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Abstrat
This thesis presents the funtional analysis and design methodology FAD. By fun-tional we mean that it naturally supports software development within the funtionalprogramming paradigm (FP).Every popular methodology has a graphial modelling language whih presents vari-ous pitorial representations of a system. FAD's modelling language provides the typialelements of funtional programming, types and funtions, plus elements to support mod-ular development suh as modules, subsystems and two forms of signature whih speifyan interfae or a behavioural requirement. The language also inludes relationships andassoiations between these elements, and provides simple representations of funtionaldesigns. The methodology has an integrated set of tehniques whih guide the develop-ment of an implementable solution from the deliverables of requirements engineering.FAD's data ditionary provides an organised repository for entities during and afterdevelopment.The thesis thus provides a development medium whih has been hitherto absentfrom the funtional programming paradigm.
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Chapter 1
Introdution
1.1 MotivationDeveloping well-designed software is diÆult; developing poorly designed software is alot easier. Anybody with some programming skills an produe programs that satisfysome basi stated requirements. Problems may arise when the ode is passed to some-body else to maintain or one attempts to reuse elements of the program or the programitself. Can segments of ode be used independently of the program for whih they wereoriginally developed? What are the major data strutures of the system and how arethey onstruted? What is the major funtionality supported by the system? If onemakes hanges to a ertain piee of ode what e�et will this have? If the answers tothese types of questions tend to be negative or diÆult to determine the software isprobably poorly designed. Unfortunately good design does not ow naturally from the�ngertips of programmers.Good design requires support.Some support is provided by programming languages. Objet-oriented (OO) lan-guages provide mehanisms for developing software built on units that enapsulate theirstate and provide an expliit interfae for potential lients. Thus, if pratised sensibly,one an develop software where hanges have a loal e�et, signi�ant elements arereusable and an be reused independently. However pratising sensible OO develop-ment is not a trivial proess. OO developers an seek help from a plethora of OOanalysis and design methodologies and various rules, heuristis and laws whih providesubstantial guidane and support. 1



2 CHAPTER 1. INTRODUCTIONProgrammers who use imperative languages have for some time been enouragedto adopt a strutured programming approah supported by various strutured analysisand/or design methodologies. In ommon with objet-orientation, the developmentparadigm is onsistent within all the media of development.Therefore when deiding whih software development approah to adopt, the supporta�orded by either of these paradigms may have a signi�ant inuene.It is ertainly the ase that the funtional programming (FP) paradigm has been rel-atively unsuessful in ompeting in the marketplae with the objet-oriented and stru-tured paradigms. Although one an enumerate an ever growing list of `real world' appli-ations [141, 123℄ written in funtional languages, in omparison to the other paradigmsit is relatively insigni�ant. Proponents of the FP paradigm an present several goodreasons why it should be adopted in preferene to its ompetitors. For example, thehigher-order and typed (HOT) harateristis of modern FP languages have ertainlyinuened the design of non-FP languages suh as Java. However one an present arange of historial (programming and non-programming related) ases where the �ttestdidn't always survive, and therefore, there is learly a need to fous on the possiblereasons for this slow uptake, and resolve as many of the problems as possible.Wadler addresses this issue in his paper Why no one uses funtional languages [142℄where he inludes among the histori reasons: that funtional languages are often underative development, the non-ompatibility with existing ode written in other languages,the relative lak of language libraries to support software reuse, and the dearth of soft-ware development tools inluding software development methodologies whih supportimplementation in a funtional language.The Haskell ommunity has reently de�ned Haskell 98 [100℄, a stable version ofHaskell allowing potential users to adopt it without fear of imminent hange. Haskellis now available in various implementations inluding the interpreter Hugs [67℄, GHC[104℄ and the University of Chalmers's HBC ompiler [55℄. Standard ML [88℄ is evideneof similar developments within the ML ommunity.Compatibility with ode written in other languages is addressed through reent workon H/Diret whih allows a funtional language, Haskell, to inter-operate with C andCOM, and allows a Haskell omponent to be wrapped in a C or COM interfae [42℄.Software libraries are being developed to support a variety of appliation domains



1.2. GRAPHICAL NOTATION 3in the funtional paradigm. For example, TlHaskell is a library of funtions for writingplatform independent, graphial user interfaes in Haskell [135℄ and FranTk, a delara-tive library for building GUIs in Haskell [48℄.There has also been a lot of exellent work on developing orret programs [124℄ andin the omplementary areas suh as ompiler eÆieny [128, 5℄. What has been lakinghowever, is a parallel fous on the development of ertain support materials.Some pro�lers have been developed [121℄, a lot of researh is fousing on improv-ing error messages [40, 10℄ and a small amount of work has been done on debug-ger development [136℄, but software development methodologies to support funtionalprogramming-in-the-large are virtually non-existent.Partiular languages suh as Erlang [6℄ are aompanied by development environ-ments, but for funtional programming to be taken seriously, and not to be viewed as atoy to be either played with in aademi departments or researh groups, or whose onlyuse is as an exeutable prototyping tool, then we need to support development using anyfuntional language with language-independent but paradigm-dependent analysis anddesign methodologies and their aompanying CASE tools. Funtional programming'sompetitors have not only been doing this for some time but they have also been doingit with evident suess.1.2 Graphial NotationA funtional analysis and design methodology requires a modelling language whose ele-ments deliver natural models of funtional programming designs. A graphial languageis preferable sine one is fousing on modelling abstrations rather than algorithmidetails. Graphial representations of funtional programs have been used for sometimealbeit informally. For example, in Figure 1 we present a box-and-arrow (or purely fun-tional data ow) diagram of a funtion whih returns the sum of the integers within astated range [111℄. Je�rey [45℄ has written a Java applet Flow Graph Editor in whihone an reate suh diagrams.One would be hard pushed to laim that the diagram is easier to understand thanthe equivalent ode written in Haskell whih also inludes expliit type information.



4 CHAPTER 1. INTRODUCTION

Figure 1: Box-and-Arrow DiagramsumBetween :: Int -> Int -> IntsumBetween x y= let sumG = x + ydiffG = x - ysize1 = abs diffG + 1in sumG * size1 `div` 2Cardelli [24℄ and Reekie [112℄ desribe notations for visual funtional programminglanguages in whih funtions are de�ned graphially. However, one again the fous ison representing algorithms rather than abstrat models of programs.1.3 Overview of the ThesisThis thesis presents an analysis and design methodology whih supports software devel-opment in the funtional programming paradigm. The methodology uses a modellinglanguage whih supports the elements of funtional programming and naturally modelsfuntional designs.Chapter 2, Objet-Orientation, provides a desription of the OO paradigm, with anemphasis on the features whih signi�antly a�et software development. We hose tofous on OO rather than the strutured approah sine OO is ertainly the predominantparadigm for developing new software. The OO features are highlighted both within thelanguages of the paradigm and its methodologies. We argue that adopting a pakagedapproah using a methodology and implementation language of the same paradigmshould improve the development proess and remove a lot of aidental omplexity dueto having to swith from one paradigm to another.Chapter 3, Funtional Programming, provides a similar desription of the funtional



1.3. OVERVIEW OF THE THESIS 5programming paradigm, drawing omparisons where appropriate with OO. FP is a sig-ni�antly di�erent approah to developing software, and therefore, requires signi�antlydi�erent methodologies to support the proess.Chapter 4, Analysis and Design Methodologies, gives a brief desription of method-ologies, their modelling languages and the tehniques whih together deliver a method-ology.Chapter 5, FAD Modelling Language, desribes the modelling language of the Fun-tional Analysis and Design Methodology (FAD). We desribe eah of the elements ofthe language whih are used to model FAD designs. In the �rst setion a ase studyis desribed whih provides a major example upon whih the language and tehniquesof the methodology an be illustrated. The ase study is the development of an auto-mated football results proessing system. A data entry lerk enters reent results andan request the generation of various football-related information. The ase study washosen beause it is large enough to illustrate the appliation of the methodology butsmall enough to omprehend fully. Eah element of the language is aompanied byits graphial notation. The syntax and semantis of the methodology's diagrams arepresented in an informal manner.Chapter 6, FAD Funtional Designs, presents illustrative examples of the ease withwhih funtional designs an be modelled in FAD.Chapter 7, FAD Methodology, desribes the methodology as a list of tasks. Thepresentational style is linear, within the phases analysis and design but we emphasisethat the methodology should be pratised as an iterative and inremental proess. Themethodology inludes several tehniques, many of whih are used within more thanone task. Eah tehnique is desribe in terms of its required inputs, deliverables andativities. The deliverables are typially presented in diagrams and reorded in variousdoumentation.Chapter 8, Data Ditionary, presents an overview of the data ditionary whih deliv-ers an eÆiently organised medium for storing entities. This supports the developmentof designs built on existing entities, and the disovery of ommon abstrations. Eahentity is reorded in a desription doument whih provides keys to their storage loa-tion.Finally, Chapter 9, Summary, summarises the thesis and lists its key ontributions.



6 CHAPTER 1. INTRODUCTIONFuture researh and development requirements are presented inluding the need forCASE tools to support the use of the methodology.Throughout this thesis the names of ase study entities - types, funtions, signatures,modules, subsystems, �les and projets - are presented in teletype, as is implemen-tation language ode. All funtional programs in this thesis are written in Haskell 98.Objet-oriented models are developed in UML [16℄. Eah FAD tehnique is introduedin italis whih are also oasionally used for emphasis. Non-ode example names arewritten in bold font.



Chapter 2
Objet-Orientation
Muh has been written about objet-oriented (OO) software development. It has beenvariously desribed as evolutionary, revolutionary or both when ompared to its prede-essors. Whihever is the ase it has been suessful when measured in terms of thenumber of job adverts requiring skills in partiular OO languages or OO development ingeneral. The sizeable number of objet-oriented languages (OOLs) and objet-orientedanalysis and design methodologies (OOADMs) are supported by innumerable texts, lan-guage implementations and CASE support tools. There is a wide variety of texts on spe-i� languages suh as Java [36, 148℄, Smalltalk [56, 51℄, Ei�el [115℄, C++ [133, 85, 86℄,and JavaSript [44℄, and equally proli� are the texts on partiular OOADMs inludingthe Booh Method [15, 82℄, OMT [120℄, OOSE/Objetory [64℄, Fusion [30℄ and more re-ently development approahes supported by the modelling language UML [16, 46, 109℄.CASE tools inlude Rational's Rose [33, 34℄ whih supports Booh, OMT, and UML no-tation, and OOAToolTM and OODToolTM whih support Coad/Yourdon's OOA/OODmethodologies [28, 29℄.The ubiquity of the objet-oriented paradigm in its various guises leads one to on-lude that the argument often-made that the objet-oriented (OO) approah is the mostnatural and robust way to develop software, through its fous on managing dependen-ies, is ertainly not vauous [82, 29℄. Budd [21℄ provides a quote from Newsweek whihgives an insight into the reasons for the popularity of objet-orientationUnlike the usual programming method - writing software one line at a time7



8 CHAPTER 2. OBJECT-ORIENTATION- NeXT's \objet-oriented" system o�ers larger building bloks that devel-opers an quikly assemble the way a kid builds faes on Mr. Potato Head.There are however other reasons for OO's popularity. Software an be developedfrom its ineption, through to implementation and beyond, within the OO paradigm.That is, one an adopt a single pakaged approah to software development aided bya signi�ant number of modelling languages, methodologies and CASE tools. Objet-orientation is presented as a software development philosophy and not simply a termfor lassifying a olletion of implementation languages. Eah member of the paradigmsupports, at a ertain level of abstration, a onsistent approah to software develop-ment.In this hapter we present an overview of the paradigm with an emphasis on thosefeatures that have a major impat on software development. In the �rst setion wedesribe the features of the paradigm that have a signi�ant e�et on software develop-ment, and in some ases, distinguish it from other paradigms. These inlude: objetsand lasses as the fundamental building bloks of the paradigm; inheritane, omposi-tion and aggregation as the essential glue for onstrution of programs; and, inlusionpolymorphism, dynami binding and subtyping, whih provide signi�ant support forreuse. Where appropriate we will provide the motivation for the introdution of afeature and draw omparisons with its predeessors suh as strutured development.Setion 2.2 presents an overview of urrent OO languages highlighting their similaritiesand di�erenes. We disuss single and multiple inheritane, and the various approahesto enapsulation. This is followed in Setion 2.3 with a review of existing analysis anddesign methodologies and modelling languages. We onlude with some brief remarkson the bene�ts of analyzing, developing, and implementing software wholly within theOO paradigm. Where possible we will endeavour to introdue notation before using it,but will undoubtedly on oasion be unable to uphold this priniple.2.1 The OO Paradigm { Motivation and FeaturesThe objet-oriented paradigm is evident in a olletion of programming languages, soft-ware development methodologies and database systems. There are atually two OOparadigms. The `lassial' OO paradigm whih refers to the lass/objet approah,



2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 9and the `delegation/prototyping' OO paradigm where objets delegate responsibility toother objets, as in the languages Self [137℄ and JavaSript [44℄. We will primarily fouson the lassial approah sine most OO languages and OOADMs adopt this paradigm.Objet-Orientation: Evolution or RevolutionObjet-orientation is desribed by some of its proponents as both an evolution and arevolution [21℄. It is an evolution beause it follows on naturally from earlier softwaredevelopment approahes. OO has addressed the various problems with the strutureddevelopment approah. These inlude its lak of support for modularity, the potential fordata inseurity due to the separation of data and funtionality, and the higher prioritygiven to the solution domain rather than the problem domain. However the foundationsof most OO languages remain imperative in nature. One must not forget of ourse thatstrutured programming was itself a reation to problems with its predeessors [38, 35℄.OO is regarded as revolutionary sine it adopts an approah to modelling a softwaresolution that is signi�antly di�erent from its predeessors [82℄. Where the struturedapproah fouses on data and proesses that are universally aessible, OO desribesthem through abstrations whih hide their details, and instead presents an expliitinterfae for any potential lients. Although strutured programming is sometimesreferred to as a predeessor of OO they were atually mooted at the same time [35℄.However strutured programming was easier to put into pratie due to the availabilityof appropriate languages.Booh [15℄ and others disagree with this revolutionary emphasis, and argue that OOsimply reeted developments in various �elds of omputer siene in the early 1970s.Objets were introdued to deal with the inreasing omplexity of software systems. Forexample, database tehnology introdued the idea of the entity-relationship approah todata modelling [119, 26℄ where a system is desribed as a set of entities, their attributesand relationships. Entities in entity-relationship diagrams (ERDs) are similar to lasseswithout the operations.Objet-Orientation: Approah to Software DevelopmentOO software is developed through a olletion of interating, extensible, abstrationswhih host their own state, provide mehanisms for manipulating the state, and deliver



10 CHAPTER 2. OBJECT-ORIENTATIONan expliit behavioural ontrat to other abstrations. That is, OO delivers an arhi-teture within whih ontrol is deentralised to a foused olletion of entities. The OOsoftware engineering philosophy is to be problem-entred rather than solution-entred.One should therefore desribe and model the problem in terms that are familiar to thesystem user and not to the omputer professional. That is, one models tangible andintangible problem elements as abstrations in whih data and proess are ombined.Systems are developed through extending these abstrations and delaring otherassoiations to support ommuniation between the abstrations. The ommuniationsare ontrolled via an expliit interfae. That is, eah abstration knows enough andno more about any abstration with whih it ommuniates. This is ahieved throughbuilding the abstrations guided by the omplementary onepts of abstration andenapsulation. Pooley and Stevens [109℄ summarize these terms in the following manner.Abstration is when a lient of a module doesn't need to know more thanis in the interfae. Enapsulation is when a lient of a module isn't able toknow more than is in the interfae.Thus, OO is expliitly modular, enourages information hiding through enapsula-tion of state and funtionality, and if pratised e�etively should minimise maintenaneosts and maximise reuse. These are not harateristis of objet-orientation's historiompetitors. Ation-oriented strutured development is proedure-driven and thus sup-ports tehniques for proedure development. These inlude algorithmi deompositionthrough the stepwise re�nement of proedures, and building algorithms through thethree onstruts: sequene, seletion and iteration [12℄. Although adopting a struturedapproah should result in e�etive proedural ode, it provides limited support for thedevelopment of omplex systems and ertainly no support for developing models whihan be naturally implemented in an OO language. Strutured programming is supportedby methodologies inluding SSADM [41℄ and SA/SD [152, 153℄. SSADM, in ommonwith most strutured programming methodologies, emphasizes three views of a system:strutural, funtional and dynami, eah supported by graphial representations in theform of logial data struture diagrams (or entity-relationship diagrams), data ow dia-grams and entity life history diagrams. Although the strutured approah reognises theimportane of desribing the data in the system through entities and their attributes



2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 11as �rst desribed by DeMaro [37℄, and also supports entity subtype/supertype rela-tionships, eah entity has no behavioural harateristis and is ated upon by externalproedures and funtions.The models produed through the adoption of strutured methodologies are mostnaturally implemented in various imperative languages suh as C [72℄, and COBOL[130℄. Although data-driven design methodologies suh as JSD [134℄ (Jakson SystemDevelopment) do promote more of a problem fous, where the struture of the solutionmirrors the struture of the data being proessed, they still enourage a struturedapproah to algorithm development and lak support for modularity and informationhiding.Objet FAQ [92℄, a web site whih provides answers to frequently asked questionsregarding objet tehnology and objet-orientation, presents the following motivationfor the introdution of objet-orientation.Modelling in analysis and software design and languages for programmingoriginally foused on proess. But many metris and results indiated theproess approah was problemati and a limiting fator in what ould beahieved, perhaps by several orders of magnitude, whih led to the softwarerisis [14℄...The inlusion of objets to better represent onepts and proesso�ers a superior apability that an be viewed as an improvement over theolder (strutured) tehniques, or as a totally reengineered breakthrough ad-vane resulting from philosophial inquiry and methodologial improvement,the latter in terms of both pedagogy and pragmatis.In ommon with any paradigm there is some debate regarding what onstitutesobjet-orientation. Cardelli and Wegner [25℄ use the following equation in desribingOO languages.objet-oriented = data abstrations + objet types + type inheritaneThis equation desribes OO languages as extensions of proedure-oriented (or imper-ative) languages whih support data abstrations, olleting objets with a ommoninterfae (type), and onstrution of a new interfae through inheritane. If one re-moved the last operand, the right hand side of the equation would desribe objet-basedlanguages. Coad [28℄ provides a di�erent but similar equation whose right hand side is:



12 CHAPTER 2. OBJECT-ORIENTATIONlasses and objets + inheritane + ommuniation with messagesThis equation desribes the signi�ant majority of OO languages whih reate objetsthrough the instantiation of a lass. These languages are typially referred to as lass-based languages. This equation also indiates that objets are a mehanism for enapsu-lation, where behaviour is implemented through objets ommuniating via messages.In the following setions we desribe the essential features of OO and how theyinuene software development within the paradigm. They inlude objets and lasses,inheritane, omposition and aggregation, and inlusion polymorphism and subtyping.The �rst and most obvious feature is the use of objets as software building bloks.2.1.1 The Building Bloks { Objets and their ClassesAn objet is a mehanism for enapsulation and abstration. It hosts state, the methodswhih at on the state, and an interfae to the objet for any potential lients. Thus anobjet normally has a number of named attributes or variables representing its state, anda olletion of methods that implement the behaviour required of the objet. A subsetof these methods and attributes, typially empty in the latter ase, will be spei�ed inthe objet's interfae. Eah objet atually presents two interfaes sometimes referredto as the publi and proteted interfaes. The publi interfae is the interfae presentedto all potential lients and we will refer to this simply as the interfae. The protetedinterfae is presented to lients from within the objet's inheritane hierarhy. Wedesribe inheritane and larify this distintion in Setion 2.1.2. Eah objet has aunique identity whih is independent of the values of its variables.OO development emphasizes the separation of what from how through enapsulationand abstration. A lient module wants to know what it an do with a server module,and not how the server supports this funtionality. An objet's interfae spei�es thewhat, with the how largely inaessible to lients. One an therefore quite naturallyadopt Parnas's information hiding modular development riterion when developing OOsoftware [95℄, using objets as the mehanism for information hiding.Class-based versus delegation-basedMost objet-oriented languages are lass-based and thus sit within the lassial OOparadigm. Objets are reated through the instantiation of an abstration alled a lass



2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 13whih de�nes eah of its objet's attributes, methods and interfae. It is not unommonto equate an objet's lass and its type. However the objet-oriented view of a type isas a behaviour spei�ation. Sine an objet's interfae spei�es behaviour, every objetof a lass shares a type. However, objets of other lasses may also support the samebehaviour and therefore have the same type. In addition, an objet may support asubset of the behaviour delared in its lass, and thus an objet an have more than onetype. The relationship between lasses and types are generally linked to the inheritanemehanism that we desribe in Setion 2.1.2. Thus the lass X de�nes objets with asingle onstrutor method (also alled X), a single attribute i of type int, and two othermethods method1 and method2. The three methods together form the interfae spei�edby the lass as indiated by the keyword publi. The keyword private indiates thatthe attribute is not part of the interfae. The objet xObjet is an instantiation of thelass X. lass X {publi X(int n){i=n;}publi int method1(Y y){return (i*y.get());}publi int method2(){return i;}private int i;}X xObjet;In dynamially-typed, lass-based languages suh as Smalltalk, an objet's lassis simply used for objet implementation and not to provide type information. Instatially-typed languages like Java, a lass both provides objet implementation de-tails, inluding mehanisms for objet onstrution, and type information through thedelared interfae.One an deouple interfae delaration from implementation delaration throughonly providing spei�ations and no implementations in a lass delaration. Implemen-tations an be added to a lass whih inherits from an `interfae-only' lass. A fulldesription of the inheritane mehanism is presented in Setion 2.1.2. A lass whih



14 CHAPTER 2. OBJECT-ORIENTATIONprovides either no implementations or an inomplete set of implementations is referredto as an abstrat lass or alternatively an abstrat base lass or abstrat parent lass.The latter two names signal their use in lass development through inheritane. Sinean abstrat lass provides an inomplete blueprint for an objet, there are no objetsof the lass. However one an use abstrat lasses to delare an interfae that will besupported by any objet whose lass inherits from the abstrat lass. Thus the lass Xould inherit from the abstrat lass, AbstratX. The keyword abstrat indiates thatthe lass is abstrat and therefore has no instane objets. An abstrat method doesnot have a method body, and therefore requires de�nition in any sublass.abstrat lass AbstratX {publi X(int n){i=n;}publi abstrat int method1(Y);publi int method2(SubY y){return i;}private int i;}JavaSript and Self are OO languages whih are not lass-based. These are delega-tion/prototyping languages where objet prototypes are used as the mehanism for thereation of new objets with extended behaviour. These are reated through the addi-tion of methods and/or attributes to those provided by the prototype objet. This formof OO is sometimes referred to as single hierarhy sine one simply has a hierarhy ofobjets (and no hierarhy of lasses). Languages of this paradigm support both statiand dynami inheritane whih we will disuss in Setion 2.1.2.Message PassingCommuniation between objets is marshalled via their publi interfaes. Budd [21℄presents his �rst priniple of objet-oriented problem solving asation is initiated in objet-oriented programming by the transmission of amessage to an agent (an objet) responsible for the ation.That is, a message is passed to an objet, where the message inludes informationabout whih method to all and with whih arguments. The objet is responsible for



2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 15invoking the method that satis�es the request. The behaviour of an objet may dependboth on the method's parameter values and on the values of the objet's attributes.That is, it is not unusual for behaviour to be dependent on the state as it is in im-perative systems. The di�erene is that the state is typially loal rather than global.In funtional programming systems, behaviour depends solely on a funtion's inputtedvalues.Ideally one should be able to send a message to any objet apable of invokingthe appropriate method. In pratie, most OO languages are statially-typed whihimposes onstraints on whih objets an reeive a message. Whatever the typingmehanism method invoation is ontrolled by the objet reeiving the message. Theroute of message passing between objets has a signi�ant e�et on the amount ofoupling between objets. The Law of Demeter [77℄, named after an objet-orientedprogramming tool, provides guidane on the development of interating objets. Itstates that an objet, in response to a message, should only send messages to:� the objet itself or one of its attribute objets;� objets reated due to the message; or,� an objet provided as an argument to the message.The tool will hek whether a program onforms to the law.The following setion presents an overview of the OO mehanisms for developingsoftware using objets and lasses as the basi building bloks. These inlude attributeobjets and objets as arguments alluded to in the Law of Demeter.2.1.2 The GlueIn this setion we desribe various mehanisms for building OO software. These inludeinheritane, attribute objets and objets as arguments to methods. It is lear that ob-jets and their lasses provide a mehanism for modular software development guidedby the requirements of enapsulation and abstration. What distinguishes objet-orientation from abstration (or objet) based development, whih is supported bylanguages suh as Modula-2 [150℄, is inheritane [15℄. This is the primary develop-ment mehanism used within the objet-oriented paradigm. It is a mehanism that,



16 CHAPTER 2. OBJECT-ORIENTATIONfor better or worse, supports a range of use semantis inluding interfae reuse, inter-fae extension, and implementation or ode reuse. Before desribing other developmentmehanisms, we desribe the various forms of inheritane.InheritaneThe verb to inherit has two transitive de�nitions [31℄to reeive by legal desent, as heir or,to derive from parentsand a single intransitive de�nitionto sueed as heir.It is the seond of the transitive de�nitions that best desribes inheritane within thelassial OO paradigm. A parent lass is a lass from whih another lass derives someof its features. Eah lass-based OO language either supports single inheritane, wherea lass an only inherit from a single lass, or multiple inheritane, whih supportsmultiple parent lasses. Inheritane within the delegation/prototyping paradigm, linksan objet to a list of objets to whih it delegates some of its responsibilities.The terms `parent lass' and `hild lass' are aepted terminology within the las-sial OO paradigm [16℄. They are also referred to as a superlass and sublass. In fat,both the verb and the inheritane relation are transitive. That is, if the lass A inheritsfrom the lass B, and B inherits from the lass C, then A inherits from C. To takethe parental metaphor one step further, C is a grandparent of A. Thus when using alass-based language one develops a hierarhy of lasses linked through inheritane.A lass Child whih inherits from a lass Parent an adopt the attribute and methodspei�ations, any attribute and method implementations, and the interfae of the lassParent. If the lass Parent is abstrat then any non-implemented methods an beimplemented in the Child lass. Any implemented method of the lass Parent an eitherbe adopted or overridden by the lass Child. An objet of the Child lass typiallyhas speial privileges in regard to aess to entities of an objet of the Parent lass.These aess rights are delared in the proteted interfae of the Parent lass whih istypially the publi interfae of the lass plus some attributes whih are hidden from



2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 17general lients. We illustrate inheritane using the lasses X and AbstratX referred toearlier in this hapter. X inherits the attributes and methods of AbstratX and providesan implementation for method1.abstrat lass AbstratX {publi X(int n){int i=n;}publi abstrat int method1(Y);publi int method2(SubY y){return i;}private int i;}lass X extends AbstratX {publi int method1(Y y){return (i*y.get());}}The mehanis of interfae delaration are language-spei�, some of whih are presentedin Setion 2.2.Statially-typed, lass-based OO languages only support stati inheritane, or inher-itane delared at ompile time. Smalltalk, a dynamially-typed, lass-based languageand delegation/prototype languages support both stati and dynami inheritane. Thatis, one an reate new forms of objets through inheritane at run time.Every objet of a lass presents to lients the interfae delared in the lass. Theyan also present the interfae of any anestor lass. Hene, two objets an have di�erentlasses but support the same behaviour as desribed by an interfae. They thus havethe same type. Thus an objet an have more than one type, and a type be exhibited byobjets of more than one lass. In statially-typed, lass-based languages, eah variableis delared with an expliit lass whih states the variable's type. The variable anthen be assigned any objet of the stated lass or its sublasses. In dynamially-typedlanguages, a hek to determine if an objet's lass supports a required interfae isperformed at run time, and therefore one is not onstrained to use objets of lasseswithin a partiular inheritane hain.



