decisions can be left late (and changed) as to which

processes run where � they can even be taken at runtime.

To investigate these issues further, we shall be trying out a set of applications using

Clusters of Multi-Processors with 2, 4 and 8 CPUs per node. JCSP.net also allows

communication between any machines connectable via TCP/IP. Thus, widely distributed

(Grid-like) systems using JCSP.net will be investigated, where the application topology

puts itself together dynamically.

222 B. Vinter and P.H. Welch / Cluster Computing and JCSP Networking

JCSP.net is part of a larger project on language design, tools and infrastructure for

scalable, secure and simple concurrency. In particular, we are developing the multi-

processing occam language with various kinds of dynamic capability (see the KroC website

[11] and elsewhere in these proceedings) that match the flexibility available to Java

systems, but which retain strong semantic checks against concurrency errors (such as race

hazards) and ultra-low overheads for concurrency management (some two to three orders

of magnitude lighter than those accessible to Java). The Java and occam concurrency work

feed off each other in many ways � there will, for example, be a KroC.net [23].

References

[1] P.H.Welch, J.R.Aldous and J.Foster. CSP Networking for Java (JCSP.net). In �Global and

Collaborative Computing� Workshop Proceedings, ICCS 2002, Lecture Notes in Computer Science,

Volume 2330, pp. 695-708. Springer-Verlag. April, 2002.

[2] C.A.R.Hoare. Communicating Sequential Processes. CACM, 21-8, pp. 666-677, August 1978.

[3] C.A.R.Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[4] A.W.Roscoe. The Theory and Practice of Concurrency. Prentice Hall, ISBN 0-13-674409-5, 1997.

[5] P.H.Welch and P.D.Austin. The JCSP Home Page. http://www.cs.ukc.ac.uk/projects/ofa/jcsp/. 2002.

[6] P.H.Welch. Process Oriented Design for Java ñ Concurrency for All. In: �PDPTA 2000�, Volume 1,

pp. 51-57. CSREA Press, ISBN 1 982512 22 X, June 2000.

[7] D.Lea. Concurrent Programming in Java (Second Edition): Design Principles and Patterns. The Java

Series, Addison-Wesley, section 4.5, 1999.

[8] P.H.Welch, Java Threads in the Light of occam/CSP. In �Architectures, Languages and Patterns for

Parallel and Distributed Applications�, WoTUG-21, pp. 259-284, IOS Press (Amsterdam), ISBN 90

5199 391 9, April 1998.

[9] P.H.Welch. Parallel and Distributed Computing in Education. In J.Palma et al. �VECPAR�98�,

Lecture Notes in Computer Science, vol. 1573, Springer-Verlag, June 1998.

[10] Inmos Limited. occam2.1 Reference Manual, Technical Report.

http://wotug.ukc.ac.uk/parallel/occam/parallel/occam/documentation/. 1989.

[11] P.H.Welch, J.Moores, F.R.M.Barnes, D.C.Wood. KRoC Home Page.

http://www.cs.ac.ukc.ac/projects/ofa/kroc/. 2002.

[12] Inmos Limited. occam3 Reference Manual, Technical Report

http://wotug.ukc.ac.uk/parallel/occam/parallel/occam/documentation/. 1992.

[13] M.D.May, P.W.Thompson, P.H.Welch: Networks, Routers and Transputers. IOS Press, ISBN 90 5199

129 0 (1993).

[14] Brian Vinter, Embarrassingly Parallel Applications on a Java Cluster, Proceedings of �The European

Conference on High Performance Computers and Networking (HPCN)�, Lecture Notes in Computer

Science, Volume ????, pp. 129-149. Springer-Verlag. 2000.

[15] Brian Vinter, DANISH Home Page. http://DANISH.imada.sdu.dk/. 2002.

[16] Mark Baker, Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. mpiJava: An Object-

Oriented Java interface to MPI, Presented at the �International Workshop on Java for Parallel and

Distributed Computing�, IPPS/SPDP 1999, San Juan, Puerto Rico, April 1999.

[17] MPICH Home Page. http://www-unix.mcs.anl.gov/mpi/mpich/

[18] TSpaces Home Page. http://www.almaden.ibm.com/cs/TSpaces/

[19] Eric Freeman, Susanne Hupfer, Ken Arnold. JavaSpaces(TM) Principles, Patterns and Practice, SUN

MicroSystems.

[20] David Gelernter, Generative Communication in Linda. ACM Transactions on Programming Languages

and Systems, vol. 7. 1985.

[21] Quickstone Technology Limited. http://www.quickstone.com .

[22] P.H.Welch. Concurrency Research Group Home Page, Computing Laboratory, University of Kent at

Canterbury. http://www.cs.ukc.ac.uk/research/groups/crg/. 2002.

[23] M. Schweigler. The Distributed occam Protocol ñ Channels over the Internet. MSc

Dissertation, Computing Laboratory, University of Kent at Canterbury. September 2001.

http://www.cs.ukc.ac.uk/projects/ofa/jcsp
http://wotug.ukc.ac.uk/parallel/occam/parallel/occam/documentation/
http://www.cs.ac.ukc.ac/projects/ofa/kroc/
http://wotug.ukc.ac.uk/parallel/occam/parallel/occam/documentation/
http://danish.imada.sdu.dk/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.almaden.ibm.com/cs/TSpaces/
http://www.quickstone.com/
http://www.cs.ukc.ac.uk/research/groups/crg/

	Introduction
	Motivation
	Basic Infrastructure
	Semantic Integrity
	Establishing Network Channels
	Networked Connections (Client-Server)
	Anonymous Network Channels/Connections
	Process Farms
	Process Chains (and Rings)

	The DANISH Benchmark Suite
	Existing Parallel Toolsets
	mpiJava
	TSpaces

	Applications
	n-Body Problem
	Successive Over-Relaxation
	Travelling Salesman Problem

	Performance
	Experimental Platform
	Latency Hiding
	n-Body problem
	Successive Over-Relaxation
	Travelling Salesman Problem