18 CHAPTER 2. OBJECT-ORIENTATIONInheritane is objet-orientation's primary mehanism for reusing existing entities.Sine an objet has three rôles, a host of a set of attributes whih make up the objet'sstate, state manipulation through its methods, and aess ontrol through an interfae,inheritane an enable reuse of any ombination of these. Thus a hild lass ould inheritonly an interfae from a parent lass if that is all the parent lass provides. Alternativelya hild lass ould inherit attributes, funtionality and an interfae from its parent. Thisoverloading of the inheritane mehanism an be viewed as both a positive and negativefeature. It is positive simply beause it is overloaded, and thus one an ahieve multipleversions of reuse with the same mehanism. It is however a negative feature, sine thesemantis of a partiular appliation of inheritane is a funtion of the harateristisof the parent lass and hild lass, and not of the inheritane mehanism itself. Budd[21℄ presents a omprehensive list of the various forms of inheritane.The ombination of multiple rôle abstrations, and development through extensionhas important impliations for software development within the paradigm. One is re-quired in some sense to `see the future' when modelling a olletion of lasses. Severalquestions need to be answered whih inlude:� Will the lass's interfae ever be reused without its implementations?� Will I need a lass with a subset of the funtionality of the lass?� Will I need a lass with more funtionality than the lass but less than anotherlass that is being developed through inheritane?Many texts on objet-orientation devote substantial spae to warnings about overuseor misuse of inheritane, often desribing alternative designs available to the developer[49℄. Although one an reuse ode through inheritane it is generally aepted as badpratie sine it breaks lass-based enapsulation. A hild lass that reuses implementa-tions from a parent lass is tightly oupled to the parent lass and, therefore, any hangeto implementations in the parent lass ould potentially have an e�et in the hild lass.In addition, program orretness an be diÆult to determine sine an objet's responseto a message may be a method delared in an anestor lass.Meyer's design by ontrat [84℄ has addressed this issue through the introdution ofsome formal rules of pratie. These rules give formal guidane on the behaviour of amethod, and on the development of overridden methods in sublasses. The rules require



2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 19that a method should be aompanied by one or more preonditions (require lauses) oninput values and host objet attribute values, and state-related postonditions (ensurelauses). Methods whih are overridden in hild lasses must have require lauses thatare no more onstraining then their anestors, and ensure lauses whih are no lessonstraining. Design by ontrat makes expliit the need for behavioural onsistenybetween lasses and their sublasses, where overridden methods in a hild lass preservethe behavioural harateristis of their parental ounterparts. Design by ontrat issupported by the OO language Ei�el, and by the modelling language of BON (BusinessObjet Notation) [143℄, but it is not generally supported by OO languages or OOADMs.In summary, although inheritane provides a useful and natural medium for reusinginterfaes and implementations, it an result in software built on tightly oupled mod-ules, whih is poor modular design. In addition, the reliane on inheritane for lassand objet building requires the developer to foresee any potential future developments,whih makes iterative development diÆult. Gamma [49℄ points to the problem of in-heritane hierarhies ontinually having to be rearranged as the prime motivator ofhis work on reusable design patterns. In the following setion we desribe alternativemehanisms for developing OO software.Other OO GlueA developer using the objet-oriented paradigm an draw upon other non-inheritaneobjet/lass assoiations during system development. They inlude passing objets asparameters to methods, and objets as attributes of other objets.The funtional programming paradigm and the objet-oriented paradigm di�er inwhih onstruts are �rst-lass where �rst-lass onstruts are those that an be treatedlike any data value. Funtions are �rst-lass in funtional programming and thereforean appear in data strutures and be supplied as arguments to funtions. Objets are�rst-lass in the objet-oriented paradigm and for example, an be passed as parametersto methods of other objets. In a pure OO language with no non-objet values, onlyobjets (or in ertain ases lasses (see Setion 2.2)) an be passed as arguments tomethods.An alternative to adopting another lass's behaviour through inheritane is to buildobjets whih `inlude' other objets as attributes. There are two general forms of



20 CHAPTER 2. OBJECT-ORIENTATIONobjet attribution. The �rst is where the objet attribute is delared in the host objet,and thus is dependent for its existene on its host. This is sometimes referred to asomposition or omposite aggregation. In the seond form the attribute objet ouldbe delared independently of any potential host objet, whih assoiates itself with theattribute through a variable whih referenes the used objet. Thus the attribute objetmay be used in this manner by several other objets. This form of objet attributionis sometimes referred to as aggregation and simply delares an assoiation between thelient and server objet. Support for these mehanisms is language-dependent. Forexample, C++ supports both omposition and aggregation, where others suh as Ei�eland Java only support aggregation.Attribute objets an either be used as an alternative to implementation reusethrough inheritane or in ollusion with inheritane. When used as an alternative onebene�ts from the deoupling of the implementation of the used (server) objet and theimplementation of the lient objet. The host objet an then delegate method respon-sibility to an attribute objet. This highlights a tension between the development ofa system through a natural model of the problem, and providing a model whih anbe implemented in the most eÆient manner. For example, if an item A `is a' B withsome added features, then the most natural objet-oriented design is one where lassA inherits from lass B. However, a ontainment (or `has a') relationship may be moreappropriate as an implementation mehanism.Development through attribution inreases the potential for reuse. In a statially-typed language, any inheritane-based development must be delared at ompile time.In ontrast, if an objet of lass A `has an' attribute of lass B, the objet assigned tothe attribute variable an be of lass B or any of its sublasses. This will be determinedat run time. That is, attribution and inheritane an be used in tandem to deliver adesign that maximises reuse.In summary, OO provides several mehanisms for building software whih take ad-vantage of the primary rôle played by objets, and in most ases, their lasses. Oneis also provided with a means of maximising the use of language onstruts throughpolymorphism.



2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 212.1.3 PolymorphismObjet-orientation supports three forms of polymorphism. The �rst is where one ansend the same message to a olletion of objets of di�erent lasses and eah objet willrespond in an objet-dependent way. Cardelli and Wegner [25℄ extending the polymor-phism ategorizations of Strahey [131℄ desribe this form of polymorphism as inlu-sion polymorphism [25℄. Together with parametri polymorphism, where a method orfuntion works uniformly on a range of types, they omprise the two major forms ofuniversal polymorphism. Although parametri polymorphism is universally supportedby funtional programming languages, it is only provided by a subset of OO languages.Ei�el's generi lasses and C++'s templates allow lasses to be delared with formalparameters, whih are used to reate instantiable lasses when provided with an atualparameter [133, 84℄. Thus one has the ability to ahieve reuse over several types in amanner whih is orthogonal to reuse via inheritane. Ei�el also provides onstrainedgeneriity where one an require the atual parameter to be of a partiular lass orone of its desendants, and thus guarantee a partiular behavioural requirement of thegeneri lass. We disuss (onstrained and unonstrained) generiity further in Chapter3.1, when omparing these approahes to funtional programming's onstrained poly-morphism and parametri polymorphism.The �nal form of polymorphism is ad-ho polymorphism, where a method works (orappears to) on several di�erent types in possibly di�erent ways, and is often knownsimply as funtion/method identi�er overloading. Ad-ho polymorphism is in fat alsosupported in some non-OO languages.Inlusion polymorphism is the dominant form of polymorphism within OO, whereasin funtional programming parametri polymorphism is the dominant form and over-loading is variably supported. This has a signi�ant e�et on the way one builds systemswithin the two paradigms. The OO approah is to fator out the ommon behaviourexhibited in various abstrations, and to build lasses that support this behaviour.These are then the building bloks from whih one an develop new abstrations withadditional behaviour either through inheritane, omposition or aggregation.In the funtional programming paradigm, one analyses the behaviour of funtions.If more than one funtion exhibits the same behaviour it ould be replaed by a single



22 CHAPTER 2. OBJECT-ORIENTATION(polymorphi) funtion. In addition, if several funtions have ommon patterns ofomputation they ould be replaed by a single (higher-order) funtion.An OO polymorphi variable an ontain (or refer to) an objet of more than onelass. With statially-typed languages where eah variable is delared with an expliitlass, the ontents of a polymorphi variable are onstrained by the inheritane hier-arhy. That is, the objet must be of the delared lass or one of its sublasses. Indynamially-typed languages all variables are polymorphi, sine they an hold anyvalue. Therefore all methods whih take arguments are also polymorphi.Any objet that reeives a message should be able to respond appropriately. Thatis, eah objet should deliver some ommon behaviour spei�ed in its interfae. If anobjet of lass X supports the behaviour of objets of lass Y, X is alled a subtypeof Y and Y a supertype of X [79℄. Eah objet of a subtype an be used in plaeof an objet of a supertype. A subtype is not neessarily a sublass and vie versa.For example, a sublass with less behaviour than its superlass is not a subtype. Asubtype whih is not related to its supertype through inheritane is not a sublass.However subtyping is typially introdued through inheritane. The main problemwith ahieving `polymorphism through inheritane' is that inheritane is onerned withimplementations, where subtypes fous on interfaes. That is inheritane supports odereuse by the `implementor', where subtyping supports ode reuse by `lients' [108℄.Java supports `polymorphism without inheritane' by using a onstrut alled aninterfaewhih provides a behavioural protool, but no implementation. It is thereforesimilar to an abstrat lass, exept that unlike an abstrat lass, one annot provideany implementations for any methods of the interfae. One is then able to ahievesubtyping through an interfae instantiation, sine every lass that implements theinterfae will be a subtype of the type spei�ed by the interfae.Development Priniples and ComplexityAlthough OO is often desribed as a natural way to develop software through its supportfor modelling the problem, developing an eÆient, implementable solution is not a trivialtask. This is signalled by the various laws, priniples, and heuristis whih guide theOO developer [114, 49, 85, 86℄. Gamma et al [49℄ begin their book with the warning:



2.1. THE OO PARADIGM { MOTIVATION AND FEATURES 23Designing objet-oriented software is hard, and designing reusable objet-oriented software is even harder...Your design should be spei� to the prob-lem at hand but also general enough to address future problems and require-ments. You also want to avoid redesign, or at least minimize it.Meyer [84℄ argues that one should adopt the open-losed priniple whih requiressoftware entities to be open for extension but losed for modi�ation. That is, if onewants to add behaviour to a module then extend it do not hange it. If one wants toinrease the range of objets over whih a funtion applies, then introdue a new lasswith the required behaviour. Satisfying this priniple and many other priniples omesat a ost and is not ahieved by simply translating a `natural' model of a problem intoa design and then implementation. For example, if one needs to add behaviour to aparent lass that is not urrently supported by any of its hild lasses, one ould extendthe existing base lass but would then need to restruture the lass hierarhy. Thusalthough it has been argued that objet-oriented software is easier to maintain than itsalternatives [84℄, there is evidene to suggest that it often requires signi�ant redesignand possibly even automated support [93℄.The problems desribed above an be ategorised as same-paradigm problems or theessential omplexity between a design and implementation [20℄. However, the aidentalomplexity whih arises when one mixes paradigms is far more severe and diÆult to re-solve. As an illustrative example of this we desribe the approahes to implementing inan OO language, a design that uses higher-order funtions. With pure objet-orientedlanguages one has to mimi `funtions as arguments' by applying a method to a param-eter objet whose only responsibility is a single method. That is, one needs to onstruta stateless objet whose only purpose is to support some behaviour. Sine this methodobjet or funtion objet will at on the state of another objet one breaks the enap-sulation required of any OO model. In C++ one an overload the parenthesis operator(), whih enables an objet to be used as a funtion. C++ also supports a non-OOapproah through the reation of a parameterised lass, whih an be instantiated witha pointer to a funtion.In onlusion, OO models are best implemented in OO languages. In the followingsetion we provide a brief overview of some modern OO languages.



24 CHAPTER 2. OBJECT-ORIENTATION2.2 OO LanguagesIn this setion we present a brief overview of OO languages, highlighting their similaritiesand desribing some of their di�erenes. Objet-oriented languages naturally supportthe features of objet-orientation desribed in the previous setion. This does not implythat every objet-oriented model built using these features an be implemented in everyobjet-oriented language, or that if they an they will result in the most e�etive andeÆient implementation. However, it is more natural to implement an OO design inan OO language than in a non-OO language, beause the development approah is thesame. That is, they share ommon building bloks and glue, and a ommon developmentphilosophy. We believe that this equally applies to any paradigm.2.2.1 What is an OO language?There are many desriptions of objet-oriented programming or the properties requiredof an objet-oriented language [71, 132, 87, 43℄. The features possessed by languagesthat laim to be objet-oriented inlude the ability to delare abstrations whih supportenapsulation and are extendible through inheritane, subtyping, and the binding of amethod to a message at runtime (dynami binding). Eah OO language is either pureand sits wholly within OO, or inludes features of other paradigms and is thus impure.Smalltalk, Java (whih does however have non-objet primitive types [3℄) and Ei�el[115℄ are pure languages, where C++, Objet Pasal [17℄, UFO (United Funtions andObjets) [125℄ and OCaml (Objetive Caml) [75℄ inlude various impurities. Furtherexamples of impure OO languages are Pizza [105℄, whih has added support for higher-order funtions and parametri polymorphism to Java, and O'Haskell [91℄, an objet-oriented extension of Haskell.The typing mehanism of a language inuenes the sope of objets to whih amessage an be passed. Although statially-typed OO languages provide the bene�tsof ompile-time type heking they also onstrain the lasses whose objets may reeivea message. Statially-typed languages partially resolve this dilemma by supportinginlusion polymorphism through inheritane. Smalltalk, whih is dynamially-typed orlass-foused rather than type-foused [49℄, adopts the opposite approah of not athingany type errors at ompile time, but having the freedom to send a message to any objet



2.2. OO LANGUAGES 25that supports the appropriate behaviour through a mathing method. Thus Smalltalklasses are not used for heking the type orretness of a program but to speify, andin most ases, implement objets. Most languages that are lass-foused have lassesas �rst-lass itizens whih an be manipulated at run-time. OO languages an bedi�erentiated both through the type of inheritane they support and their approah toenapsulation.2.2.2 Enapsulation and InheritaneThe interfae provided by any objet is dependent on the lient objet. In most OOlanguages, if the ommuniating objets are of the same lass, then the interfae istotal or inludes everything delared in the lass. If the lient objet is of a sublassof the other objet, then it is presented with an interfae that inludes all non-privateentities. If there is no inheritane assoiation between the objets, then the lient ob-jet is presented with the most restritive interfae that only inludes publi entities.In ontrast, Smalltalk, restrits aess to an objet's private parts to the objet itself.That is, Smalltalk is truly objet-oriented where eah objet fully enapsulates its state.Smalltalk enfores the enapsulation of state by making every attribute private and on-versely, every method publi. One is unable therefore to provide non-interfae methodswhih are used to servie interfae methods. Other OO languages are not as draonianas Smalltalk, and allow the developer to deide on the (publi and proteted) interfaeof an objet.Many OO designs inlude lasses that inherit features from more than one parentlass through multiple inheritane. Although many problems are most naturally de-signed using multiple inheritane, it is not typially supported by OO languages. Thereare many reasons for this inluding the potential for ambiguity when invoking methodsin response to a message. For example, when a message is passed to a hild lass objetwhose lass doesn't provide an implementation of the required method, the message isdeferred to a parent lass (analogous to delegation in prototype/delegation languages).If both parent lasses provide their own implementations the ompiler will be unable todeide whih one to invoke.The large number of modern OO languages are mathed by an ever inreasing num-ber of OO analysis and design methodologies. They an equally be ategorised through



26 CHAPTER 2. OBJECT-ORIENTATIONtheir purity or impurity, and also through the approah to abstration disovery.2.3 OO Analysis and Design MethodologiesThis setion presents an overview of OO analysis and design methodologies (OOADMs).This is in no sense a omplete overview. However it provides an insight into the essen-tial features ommon to methodologies within the paradigm and how they support thedevelopment of OO software. A detailed, albeit dated ritique is presented in [89℄. Amore reent survey of strutured and OO tehniques and methods is presented in [147℄,and a web-based omparative review of OOADMs an be found at [32℄. In ommonwith the imperative/strutured paradigm, the OO paradigm supports the eÆient ande�etive development of software. This is ahieved by using development methodolo-gies and implementation languages that use the same building bloks and glue. Themethodologies are normally marketed through CASE tools that support their partiularnotation and tehniques. The OO paradigm has a large set of suh methodologies in-luding the Booh Method [15, 82℄, OMT [120℄, BON [143℄, OOA/OOD [29, 28℄, Fusion[30, 80℄ and OOSE/Objetory [64℄. Reently there has been a fous on developing auni�ed language, the Uni�ed Modelling Language (UML) [16℄. Although it is only amodelling language, and is therefore proess independentit should be used in a proess that is use ase driven, arhiteture-entri,iterative, and inremental. [16℄The Uni�ed Software Development Proess has reently been developed using UMLas its modelling language [63℄.Eah OOADM is a ombination of a modelling language and a olletion of integratedtehniques whih onvert the results of requirements engineering into an implementabledesign. Most OOADMs provide a olletion of diagrams that graphially representvarious views of the models in development. Typially these diagrams an be usedthrough all phases of development. Eah OOADM an be ategorised as pure, if it onlymodels systems through ommuniating objets or their lasses, or impure (or evenhybrid) if ation-oriented or data-oriented tehniques and models are supported.



2.3. OO ANALYSIS AND DESIGN METHODOLOGIES 272.3.1 Pure and Impure OOADMsA pure OOADM only uses objet-oriented tehniques and models to analyse a problemand design a solution. That is, the tehniques aim to build models using objets and/orlasses and their various assoiations. Funtionality is analysed and desribed throughommuniating objets, and data is similarly desribed through its host objets. Im-pure methodologies ombine objet-oriented and non-objet-oriented tehniques, suhas data-ow diagrams, into a single methodology. Examples inlude OMT [120℄ andthe Shlaer and Mellor [126℄ approah whih use funtional models desribed throughdata-ow diagrams, and strutural models using ERD type diagrams.The Booh Method, OOSE, and BON are all pure objet-oriented methods. Forexample, the Booh Method presents a stati view of a system through lass diagrams,a funtional view through objet-senario diagrams/objet-interation diagrams and adynami view of the internals of an objet via state diagrams. BON simply has statidiagrams, dynami diagrams and diagrams that present lass details in a similar fashionto CRC (Class,Responsibility,Collaboration) ards [8℄. CRC ards are used in manymethodologies to reord the name of a lass, the attributes and methods it supports,and the other lasses it ollaborates with to ahieve required funtionality. They havetypially been used in brainstorming sessions and an be physially arranged to illustratepartiular designs.Every methodology, pure and impure, supports the building bloks and glue ofthe OO paradigm. However, eah methodology is typially desribed using its ownmodelling language and graphial representation of OO onstruts and relationships.In the following setion we present the steps in OO software development typiallysupported by an OOADM.2.3.2 OO DevelopmentOOADMs an be further lassi�ed by the driving fator of initial development. Thelassi�ations are user-driven, data-driven and responsibility-driven. With user-drivendevelopment the needs of the system users drive development. Jaobson [64℄ introdueduse ase analysis in his OOSE/Objetory method. Initial development models userinterations with the system through appliations of use ase analysis. We desribe use



28 CHAPTER 2. OBJECT-ORIENTATIONase analysis later in this setion. All OOADMs enourage an iterative approah todevelopment. A system an initially be developed using a subset of user requirements,with any additional requirements introdued iteratively.Data-driven methodologies suh as OMT, initially fous on the major nouns in therequirements doumentation and return a olletion of mathing objets and/or lasses.The Booh Method and Martin and Odell's OOAD method [81℄ adopt a behaviour-driven approah, where the verbs in the requirements doumentation guide the devel-opment of objets to support the behaviour indiated by a verb. Whihever approahis adopted there is a ommon underlying theme to development, whih is summarizedin the following list.� Disovery of an initial olletion of lasses;� desription of lass ollaborations required to satisfy the system's funtional re-quirements;� assignment of responsibilities to eah lass;� analysis of lasses with signi�ant state dynamis;� development of lasses, lass ollaborations and lass responsibilities using be-haviour senarios;� onversion of an analytial model whih represents the problem to a design modelof an implementable solution. New lasses are introdued either to manage otherlasses or to redue the oupling between existing lasses.Eah methodology has its own tehniques, notation and development themes. Forexample, OMT divides development into three modelling strands objet modelling, dy-nami modelling and funtional modelling, OOA/OOD has the multilayer, multiom-ponent model, and BON enourages the development of models built on seamlessness,reversibility and ontrating.The initial step in objet-oriented development is eliiting objets and their lasses,from the deliverables of system's requirements engineering. The route to their disoverywill depend on whether the methodology is user-driven, data-driven or behaviour-driven.



2.3. OO ANALYSIS AND DESIGN METHODOLOGIES 29In eah ase, any data or behaviour are desribed through a host objet. The develop-ment is immediately modelled through abstrations whih enapsulate their state andhost the methods whih may at on the state. These abstrations should be extensibleand eah should model a real world entity or behavioural harateristi of the problem.Future development, for example of system funtionality, is modelled through these ab-strations. That is, funtions or methods must be developed through ommuniatingobjets and guided by the interfaes of the objets.We will illustrate the user-driven approah with a brief desription of use ase anal-ysis [64℄. A use ase is a desription of a set of sequenes of ations that a systemperforms to ahieve a desired result. Eah sequene of events represents an interationbetween system users, sometimes referred to as ators, and the system.A use ase is an analysis tehnique in that it aptures the intended behaviour ofthe system, but does not speify how this is ahieved. Eah use ase will be desribedby one or more senarios whih speify the semantis of the use ase. For example ause ase ould be `The data entry lerk inputs a result into a football results proessingsystem'. The textual desription of the use ase that inludes details of the user will betranslated into a set of senarios whih desribe its ahievement within the system. Thismay result in the introdution of new lasses, new responsibilities assigned to existinglasses and new ollaborations between lasses.Wirfs-Brok et al. [149℄ subdivide OO software development into three phases:initial exploration, detailed analysis and building subsystems. The seond phase putsthe meat on the bones of the entities delivered by the �rst phase. One has to larifythrough detailed inspetion the lass responsibilities - the data and methods - andthe ollaborations - inter-lass dependenies - required of the system. Sine lassesare extendible one is enouraged to minimise the harateristis, both attributionaland behavioural, of any lass, and use inheritane and omposition as mehanisms forbuilding more omplex abstrations.Eah lass's attributes, methods, and ollaborations an be gleaned from require-ments information through the appliation of various analytial tehniques inludinguse ase analysis and CRC ards. As one moves through analysis and into design alass's responsibilities and ollaborations are srutinized so that eah lass has a learpurpose and a high degree of ohesion, reuse is maximised, and inter-lass dependeny is
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Figure 2: Class Diagramminimised. One an use operational rules suh as those desribed in the Law of Demeter[78℄ during suh development.Class ollaborations are typially represented in lass diagrams. These are similarto SSADM's logial data strutures or entity relationship diagrams [26℄ in that theydesribe the major data entities in the system. In a lass diagram the entities alsoinlude behavioural responsibilities. Figure 2 presents a lass diagram where the lassResults has a single Date attribute through aggregation, and one or more Resultattributes through omposition.All OOADMs have a graphial notation for objets and lasses, and their variousollaborations. They also tend to support annotations whih inrease the semantisof the modelling languages. Thus one an present multipliity of ollaborations, or aninsight into the atual relationship through textual information juxtaposed with thegraphial notation.A system's funtional requirements are delivered through ommuniating objets.Sine objets enapsulate state and behaviour, method development relies on the in-teration of objets through message passing. Thus the appropriate metaphor is of anetwork of abstrations sending messages to other abstrations. In eah ase the reeiv-ing abstration is responsible for managing the response to a message. One an presenta view of funtion or method development through objet diagrams. UML supportstwo types of objet or interation diagrams. Collaboration diagrams (objet-senariodiagrams in the Booh Method, instane diagrams in OMT) have objets as the mainsubjets, and methods are desribed through messages passing between the objets. The
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Figure 3: Collaboration and Sequene Diagramsreverse is the ase with sequene diagrams in whih the messages take pre-eminene overtheir assoiated objets. Sequene diagrams emphasise the ordering of the messages,where the emphasis in a ollaboration diagram is on the objets that are ommuniating.Sequene diagrams have similarities to Gantt harts (a popular graphial representationof a projet's ativities) of use within a �eld of operations researh. We give examplesof these types of diagrams in Figures 3(a) and 3(b).The models desribed thusfar fous on the stati, and funtional requirements ofa system. Many objets' response to a message will be state-dependent. That is, thevalues of an objet's attributes will often inuene an objet's behaviour. One anmodel these objet state dynamis through state diagrams whih desribe a olletionof objet states, and the ations whih lead to transitions between the states. The statediagrams used by most OOADMs follow the notation of Harel [54℄.



32 CHAPTER 2. OBJECT-ORIENTATIONOne an aeptable analytial model of the problem is in plae, the fous turns tothe development of an implementable design. At this stage one may introdue lassesthat manage the interation of other lasses, or others whih support some ommonbehaviour required of existing lasses. Where analytial models simply reet a system'srequirements, design models need to be eÆient, e�etive and implementable. Thedeveloper an adopt various priniples, laws, and existing designs during this proess.2.4 SummaryIn onlusion, the objet-oriented paradigm has marketed itself as a pakaged develop-ment approah. From the initial stages of development one an desribe a problem interms of OO elements and models using one of a signi�ant number of modelling lan-guages, methodologies and supporting CASE tools. The translation from an abstratmodel to implementation ode is eased through removing the aidental omplexity in-urred when swithing paradigms. Although translating a model of the problem into ane�etive and eÆient model of a solution is not a trivial task, one ahieved there area large number of OO programming languages in whih OO models an be naturallyimplemented.The funtional programming paradigm is urrently without any analysis and designmethodologies. Therefore, if one wants to model a problem one either has to adoptan ad ho approah or use an existing non-funtional methodology. In the followinghapter we desribe the funtional programming paradigm, plaing emphasis on thefeatures whih have a major inuene on the design of funtional software.



Chapter 3
Funtional Programming
In this hapter we larify the main features of the funtional programming paradigmand how they inuene software development within the paradigm. We begin witha brief overview of the paradigm that lists its major features. These are: funtionsas the basi unit of program development; strong typing as an aid to developmentpre-implementation, during implementation and post-implementation; parametri poly-morphism and the �rst-lass nature of funtions as the major routes to reuse; and, thesupport provided for developing user-de�ned datatypes. Eah of these features are de-sribed with illustrative examples, and, where appropriate we draw omparisons withapproahes adopted within the OO paradigm. For example, parametri polymorphismis supported by both paradigms, but has a greater inuene on software developmentwithin the funtional paradigm. In Setion 3.2 we review features whih are eithervariably supported or are supported by a signi�ant minority of modern funtional pro-gramming languages (FPLs). These inlude lazy evaluation that supports programmingwith in�nite data strutures, overloading of funtion names, and the mehanisms fordelivering modularity-in-the-large. We inlude various pointers to the modelling of fun-tional designs using FAD. For example, we introdue the FAD units exlusive signatureand permissive signature. These are de�ned briey in this hapter, with a more detailedoverage provided in Chapter 5. In the �nal setion, we present the arguments for theneed for (and requirements of) a funtional analysis and design methodology (FADM).Chapter 4 provides a more detailed argument in support of analysis and design method-ologies. 33



34 CHAPTER 3. FUNCTIONAL PROGRAMMING3.1 The Funtional Programming ParadigmThe funtional programming paradigm, in its purest form, is about building programsfrom funtions. Eah funtion omputes a value that depends solely on the values ofthe funtion's inputs. Every funtion has a type that in most funtional languagesis determined statially, and funtions are �rst-lass and thus an be treated as datavalues. If an OO system is built througha olletion of interating abstrations that host their own state, providemehanisms for manipulating the state, and deliver an expliit behaviouralontrat to other abstrationsfuntional programming relies ona olletion of abstrations that generate values dependent only on the valuesthey reeive.Funtional languages also o�er signi�ant support for modular development andthus for programming-in-the-large. Although it is beyond the sope of this thesis toprovide an exhaustive list of features of the paradigm, we list below those featureswhih we believe have the most signi�ant impat on how one develops software withinthe paradigm. The following subsetions present details on eah feature in turn withsome ommentary on its inuene on the development of software within the paradigm.We will illustrate many of the features with example ode written in Hugs 98 [70℄. Thefuntional programming paradigm inludes the following features:� funtions as the fundamental building-bloks of programs;� strong typing;� parametri polymorphism;� funtions as `�rst-lass itizens'; and,� substantial support for the development of user-de�ned types, both onrete andabstrat.Colletively these features desribe a lean, mathematially tratable and robusttehnology with signi�ant support for reuse. It enables the developer to fous diretly



3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 35on the funtional harateristis of a system without either the loss of data seurityinherent in imperative programming, or the indiret approah imposed by the objet-oriented paradigm.3.1.1 Funtions, Values and Referential TransparenyProgramming in a funtional style using a funtional language involves building de�ni-tions and evaluating expressions. As Bird and Wadler [11℄ onisely state:The primary role of the programmer is to onstrut a funtion to solve agiven problem.The behaviour of these funtions depend only on the values of their arguments, andnot on the value of any variables whih model the state. Thus funtional programmingenourages a view of omputing that is signi�antly di�erent to that of a sequene ofstate modi�ations.Imperative programs are built through a olletion of mutable variables whih modelthe state, and proedures whih modify these (typially global) variables. The behaviourof the proedures typially depend on the values of the mutable variables, whih an behanged as the proedures run. There are various problems with this approah. Globaldata is inherently inseure sine there is no expliit restrition of aess to a variable'sontents, and it an be diÆult to understand a program given that the value ontainedby any variable will depend on the program itself. Non-modular, unstrutured programswritten in an imperative style also su�er from multiple entry and exit points and littlesupport for programming-in-the-large [38℄. Although strutured programming [35℄ hasaddressed some of these problems, and objet-based languages suh as Modula-2 [146℄have addressed the issue of modular software development, the imperative paradigmhas generally laked signi�ant modular support.Objet-orientation has addressed these issues through the enapsulation of variableswith the proedures that at on the variables within abstrations alled objets. Al-though the variables remain mutable, and thus their ontents an be hanged, aessto a variable is onstrained by the interfae supplied by the objet that hosts the vari-able. Objets, and not variables and independent proedures, are the units upon whiha program is developed. New funtionality is developed through ollaborating objets



36 CHAPTER 3. FUNCTIONAL PROGRAMMINGrather than diretly gluing together existing proedures.The (pure) funtional programming paradigm has adopted a quite di�erent ap-proah. All variables are immutable. That is, variables in the funtional programmingontext (in ommon with mathematis) do not vary but always denote the same value.Funtions are therefore the mehanisms for reating new values and not for updatingthe values of existing variables. That is, a funtion takes one or more input values andreturns a new value that is determined ompletely by the inputted values.This has a signi�ant impat not only on how one builds a program, but also on themeaning of a program. The meaning of an imperative or OO program is understood bythe e�et it has on the state (the olletion of variables) of the mahine as it runs. Inontrast, the meaning of a funtional program is understood by the values it omputes.That is, the meaning of an expression in a pure funtional language is simply its value.There are no side e�ets (state hanging ations) aompanying the evaluation of anexpression.One bene�t of using a side e�et-free language is that any expression of the languagethat has a well-de�ned value an be evaluated in any order. Order of evaluation onlymatters when a variable's value may depend on the order of evaluation of some sub-expressions. Many pure funtional languages an therefore support non-strit semantiswhose inuene on software development we desribe in Setion 3.2.1.An expression written in a side e�et-free language an have any subexpressionsubstituted by its value without altering the value of the expression. This harateristiis a partiular ase of referential transpareny, the ability to substitute equals for equals.Sine an expression `equals' its value the substitution will not a�et the value of theexpression.In onlusion, in a pure funtional language all omputations are performed viafuntion appliation. Ingenious mehanisms for supporting impure interations suh asI/O have been developed, the most reent of whih is the monadi approah adopted byHaskell [53, 103℄. Software development within the funtional programming paradigm isbuilt predominantly on funtions. Various mehanisms exist for building new funtionsfrom existing funtions and maximising the sope of a given funtion, some of whihare desribed in the following setions. The sope of a given funtion is intimately tiedto its type. We desribe in the following setion how a funtion's type onstrains the



3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 37appliation of a funtion, and in Setion 3.1.3, how parametri polymorphism allowsthe funtional programmer to reuse a single funtion over more than one type.3.1.2 Strong TypingMost modern funtional languages are strongly typed. That is, every well-formed ex-pression of a funtional language has a type that an be determined at ompile time.This means that no run-time errors are due to type mismathes. Just as the value of anexpression depends only on the values of its subexpressions, the type of an expressionan be dedued from the type of its omponents' expressions. For example, the funtionfrontPlusBak is de�ned as follows:frontPlusBak x = head x + last xFrom the right hand side of the de�nition we an determine that the funtion is wellde�ned if x is a value of any list type (denoted [a℄), sine the funtions head and lasttake values of any list type and return the �rst and last element of the list respetively.In addition, sine the values returned by these funtions are added together, the listmust ontain numeri values. In Haskell we write that frontPlusBak has the typeNum a => [a℄ -> awhere a is a type variable, and Num a => onstrains the binding of the type variable tonumeri types.Sine strong type heking involves type inferene, the developer is not required (butis enouraged) to speify the type assoiated with eah de�nition.Therefore, the funtion frontPlusBak should be de�ned with an aompanyingtype spei�ation.frontPlusBak :: Num a => [a℄ -> afrontPlusBak x = head x + last xAn expliit type spei�ation is enouraged sine it aids software development in severalways whih inlude:� a signal to the type-heker regarding the expeted type of the assoiated entity;



38 CHAPTER 3. FUNCTIONAL PROGRAMMING� a guide to the requirements of a funtion in terms of its expeted input andrequired output. This an be used both in advane of implementation of theentity and as an interfae to entity use;� a doumentation devie; and,� as a pointer to potential reuse of library onstruts where funtions an be ate-gorised by their types.Strong typing therefore provides support both at the implementation stage of devel-opment and during pre-implementation analysis and design. The type of a funtion is aonstraint on how the funtion an be used. This ould lead to a rather ineÆient andexpensive approah to development, where funtions have to be rede�ned every timeone wants to use them over a di�erent type. However, in ommon with statially-typed,objet-oriented languages, mehanisms exist for minimising this ost and maximising thesope of use of existing entities. Where statially-typed, lass-based, objet-oriented lan-guages have adopted inlusion polymorphism as the predominant mehanism for reuse,funtional languages support parametri polymorphism.3.1.3 Parametri PolymorphismIn Chapter 2 we desribed how inlusion polymorphism is the dominant form of poly-morphism supported by objet-orientation. Inlusion polymorphism supports the no-tion of `one type many methods' where the method alled is determined dynamiallythrough the lass of the objet that reeives the message rather than the delared lass.Parametri polymorphism an be viewed as the antithesis of inlusion polymorphism.Parametri polymorphism enables `one funtion many types', where a funtion is notrestrited to single monomorphi types but an be used over a range of types. However,the arguments of a polymorphi funtion must themselves be monomorphi. Polymor-phi arguments require rank-2 polymorphism whih although supported, for example,by Hugs 98 [70℄, is not a ubiquitous feature within the paradigm. Polymorphism in thefuntional world therefore supports the reuse of ode rather than the ability to supplyarguments of various forms with a ommon interfae.One an ahieve signi�ant reuse within the funtional programming paradigm bytaking advantage of parametri polymorphism. If two or more monomorphi funtions



3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 39with the same arity exhibit ommon behaviour over values of distint types, they ouldpossibly be replaed by a single polymorphi funtion. For example, the Haskell funtionlength whih takes a list of values and returns the number of items in the list, operatesin a onsistent fashion for a list of elements of any type. Similarly, the pair seletorfuntions fst and snd require no spei� harateristis of the pair element values, andthus an be applied to pairs whose elements are of any type.length :: [a℄ -> Intlength = foldl' (\n _ -> n + 1) 0fst :: (a,b) -> afst (x,_) = xsnd :: (a,b) -> bsnd (_,y) = yIn OO one ould ahieve a similar form of reuse through C++ templates or Ei�el'sgeneri lasses. For example, in C++ one an delare a parameterised ontainer lassList<Type> whih inludes a method whih returns the length of a list. One anreate instantiable lasses by providing the parameterised lass with an atual parametersuh as List<String>, a list of strings lass, and List<Person>, a list of people lass.Sine the method whih returns the length of the list, and all other methods of theparameterised lass, requires no partiular harateristis of the atual parameter lass,the same method an be applied over objets of any instantiating lass. Some languagesin both paradigms support onstrained parameterisation in whih the atual parameteris required to support some partiular behaviour. This is desribed in Setion 3.2.2.An important indiator of potential parametri polymorphism is the lak of be-haviour required over the types assoiated with a funtion or the types that providethe values for a data struture over whih a funtion is de�ned. That is, although thefuntion length requires the ontainer type (in this ase a list) to support ertain be-havioural requirements, the type that provides the values ontained in the list has nosuh requirements. The funtion length an be applied to a list of any type, sine itdoes not require a list's values to onform to any partiular spei�ation. This is also



40 CHAPTER 3. FUNCTIONAL PROGRAMMINGtrue of the pair seletion funtions.Where parametri polymorphism supports the use of a single funtion over manytypes, higher-order funtions whih take funtional arguments apture ommon pat-terns of omputation between several funtions. In the following setion we desribethe inuene that `funtions as values' has on software design within the funtionalprogramming paradigm.3.1.4 First-Class CitizensHughes [57℄ argues that the two features of funtional languages whih have the most sig-ni�ant impat on (small sale) modular development are higher-order funtions whihrely on the �rst-lass itizenship of funtions and laziness. Sine laziness is not a fea-ture of all funtional languages it would be inappropriate to desribe it as a featureof the paradigm. However it is supported by a signi�ant minority of pure funtionallanguages and we will desribe it in Setion 3.2.1.One way of distinguishing the OO paradigm from the funtional programmingparadigm is through whih onstruts are �rst-lass. Where objets are �rst-lass it-izens in an objet-oriented language and thus an be treated as data, funtions are�rst-lass in funtional programming. Therefore, a funtion an be an argument of afuntion, returned by a funtion, or an element of a data struture.Funtions that either take funtions as arguments or return a funtion as a result arelassi�ed as higher-order funtions or funtionals. They provide a signi�ant glue forbuilding programs in the funtional programming paradigm. Funtions with multiplearguments an be modelled in a urried form where they take their arguments one at atime. The unurried form typially presents the arguments in a tuple. Curried funtionsan be partially applied to return a new funtion. These funtions an either be reatedat ompile time or at run time. The funtions urriedPlus and unurriedPlus illus-trate these two forms, and plus5 is a funtion reated through the partial appliationof the funtion urriedPlus to the argument 5.urriedPlus :: Int -> Int -> InturriedPlus m n = m + n



3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 41unurriedPlus :: (Int,Int) -> IntunurriedPlus (m,n) = m + nplus5 :: Int -> Intplus5 = urriedPlus 5Funtions that take funtions as arguments model ommon patterns of omputa-tion between several �rst-order funtions. For example, the funtions doubleList andtrebleList multiply every integer in a list by two and three respetively. They an bereplaed by a single higher-order funtion applyArithList whih takes an arithmetifuntion as its �rst argument, a list of integers as its seond argument and returns thelist where the funtion has been applied to eah element.applyArithList :: (Int -> Int) -> [Int℄ -> [Int℄applyArithList f ls = map f lsFuntionals are not unique to the funtional programming paradigm but are imple-mented more naturally than in non-funtional languages. For example, in C one anindiretly use funtional arguments through pointers, and Pasal supports funtionalarguments of a simple kind but not funtional results. In objet-oriented languageswhere objets not funtions are �rst-lass, there are various mehanisms for mimiingfuntions as arguments. These inlude: applying methods to funtion objets (objetswith no state and a single method); applying methods to objets with an overloadedparenthesis operator (in C++); taking advantage of impurities in ertain languages andusing templates/generis; and, by using stati methods (in lass-based languages) whihan be alled without referene to an objet.Hutton's paperHigher-order funtions for parsing [59℄ presents a olletion of higher-order funtions (or ombinators) whih are used to build parsers through the ombi-nation of existing parsers. More reently Hutton and Meijer have re-implemented theombinators using monads [60℄ to whih we will refer in Setion 3.2.4. Through a ol-letion of ombinators suh as then, alt and using whih orrespond to sequening inBNF, alternation in BNF, and the f: : :g operator in Ya, and a olletion of primitiveparsers whih amongst other things represent suess and failure, one an quikly buildreursive desent parsers whih are both simple to understand and easy to modify. This



42 CHAPTER 3. FUNCTIONAL PROGRAMMINGis not the ase with parsers developed using imperative or OO languages.We illustrate parser ombinators below. The funtions are written in Haskell ratherthan Miranda1 as used in Hutton's paper.type Parser a = String -> [(a,String)℄alt :: Parser a -> Parser a -> Parser ap1 `alt` p2 = \ inp -> p1 inp ++ p2 inpthen :: Parser a -> Parser b -> Parser (a,b)p1 `then` p2 inp = \ inp -> [((v1,v2), out2)| (v1, out1) <- p1 inp,(v2, out2) <- p2 out1℄using :: Parser a -> (a -> b) -> Parser bp `using` f = \ inp -> [(f v, out) | (v, out) <- p inp℄The �rst line of the ode delares the type Parser whih is parameterised over thetype of result values. In Hutton's paper the parser type was parameterised over theinput value type as well. A parser is a funtion that takes a olletion of input tokens(as a string of haraters) and returns a list of `parsed input/unonsumed input' pairsas results. A list of results is returned so as to deal with an ambiguous underlyinggrammar.The ombinator approah to parser generation di�ers from that of parser generatorssuh as Lex and Ya [2℄ and Happy [50℄, in o�ering an extensible rather than a �xed setof ombinators for desribing grammars. Another example of a ombinator approah tofuntional development is desribed by Wallae and Runiman [144℄ who have developeda toolkit of omponents for proessing XML douments in Haskell whih inludes a setof ombinators for sripting stylesheets and a set of seletion ombinators.Any funtional analysis and design methodology must both enourage and supportthe development of higher-order funtions. FAD's modelling language inludes a graph-ial representation for urried funtions and supports funtion development through the1Miranda is a trademark of Researh Software Ltd
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Figure 4: Higher-order Development
partial appliation of a funtion to an inomplete set of arguments (see Setion 5.4.3).In addition, one is enouraged to use permissive signatures to disover higher-orderfuntions. A permissive signature provides a spei�ation of funtions de�ned over anassoiated type. It does not provide an interfae to a type, but rather a guaranteethat the funtions spei�ed are de�ned over the type. Permissive signatures are fullydesribed in Setion 5.2.3, but we briey illustrate their use with the funtions sumand produt. Eah funtion takes a list of integers and return their sum and produtrespetively. Both funtions require the elements in their argument lists to be ombinedusing an arithmeti operator. That is, they both require that `folding' behaviour besupported by the list type. One an make this ommon pattern of behaviour expliitthrough the assoiation of a permissive signature - in this ase FOLD - with the listtype. This is illustrated by the FAD representations of the funtions sum and produtin Figure 4.Although this does not guarantee that a higher-order funtion would be appropriate,it ertainly signals that it is a possibility. See Chapter 5 for full details on FAD'smodelling language and graphial notation, and Setion 7.3.3 for a fuller desription ofthis approah to the disovery of potential higher-order funtions.Thusfar the funtional programming features desribed have been largely funtion-oriented. The last ubiquitous feature whih we believe has a signi�ant inuene onsoftware development is the support for user-de�ned types.



44 CHAPTER 3. FUNCTIONAL PROGRAMMING3.1.5 User-De�ned TypesEvery modern funtional language provides a wealth of built-in types. These inludebase types suh as the type of haraters and the Boolean values, and various ompositetypes suh as tuple types and funtion types. However the languages in the paradigmalso provide the developer with mehanisms for developing new types. The predominantmehanism is through the delaration of algebrai types.Algebrai TypesAlgebrai types are a single mehanism for the reation of various forms of types thatwould otherwise have to be delivered through separate mehanisms. These inlude, sumtypes whih have alternative domains and produt types whih are types with multipleomponents. They are alled `algebrai' sine they are examples of term (or initial)algebras whose elements are uniquely reated through a set of value onstrutors. Herewe must make a distintion between value onstrutors whih onstrut values of a type,and type onstrutors whih onstrut types. In Haskell, algebrai types are delaredusing the keyword data, and introdue a new type onstrutor suh as TC, and one ormore new value onstrutors, VC1, VC2 and so on.data TC tv1 ... tvk = VC1 t11 ... t1m | ... | VCn tn1 ... tnpA type onstrutor an take zero or more parameters made expliit by the type vari-able(s) whih follow its name. We have represented these as tv1, tv2 and so on. Eahvalue onstrutor may take one or more parameters, whih in eah ase will either atype variable used by the type onstrutor or a type. We have named these t11 to tnp.For example, the algebrai sum type IntOrFloat, in ommon with the built-in typesInt and Char, is a nullary type onstrutor sine it takes no parameters. Its values areonstruted by applying the unary value onstrutor ConsInt to an Int value, or theunary value onstrutor ConsFloat to a Float value. anIntValue and aFloatValueare both values of type IntOrFloat.data IntOrFloat = ConsInt Int | ConsFloat FloatanIntValue = ConsInt 3aFloatValue = ConsFloat 3.0



3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 45data Days = Sunday | Monday | Tuesday | Wednesday|Thursday | Friday | Saturdaydata ThisOrThat a b = This a | That bdata Tree a = EmptyTree | Node a (Tree a) (Tree a)Figure 5: Algebrai TypesFor the remainder of this thesis, to ease exposition, we will refer to nullary typeonstrutors simply as types and non-nullary type onstrutors as type onstrutors.The algebrai type mehanism also supports� enumerated types through the delaration of a set of nullary value onstrutors.This is illustrated in Figure 5 with the type Days;� parameterised types. These are types that are reated through the appliation ofa type onstrutor to one or more parameters. Eah type onstrutor has a kindwhih spei�es the number and form of parameters of the type onstrutor. Thatis, a kind is to type onstrutors what a type is to funtions [66℄. Using Jones'notation [66℄, all types have the kind *, and the kind �1 ! �2 represents typeonstrutors that take an entity of kind �1 and returns one of kind �2. This isillustrated in Figure 5 with the parameterised type ThisOrThat a b whose typeonstrutor ThisOrThat takes two parameters of any, and possibly di�ering, types.For example, values of the type ThisOrThat Int Bool are reated through theappliation of the unary value onstrutors This and That to Int and Bool valuesrespetively. The onstrutor ThisOrThat has kind * -> * -> *;� reursive types whih are desribed in terms of themselves. This is illustrated inFigure 5 with the type Tree a.Funtions over an algebrai type that have value-dependent behaviour are mostnaturally de�ned using pattern mathing. Atual arguments are mathed against anargument pattern presented in a funtion de�nition, and if suessful the assoiatedexpression is evaluated. If the math fails, the next argument pattern is heked and soon. For example, the polymorphi funtion zeroOrOne takes a value of type ThisOrThat



46 CHAPTER 3. FUNCTIONAL PROGRAMMINGa b and returns 0 if the value is onstruted using the value onstrutor This and 1otherwise. That is:zeroOrOne :: ThisOrThat a b -> IntzeroOrOne (This _) = 0zeroOrOne (That _) = 1The undersore is the wildard pattern that an be used when a part of a pattern is notused in the body of the funtion de�nition.Clearly pattern-mathing requires that the funtion has aess to the implementationof the type, whih results in tight oupling between the funtion and type. This is poormodular design, sine any hange in the type implementation will require a hange tothe funtion de�nition. A modular approah built on information hiding is ahieved byusing abstrat data types whih we desribe in the following setion.Abstrat Data TypesAbstrat data types support a separation of a type's interfae from its implementation.They are a mehanism for deoupling a type and its lients. An abstrat data type isa type with an expliit olletion of operations de�ned over the type. These operationsare spei�ed in the interfae to the type. Thus one an only use values of the typeby using one of its interfae operations. One an then reimplement the type and itsoperations with the interfae remaining onsistent for any existing or future lient.Abstrat data types are therefore integral to the modular development of funtionalprograms. It is therefore essential that they are both supported in any funtionalmodelling language, and play a predominant role in the methodology. The mehanism(s)for the implementation of abstrat data types is language-spei�. Many funtionallanguages use modules as the type host, whih is aompanied by a restritive interfae.We desribe modules in funtional languages in Setion 5.3.1. We present here a briefoverview of the various mehanisms for implementing abstrat data types (ADTs).Miranda uses the keyword abstype to delare suh a type, whih is followed by thetype's identi�er and interfae, whih is presented as a olletion of type spei�ations.SML has both a keyword and a means of abstrating the ontents of a struture throughan opaque signature. Any types delared in suh a struture will beome abstrat due



3.1. THE FUNCTIONAL PROGRAMMING PARADIGM 47to the assoiated signature. The signature provides full syntati details regarding eahof its entities. Haskell supports ADTs through its module system. A module exportlist that inludes a type without its value onstrutors delares the type as abstrat.However the type's operations are simply named without any type spei�ation. Cleandelivers ADTs through their de�nition modules, whih are similar to SML's signaturesexept that eah implementation module an be assoiated with only one de�nitionmodule.Abstrat data types are essential to the development of a modular system, whoseomponents an be modi�ed, reused, and maintained, in an eÆient and e�etive man-ner. FAD supports abstrat data types through the assigning of a type to a module,and assoiating an exlusive signature with the module. An exlusive signature is aolletion of entity spei�ations whih, when assoiated with a module whih hoststhe entities, ats as an interfae to the module. That is, a lient of the module hasaess only to those entities spei�ed in the exlusive signature whih mediates use ofthe module by the lient. One an impose abstration on a type by hosting it in amodule whose lients have no knowledge of how the type is onstruted. That is, thetype is spei�ed in an exlusive signature E but its onstrutor signature is absent. Aonstrutor signature is a permissive signature whih spei�es the value onstrutors ofa type. This example highlights the di�ering roles of the two forms of signature providedby FAD. An exlusive signature provides an interfae to a onstrut whih hosts variousdelarations, whereas a permissive signature delares a minimal set of operations overone or more types.A type is therefore not abstrat by default, but instead an have abstration imposedwhen used by an entity of another module.The module AbstratTypeModule hosts the type ThisOrThat a b but only exportsits type onstrutor and not its value onstrutors. Thus any entity of another modulewhih uses the type, uses it as an abstrat type via the operations spei�ed in the exportlist that follows the module name in parentheses. In this example, the type onstrutorThisOrThat is aompanied by two seletion funtions get1 and get2. In FAD, theexport list will be modelled as an exlusive signature.module AbstratTypeModule (ThisOrThat, get1, get2) wheredata ThisOrThat a b = This a | That b



48 CHAPTER 3. FUNCTIONAL PROGRAMMINGget1 :: ThisOrThat a b -> aget1 (This x) = xget1 _ = error "Inappropriate appliation"get2 :: ThisOrThat a b -> bget2 (That x) = xget2 _ = error "Inappropriate appliation"The development of module (and subsystem) arhitetures and the development ofassoiated exlusive signatures are integral to the FAD methodology. Full details ofmodules, exlusive signatures and abstrat data type support are provided in Chapter5. The methodology is desribed in Chapter 7.In the following setion we disuss features whih are ommon to signi�ant subsetsof funtional programming languages, but are also important in inuening the way onedevelops funtional programming software. The setion begins with a very brief san ofthe di�ering harateristis of modern funtional programming languages.
3.2 Other FeaturesFuntional programming languages are haraterised in various ways. For example,Haskell, Miranda and Gofer [65℄ are pure, non-strit, sequential languages. ML is animpure, strit, sequential language. Erlang and Clean [106℄ are onurrent languagesthat are impure, strit and pure, non-strit respetively. All of these languages de-liver the funtional programming features desribed in Setion 3.1. Impure languagesalso support features typially assoiated with imperative languages suh as variableassignment. FAD does not support impure features.Although FAD desribes software models whih may be implemented using anyfuntional language, a signi�ant minority of funtional programming languages supportnon-strit semantis through lazy evaluation, whih enourages a partiular approahto program design and development. The following setion provides a review of lazinessand its impat on software development.



3.2. OTHER FEATURES 493.2.1 LazinessProgramming languages are initially lassi�ed �rst through the (predominant) paradigmthey support, and then by their type-heking approah. Funtional languages are fur-ther lassi�ed as either strit or non-strit. Languages with strit semantis, supportedby eager evaluation (or all-by-value redution), fore the full evaluation of all argu-ments. In ontrast, those with non-strit semantis delivered through lazy evaluation(or all-by-need redution), only require those arguments that are needed in the funtionbody expression to be evaluated [97℄. That is, every argument is evaluated exatly onein strit languages, and at most one in non-strit languages. When both approaheslead to termination the values returned will be idential. However there are simpleexamples that will not terminate when using eager evaluation, suh as the appliationof the funtion fst - whih selets the �rst element of a pair - to a pair whose seondelement is unde�ned.fst :: (a,b) -> afst (x,_) = xf = fst (True, 1/0)Sine the funtion fst only uses the �rst element of a pair on the right hand side ofthe de�nition, the seond element will not be evaluated when using lazy evaluation.Thus f will evaluate to True. With eager evaluation, both parts of the pair need to beevaluated, and hene, f would be unde�ned.Lazy evaluation distinguishes most pure funtional languages from imperative lan-guages and most objet-oriented languages. Programs written in those languages oftenrely on side e�ets, whih are intimately linked to evaluation order and thus requirestrit semantis where evaluation order is lear. Lazy evaluation is e�etively `demanddriven evaluation', and hene it is more diÆult to predit evaluation order, and there-fore harder to predit when side e�ets will take plae.Lazy evaluation supports programming with in�nite data strutures, suh as in�nitelists, through enabling partial evaluation of a data struture. For example, the higher-order funtion filter takes a prediate and a list and returns those elements of the(possibly in�nite) list that satisfy the prediate. The higher-order funtion take takes



50 CHAPTER 3. FUNCTIONAL PROGRAMMINGan integer n and a list and returns the �rst n elements of the list. If filter even isomposed (denoted .) with take 2, the resulting funtion will return the �rst 2 evennumbers in a list.first2Even :: [Int℄ -> [Int℄first2Even xs = (take 2 . filter even)With lazy evaluation one only evaluates as muh of the list as is required to return 2 evennumbers. Thus as eah even number is on�rmed, it is outputted until 2 numbers arereturned. That is, if we apply first2Even to the in�nite list of positive integers, denoted[1..℄, evaluation proeeds as follows where `;' indiates a step of the alulation.first2Even [1..℄ ; (take 2 . filter even) [1..℄; (take 2 . filter even) [2..℄; 2 : (take 1 . filter even) [3..℄; 2 : (take 1 . filter even) [4..℄; 2 : 4 : (take 0 . filter even) [5..℄; 2 : 4 : [℄; [2,4℄Laziness has enabled a modular design where there is a separation of value generationand value use. One is therefore able to adopt a software development approah wherebehavioural requirements are delivered by separate entities that an be independentlydeveloped and maintained.3.2.2 OverloadingAll modern funtional languages support parametri polymorphism. However reentdevelopments within several languages deliver support for the middle ground betweenmonomorphism and polymorphism. The motivation for this development is that thereare many examples where monomorphism is too restritive and polymorphism is toogeneral. For example, the funtion sum of Setion 3.1.4 ould be given a monomorphitype sum :: [Int℄ -> Int



3.2. OTHER FEATURES 51whih disallows appliation to lists of other numeri values. Alternatively we ould giveit the typesum :: [a℄ -> athat suggests that the funtion an be applied to a list of non-numeri values, whih islearly not the ase.The OO language Ei�el provides onstrained generiity to solve this problem of on-strained parametri polymorphism [84℄. Whereas unonstrained generiity allows anyatual parameter to be bound to the formal parameter of a generi lass delaration,onstrained generiity requires the parameter to be of a stated lass or one of its sub-lasses. Thus one an guarantee that a required behaviour is supported by any potentialinstane objet.A olletion of funtional languages, suh as Haskell and Clean, have resolved thisdilemma through supporting onstrained polymorphism via type and onstrutor lasses.A type lass is a olletion of types. Type onstrutors of the same kind an be olletedin onstrutor lasses. Current language support is largely restrited to single parameterlasses, multiple parameter lasses whih ollet assoiated type onstrutors of theappropriate kinds are supported, for example, by Hugs98.Eah type or onstrutor lass spei�es a olletion of entities with their type spe-i�ations. A type or type onstrutor instantiates a lass when eah spei�ed entity ismathed by one of the same name de�ned over the type onstrutor, and with a typethat is an instane of that spei�ed in the lass. Thus one may overload funtion andvalue names in a ontrolled manner using this mehanism.The type lass ZeroOne spei�es the funtion zeroOne whih takes a value of aninstantiating type and returns either 0 or 1. The onstrutor lass EmptyOrNot spei�esthe funtion emptyOrNot, whih takes a value of an algebrai type whose type onstru-tor has the kind * -> * and returns 0 if it is `empty' and 1 otherwise. The types Intand Bool instantiate the type lass ZeroOne, and the type onstrutors [℄ (the list typeonstrutor), and Tree instantiate the onstrutor lass EmptyOrNot.lass ZeroOne t wherezeroOne :: t -> Intinstane ZeroOne Int where



52 CHAPTER 3. FUNCTIONAL PROGRAMMINGzeroOne i| even i = 0| otherwise = 1instane ZeroOne Bool wherezeroOne False = 0zeroOne _ = 1lass EmptyOrNot  whereemptyOrNot ::  a -> Intinstane EmptyOrNot [℄ whereemptyOrNot [℄ = 0emptyOrNot _ = 1instane EmptyOrNot Tree whereemptyOrNot EmptyTree = 0emptyOrNot _ = 1In ommon with types, the languages that support type lasses provide built-in lassesand enable the user to de�ne new lasses, extend existing lasses, or instantiate ex-isting lasses. A type/onstrutor lass presents an interfae that is implemented byany type/type onstrutor that instantiates the lass. For example, all numerial typesinstantiate the (single parameter) type lass Num's interfae that inludes various arith-meti operations and numeri funtions. We present the lass in an elided form belowfollowed by a olletion of instantiations.lass (Eval a, Show a, Eq a) => Num a where(+) :: a -> a -> a(-) :: a -> a -> a(*) :: a -> a -> anegate :: a -> a-- instanes:instane Num Intinstane Num Integerinstane Num Float



3.2. OTHER FEATURES 53instane Num DoubleThe lass Num extends the interfaes of the lasses Eval, Show and Eq, and is instantiatedby the types Int, Integer, Float, and Double. We an now delare sum as follows:sum :: Num a => [a℄ -> asum = foldl (+) 0where the ontext Num a => states that the type variable a is onstrained to range overtypes that belong to the type lass Num. sum an be applied to a list of values of a typein the type lass Num. The version of the addition operator used is determined by thetype of values in the list.Construtor lasses support higher-order polymorphism or the appliation of fun-tions uniformly over (potentially) all type onstrutors of a partiular kind [66℄. Forexample, the onstrutor lass Fold spei�es folding behaviour through a olletion offuntions. The lass has a single parameter of kind * -> *, and thus an be instantiatedby unary type onstrutors suh as the list onstrutor [℄.lass Fold f whereffoldl :: (a -> b -> a) -> a -> f b -> affoldl1 :: (a -> a -> a) -> f a -> affoldr :: (a -> b -> b) -> b -> f a -> bffoldr1 :: (a -> a -> a) -> f a -> aNow we an delare a funtion sumC that sums the numeri values ontained in anydata strutures built using an instantiating type onstrutor. The version of ffoldlused depends on the argument type of the funtion.sumC :: (Fold , Num a) =>  a -> asumC = ffoldl (+) 0In onlusion, type/onstrutor lasses deliver a methodial approah to funtionname overloading. They provide a mehanism for assoiating a olletion of types ortype onstrutors that support some spei�ed behaviour, whih is typially indiated bythe name of the lass. We an regard onstrained polymorphism as a natural generalisa-tion of polymorphism, where polymorphism is simply unonstrained use of the general



54 CHAPTER 3. FUNCTIONAL PROGRAMMINGase. That is, where polymorphism delivers abstration over any type, onstrainedpolymorphism requires the types to support some spei�ed behaviour.FAD represents type and onstrutor lasses through permissive signatures. How-ever, a permissive signature does not have to be implemented as a type or onstrutorlass. Permissive signatures indiate that a type must support some stated behaviouror that a funtion requires a ertain behaviour over one of its types. Whether theimplementation involves overloaded funtions and type lasses will depend both onthe implementation language and other design deisions. A full desription of FAD'spermissive signatures is presented in Setion 5.2.3, and the development of permissivesignatures to support funtions and type development is desribed in Setion 7.3.1.3.2.3 Modular DevelopmentModern funtional languages, in ommon with their objet-oriented ounterparts, pro-vide signi�ant support for modular development. `Modularity-in-the-small' is ahievedthrough building programs using small single-purpose funtions, and where possibletaking advantage of the non-strit semantis of a language. In this setion we desribethe various language-spei� mehanisms for supporting `modularity-in-the-large'.SML provides signi�ant support for modular programming. It has separate on-struts for module implementation, strutures, and module interfae, signatures, whihenables reuse either through attahing various signatures to a single struture or as-soiating a single signature with multiple strutures. Eah SML struture provides adefault signature, everything in the struture, whih is overridden by any expliit signa-ture assoiation. SML's signatures provide detailed syntati information for potentialusers of an assoiated module, and type abstration an be ahieved through assigningan opaque signature to a struture. SML's modules are not �rst lass but are supportedby an extension of the ore language. However they an be used to reate new moduleseither simply through ontainment or through the appliation of funtors to existingmodules. These parameterised modules are also part of the extended language.Haskell's modules are largely used as a name spae ontrol mehanism. Implemen-tation and interfae details are provided by the same entity, whose export list namesthose entities that are available to any potential lient. This list is devoid of any typesignatures. A module's interfae an also be delared when the module is used, but



3.2. OTHER FEATURES 55is onstrained by the interfae delared by the module. Haskell's module system alsoprovides a means of reating abstrat types by speifying a type onstrutor withoutits value onstrutors in a module export list.We illustrate the Haskell module system with two simple modules Exp and Imp. Expinludes a delaration of a type lass ExpTC, a data type ExpT, and an instantiation ofthe type lass. All of these entities are in the interfae of the module inluding the valueonstrutors Con1 and Con2 of the data type. Thus the data type ExpT is not abstratwhen used by any lient of the module Exp. Module Imp imports the type lass ExpTCfrom the module Exp and delares a data type ImpT whih instantiates the importedtype lass. The type is abstrat to any lient sine it is presented in the export listwithout its value onstrutors.module Exp (ExpTC, ExpT(Con1, Con2), expFun) wheredata ExpT = Con1 Int | Con2 Bool deriving Showlass ExpTC a whereexpFun :: a -> ainstane ExpTC ExpT whereexpFun = idmodule Imp (ImpT, expFun, reateImpT) whereimport Exp(ExpTC, expFun)data ImpT = Con (Int,Bool) deriving ShowreateImpT = Con (0,True)instane ExpTC ImpT whereexpFun = idNiklish and Peyton Jones [90℄ desribe how SML's substantive support for modu-larity an be largely expressed in Haskell using its module system.Clean also provides a robust environment for modular programming whih is similarto that of Modula-2 [146℄, where module implementation and module interfae areprovided by distint onstruts, an implementation module and a de�nition module,but eah implementation has at most one interfae. Clean's module-based abstrationsupport is similar to that of Haskell.



56 CHAPTER 3. FUNCTIONAL PROGRAMMINGAlthough Miranda does not have an expliit module onstrut, modules are deliveredthrough Miranda sripts (�les). That is, a Miranda sript an be viewed as a module.The Miranda %export diretive provides interfae ontrol whih is used when a sriptis imported into a lient sript. That is, modular development in Miranda is supportedby de�ning program entities in di�erent sripts, and enabling reuse through the lan-guage's �le import/export mehanism. Miranda also supports parameterised sriptswhere de�nitions rely on information provided when the sript is used by a lient sript.FAD's modelling language inludes the maro units subsystem and module. Theseunits support a hierarhial approah to managing the development of a large system.A system an be divided into several subsystems whih are developed independentlybut to known requirements. A subsystem is further divided into several modules eahof whih should be a ohesive unit with a lear, spei� purpose. External aess to asubsystem's or module's entities is mediated through an exlusive signature assoiatedwith the host maro unit. Desriptions of FAD's maro units, exlusive signatures, andthe various relationships between units are presented in Chapter 5.In onlusion, objet-oriented software development as desribed in Chapter 2 isguided by modularity. That is, modularity drives funtionality. The reverse is true in thefuntional paradigm and therefore when developing using FAD. One �rst desribes thefuntional requirements of a system and then builds a modular system whih supportsthem in as e�etive and eÆient manner as possible. The main reason for this is thatin an OO system, objets (or modules) are �rst-lass and are therefore the fundamentalbuilding blok upon whih a system is developed. Funtional programming has �rst-lass funtions, and modules are used to aid the management of development.In the �nal setion we desribe the reent inuene thatmonads have had on softwaredevelopment within the funtional programming paradigm.3.2.4 MonadsMonads are a reent addition to the funtional programmers' toolbox. They enouragea strutured and sequential approah to program development, and have resulted ina new approah to interative programming in pure, non-strit, funtional languages[139, 138, 140, 103℄.



3.2. OTHER FEATURES 57Although monads have their roots in ategory theory where they are sometimes re-ferred to as triples, one does not have to be a ategory theorist either to understandtheir struture or to pratise their use. For the purposes of funtional programming,the simplest view of a monad is as a unary type onstrutor (ommonly alled m) a-ompanied by a pair of polymorphi funtions. One funtion (variously alled unit,unitM, return, or result) takes a value of a partiular type, and reates an item of themonadi type. The other funtion (variously alled bind, bindM, then, (>>=), or (*))takes an item of the monadi type and a funtion from a value (wrapped in the �rstmonadi type) to another monadi type, and returns an item of the seond monaditype. From now on we will view a monad as the triple (m, return, (>>=)), wherereturn and (>>=) have the following type spei�ations:return :: a -> m a(>>=) :: m a -> (a -> m b) -> m bHaskell 98 provides a monad onstrutor lass that inludes additional funtion spei�-ations to those presented above.Another desription of a monad is as a type of omputations so that m a is thetype of omputations (of a ertain sort) of values of type a. With this view in mind,return turns a value into the omputation that simply returns the value. (>>=) takesa omputation whih returns a value of type a, extrats the value returned by theomputation, and applies the seond (funtional) argument to this value whih returnsa omputation that returns a value of type b. In essene programming with monadsreplaes funtions from values to values by funtions from values to omputations, wherethe notion of a omputation has several di�erent interpretations suh as one that doessome I/O.Monadi I/O is part of the Haskell language de�nition, and ompares favourablyto the other funtional I/O alternatives, dialogues or ontinuations [53℄. Peyton Jonesand Wadler desribe how the type IO a integrates the funtional world with the non-funtional world (pure and impure) [103℄. The funtional world is all about being , inthat an expression in a funtional language denotes a value. In ontrast, the imperativeworld in whih IO more naturally sits, is about doing , and an IO ommand shouldperform an ation. Thus the type IO a in the words of Peyton Jones and Wadler



58 CHAPTER 3. FUNCTIONAL PROGRAMMINGdenotes ations that, when performed , may do some I/O and then returnsome value of type a.One of the main design impliations of monad use is that it enourages enapsulationand programming through an (monad) interfae. Enapsulation prevents any hangesto ode from having a rippling e�et through the software, and simple interfaes makeexpliit how one an ombine program omponents. Monadi development enfores apartiular evaluation strategy that is sequential in nature. For any funtion de�ned overa `monadi' datatype - a datatype with assoiated monad ombinators - the omputationwill be sequential and guided by the ombinators (>>=) and return. That is, oneabstrats over the omputation as opposed to the more ommon approah of abstratingover the partiular data representation.We present two illustrative examples. The �rst is the funtion exIO whih illustratesmonadi I/O that looks very similar to the ode one would write in an imperativelanguage like C [72℄. The seond example presents the funtion allSquarePlusOnewhih takes a list of integers, eah of whih is squared and then inremented.exIO :: IO ()exIO = getChar >>= \ 1 ->getChar >>= \ 2 ->putChar 2 >>= \ _putChar 1allSquarePlusOne :: [Int℄ -> [Int℄allSquarePlusOne xs= xs >>= \ x ->return (square x) >>= \ y ->return (y+1)getChar and putCharmimi the C funtions getC and putC, and exIO learly illustratesthe sequential nature of funtions de�ned using monads. That is, exIO:takes a harater from the standard input and binds it to 1. It then takes anotherharater from the standard input and binds it to 2. 2 is then sent to the standard outputand the non-existent result bound to a wildard. Finally 1 is sent to the standard output.



3.3. SUMMARY 59
Figure 6: Monadi FuntionThe design of exIO is very similar to the design one would use in an imperativelanguage like C. This is an exellent illustration of one of the main bene�ts of monads:the ability to mimi impure features without losing all the bene�ts of pure, non-strit,funtional programming suh as referential transpareny, higher-order funtions andlazy evaluation. In addition, quite disparate funtions an be desribed using the sameomputational abstration.As with other forms of enapsulation, modi�ation of ode an be ahieved relativelypainlessly, and more importantly, loally. A large sale example of monadi softwaredesign is the Glasgow Haskell ompiler, itself written in Haskell. The ompiler usesmonads for various bookkeeping tasks, and when the type heker needed to be updatedto maintain information about the urrent line number, this was not an onerous task[104℄.FAD supports monadi development through a permissive signature MONAD whihspei�es the monadi ombinators. Thus allSquarePlusOne is represented in FAD asin Figure 6.3.3 SummaryIn this hapter we have desribed an approah to software development whih is sig-ni�antly di�erent to that pratised in other paradigms. We desribed the followingonstruts whih have a signi�ant impat upon software development in the funtionalprogramming paradigm:� funtions are the fundamental building bloks of the paradigm. Their outputdepends solely on their input;



60 CHAPTER 3. FUNCTIONAL PROGRAMMING� types are sets of values that provide guidane through all the stages of softwaredevelopment. They make expliit the values that are aeptable as arguments fora funtion, and those that will be returned by a funtion;� type onstrutors onstrut the aforementioned types. They may take one ormore arguments to onstrut a type. Type onstrutors an be ategorised bytheir kind whih spei�es the number and form of parameters required by thetype onstrutor;� value onstrutors onstrut values of a type. They also may take one or morearguments;� every funtional programming language provides support for the development ofuser de�ned types through the algebrai type mehanism. A new type is reatedthrough the delaration of a new type onstrutor and its assoiated (new) valueonstrutors;� abstrat types are types whose onstrution details - value onstrutors - are in-visible to potential lients;� parametri polymorphism is the predominant form of polymorphism supported bythe paradigm. It enables a funtion to be reused over several types;� permissive signatures are FAD units (fully desribed in Setion 5.2.3) that speifyentities that are de�ned over an assoiated type(s). They provide a behaviouralguarantee for an assoiated type and an be implemented as type or onstrutorlasses in ertain languages. A permissive signature is not an interfae to a typebut rather states the minimum funtionality de�ned over the type; and,� exlusive signatures, whih are also FAD units (fully desribed in Setion 5.3.3)that speify an interfae to an assoiated maro unit suh as a module. Wherea permissive signature states at least this, an exlusive signature state only this.They play an important rôle in developing software based on abstrat types.Funtional programming is di�erent to other paradigms in that:� mutable variables are replaed by values;



3.3. SUMMARY 61� proedures and methods are replaed by funtions whose output depends only ontheir input; and,� enapsulation for data protetion is replaed by enapsulation for modularity.Thus software is developed through funtions that delegate their behaviour to simplefuntions with a lear singular purpose. That is, one is enouraged to develop funtionsusing simpler funtions that implement a required behaviour. How this behaviour isimplemented is not of interest to the lient funtion. Large systems an be built usingthe support for modularity-in-the-large. Abstrat data types provide a mehanism formodular design based on information hiding.A di�erent approah to software development requires a di�erent approah to mod-elling systems, whih in turn requires new modelling languages and methodologies. Inthe following hapter we desribe methodologies and their languages, emphasising thebene�ts of their appliation. In Chapter 5 we desribe the modelling language of FAD,and in Chapter 7 the methodology and its tehniques.
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Chapter 4
Analysis and DesignMethodologies
The previous two hapters have desribed the objet-oriented and funtional program-ming paradigms with an emphasis on their di�erent approahes to software develop-ment. Chapter 2 also inluded a brief overview of objet-oriented analysis and designmethodologies and how in ombination with objet-oriented languages they an delivera pakaged approah to software development. In this hapter we present a desriptionof analysis and design methodologies (ADMs) as a modelling language and set of in-tegrated tehniques that deliver models using elements of the modelling language. InSetion 4.2 we outline the bene�ts of using an ADM within a software developmentprojet. These inlude using a language whose purpose is modelling problems and so-lutions rather than implementing them. In Setion 4.3 we will desribe the bene�ts ofadopting a pakaged approah where the ADM and implementation language are fromthe same paradigm.4.1 Analysis and Design MethodologiesSutli�e [134℄ argues the ase in favour of ADMs as follows:� Before building systems we have to understand them.� To understand systems we should make a model.63



64 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIESAn analysis and design methodology is a medium for understanding a problem, mod-elling a solution, and managing and doumenting software development. Eah method-ology is a ombination of a modelling language, typially with assoiated graphialnotation, and a olletion of integrated tehniques whih support analysis and design.The development of large software systems requires three forms of management.Firstly, there are a olletion of projet management tasks whih inlude the generalmanagement of multiple development teams, ensuring that deadlines are met withinbudget, and that resoures are available and aessible. Seondly, doumentation man-agement is integral to suessful software development. System entities and deisionsshould be doumented and made available for urrent and future referene. Finally thereis development management whih may involve the appliation of an in-house or nameddevelopment method. Within this thesis and with FAD, we will fous solely on the �naltwo forms of management sine projet management an be delivered independently ofany partiular methodology.In the following two setions we present the essential elements of a methodology -its modelling language and tehniques.4.1.1 Modelling LanguageEvery ADM has an assoiated modelling language through whih systems are modelledand doumented. In most ases the modelling language will support both graphialrepresentations and textual desriptions of its units and their interations. Thus, stru-tured methodologies suh as SSADM [41℄ and SA/SD [37, 153, 152℄ have modellinglanguages whih deliver, for example, data ow diagrams and logial data strutures.Every language unit, suh as proess, and data store, will have a lear de�nition andassoiated graphial representation. That is, most modelling languages, in ommonwith implementation languages, have a de�ned syntax and semantis. Typially thesemantis of a modelling language are desribed informally.The modelling languages assoiated with OOADMs inlude elements whih representthe OO building bloks - lasses, objets - and their various assoiations. Eah desrip-tion of a lass inludes lass responsibilities and details of assoiations with other lasses.Class doumentation has similarities to CRC (Class,Responsibility,Collaboration) ards[8℄ where one presents the lass name, followed by a list of responsibilities and then any



4.1. ANALYSIS AND DESIGN METHODOLOGIES 65links to other lasses in the system.A modelling language is spei�ally used for modelling systems and not for im-plementing systems. Although one an (partially) generate soure ode using CASEtools suh as Rational's Rose [33, 34℄, a modelling language should aid development ofan implementable solution, and not provide full details of a spei� implementation.Therefore a graphial modelling language is not a visual programming language suh asPrograph [110℄, or Visual Haskell as put forward by Reekie in his thesis Realtime SignalProessing: Dataow, Visual, and Funtional Programming [112℄. Modelling languagesare typially smaller and semantially less rih than their implementation languageounterparts sine abstrations take preedene over detail. There are however bene�tsin having a orrespondene between the modelling language and potential implemen-tation language. This orrespondene is maximised when the modelling language andimplementation language are of the same paradigm.A modelling language is in essene an abstration of an implementation language,where one fouses on the essential features of the paradigm whilst disregarding the ele-ments that are only required by an implementation language. Most graphial modellinglanguages do however support the embedding of either implementation language odeor pseudoode into their models. For example, one typially reords a method withina lass using the syntax of an OO language. The tehniques of a methodology take asinput and return as deliverables models developed using the modelling language.4.1.2 TehniquesEah methodology provides the user with a olletion of integrated tehniques. Withation-oriented, strutured development the tehniques fous on delivering data ow-entri desriptions of the system, whih are re�ned top-down into more detailed desrip-tions. The models are typially presented as data ow diagrams, logial data struturesand strutured English, or graphial representations of proess dependenies built viathe three ommon imperative onstruts: sequening, seletion and iteration. In data-driven approahes suh as Jakson System Development [62℄, the modelling omponentsare similar but the tehniques guide the developer in building proesses whih reetthe struture of the system's data, suh as �les.



66 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIESOO methodologies enompass tehniques that desribe the problem in terms of ab-strations whih enapsulate their state. The various analytial models will be itera-tively modi�ed through a olletion of tehniques that return an implementable solution.The models delivered inlude:� models of the major lasses and their various assoiations;� the objets that ollaborate to deliver some spei�ed funtionality. These modelsinlude the messages passed between objets; and,� models of lasses with signi�ant state dynamis.Most modern methodologies support both analysis and design. Analysis tehniquesfous on developing models of what is required, where design tehniques deliver how itis ahieved. That is, analytial tehniques tend to be problem-entri, reeting whatis required without imposing any design hoies. The results of the analysis phase aredelivered to the design phase, where tehniques manipulate the models to deliver animplementable, maintainable and potentially reusable design.Eah tehnique will have a lear purpose, expliit input requirements and a set ofdeliverables. For example, use ase analysis whih is an essential analytial tool of usein OOSE [64℄, the Booh Method [15℄, and supported by UML [16℄, is a methodialapproah for gleaning information from the requirements of a system. It produes aolletion of senarios that an be used in the development of lasses and their ollab-orations. CRCs an then be used as a tehnique for analyzing the senarios returnedby use ase analysis. Similarly the entity ation step of Jakson System Development[62℄ aims to produe an abstrat desription of the real world using only interdependentnouns and verbs as the medium. The entity struture step takes suh a desription anddelivers models of the life span of eah entity.Methodologies whih enourage a stritly linear appliation of their tehniques typ-ially have models that are linked to a partiular phase of development. For example,SSADM's e�et orrespondene diagrams, whih identify e�ets aused by a single event,are produed midway through the proess. They are developed from existing logialdata strutures, whih present a stati view of the system's data and interrelationships.Methodologies that enourage iterative and inremental development tend to have a setof models (and assoiated diagrams) that are of use throughout system development.



4.2. WHAT ARE THE BENEFITS OF USING AN ADM? 67Whether pratised iteratively or linearly there are several bene�ts in using an ADMto support software development, whih are desribed in the following setion.4.2 What are the Bene�ts of Using an ADM?Birrell and Ould [12℄ present the following argument in favour of using a methodologyduring software development.Anyone undertaking software development, on no matter what sale, mustbe strongly advised to establish a methodology for that development - oneor more tehniques that, by integration and ontrol, will bring order anddiretion to the prodution proess.We will present the reasons for using an analysis and design methodology as an aidto suessful software development in the following setions. The �rst desribes thebene�ts of using a language whose raison d'être is modelling rather than implementingan eÆient solution.4.2.1 A Language for ModellingEah methodology delivers a olletion of models using the units and relationshipsde�ned in its modelling language. Sine a model is an abstrat representation of adesign or spei�ation, a modelling language is a olletion of elements that support theonstrution of an abstrat desription of a problem or solution. Thus one an produemodels of a system or design that emphasize the major abstrations involved whilstavoiding the unneessary details required in implementation language ode.A modelling language enables development whih reets best pratie in a paradigmrather than best pratie due to the idiosynrasies of a partiular implementation lan-guage. A modelling language thus enables a separation of onerns, by allowing thedesigner the freedom to develop systems beyond the onstraints enfored by the nuanesand eentriities of a partiular programming language. That is, the implementationlanguage does not drive design but instead enables a design to reah fruition. For ex-ample, an FP design may require a type that provides an expliit interfae to potentiallients. Abstrat data types provide an expliit interfae but their implementation isnot uniform aross the languages of the paradigm. For example:



68 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIES� in Haskell one delares a type in a module whih does not export any of the type'sonstrution details;� in SML one an either use the abstype mehanism or delare the type in a stru-ture whih is assoiated with an opaque signature; and,� in Clean one spei�es a type onstrutor without its value onstrutors in thede�nition module assoiated with the implementation module within whih thetype was delared.It is not relevant to a design whether one delares an ADT through a module in-terfae, or whether the implementation language has a keyword to indiate suh aonstrut. For design purposes one simply requires a lear model of an abstrat typeand information regarding what one an do to values of the type.A methodology's modelling language provides aessibility to a system's design tothose who have an interest in the system but are not familiar with the (potential)implementation language(s). A graphial representation of a design typially presents alearer piture than several pages of ode, and most modelling languages support severalorthogonal views of the same system.In the following setion we desribe how a methodology delivers an integrated set oftehniques that deliver models using the elements of the modelling language.4.2.2 Development Guidane Provided by a Set of TehniquesAn ADM an aid the development of large systems by providing a olletion of integratedtehniques that guide and drive the development proess. There are parallels here withthe use of operational researh (OR) tehniques to aid business deisions. OR tehniquesenourage the user to look at a problem at a level of abstration that would not otherwisebe ahieved. They also o�er a set of well-de�ned steps that enable the user to break theproblem down into understandable piees, and then to put them bak together againin the most e�etive way. ADMs mimi this proess. They annot guarantee the bestdesign, but they an improve one's hanes of ahieving an e�etive and aeptabledesign.One of ourse must be areful not to make any false laims. There is no statistialevidene that a partiular methodology outperforms others, or that methodology use



4.2. WHAT ARE THE BENEFITS OF USING AN ADM? 69has signi�antly improved performane. Suh researh is diÆult to perform for manyreasons inluding problem onsisteny, osts of failure and so on. However, modellingproesses are used in other �elds with evident suess and there is no obvious reason todispute their transferability to software development.Eah ADM provides a template for development built on a olletion of tehniques.How stritly one adheres to the template will depend on the type of problem and one'sfamiliarity with the problem domain. The olletion typially inludes:� tehniques for disovering the essential data and funtionality requirements in theproblem and for representing them using elements of the modelling language;� tehniques for analysing the data and funtional requirements and modelling themin terms of ollaborating elements;� tehniques for dividing the system into manageable units (omponents) whih anbe developed independently;� tehniques for desribing the system in terms of its major omponents and theirinterations; and,� tehniques for translating models of the problem into models of the solution.Thus beyond the support for disovering the required data and proedures, methodsor funtions, most modern ADM's also inlude tehniques for developing large systemsthrough giving guidane on how to divide a system into sensible omponents. Thisdivision is normally direted through one or more riterion for modular development.The modelling language of eah ADM will provide elements that present the modulararhiteture of a system, one of several system insights or views that an be desribed.4.2.3 System Viewer and Complexity ManagerAll ADMs support several views of a system both during development and upon om-pletion. Where an implementation language presents one view of the system based onthe syntax of the language, ADMs provide some or all of the following:� a stati view whih represents the major data elements of the system and theirrelationships;



70 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIES� a funtional view whih desribes system funtionality;� a dynami view whih fouses on the e�ets of events on a system entity; and,� a modular view whih desribes the high-level arhiteture of the system.Thus an ADM is a medium for ommuniating a design in various formats typiallyusing graphial notation. In the objet-oriented paradigm, design patterns [27, 113, 49℄,are beoming an inreasingly popular means of sharing e�etive and reusable designs.A pattern isthe abstration from a onrete form whih keeps reurring in spei� non-arbitrary ontexts. [113℄These abstrat patterns, ould not, and more importantly, should not be presented inany of the many objet-oriented implementation languages. Through graphial repre-sentations using modelling language notation (Gamma et al. use OMT, Objetory andthe Booh Method notation [49℄), aompanied by some ommentary on their develop-ment, one an present a lear piture of a pattern that an be understood by any OOpratitioner.Beyond presenting lear views of a system in development, a methodology will en-ourage the user to produe a thorough olletion of system doumentation.4.2.4 System DoumentationAlthough most modern implementation languages provide mehanisms for aompany-ing ode with some ommentary, this tends to only support a desription of the terminalonstrution of the software. There is no obvious site for a historial desription of de-velopment or non-implementation doumentation.An ADM will support full doumentation of the entities of the system, whih aninlude a development history for a partiular entity or a snapshot of a system oromponent of the system during development.In onlusion, most ADMs provide generi support for system development whihan be ategorised as in the previous setions. However, modelling a system using anymethodology and implementing its design in any language is not advised. Instead oneshould look to analyse a problem, and design and implement a solution using tools of



4.3. PARADIGM-CONSISTENT APPROACH TO DEVELOPMENT 71the same paradigm. We present the reasons for this reommendation in the followingsetion.4.3 Paradigm-Consistent Approah to DevelopmentMost analysis and design methodologies an be lassi�ed by the paradigm they support.The Booh Method [15℄, OMT [120℄, Coad-Yourdon's OOA/OOD [28, 29℄ an all belassi�ed as objet-oriented methodologies. UML [46, 16℄ though not a methodology, isa notation for supporting objet-oriented analysis and design. Similarly, SSADM [41℄and SA/SD [152, 153℄ are strutured development approahes whih naturally supportthe onstruts found within the imperative/strutured paradigm.The paradigm assoiations of eah methodology are not oinidental. Struturedmethodologies were introdued in response to pereived faults in the systems developedusing imperative languages. They enourage a partiular approah to system devel-opment and onstrution through their onentration on data ows, and the stepwisere�nement of system proesses whih are developed using the proedural programmingonstruts, iteration, sequening and seletion. That is, they are fundamentally un-derpinned by imperative onstruts. Objet-oriented methodologies, in ommon withobjet-oriented languages, naturally support objet-oriented development. Althougheah methodology has its own notation and spei� set of tehniques, they eah supportthe development of objet-oriented systems.Coad and Yourdon [29℄ argue thatIt was diÆult to think about strutured programming when the languagesof hoie were assembler and FORTRAN; things beame easier with Pasal,PL/1, and ALGOL. Similarly, it was diÆult to think about oding in anobjet-oriented fashion when the language of hoie was COBOL or plain-vanilla C; it has beome easier with C++ and Smalltalk.Of ourse one an always implement a `paradigm A' design in a `paradigm B' imple-mentation language but not without development osts. Rumbaugh [120℄ laims thatobjet-oriented designs an be implemented in non-objet-oriented languages but theprogrammer will be required to: translate lasses into data strutures, pass arguments



72 CHAPTER 4. ANALYSIS AND DESIGN METHODOLOGIESto methods, alloate storage for objets, implement inheritane in data strutures andso on. Booh [15℄ is more dismissive, arguing thatobjet-oriented analysis and design is fundamentally di�erent than tradi-tional strutured design approahes: it requires a di�erent way of think-ing about deomposition, and it produes software arhitetures that arelargely outside the realm of the strutured design ulture. These di�erenesarise from the fat that strutured design methods build upon struturedprogramming, whereas objet-oriented design builds upon objet-orientedprogramming.A methodology that builds upon funtional programming also requires a di�erentdesign approah, and should be built from the underlying abstrations of funtional pro-gramming. Brooks [20℄ desribes a mismath of paradigms as an example of aidentalomplexity whih adds to the underlying essential omplexity of software development.The degree of essential omplexity is a funtion of the type of problem and familiaritywith the problem domain, and thus annot be avoided. Aidental omplexity an beavoided by adopting a paradigm-onsistent approah from the modelling of requirementsthrough to the design and implementation of a solution.Simply using a ombination of stepwise re�nement, data ow design and a generalmodular approah will ignore the spei� bene�ts of programming in a funtional stylewith a funtional language. Equally so if one models the problem as a olletion ofinterating objets that ommuniate with one another through their interfaes.4.4 SummaryThis hapter has outlined the struture of ADMs and the bene�ts of their appliationwithin a software development projet. Although modelling in itself is a onstrutivepratie, modelling using elements that are familiar to a potential implementation lan-guage enhanes the appliability of its produts. We therefore believe that there arestrong arguments in favour of a funtional ADM that supports the essential features ofthe funtional programming paradigm, and whose language units are aompanied by agraphial representation. In the following hapters we desribe the modelling language



4.4. SUMMARY 73and tehniques of FAD, an analysis and design methodology that supports softwaredevelopment within the funtional programming paradigm.
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Chapter 5
FAD Modelling Language
In the previous hapter we outlined the bene�ts of using analysis and design method-ologies (ADMs) as aids to software development. In addition we argued that the bestresults are ahieved when the ADM and implementation language support developmentwithin the same paradigm. That is, one an argue at length regarding whih paradigmprovides the best support for software development, but one ahieves the most natural,eÆient and e�etive development pakage when one remains within a single paradigmfrom problem desription through to implementation and delivery.Chapters 2 and 3 desribed and ontrasted the objet-oriented and funtional pro-gramming paradigms. Although they have their similarities there are learly signi�antdi�erenes. These di�erenes impat on the software designs of eah paradigm anda ost is inurred if one attempts to swith paradigms between any phases of develop-ment. The objet-oriented and strutured paradigms have several ADMs whih supporta omplete development pakage within their paradigm. We believe that the funtionalprogramming paradigm requires methodologies to support its software development ap-proah.In Chapter 3 the major building bloks and glue of the funtional programmingparadigm were desribed. In this hapter we desribe the modelling language of FAD(Funtional Analysis and Design). We believe that any paradigm-spei� ADM shouldsupport, in a natural manner, software development within the paradigm with minimalnotational overhead. In addition, a paradigm-spei� ADM should not reinvent or over-onstrain the software development proess but should reet and enourage ommon75



76 CHAPTER 5. FAD MODELLING LANGUAGEpratie. This requires a modelling language that supports the major building bloksand glue of the paradigm with a minimal olletion of graphial notations for pitori-ally representing analytial and design models. The methodology should support thereording and storing of entities in a manner that eases use and maximises disovery ofpotentially reusable entities.FAD is both a modelling language and a set of tehniques to support software devel-opment within the funtional programming paradigm. FAD should be pratised withinan iterative and inremental development proess. This is failitated by adopting asingle set of notations and diagrams that are appliable throughout development. Thatis, one does not use partiular types of diagram and entity representations at partiularstages of development and then onvert them to new diagram types and representationsappliable to later stages as is the ase with most strutured methodologies suh asSSADM. Any FAD diagram and its onstituent notation is of use throughout the de-velopment proess but will be iteratively updated in step with iterations in the systemdesign. FAD diagrams inlude:� funtion dependeny diagrams whih present a funtion with those it uses in itsimplementation;� type dependeny diagram whih provides the same servie for types; and,� module dependeny diagrams whih present views of the module arhiteture ofthe system.FAD supports development in any funtional language and not in a spei� language.It therefore needs to support onstruts that are ommon to all funtional languages,or shared by just a few. In Setion 5.2 we desribe the basi units of the language.We divide them into the miro units: types, funtions and permissive signatures, andthe maro units: exlusive signatures, modules, subsystems, projets, and �les. Weprovide both informal de�nitions of the units and their FAD notation. For eah unit weprovide a brief quali�ation for the hosen notation. Eah type of unit has an assoiatedUnit Desription Doument in whih one an reord the unit's name, version and otherrelevant information. These desription douments provide an historial reord of thedevelopment of a partiular omponent of a system.



5.1. CASE STUDY 77In Setion 5.4 the inter-unit relationships supported by FAD are desribed. Theseinlude: the type use relationship, funtion use relationship and assoiations betweentypes and permissive signatures, modules and exlusive signatures, and subsystems andexlusive signatures. One again the informal de�nition is aompanied by a desriptionof the FAD notation whih inludes some ommentary on the hoie of notation. Indesribing the units and relationships of the modelling language we present the diagramsof FAD that a�ord various views of a system.In Chapter 6, we demonstrate how ommon funtional onstruts are de�ned andrepresented in FAD. In the following setion we present a ase study that will be used toillustrate elements of FAD's modelling language and the appliation of its tehniques.5.1 Case StudyThe ase study was hosen beause it is both small enough to omprehend fully and largeenough to illustrate the various omponents of FAD. A larger ase study - a CASE toolonsisteny heker - is presented in the appendix to this thesis. A system is requiredto automate the prodution of various football league related data. The system storesurrent data on the league's football teams, the teams' players, historial data on leaguetables, results, and soring tables. New results are entered by a data entry lerk and,upon request, a urrent version of the league table or soring table is generated.In brief, the system must support the following funtional requirements:� the inputting of football results (for as many leagues as required);� the prodution of league tables;� the prodution of soring tables whih present the top sorers in the league, theirteam, and the number of goals sored;� the prodution of attendane tables whih present teams in order of average homeattendanes;� the transfer of players between teams;� the updating of team data due to reent results; and,
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Figure 7: Miro Unit Guide� the updating of player data due to reent results where the data inlude appear-anes and goals sored.No non-funtional requirements are stated and the system should be developed sothat if new funtionality is required, it an be introdued at a minimum ost.5.2 FAD Miro UnitsThe basi miro units of FAD are types, funtions and permissive signatures. Wedesribe eah in turn and then desribe how they an be ombined to support ommononstruts of the funtional paradigm. Figure 7 presents a `Miro Unit Guide' whihsummarizes the miro units, their relationships and diagrams.The diagrams built using these units and relationships have a (informally) delaredsyntax and semantis. These are desribed in the following setions and in Setions 5.3



5.2. FAD MICRO UNITS 79and Setion 5.4 where we present the maro units and relationships of FAD. Eah unitand relationship is illustrated by an example from the ase study.5.2.1 TypesA type is a olletion of related values whih have some ommon usage. Examplesinlude the type of haraters and the type of Boolean values. A type typially hasa mnemoni name that reets the harateristis of its values. Modern funtionallanguages support type aliases whih assign a name to a type whih is appropriate in agiven ontext. In FAD eah type has a unique name whih begins with a lower ase letter.In Setion 3.1.2 we emphasised the importane of types to software development withinthe funtional programming paradigm. They provide a spei�ation of a program'sentities, and enable the early detetion of errors.Every funtional language (and other typed languages) provides a set of built-in basitypes whose values are primitive to the language. Most languages provide haraters,Booleans and various olletions of numerial values as basi types. They are typiallyaompanied by built-in funtions and operators de�ned over the types. These normallyinlude the arithmeti, relational and logial operators.The languages also support built-in and user-de�ned omposite types whose valuesare onstruted using values of existing types. Tuples and lists are usually providedby a funtional programming language. In ommon with basi types the languagesprovide funtions and operators de�ned over these built-in omposite types, suh as listonstrution operators, and pair seletion funtions.Types an be onstruted by users through the multi-purpose algebrai type meh-anism using a unique type onstrutor. The values of an algebrai type are onstrutedby using one of the value onstrutors delared with the type. Enumerated types, sumtypes, produt types, parameterised types and reursive types an all be delared usingthe same mehanism as desribed in Setion 3.1.5.Abstrat data types, whih provide a mehanism for modular development throughinformation hiding, are supported by all modern funtional languages. Reently therehas been muh interest in existential types [74℄ as a mehanism for implementing �rst-lass abstrat data types. FAD's support for these and for tuple types, reord types,algebrai types and abstrat data types are left to Setions 6.10, 6.1, 6.2, 6.3 and 6.4
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Type Desription Doument FootballConstrutor Name: teamsVersion: 19990620:0Kind: *Module:Types Used: date, team, olletionParameters:Permissive sigs.: TEAMSCONDesription:The type of football teams. Eah team must be aessible andtheir information updateable. The date represents the latestupdate to the teams' data. Eah team will inlude data on itsresults, attendanes and other team-related information.Figure 8: Type Desription Doument for the Type teamsrespetively.The details of a type are desribed in a Type Desription Doument (TDD) asillustrated by the TDD for the type teams presented in Figure 8. Eah type mayhave several TDDs illustrating the iterative development of the type. However eahtype will have a TDD whih represents the urrent form of the type whih will be thehronologially most reent version determined by the version number.Eah type desription doument presents a desription of a type. To the right ofthe header is the projet within whih the entity is de�ned. The list in the body of thedoument presents the following information:� the name of the type onstrutor of the type whih begins with a lower ase letter;� the version of the type denoted by a date:natural number value to aommodatemultiple versions in a single day;� the kind of the type onstrutor. Type onstrutors with the kind * are simply



5.2. FAD MICRO UNITS 81types;� the module in whih the type is delared. Every miro unit is delared in a uniqueand identi�ed module. The organization of modules and their entities is a designdeision and therefore the ontaining module will typially be reorded in a laterversion of a TDD;� the types used in onstruting values of the type;� the type variables and assoiated permissive signatures. This entry will be blankfor any type whose type onstrutor is of kind *. We write PERMSIG a for eahtype/permissive signature ontrat assoiation. This assoiation is desribed inSetion 5.4.4. A type variable is written as a single lower ase letter. This namehas no intrinsi value and if there are no assoiated permissive signatures then noentry will be reorded;� the permissive signatures instantiated by the type (see Setion 5.4.4). The pa-rameter (or a parameter for permissive signatures with more than one parameter)of the permissive signature must have the same kind as the type onstrutor ofthe type. Eah algebrai type instantiates a onstrutor signature as desribed inSetion 6.3;� a textual desription of the type.In summary, a type desription doument is a host for information relating to thedevelopment of a type. As a type is iteratively developed the doument will be updatedto reet design deisions. The doument is stored in FAD's data ditionary as desribedin Chapter 8.FAD NotationTypes and values of types are represented in FAD by similar notation. A type isrepresented in FAD by a retangle (or box) enlosing the type's name as illustrated inFigure 9. This notation was hosen beause a type is a olletion or box of values withsome ommon harateristis. Alternatively, one an view types as a mehanism forpartitioning the universe of values (ignoring some overloading of numeri literals), andpartitions are often represented as retangular segments of a set.
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Figure 9: A Type, Parameter of a Type, and a Named Value of a TypeIf the type is onstruted through the appliation of a non-nullary type onstrutorto one or more types or is a parameterised type, the name of the type must inludethe type onstrutor and the name of the parameters. Typially the onstrutor namewill pre�x the parameter names. A type variable is simply represented by a lower aseletter.One an also add a name to a partiular use of a type to make expliit how a type'svalue is being used in a partiular ontext. That is, parameter names or type valuesin the form of a valid expression or literal, or names assoiated with a value an alsobe inluded in a type retangle. A parameter is written parameterName:typeName orsimply parameterName if the type is lear due to the ontext, and a value an similarlypre�x a type name or appear on its own. The retangle enlosing a value of a type hasa thik solid perimeter. This notation di�erentiates a type from a value of a type butwith minimal added notational overload. One an use this value notation to representpartial appliation. This is desribed along with FAD's support for the urried formof multiple argument funtions in Setion 5.4.3. Hene one is able to reuse the samenotation for a type, a type variable, a non-nullary type onstrutor, a named parameterof a type and a value of a type or a name assoiated with a value. A funtional typehas its own notation as desribed in the following setion.5.2.2 FuntionsThe major building bloks of the funtional paradigm are pure funtions that mapvalues from a single type (argument type) or multiple argument types, to a value ofanother type (result type). Funtions are �rst-lass itizens in funtional languagesand therefore an be arguments of other funtions, be returned by funtions and beomponents in data strutures. Funtions an be reated statially or dynamially



5.2. FAD MICRO UNITS 83through the appliation of a urried funtion to an inomplete set of arguments knownas partial appliationFAD supports all forms of funtion use inluding funtions that are de�ned usingsubsidiary funtions (see Setion 5.4.9), funtional arguments (see Setion 6.9) andfuntions with multiple arguments in the form of urried funtions (see Setion 5.4.3).The details of eah funtion are desribed in a Funtion Desription Doument(FDD) whih in ommon with TDDs will be developed iteratively. We present in Figure10 the FDD for getData, the higher-order polymorphi funtion whih takes a funtionalargument and a value of the type teams, whih is a olletion of values of type team,and returns the result of applying the funtion to eah team value. The return type isolletion a where the type olletion a is used by the type teams.In ommon with TDDs, the olletion of a funtion's FDDs desribe the iterativedevelopment of funtions. That is, the olletion of douments presents a reord of de-sign deisions for a partiular funtion. These are of potential use in future maintenaneof the system, in supporting reusable designs and to allow rollbak within an iterativedesign framework.The projet within whih the funtion is de�ned is presented to the right of thedoument's header. The list in the body of the doument presents:� the funtion's name whih begins with a lower ase letter. An operator name ispresented in pre�x form enlosed in parenthesis. Funtion names are not nees-sarily unique sine mnemoni identi�ers are enouraged in order to support thedisovery of abstrations suh as polymorphi funtions and overloading. Howeverno two funtions with the same type spei�ation will have the same name. Thisalso prohibits the o-existene of a polymorphi funtion and its monomorphiinstantiations. In Chapter 7 we desribe a tehnique for developing polymorphifuntions that inludes the removal of its monomorphi ounterparts. Funtionswith the same name an be disriminated by qualifying their name with the nameof the module in whih they are de�ned. For example, the funtion getData anbe quali�ed as TeamsMod.getData. This naming onvention an be applied to anymodule entities;� the version of the FDD represented by a date:natural number value;



84 CHAPTER 5. FAD MODELLING LANGUAGE� the module within whih the funtion is delared (see Setion 5.3.1). During theearly stages of development one may reord a subsystem as host. This applies tomiro units of any kind;� the funtion's arity. This will be used as a key for storing the funtion in the dataditionary as desribed in Chapter 8;� the funtion's type spei�ation written using the funtion type operator -> ;� the required type/permissive signature assoiations. This information will helpguide development of the funtion and its assoiated types. For polymorphifuntions, the permissive signatures provide onstraints on the types that an in-stantiate the assoiated type variable. Type/permissive signature ontrat asso-iations are written PERMSIG a where a is the name assigned to the type variable.For multiple parameter signatures the signature name is followed by the requi-site number of type variables. See Setion 5.2.3 for a desription of permissivesignatures, and Setion 5.4.4 for an explanation of the type/permissive signatureassoiation. This information provides another means of seleting funtions forpotential (re)use;� the required type/signature instantiation assoiations. These are written as abovereplaing the variable name with the type name. For example, PERMSIG typeName.Many funtions will initially be developed as monomorphi funtions. Any assoi-ated permissive signatures will provide information regarding the behaviour of thefuntion. They will also provide onstraints on the implementation of any asso-iated types, and suggest potential funtion overloading when implementing in alanguage with suh support. A type or used type may be required to instantiate apartiular signature. This information aids the disovery of potential polymorphiand overloaded funtions as desribed in Setion 7.3.2;� the non-argument funtions used in the de�nition of the funtion. Eah funtionis presented with its type spei�ation to distinguish overloaded funtion names.A olon separates a funtion name from its type. A funtion with onditionalbehaviour will not neessarily use all the funtions. The funtion's dependenydiagram(s) will larify the dependenies as desribed in Setion 7.2.2;
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Funtion Desription Doument FootballName: getDataVersion: 19980810:1Module: TeamsModArity: 2Type Spei�ation: (team -> a) -> teams -> olletion aContrat Assoia-tion:Instantiations: CONTAINER olletionFuntions Used:Desription:This funtion retrieves data from a olletion of teamsthrough the appliation of a data-getting funtion to eahteam in the olletion. The type teams is required to support`mapping' behaviour.Figure 10: Funtion Desription Doument for the Funtion getData� a desription of the funtion.The funtion desription doument provides signi�ant information for developinga funtion and storing it in the data ditionary. The funtion's arity and permissivesignature instantiations are used to store and retrieve funtions for potential reuse. Thisapproah is built on that desribed by Park and Ramjisingh [94℄ and An and Park [4℄,and is fully desribed in Chapter 8.FAD NotationA funtion is represented in FAD by a grey retangle or box juxtaposed with its ar-gument types to its right (onsistent with funtion appliation syntax in all modernfuntional languages) and the result type to its left. The funtion retangle is largerthan the type retangles. The grey box notation is motivated by the idea of a `blak
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Figure 11: Funtion Representationbox' view of a funtion where one is only interested in the mapping between a funtion'sinputs and outputs. Thus, one presents the type(s) of the input values and the type ofthe output value linked by a box whose inner details are not visible. The type boxesare external to the funtion box sine it: onforms to the juxtaposition-based syntaxbetween a funtion and its arguments found in most funtional languages; it avoidspotentially messy nested notation for the representation of permissive signature/typeassoiations as desribed in Setion 5.4.4; and, it simpli�es the representation of fun-tions with funtional arguments or results.A funtion name is written inside the shaded box, as is a funtional parameter nameif required. If a funtion has multiple arguments then its �rst argument appears next tothe funtion retangle, and eah further argument appears to the right of eah existingargument.We illustrate FAD's funtion notation in Figure 11 where we present the FAD rep-resentation of the urried funtion getData. whih takes two arguments. The �rstargument is of the funtion type team -> a. A funtion type is represented as a fun-tion with no name in the funtion box. When used as an argument or result type of afuntion it is enlosed in a type box.5.2.3 Permissive SignaturesThe development of funtions and types requires as muh information as possible. Afuntion's development is guided by its type and required behaviour, and a type's devel-opment by the data and behaviour it needs to support. Permissive signatures providea mehanism for speifying behavioural requirements.Before desribing permissive signatures we present an example whih motivates theirintrodution and appliation. The funtion getPlayer takes a player's name and theolletion of players of type player, and returns the relevant player. The funtion willtest eah player in the olletion against the inputted name until a math is ahieved.



5.2. FAD MICRO UNITS 87If no math is reahed an exeptional value is returned. The funtion therefore requiresa test of equality of player names and needs to hek eah player in turn. These be-havioural requirements an be made expliit through assoiating permissive signatureswith the relevant type or type onstrutor. We assoiate the signature EQ, whih deliv-ers an equality testing funtion, with the type of players' names, pName. In addition,we assoiate the permissive signature MAP that spei�es mapping behaviour, with thetype olletion a whih is used by the type players.A permissive signature delares operations that implement the behaviour indiatedby the name of the signature. The operations are spei�ed in terms of the parameter(s)of the signature. That is, a signature will have one or more parameters that are boundto the type onstrutors of the types that instantiate the signature. For example, theHaskell type lasses Eq and Ord an be modelled in FAD as permissive signatures whoseoperations deliver equality and ordering behaviour. They are instantiated, for example,by the various numeri types.Eah entity may only be spei�ed in a single permissive signature but an be reusedin another signature through inheritane. Signature inheritane is desribed in Setion5.4.7. That is, sine (==) is spei�ed in the permissive signature EQ it annot appear inany other permissive signature exept through inheritane. Eah permissive signaturewill be assoiated with one or more types that will instantiate the signature (see Setion5.4.4 for details on how this is ahieved) suh as the type Int and Char whih instantiatethe Haskell lasses presented above. A type instantiates a permissive signature whenbindings exist for eah entity spei�ed in the signature de�ned over the type.A permissive signature provides a ontrat of usability for any type (or types whenthere is more than one parameter) whih instantiate the signature. Eah parameter willhave an expliit kind where a kind identi�es olletions of type onstrutors in the samemanner that types desribe olletions of values [66℄.Eah algebrai type instantiates at least one permissive signature whih we all itsonstrutor signature. In most ases the signature will have a single parameter thatis bound to the instantiating type's onstrutor. Sine most funtional languages donot allow reuse of a type's value onstrutors, onstrutor signatures will generally beinstantiated by a single type. That is, there will typially be a 1-1 orrespondenebetween onstrutor signatures and algebrai types. The operations of a onstrutor
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Figure 12: Construtor Signaturesignature are the value onstrutors of an instantiating type. This is illustrated inFigure 12 where the onstrutor signature of the Haskell type Maybe is presented. Thetype has two onstrutors, Just whih takes a value of any type a and returns a valueof type Maybe a and Nothing whih is a value of the type Maybe a.The details of eah signature are desribed in a Permissive Signature DesriptionDoument (PSDD) as illustrated by the PSDD for EQ whih is equivalent to the Haskelllass Eq. This PSDD is presented in Figure 13. In FAD, a name is assoiated with atype spei�ation by writing the name followed by a olon and then the type.The projet within whih the signature is de�ned is presented to the right of theheader. The list in the body of the doument presents:� the signature's unique name whih is written in upper-ase letters;� the version of the signature;� the module in whih the signature is delared;� the signature's parameters and their kind. Although the parameter name is notimportant it must not lash with any type variable names that are not mathedwith the parameter. For example, a signature whose parameter is of kind * ->*, will possible speify operations over at least two type variables. One of kind *-> * will use the parameter name and the other of kind * must have a di�erentname;
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Permissive Signature Desription Doument FootballName: EQVersion: 19990317:1Module:Parameter(s): a : *Operations: (==): a -> a -> bool(with type spes.) (/=): a -> a -> boolInherited Signature(s):Desription:This signature spei�es the ability to test for equalityover an instantiating type.Figure 13: Permissive Signature Desription Doument for EQ� the signature's operations and type spei�ations. The spei�ations are writtenusing the name of the parameter(s);� the signature(s) from whih the signature has inherited operations;� a desription of the signature.Permissive signatures not only present the names of operations de�ned over a typebut also the types of the operations. This is important development information sineone wants to know not only what is available but how to use it. However, the informationis purely syntati and provides no semanti guarantee. That is, one an guarantee thata named funtion exists over a ertain type, but one annot guarantee that the behaviourimplied is atually delivered. This would require a formal approah to development thatis beyond the sope of FAD.FAD NotationA signature is represented in FAD by a double-edged retangle as shown in Figure 14.The notation was hosen sine a permissive signature is in essene an outerfae to a
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Figure 14: A Permissive signaturetype (as opposed to an interfae) and the notation mimis suh a wrapping around atype. That is, a type with an extra layer of information. It enloses the signature'sname whih may be followed by the name of the instantiating type or type onstrutor,or a type variable. If the instantiating type is lear by the ontext of its use, then thetype name an be left out. Setion 5.4.4 desribes type/signature assoiations.Any operations of the signature may be added below the signature's name (eithergraphially or using the textual syntax name : type), separated by a horizontal line.One may elide a signature if it has a large number of operations or if the operations arepresented elsewhere suh as an inherited signature.That ompletes the desription of FAD's miro units. In order to model large systemsone needs to be able to desribe modular strutures and their relationships. ThusFAD's modelling language inludes a olletion of maro units whih are desribed inthe following setion.5.3 FAD Maro UnitsFAD's miro units and their various relationships deliver models of the funtionality anddata strutures required of a system. The relationships are desribed in Setion 5.4.They do not provide a means of desribing the high level modular struture of a system.For this we require the maro units of FAD, whih are modules, subsystems, exlusivesignatures, projets, and �les. In the following setions we present desriptions of eahof these units aompanied by their graphial notation. The various maro unit andmaro/miro unit relationships are desribed in Setion 5.4. Figure 15 presents a `Maro
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Figure 15: Maro Unit GuideUnit Guide' whih summarizes the maro units, their relationships and diagrams.A projet is the software system being developed. That is, it is the olletion of mirounits gathered in some hierarhial arhiteture to deliver the funtionality required ofan automated system. A projet an be partitioned into a olletion of linked subsystems(subsystem arhiteture), eah of whih an be further partitioned into several moduleswith various inter-dependenies (module arhiteture). That is, subsystems partitiona projet, whih are themselves partitioned by modules. Eah module is the host ofthe de�nitions of various miro units. Eah subsystem an be used in other projetsindependently of the projet for whih it was originally developed. This is also trueof modules. Therefore, there are several levels of reusability within a projet. Theprojet itself an beome a omponent of a new projet. A subsystem an be used



92 CHAPTER 5. FAD MODELLING LANGUAGEin the development of a new projet, and modules an be used independently in thedevelopment of subsystems of new projets.5.3.1 ModuleA module is an identi�ed olletion of miro units. In FAD, a projet is partitioned intoa olletion of subsystems (whih are desribed in the following setion) and these arefurther partitioned into a olletion of modules. Every type, funtion and permissivesignature is delared in a module, whih provides a medium for the development of aohesive unit and in assoiation with exlusive signatures, support for enapsulationand a mehanism for type abstration. Every entity delared in a module is visible fromevery other entity delared in the same module. Entities delared in module A an useentities delared in module B if there is a module use relationship from A to B, andthe required entity is spei�ed in the mediating exlusive signature. The module userelationship is desribed in Setion 5.4.10, and exlusive signatures in Setion 5.3.3. Ifthe two entities are delared in modules of di�erent subsystems then the subsystemsmust be assoiated through a subsystem use relationship as desribed in Setion 5.4.11.Thus FAD supports modular program development based on information hidingthrough the use of modules, subsystems and their assoiated exlusive signatures. Themethodology enourages the development of an arhiteture that maximises the ohesionof its units and minimises the oupling between the units. This is fully desribed inChapter 7.All modern funtional programming languages support a modular approah to pro-gram development. Although there is some ommonality in their approahes there arealso some signi�ant di�erenes as desribed in Setion 3.2.3.The details of eah module are desribed in a Module Desription Doument (MDD)as illustrated by the MDD for TeamsMod, the module whih delivers the types andfuntions assoiated with football teams. This MDD is presented in Figure 16.In eah MDD, the projet within whih the module is de�ned is presented to theright of the header. The list in the body of the doument presents:� the module's unique name whih begins with an upper ase letter;� the version of the module;
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Module Desription Doument FootballName: TeamsModVersion: 19990711:1Type(s): teams, mathTeamsPermissive sig(s): TEAMSCON, MATCHTEAMSCONFuntion(s): addResultsToTeams:results -> teams -> teamsaddResultToTeams:result -> teams -> teamsaddTeams: mathTeams -> teams -> teamsseletTeams:result -> teams -> mathTeamsupdatePerfs:mathTeams -> result -> mathTeamsModules used: ResultsMod : RESULTSSIG3Subsystem: FootballSSFile:Desription:This module hosts the type of football teams and its assoiatedfuntions. It also hosts the type whih represent the teams whihplayed in a math. The type whih represents a football team willbe hosted in a separate module to deouple it from the teams type.Figure 16: Module Desription Doument for the Module TeamsMod



94 CHAPTER 5. FAD MODELLING LANGUAGE

Figure 17: The Module TeamsMod� the types, permissive signatures and funtions delared in the module. Eahfuntion is aompanied by its type;� the modules used by the module. In eah ase the module name is delared withthe assoiated exlusive signature whih mediates its use. The name of the moduleand signature are separated by a olon;� the subsystem within whih the module is delared;� the �le in whih the module is implemented;� a desription of the module.In ommon with FDDs and TDDs, the desription doument for a module will beupdated to reord iterative developments of the module.FAD NotationA module is represented in FAD by a semi-irular ended retangle enlosing the mod-ule's name. Sine a module supports enapsulation whih an be de�ned as in a apsule,we have hosen a apsule-like notation. One an enlose any subset of the module's en-tities represented graphially or textually. The module TeamsMod is presented with oneof its funtions in Figure 17.5.3.2 SubsystemA subsystem is a olletion of modules and exlusive signatures. That is, eah moduleis delared in a subsystem along with any assoiated exlusive signatures. The rulesregarding module/exlusive signature assoiations are desribed in Setion 5.4.5. Eah



5.3. FAD MACRO UNITS 95subsystem should be developed by a single development unit. Partitioning a projet intoa olletion of subsystems supports an inremental approah to software developmentand provides a robust �ling system for system entities. That is, eah entity will bede�ned in a named module, whih itself is part of a named subsystem.An entity EA of a module A may use an entity EB of module B delared inthe same subsystem, if there exists a module use relationship from A to B whih ismediated by an exlusive signature in whih EB is spei�ed. If however, modules Aand B are delared in the subsystems SA and SB then there must be a subsystemuse relationship from SA to SB whih is mediated by an exlusive signature in whihEB is spei�ed. We desribe the subsystem/exlusive signature assoiation in Setion5.4.6 and the subsystem use relationship in Setion 5.4.11. Exlusive signatures are animportant developmental aid in that they support the priniple of least ommitment,where one an delay detailed design until absolutely neessary. The rôle of exlusivesignatures in development using the FAD methodology is desribed in Chapter 7.Subsystems are not assigned a unique onstrut by any funtional programminglanguages. However, they an be realised through the modular system of eah language.For example, in SML a struture (whih is a olletion of delarations) an inlude otherstrutures. Similarly one an use Haskell's module import mehanism to mimi theassignment of several modules to a single module, whih then ontrols aess to all themodules through a single interfae. Thus a subsystem-based design an be supportedby modern funtional languages.The details of eah subsystem are desribed in a Subsystem Desription Doument(SSDD) as illustrated by the SSDD for the subsystem FootballSS, the subsystem whihwill deliver the problem domain funtionality for the football system. That is, it willdeliver through a olletion of modules, the essential types spei� to the football system,teams, results and so on, and the funtions whih implement the funtionality requiredof any football league. This SSDD is presented in Figure 18.In eah SSDD, the projet within whih the subsystem is delared is presented tothe right of the header. The list in the body of the doument presents:� the subsystem's unique name whih begins with an upper-ase letter and mustnot lash with any module or existing subsystem name;
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Subsystem Desription Doument FootballName: FootballSSVersion: 19990821:0Module(s): TeamsMod : TEAMSSIGPlayersMod : PLAYERSSIGResultsMod : RESULTSMODSIG1LeagueTableMod : LTSIGTeamModResultModPlayerModExlusive Sigs: RESULTSSIG2, TEAMSIGPLAYERSIG, RESULTSIGSubsystems Used: GeneralSS : GENERALSIGDeveloped by:Desription:This subsystem hosts the modules whih are essential to theproessing of football results. That is, the modules host thefootball related types and funtions. The subsystem alsoinludes the exlusive signatures whih provide the interfaesto its modules.Figure 18: Subsystem Desription Doument for the Subsystem FootballSS



5.3. FAD MACRO UNITS 97� the version of the subsystem;� the modules delared in the subsystem. Those modules that are assoiated withthe subsystem via a partition relationship (desribed in Setion 5.4.14) are pre-sented with the exlusive signature whih mediates the relationship. The exlusivesignature makes expliit the module's entities that an be used by a lient fromanother subsystem. That is, these are the only entities that an be spei�ed inany exlusive signature assoiated with the subsystem. Modules whih are onlyused by other modules of the subsystem are presented without an aompanyingsignature;� the other exlusive signatures delared in the subsystem. These signatures areused to mediate interation between the modules of the subsystem;� the subsystem(s) used by the subsystem and the assoiated exlusive signatureswhih mediate aess to their entities;� a referene to the programming unit whih is responsible for the development ofthe subsystem;� a desription of the subsystem.The subsystem FootballSS hosts seven modules, and is dependent on a single sub-system GeneralSS that provides types and funtions that are of general use, suh asthose typially delared in a language's standard environment.FAD NotationA subsystem is represented in FAD by a semi-ellipse enlosing the subsystem's name.This notation was hosen sine a projet is represented as an ellipse, and a subsystem isa part of a projet. The modules delared in the subsystem an be presented textuallybelow a horizontal line whih delimits them from the subsystem's name. Alternativelyone an present hosted modules through the partition relationship desribed in Setion5.4.14. We present the graphial notation for a subsystem in Figure 19.
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Figure 19: A Basi Subsystem5.3.3 Exlusive SignaturesThe development of any large system requires the division of work among several devel-opment units. How one divides the work and the information provided to eah devel-opment team, is essential to suessful development. In FAD the unit of subdivision isthe subsystem whih was desribed in the previous setion. The information regardingwhat is required of a subsystem, and how eah an interat with other subsystems, isprovided by exlusive signatures. They are also used to guide the development of mod-ules. That is, during software development exlusive signatures play an essential rôlein speifying system requirements, and later in designing an implementable solution.Full details of the methodology and the tehniques that develop exlusive signatures aregiven in Chapter 7.An exlusive signature spei�es a olletion of miro units. These units are the onlyunits visible to a lient delared in another maro unit. A module or subsystem anonly be used via an assoiated exlusive signature whih delares the entities that areavailable for use. That is, an exlusive signature mediates aess to an assoiated item.Module use and subsystem use are desribed in Setions 5.4.10 and 5.4.11 respetively.Eah signature entity is aompanied by its type spei�ation. An exlusive sig-nature an be assoiated with any module or subsystem whih provides a binding forall of the signature's entities. This does not imply that the bindings are hosted bythe assoiated maro unit, but that the unit is visible from the assoiated maro unit.Visibility of one miro unit from another is de�ned in Setion 5.4.1. Module and sub-system assoiations with exlusive signatures are desribed in Setions 5.4.5 and 5.4.6respetively.Standard ML signatures, Miranda abstrat type signatures, Clean de�nition modulesand Haskell module export and import lists are thus supported through FAD's exlusive



5.3. FAD MACRO UNITS 99signatures. Some reent researh has foused on using parameterised signatures tosupport a type-theoreti framework for modular programming [69℄. FAD however hasa lear distintion between the semantis of a (parameterised) permissive signature andthat of a (non-parameterised) exlusive signature. A permissive signature presents theminimal funtionality supported by its assoiated type(s), where an exlusive signaturemediates aess to the entities of an assoiated item. That is, a permissive signaturespei�es at least this where an exlusive signature spei�es only this.The implementation details regarding signature delaration and appliation arelanguage-spei� and are not a design issue. FAD provides a lear desription of adesign deision without imposing a partiular implementation approah. The FAD de-sription may present more information than that provided by an implementation lan-guage. Haskell, for example, presents (in a module's export or import list) the names ofaessible entities without any type information (although this may be added to Haskell2). In ontrast, ML signatures and Clean de�nition modules provide type informationalongside the entity names.The details of eah exlusive signature are presented in an Exlusive Signature De-sription Doument (ESDD) as illustrated by the ESDD for TEAMSSIG, an interfae tothe module in whih the type teams and assoiated types and funtions are de�ned.This is presented in Figure 20.The projet within whih the signature is de�ned is presented to the right of theheader. The list in the body of the doument presents:� the unique name of the signature written in upper-ase letters. The name mustnot lash with any (permissive or exlusive) existing signature name;� the version of the signature;� the subsystem in whih the signature is delared. If the signature is assoiatedwith a subsystem then this will appear blank sine it is delared in the projetand not any of its subsystems;� the types spei�ed in the signature. If the type's onstrutor signature is notspei�ed in the signature then the type is used as an abstrat type. Setion 6.4provides full details of FAD's support for abstrat types;
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Exlusive Signature Desription Doument FootballName: TEAMSSIGVersion: 19990827:0Subsystem: FootballSSType(s): teamsPermissive sig(s):Funtion(s): addResultsToTeams:results -> teams -> teamsInherited Sig(s):Desription:This signature provides an interfae to the module TeamsModwhen used by its subsystem.Figure 20: Exlusive Signature Desription Doument for TEAMSSIG
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Figure 21: The Exlusive Signature TEAMSSIG� the permissive signatures spei�ed in the signature. Any onstrutor signatureswill appear here;� the funtions spei�ed in the signature with their type spei�ations;� the signatures inherited by this signature. Signature inheritane is desribed inSetion 5.4.7;� a desription of the signature.FAD NotationAn exlusive signature has the same graphial notation as its permissive ounterpartalthough its name will always appear by itself. The notation was hosen sine anexlusive signature ats as an an interfae to an assoiated maro unit and the notationmimis suh a barrier to entry. This is illustrated with the exlusive signature TEAMSSIGpresented in Figure 21.5.3.4 ProjetA system is developed as a projet. A projet is typially partitioned into severalsubsystems. Thus one delares subsystems and their assoiated exlusive signatures ina projet. A projet in no sense owns its subsystems. That is, any olletion of thesubsystems an be used in the development of another projet. The only onstraints onthe use of a subsystem's entities are those imposed by an assoiated exlusive signature.
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Projet Desription DoumentName: FootballSubsystem(s): FootballSS : FOOTBALLSIGUISS : UISIGFileSS : FILESIGParseSS : PARSESIGGeneralSS : GENERALSIGExlusive Sigs:Projets Used:Development Units:Desription:A projet whih implements an automated football resultsproessing system.Figure 22: Projet Desription Doument for the Projet FootballThe details of eah projet are desribed in a Projet Desription Doument (PDD)as illustrated by the PDD for Football, the football system projet. This PDD ispresented in Figure 22.A PDD presents:� the unique name of the projet whih begins with an upper-ase letter and mustnot lash with any names of modules, subsystems or existing projets;� the subsystems delared in the projet. These are presented with the assoiatedexlusive signature whih mediates use of the subsystem's entities. That is, anyother signature assoiated with a subsystem must provide a subset of the spei�-ations delared in this signature;� the other exlusive signatures delared in the projet. These are used to mediateinteration between entities of the projet's subsystems;
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Figure 23: The Projet Football� the other projets used by the projet;� the development units assigned to the projet, and the subsystem(s) for whihthey are responsible;� a brief desription of the projet.FAD NotationA projet is represented in FAD by an ellipse enlosing the projet's name. An ellipsewas hosen sine it is niely represents the global nature of a projet. Below a delimitinghorizontal line one an present the names of the projet's subsystems. Alternativelythese an be linked to the projet using the partition relationship desribed in Setion5.4.14. The graphial representation of the projet Football is illustrated in Figure 23.5.3.5 FileEah projet will be implemented as a olletion of �les. These may inlude standardenvironment �le(s), library �les, data �les and �les in whih the projet's modulesare delared. That is, a �le is a omponent of the system that delivers a part of animplemented projet. Where the subsystem and module arhiteture provides a logialmodel of a system, the olletion of �les and their ollaborations desribe a physial modelof the software whih implements the system. Sine �les are units of implementation,their arhiteture is determined late in any development proess.Every module will be de�ned in a single �le but a �le ould inlude the de�nition ofseveral modules. A subsystem will normally be de�ned through several �les, but every�le will be assoiated with a single subsystem. Every exlusive signature will be de�nedin a single �le although one again several ould be de�ned in the same �le.
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File Desription Doument FootballName: Teams.hsSubsystem: FootballSSModule(s): TeamsModExlusive sig(s): TEAMSSIGData hosted:Files used:Desription:The implementation of the football teams module.Figure 24: File Desription Doument for the File Teams.hsThe details of eah �le are desribed in a File Desription Doument (FIDD) asillustrated in Figure 24 by the FIDD for teams.hs.In eah FIDD the projet being implemented is presented to the right of the header.The list in the body of the doument presents:� the �le's unique name whih will be written in a manner onsistent with theimplementation language;� the subsystem supported by the �le;� the module(s) implemented in the �le;� the exlusive signatures implemented in the �le;� the data hosted by the �le. For example, the urrent reord of the football teams;� the �les used in the implementation of the �le. The �le use relationship is desribedin Setion 5.4.13;� a desription of the �le.Eah modern funtional programming language adopts its own onventions regardingthe assignment of modules to �les. In Haskell eah module must be delared in a separate
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Figure 25: The File Teams.hs�le typially of the same name. The module de�nitions are normally aompanied by anexport list of entities available to potential lients. SML imposes no suh restrition, andthus multiple modules an be delared in a single �le. Clean requires two �les for anymodule whih ontains entities available to other modules, one to host the de�nitionsand the other to delare the entities that are for export. In eah ase the �le namemust math the module name with the �le extension signalling its use. That is, animplementation module �le has the extension il as opposed to dl for a de�nitionmodule �le. Miranda has no language notation for a module, providing its support formodular programming diretly through its �les. A more detailed desription of modularsupport in modern funtional languages is presented in Chapter 3.FAD NotationA �le is represented in FAD as a blakened retangle with a white border. This lookssimilar to a �ling abinet with the names representing eah drawer. The �le name iswritten in the retangle, whih an also inlude the name(s) of the module(s) delaredin the �le. This is illustrated in Figure 25.This onludes the desription of FAD's miro and maro units. How they ollabo-rate is desribed in the following setion.5.4 FAD Relationships and AssoiationsVarious relationships and assoiations between the modelling language's units are sup-ported by FAD. These inlude instantiation of a permissive signature by a type, mod-ule/exlusive signature assoiation and several `use relationships'. In this setion wewill desribe the syntax and semantis of eah relationship. We will illustrate eah withan example from the ase study.



106 CHAPTER 5. FAD MODELLING LANGUAGE5.4.1 Argument of a FuntionSine all data ow is expliit in a pure funtional program, and most modern funtionallanguages are strongly typed, the argument and result type(s) of a funtion play animportant role both in guiding development of software and in reording the harater-istis of a program. Although a funtional programmer is not required to speify thetypes of funtions, as is the ase in statially-typed OO languages, as a developmenttool it is extremely bene�ial and is therefore enouraged by FAD. The relationshipbetween a funtion and its argument (and result types) is a use relationship sine thefuntion uses values of the argument type(s) to reate values of the result type.All argument types must be visible from their assoiated funtion. The visiblityrules are the same for all miro units. That is, miro unit B is visible from miro unitA if and only if preisely one of the following is true:� A and B are hosted by the same module;� B is hosted by a module BMod in the same subsystem as the module AModwhih hosts A. There is either a module use relationship from AMod to BModwith B spei�ed in the mediating exlusive signature, or there is a path fromAMod to BMod via one or more intermediate modules where eah module userelationship linking the modules is mediated by an exlusive signature that spe-i�es B;� B is hosted by a module BMod hosted by a subsystem BS whih is used by thesubsystem whih hosts the module in whih A is delared. B must be spei�ed inthe exlusive signature whih mediates use of the subsystem, and in the exlusivesignature whih mediates the partition relationship between the subsystem BSand BMod or a module whih is linked to BMod via a path as desribed inthe ase above. This is illustrated in Figure 91 where to aid readibility we havelimited the spei�ations presented in the exlusive signatures to those requiredfor the example.The module use relationship, subsystem use relationship, partition relationship,module/exlusive signature assoiation and subsystem/exlusive signature assoiationare desribed in Setions 5.4.10, 5.4.11, 5.4.14, 5.4.5 and 5.4.6 respetively.



5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 107Polymorphi funtions are restrited in their appliation to types that are visible.Constrained polymorphi funtions are dependent on the permissive signature whihdelares the onstraint. They are restrited in their appliation to types that are visibleand instantiate the permissive signature as desribed in Setion 5.4.4. This implies thatsoftware must be designed in suh a way that a funtion has aess, maybe only in anabstrat sense, to its argument type(s).Higher-order funtions with funtional arguments imply a dependeny between thehigher-order funtion and any atual funtional argument. This is desribed in Setion6.9.FAD NotationA funtion argument type is represented in FAD through the juxtaposition of the typeto the right of the funtion as illustrated in Figure 26. The type boxes are externalto the funtion box sine it: onforms to the juxtaposition-based syntax between afuntion and its arguments found in most funtional languages; it avoids potentiallymessy nested notation for the representation of permissive signature/type assoiationsas desribed in Setion 5.4.4; and, it simpli�es the representation of funtions withfuntional arguments.To support modular development, one an annotate the type notation to indiatewhether the funtion and type are delared in the same subsystem or if they are delaredin the same module. The default notation represents an intra-module relationship.That is the funtion and type are delared in the same modules. An inter-subsystemrelationship is indiated by a broken vertial line in the type box at the funtion end ofthe link. An intra-subsytem, inter-module relationship is indiated by a solid vertialline in the type box at the funtion end of the link.The funtion hekResult whih heks the aeptability of a result against existingresults and the olletion of football teams, is delared in the module ResultMod of thesubsystem FootballSS. It takes three arguments. The �rst is of type result whihis delared in the same module. The seond and third of types results and teamsare delared in the modules ResultsMod and TeamsMod of the same subsystem. Theresult type bool is a general-purpose type that is delared in a module of the subsystemGeneralSS.
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Figure 26: A Funtion and its Type with Modular Annotations5.4.2 Result of a FuntionA funtion is dependent both on its argument type(s) and result type. Therefore, thevisibility rules desribed in the previous setion equally apply to a funtion and its resulttype. Hene a funtion has a use relationship with its result type and the same designimpliations apply as those stated in Setion 5.4.1.FAD NotationA result type is represented in FAD through juxtaposing the type box to the left ofits funtion box. That is, a type to the left of a funtion box is the result type of thefuntion. The reasons for this notation are as desribed for an argument type.A funtion/result type assoiation is also illustrated in Figure 26.5.4.3 Curried FuntionsAll modern funtional languages a�ord the developer a hoie of designs for multipleargument funtions. The �rst form, whih is also ommon to non-funtional languages,is to present the arguments in a tuple. The seond form delivers the arguments one ata time and is known as the urried form. The bene�ts of urrying were desribed inSetion 3.1.4.FAD NotationCurried funtions are represented through juxtaposing the �rst type box to the right ofthe funtion box, and then eah further type box to the right of the previous type box.In Figure 27 we present FAD notation for the urried funtion addResultToPlayerswhih in Haskell has the following spei�ation.addResultToPlayers :: Result -> Players -> Players
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Figure 27: The Curried Funtion addResultToPlayers
Figure 28: Partial Appliation of the Funtion seletNew funtions an be statially or dynamially reated through the partial applia-tion of the funtion to an inomplete set of argument values. FAD represents partialappliation by replaing a type with a value of a type as illustrated in Figure 28 wherethe funtion selet is applied to a funtional value seletNameAndData. selet is ahigher-order funtion whih retrieves data from a olletion of values by applying its�rst argument to eah element in its seond argument.5.4.4 Type/Permissive Signature AssoiationA permissive signature provides the minimum funtionality supported by any assoi-ated type. There are two forms of assoiation that FAD supports. The �rst is thatbetween type variables and a permissive signature whih we all the type/permissivesignature ontrat assoiation. A permissive signature restrits the type whih an bebound to the type variable(s) to those that provide bindings for eah of the signature'soperations. These types are linked to the permissive signature through the seond formof assoiation that we all the type/permissive signature instantiation assoiation. Thetype onstrutors of any type(s) that instantiate a permissive signature must have thesame kind as the signature's parameter(s). Type instantiation of a signature impliesthat bindings exist for the operations of the signature de�ned over the type.FAD NotationThe assoiation between a permissive signature and a type (or type variable) is rep-resented through juxtaposing the two. Juxtaposition was hosen sine a permissive
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Figure 29: Type Dependeny Diagram for the Type teams with Signature Instantiationsignature is adding an extra layer of information to a type. This is illustrate in Fig-ure 29 where we present part of the type dependeny diagram for the type teams. Wewill return to this diagram to illustrate other relationships but for now we fous onthe instantiation of the permissive signature ORD by the type date, and the permissivesignature CONTAINER by the type olletion a. In both ases one ould representthe instantiation simply through the signature notation with the entry EQ date andCONTAINER olletion respetively. Here one simply presents the type onstrutorname (without any parameters) after the permissive signature name.When more than one signature is instantiated by a type this an be representedeither by juxtaposing the signatures, or juxtaposing eah signature with the type. Inaddition one an represent multiple instantiations of a single signature by juxtaposingthe signature with eah type as in Figure 30.Thus the types int, bool, har, and float all instantiate the signature EQ.Instantiation of a multiple parameter permissive signature is represented by enlosingthe instantiating types inside a type box juxtaposed with the signature. We illustratethis in Figure 30 with a FAD representation of an example similar to one desribed in[102℄. In [102℄ the example refers to a multiple parameter type lass Colletion withtwo parameters of kind * -> * and *. The seond parameter enables onstraints to beapplied to the type variable whih represents the elements of a olletion type. We havealled the permissive signature SET.One an inlude type/permissive signature assoiations in the desription of a fun-tion. The methodology enourages suh assoiations in a funtion desription sine they
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Figure 30: Type Instantiation of a Signature
Figure 31: Type Construtor/Signature Assoiationprovide information regarding the potential for higher-order and onstrained polymor-phi funtions. They also provide a key for storing a funtion in the data ditionary.FAD's tehniques for developing higher-order, and overloaded or polymorphi funtionsis desribed in Setions 7.3.3 and 7.3.2. The data ditionary is presented in Chapter 8.We illustrate with an example from the ase study. The funtion selet was �rstdesribed in Setion 5.4.3 to illustrate partial appliation. The desription of the fun-tion in Figure 31 has been updated with the assoiation of the permissive signature MAPwith the type olletion a, whih is used by the type teams to onstrut values ofthe type. This indiates that the funtion selet requires `mapping' behaviour overits seond argument. That is, it needs to apply a funtion to eah of the elements ina olletion. The type desription of the type olletion a will need to be updatedaordingly unless the instantiation has already been delared.Funtion overloading is not supported by all modern funtional programming lan-guages. Miranda only provides overloading for the built-in omparison operators andthe funtion show whih onverts a value to its printable form as a string. SML allows



112 CHAPTER 5. FAD MODELLING LANGUAGEfuntion identi�er reuse through module name quali�ation but not funtion overload-ing. Haskell and Clean both provide �rst and higher-order overloading through type andonstrutor lasses [66℄. The lass presents the signature supported by any instantiatingtype. A lass an therefore implement a permissive signature.Although support for funtion overloading is not provided by all funtional lan-guages, the design bene�ts of making expliit the behaviour required by a type, orthe behaviour de�ned over a type is invaluable during development. Permissive signa-tures and their assoiations an be modelled either diretly or indiretly in any modernfuntional language.5.4.5 Module/Exlusive Signature AssoiationIn Setion 5.3.1 we presented a brief overview of the support within funtional program-ming for modular programming. When designing a system it is important to be ableto separate the implementation of a module's entities from its interfae to the outsideworld so that the e�et of any implementation hanges are loalised. FAD supports thisapproah both notationally and in its methodology desribed in the following hapter.FAD provides modules in whih miro units are de�ned, and exlusive signaturesthat speify an interfae to a module. A module/exlusive signature assoiation spei�esthe entities of a module whih are available to a lient module whih is linked to themodule via a module use relationship. Eah entity spei�ed in the signature is eitherdelared in the assoiated module, or in a module whih is onneted to the assoiatedmodule by a path of module use relationships and is spei�ed in eah mediating exlusivesignature. Thus one an assoiate an exlusive signature with any module whih anprovide a binding for eah entity spei�ed in the signature, where the binding may beprovided by entities delared in the module, delared in modules (and spei�ed in theassoiated exlusive signature) used by the module, or delared in a module used bya used module (and spei�ed in the assoiated exlusive signatures) and so on. Themodule use relationship is desribed in Setion 5.4.10.Eah module will be assoiated with at least one exlusive signature, but ouldbe assoiated with several signatures. Eah signature will present an interfae to themodule for a partiular lient. For example, module A may require aess to the typesdelared in module B and require knowledge of how they are onstruted. Module C
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Figure 32: Module/Exlusive Signature Assoiation for the Module ResModsimply requires aess to the types of moduleB and some operations over the types. Theexlusive signature assoiated with module B and used by module A will inlude thetypes of B and their assoiated onstrutor signature, often referred to as a transparentsignature. In ontrast, the signature used by module C inludes the types without theironstrutor signatures (abstrat data types) and the required operations. Multipleinterfaes to a single module are supported by most modern funtional languages.FAD NotationA module/exlusive signature assoiation is represented through juxtaposing an ex-lusive signature with a module. We hose this notation sine an exlusive signatureprovides an interfae to the maro unit to whih it is juxtaposed. In Figure 32 eahentity of the signature RESULTSIG is delared in the module ResultMod. Entities notspei�ed in the signature may also be delared in the module. They are not howevervisible to external lients.Hene FAD supports and enourages the separation of a module de�nition fromits interfae, and enourages the expliit statement of the funtionality availed by amodule through its assoiated signature(s). This allows the developer to desribe theollaboration between modules at the interfae level before fousing on the internalimplementation details of eah module.



114 CHAPTER 5. FAD MODELLING LANGUAGE5.4.6 Subsystem/Exlusive Signature AssoiationIn Setion 5.3.2 we desribed subsystems and how they an be used during the develop-ment of a system. Subsystems provide a mehanism for managing large projets throughhosting a olletion of modules with some ommon purpose. The subsystem/exlusivesignature assoiation mirrors the module/exlusive signature assoiation desribed inSetion 5.4.5.Every entity spei�ed in an exlusive signature assoiated with a subsystem mustalso be spei�ed in the exlusive signature whih mediates use of a ontained module'sentities through a partition relationship, or in an exlusive signature whih mediatesuse of another subsystem via a subsystem use relationship. We desribe the subsystemuse relationship in Setion 5.4.11 and the subsystem/module partition relationship inSetion 5.4.14.During development the design of module interfaes is guided by the usage require-ments of their host subsystem and not vie versa. That is, subsystem use drives thedevelopment of its modules and assoiated signatures. Full details of this proess arepresented in the following hapter.FAD NotationThe subsystem/exlusive signature assoiation in ommon with the module/exlusivesignature assoiation is represented in FAD by the juxtaposition of an exlusive signa-ture with a subsystem. This notation was hosen for the same reasons presented inSetion 5.4.5. This is illustrated in Figure 33 where the user interfae subsystem UISSis assoiated with the exlusive signature UISIG whih is presented in an elided form.The signature delares a olletion of I/O funtions available for use. We desribein Setion 7.2.1 some issues regarding the representation of impure ations within thepurity of FAD.5.4.7 Signature Inheritane RelationshipA signature an adopt the entities spei�ed in another signature, through the transitivesignature inheritane relationship. The only mehanism for respeifying an entity in anew signature is through inheriting its spei�ation from an existing signature.
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Figure 33: Subsystem/Exlusive Signature Assoiation for the Subsystem UISSA signature an only inherit from one or more signatures of the same form. Thatis an exlusive signature an only inherit from other exlusive signatures. Permissivesignatures are restrited to inheritane of other permissive signatures where they havemathing parameter kinds. A signature an only inherit from a signature that is visible.That is, if one wants a signature to inherit from another signature then they must eitherbe delared in the same maro unit (the only possibility for exlusive signatures sinethey do not appear in other interfaes), or are delared in the appropriate interfae(s).Sine a permissive signature may be instantiated by several unrelated types they shouldbe as visible as possible. For example, in the ase study all permissive signatures aredelared in the subsystem GeneralSS and spei�ed in the mediating exlusive signatureGENERALSIG. This subsystem is used by all other subsystems of the projet.In funtional languages that support type and onstrutor lasses, inheritane isa ommon mehanism for onstruting new lasses. For example, in Haskell 98 [100℄several of the built-in lasses suh as Eq and Ord are related through inheritane.FAD NotationThe signature inheritane relationship is represented by an arrow between two signa-tures, pointing towards the bequeathing signature and from the inheriting signature.Parameter names should be supplied when needed for lari�ation. For example, if a
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Figure 34: Signature Inheritane Relationship between EQ and ORDmultiple parameter signature inherits from a single parameter signature, one should usea onsistent name for the related parameters in the two signatures.The graphial notation is the reverse of that adopted in the Haskell 98 Report [100℄.We argue that this is a more natural representation sine the diretion of the arrowreets the fat that an inherited signature is implied by an inheriting signature. Thatis, if a type instantiates a signature A whih inherits from signature B then it alsoinstantiates signature B. A similar argument an be made for modules or subsystemsand their assoiated signatures.Extensible algebrai types have reently been mooted as a means of supportingsubtyping within funtional languages [107℄. FAD supports them through the signa-ture inheritane relationship between onstrutor signatures. As yet modern funtionallanguages do not support extensible algebrai types.We illustrate signature inheritane in Figure 34, where the permissive signatureORD inherits from the permissive signature EQ. The new operations spei�ed in ORD arepresented below its name.In the following setion we desribe the various use relationships between units ofthe same form.



5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 1175.4.8 Type Use RelationshipA type an be de�ned in terms of one or more existing types. FAD's non-transitive typeuse relationship delares a unidiretional dependeny from the using type to the usedtype(s). The using type ould be an alias for the used type or ould be a omposite typewhose values are onstruted using values of the used type(s). For design purposes it isimportant to make expliit these dependenies sine they will inuene the arhitetureof the system. A type may only use a type that is visible.A type is visible from another type if one of the ases for visibility presented inSetion 5.4.1 is true. The relationship is non-transitive sine the type t1 ould be visiblefrom the type t2 whih is visible from the type t3. However the type t1 may not bevisible from t3. In a modular design in whih a minimum of oupling between modulesis pratised, one would expet and enourage these patterns of design. A onstrainedparameterised type requires an assoiation between a type variable and at least onepermissive signature. The permissive signature(s) must be visible from the type, whihwill always be the ase if one pratises a design approah where all permissive signaturesare visible from all entities.FAD NotationThe type use relationship is represented by a link from the user type to the used type oran assoiated permissive signature. The link is onneted to the using type by a �lled-in retangle. This notation was hosen beause we required a simple (and reusable)notation that made lear the diretion of usage. We use this same notation for alluse relationships between units of the same form. In support of modular developmentthe use relationships may reet whether the entities at eah end are delared in thesame subsystem and also if they are delared in the same module. A broken line linkindiates an inter-subsystem relationship; a thin line link indiates an intra-subsystembut inter-module relationship and a thik line link an intra-module relationship. Thethin line link is used by default and will be updated if neessary.A sum type an be modelled by annotating the use relationship with omma delim-ited natural numbers, to indiate whih types and type onstrutors are used by eahelement of the sum. We need an annotation that supports more than one number sine
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Figure 35: Type Dependeny Diagram for the Type teamssome types will be used in more than one element of the sum.We illustrate the type use relationship in Figure 35 with a type dependeny diagramfor the type teams. Type dependeny diagrams present a data-entri view of a systemor part of a system. The type teams uses three types, date, team, and olletion a inthe onstrution of its values. The types teams and team are both delared in modulesof the subsystem FootballSS. The types date and olletion a are de�ned in thesubsystem GeneralSS. The type team uses the types tName, perfData and teamInfowhih are all delared in the module TeamMod.5.4.9 Funtion Use RelationshipFuntional programmers are enouraged to design programs that are both `modular-in-the-large' and `modular-in-the-small'. FAD's maro units and maro unit relationshipssupport the �rst form of modularity. The funtion use relationship supports the latterthrough the development of designs built on small funtions with a lear single purpose.FAD's non-transitive funtion use relationship delares a unidiretional dependenyfrom a using funtion to a non-argument used funtion. The same visibility rules applyfor used funtions as for used types.
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Figure 36: Funtion Dependeny Diagram for the Funtion updPlayersPerfFAD NotationThe funtions used in the body of a funtion are linked to the using funtion throughthe same uses notation as for type use. This is illustrated in Figure 36 with the funtiondependeny diagram for the funtion updPlayersPerf.The I/O funtion updPlayersPerf uses the �le I/O funtions readPlayersFile,readResFile, and writePlayersFile. It also uses the funtion addResultsToPlayerswhih in turn uses the funtions filterByDate and addResultsToPlayers.One an annotate funtion use relationships to indiate sequentiality of used funtionappliation and onditional behaviour. One an also use annotation to indiate nestedsequentiality. We �rst desribe non-nested sequential annotation. Eah use relationshiplink is annotated with a natural number that indiates the order of appliation of thefuntions. A funtion with a link indexed with a natural number n will be applied inadvane of all funtions with a link whose index is greater than n and after any withan index less than n. Sine funtions an exhibit both sequential and non-sequentialbehaviour, those funtions with idential indexes require no mutually sequential appli-ation. If the use relationship links have no annotations then one an assume that no



120 CHAPTER 5. FAD MODELLING LANGUAGEsequentiality of appliation of the funtions is required.Nested sequential behaviour is represented through quali�ed indexes. That is, theindex is written by post�xing the index of the link to the using funtion, with a fullstop followed by a natural number index. This indexing an be repeated to any level ofdependeny, although we would enourage models whih have several levels of depen-deny to be represented using a olletion of diagrams as is ommon when using dataow diagrams. That is, eah funtion with signi�ant dependeny requirements shouldbe desribed in a separate diagram.Funtions with onditional behaviour will require sequential behaviour for the de-termination of whih ase is true, and the evaluation of the assoiated expression. Theimplementation of the onditional funtion ould be as a olletion of guards or as aonditional expression. These details are left to the software implementers and mayreet the idiosynrasies of a partiular implementation language.A onditional funtion is best represented using a separate diagram for eah ase.A ondition an be represented as a funtion that returns a Boolean value. Suess anbe represented by the value True in the result retangle and failure by the value False.A funtion with more than two ases will have more than one ondition funtion. Weillustrate in Figures 37(a) and 37(b) the FAD diagrams that model the funtion ondFun.If the prediate funtion predFun, when applied to the inputted integer returns True,ondFun uses the funtion fun1. Otherwise it uses the funtion fun2.ondFun :: Int -> IntondFun i| predFun i = fun1 i| otherwise = fun2 iThus one an use annotations to aid the reading of multiple diagrams that representthe model of a funtion with onditional behaviour. In Figure 37(a) we represent thease where the �rst ondition is satis�ed. The annotations are simply those for sequen-tiality. Figure 37(b) models failure of the �rst ondition and suess of the seond. Theannotation to the funtion fun2 is extended with the letter a to indiate that this is analternative to the model in Figure 37(a).
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Figure 37: Conditional Funtion DiagramsOne an add omments to any FAD diagram through enlosing the ommentary in airle and attahing it to the relevant item through a broken line as illustrated in Figure36.5.4.10 Module Use RelationshipHosting funtions and types in modules aids the management of software developmentand if pratised e�etively will minimise the sope of any hanges to the software.One should develop ohesive modules whih have a minimal but expliit oupling withother modules. We desribe in the following hapter how FAD's methodology both aidsand enourages the development of modular designs where information hiding is thedominant riterion. In this setion we desribe how entities delared in one module anuse entities delared in another module of the same subsystem. The following setiondesribes a similar relationship between subsystems.FAD supports inter-module development through its module use relationship. Thisis a non-transitive, unidiretional relationship between two modules mediated by anexlusive signature assoiated with the used module. Entities in one module may makeuse of entities delared in another module of the same subsystem if and only if thereis a module use relationship from the lient module to the used module. The entitiesavailable for use are those spei�ed in the assoiated exlusive signature.Module use is only supported between modules of the same subsystem. Entities
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Figure 38: A Module Diagramdelared in modules of di�erent subsystems of a projet require a subsystem use re-lationship from the lient subsystem to the used subsystem. This is desribed in thefollowing setion.FAD NotationFAD uses the same graphial notation for module use as for type and funtion useexept one only uses the inter-subsystem and intra-subsystem versions of the notation.That is, a module use relationship is a retangle-ended link between the lient moduleand the used module, although it must be linked to an exlusive signature assoiatedwith the used module.We illustrate module use in the module diagram presented in Figure 38. The moduleResultsMod hosts the type results, whih is a olletion of values of type result. Thatis, results uses result. The type result is hosted by the module ResultMod and isspei�ed in the assoiated exlusive signature RESULTSIG.5.4.11 Subsystem Use RelationshipFAD not only provides modules to support the management of the software developmentproess but also subsystems that host a olletion of modules. One an make the samearguments for a sensible subsystem arhiteture as stated for the module arhiteture inthe previous setion. FAD supports inter-subsystem development through its subsystemuse relationship, a non-transitive, unidiretional link between two subsystems.
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Figure 39: A Subsystem DiagramA subsystem use relationship indiates that the entities of the lient subsystem maybe able to use entities delared in the used subsystem. A subsystem may only be usedvia an assoiated exlusive signature that spei�es entities that are available for use.The subsystem use relationship supports the dependeny of a miro unit delared ina module of one subsystem on a miro unit delared in a module of another subsystem.Intra-subsystem dependeny is supported by the module use relationship desribed inthe previous setion. That is, if a funtion delared in a module of one subsystem needsaess to a funtion delared in a module of another subsystem then this is modelled inFAD through a subsystem use relationship between the relevant subsystems.
FAD NotationThe notation used in FAD is the same as the default use relationship notation for thetype use, funtion use, and module use relationships. We illustrate in Figure 39 with asubsystem diagram from the ase study.The subsystem UISS that hosts the modules whih implement user interfae typesand funtions, is linked to the subsystem FileSS in whih the �le-handling funtionalityis supported. Various text-based I/O funtions delared in modules of UISS depend onfuntions that write to �les or read from �les. These are delared in modules of thesubsystem FileSS.



124 CHAPTER 5. FAD MODELLING LANGUAGE5.4.12 Projet Use RelationshipA projet an make use of another projet through FAD's non-transitive, unidiretionalprojet use relationship. Alternatively a projet an use individual subsystems of an-other projet, or develop new subsystems from the modules delared in another projet.That is, although a projet is partitioned into subsystems that themselves are furtherpartitioned into modules, the arhiteture is projet-spei�. A new projet an reusean existing projet with its delared arhiteture, or one or more of an existing projet'ssubsystems with their delared arhiteture, or one or more modules developed for anexisting projet. In summary, subsystems are independent of the projet for whih theywere originally developed. Modules are also independent of the subsystems for whihthey were originally developed. They an therefore be reon�gured to support a newprojet, or be used olletively as a omponent of a larger projet.FAD NotationThe notation for the projet use relationship between two projets is idential to thatfor the subsystem use relationship, exept there is no assoiated exlusive signature.5.4.13 File Use RelationshipIn Setion 5.3.5 we desribed how software is implemented as a olletion of �les. The�le arhiteture will depend both on the software design and the idiosynrasies of animplementation language. For example, Clean requires eah module to be delaredin a separate implementation �le with a single assoiated de�nition �le that delaresthe interfae to the implemented module. Thus a module/signature assoiation will bedelivered as two �les linked by a use relationship. FAD's non-transitive, unidiretional�le use relationship, delares a dependeny between two �les. That is, the lient �lehosts entities that are dependent on entities hosted by the used �le. Aess rights aredetermined at the logial level, subsystems, modules and so on and not at the physiallevel. Therefore, aessibility will be dependent on the logial arhiteture of the system.A system's �le arhiteture is presented in a olletion of �le diagrams whih are simply�les linked by �le use relationships.



5.4. FAD RELATIONSHIPS AND ASSOCIATIONS 125FAD NotationThe �le use relationship has the same notation as the default notation for all other FADuse relationships. Of ourse there are no exlusive signatures mediating aess.5.4.14 Partition RelationshipA FAD projet is partitioned into one or more subsystems whih are themselves parti-tioned into one or more modules. Eah module hosts one or more miro units. Theserelationships are modelled in FAD as the transitive partition relationships. Thus apartition relationship links either a projet with a subsystem or a subsystem with amodule.FAD NotationA partition relationship is a �lled semi-irle ended link from the partitioned marounit to a partition element. This notation was also hosen for its simpliity. Thesemi-irle end emphasises that it is a whole/part relationship, where a semi-irleis a part of a irle. This relationship is illustrated in Figure 40 where the projetFootball's partition inludes the subsystem FootballSS that itself inludes the moduleResultsMod. If the partition element is assoiated with an exlusive signature thissignature spei�es the element's entities that an be inluded in an assoiated signatureof the partitioned unit. This only applies to the subsystem/module partition.5.4.15 Containment RelationshipA �le ontains one or more logial units. This implies that the unit is de�ned in the �le.Of ourse, more than one �le ould implement the same unit and possibly in di�erentlanguages. A �le is linked to a ontained unit through the ontainment relationship.FAD NotationA ontainment relationship is a �lled triangle ended link from a �le to a unit de�nedin the �le. This notation was hosen for its simpliity. The triangle end was hosen todisriminate this relationship from the various use relationships and partition relation-ships. This relationship is illustrated in Figure 40 where the module ResultsMod and
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Figure 40: FAD's Partition and Containment Relationshipsits assoiated signature are implemented in the �le Results.hs.5.4.16 FAD CommentsOne an add omments to FAD diagrams. These an be attahed to any FAD unit orrelationship. They are used to add detail to a partiular unit or relationship.FAD NotationFAD omments are presented inside a irle that is attahed to the item for whih theomment is made via a broken line. This notation was hosen sine it looks like a`allout', whih is often used to relate text to an item on a piture or a slide. This isillustrated in Figure 41.5.5 SummaryThis hapter provided a desription of the elements, syntax and semantis of the mod-elling language of FAD. There are three miro units, types, funtions and permissivesignatures and �ve maro units, projets, subsystems, modules, exlusive signatures and�les. Various assoiations and relationships are supported between items of the sameunit, and between items of di�erent units.
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Figure 41: FAD CommentThe modelling language supports a range of diagrams that provide various views ofa system. A funtion dependeny diagram is a olletion of funtions linked by funtionuse relationships. They model the funtional requirements of a system and an inludemodular arhiteture information. A type dependeny diagram is a olletion of typesand type use relationships. They present a stati view of a system, and an also inludemodular arhiteture information. Projet, subsystem and module diagrams model thevarious levels of a system arhiteture. A �le diagram desribes the physial arhitetureof an implemented system.In the following hapter we illustrate how ommon designs used in funtional pro-gramming an be modelled using this modelling language. In Chapter 7 we desribe themethodology of FAD. It uses the elements presented in this hapter to develop modelsof a system.
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Chapter 6
FAD Funtional Designs
In Chapter 3 we desribed the main features of the funtional programming paradigmand how they inuene software development within the paradigm. Various designsare ommonly used suh as higher-order funtions and algebrai types. In the previoushapter we desribed the modelling language of FAD. In this hapter we desribe themodelling of ommon funtional programming designs in FAD's modelling language.Sine the language has been developed spei�ally to model funtional programs, thedesigns should be natural to model. In pratie however, one should not be looking tomodel partiular designs but to model a problem, whih an be iteratively developed toa model of an implementable design. Eah design will be illustrated by an example andaompanied by a graphial representation of the FAD model.6.1 Tuple TypesTuple types are omposite types with a speial syntax in all modern funtional lan-guages, a parenthesis enlosed, omma-delimited olletion of types. Values of the typeare similarly represented with values replaing the types. Elements of a tuple value anbe seleted through pattern mathing.FAD ModelFAD represents a tuple type as a type that uses the tuple omponent types, and is asso-iated with a onstrutor signature that spei�es the relevant tuple-forming onstrutor.We illustrate in Figure 42 with the model of the following pair type:129
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Figure 42: A FAD tuple type modelThe pairtype pairType = (type1, type2)6.2 ReordsA reord is similar to a tuple with the additional property of element seletion through a�eld name. That is, a reord is a tuple with named �elds. For example, the reord aRe(written in Hugs98 running in Hugs mode) has two �elds, a of type Int and ontainingthe number 3, and b of type Bool and ontaining the Boolean value False.aRe = (a = 3::Int, b = False)Eah reord is aompanied by a set of seletor funtions - one for eah �eld of thereord. For example, the value held in �eld a an be inspeted as follows:#a aReMost modern funtional languages support reords. Hugs supports a exible system ofextensible reords or \Trex" [68℄, the name reeting the inremental building of thereords. Clean and SML also support reords but both are more restritive in their usethan Hugs. For example, in both these languages funtions an only be de�ned overomplete reords.
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Figure 43: A FAD reord type modelFAD ModelA reord is presented in FAD in a similar way to a tuple. The onstrutor signatureassoiated with the type also inludes the seletion funtions. The onstrutor signatureould be reated through inheriting a tuple onstrutor signature, whih reinfores thefat that a reord is a tuple with some extra funtionality. A onstrutor will be appliedto named parameter types, and the signature will be extended with the relevant seletorfuntions. We illustrate this with the FAD representation of someRe, the type of thevalue aRe, in Figure 43.Extensible reords an thus be naturally represented through a type assoiated witha permissive signature, with extensions delared through signature inheritane.6.3 Algebrai TypesAlgebrai or onrete types are either built in to the implementation language, suh asthe Booleans, or are delared by the user. Eah new algebrai type is delared using atype onstrutor suh as the Haskell type onstrutor Maybe. Its values are onstrutedthrough one or more value onstrutors whih are delared with the type onstrutor.Algebrai types were fully desribed in Setion 3.1.5.
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Figure 44: A FAD Algebrai TypeAny algebrai type with at least one non-zero arity value onstrutor uses at leastone type. That is, some values of the type are reated by applying one of its valueonstrutors to a value or values of partiular types. The sum type AlgType1 usesvalues of type Int or Char, and the parameterised type AlgType2 t uses values of anytype t. data AlgType1 = Con1 Int | Con2 Chardata AlgType2 t = Con tSee Setion 3.1.5 for a more detailed desription of algebrai types.FAD ModelAn algebrai type instantiates a permissive signature that spei�es the onstrutors ofthe values of the type. FAD represents the types algType1 and algType2 as presentedin Figures 44(a) and 44(b). The names of value onstrutors begin with an upper-aseletter. A sum type is indiated by annotating the use relationship links as desribed inSetion 5.4.8.



6.4. ABSTRACT TYPE 1336.4 Abstrat TypeAn abstrat type in ontrast to a onrete type hides information regarding the on-strution of values of the type. An abstrat type fouses attention on what one an dowith values of the type in ignorane of its implementation details. Abstrat types arethe funtional programmers' mehanism for modular development based on enapsu-lation and abstration. They ahieve enapsulation through preventing aess to theirimplementation, and abstration by providing an expliit interfae.Abstrat data types are therefore integral to the development of a modular systembased on information hiding. The methodology enourages designs built on abstrattypes as will beome lear in the following hapter.FAD ModelFAD supports type abstration through its modules and exlusive signatures. Everytype is delared in a module. Abstration is ahieved through assoiating with themodule an exlusive signature that spei�es the type but not its onstrutor signature.Hene, within the module the type is onrete but when used via the exlusive signaturedesribed above, the type is abstrat. That is, an entity delared in the same modulehas aess to the type's implementation. Any entity delared in another module whoseuse relationship is mediated by an exlusive signature that enfores abstration, doesnot have aess to the type's implementation.We illustrate in Figure 45 with a model of the following ode. The module imple-mentation has been elided for spae reasons.module TreeMod(Tree, treeFun1, treeFun2) wheredata Tree a = Nil | Node a (Tree a) (Tree a)treeFun1 :: Tree a -> a...treeFun2 :: Tree a -> Int...
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Figure 45: A FAD Abstrat Data Type Model6.5 Polymorphi FuntionsPolymorphi funtions provide a signi�ant reuse mehanism for funtional program-mers. Parametri polymorphi funtions an be applied to values of many types. Thetype of any polymorphi funtion inludes at least one (unonstrained) type variable ofkind *, whih an be instantiated by any type. That is, a polymorphi funtion doesnot require any spei� harateristis of the types that instantiate at least one of thetype variables of kind * in its type.
FAD ModelOne represents a polymorphi funtion in FAD as a funtion whose type inludes atleast one type variable of kind * that is not assoiated with any permissive signature.Any funtion desription that does not inlude any assoiations with permissive sig-natures, or only assoiations with permissive signatures without parameters of kind *,ould possibly be implemented as a polymorphi funtion. Full details of the develop-ment of polymorphi funtions are desribed in Setion 7.3.2. The polymorphi identityfuntion id is presented in Figure 46.
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Figure 46: Polymorphi Funtion Model6.6 Type Classes, Instantiations and Overloaded Fun-tionsWe stated in Setion 5.2.3 that a permissive signature assoiated with a type presentsa ontrat of use for values of that type. That is, the signature is not ating as aninterfae, in the sense of ontrolling aess to entities of an assoiated item, but simplyas a guarantor that ertain funtions are de�ned over the type. That is the minimumfuntionality supported over the type is that delared by the permissive signaturesinstantiated by the type.FAD ModelSine type lasses (and onstrutor lasses) provide a guarantor servie for a set ofoverloaded funtions they are presented as permissive signatures in FAD. Type lassinstantiation is simply type/permissive signature instantiation in FAD, and lass dela-ration with a non-empty ontext is supported by permissive signature inheritane. Weillustrate both of these situations in Figure 47, in whih the following ode is graphiallyrepresented.lass SomeClass a wherefun1 :: a -> ainstane SomeClass SomeType wherefun1 = idlass SomeClass a => AnotherClass a wherefun2 :: a -> aNon-empty ontexts an also appear in instane de�nitions and funtion de�nitions.A funtion with a non-empty ontext is an overloaded funtion. Eah element in theontext is represented in FAD as a type/permissive signature ontrat assoiation. This
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Figure 47: Class Instantiation and Class Delaration

Figure 48: Class Instantiation and Funtion De�nition with Non-Empty Contextis illustrated in Figures 48(a) and 48(b) where the following instane delaration andfuntion delaration are modelled respetively.instane Eq a => Eq (Set a) where...dfs :: Tree t => t -> [t℄6.7 Multi-Parameter ClassesWhere single parameter lasses are supported by Haskell 98, Gofer and Clean, multi-parameter lasses have not been inluded in Haskell 98, and are only supported by



6.7. MULTI-PARAMETER CLASSES 137Gofer (and extensions of Hugs 98 and the Glasgow Haskell ompiler). They are howeverrapidly gathering support in the funtional programming ommunity and have beenproposed by Peyton Jones [98℄ for inlusion in the next standard Haskell release. Theproposal uses the detailed arguments provided in [102℄. We therefore believe that FADshould support multi-parameter lasses.FAD ModelsThe paper [102℄ outlines three types of support provided by multi-parameter typelasses:� overloading with oupled parameters� overloading with onstrained parameters and,� type relationswhih we will represent using FAD notation.Overloading with oupled parameters is the natural generalization of the single pa-rameter overloading supported by type lasses. There are many situations where a tupleof types (with eah type possibly exhibiting ertain behaviours) exhibit a partiular setof behaviours, and multi-parameter type lasses naturally support suh a situation. Wepresent an example from Jones' paper [66℄, illustrated by the FAD representation inFigure 49.data State s a = ST (s -> (a,s))lass Monad m => StateMonad m s whereupdate :: (s -> s) -> m sinstane StateMonad (State s) s whereupdate f = ST (\s -> (s, f s))Single parameter type lasses in whih the parameter is of kind * -> * or anynon * kind, impose no onstraints on the type variable(s) assoiated with any instan-tiating type onstrutor. For example, if one wants a set type to instantiate a lasswhih inludes a funtion for ombining two items of the instantiating type, then oneneeds to restrit the set element types to `equality types' or those that instantiate an
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Figure 49: Overloading with Coupled Parametersequality lass. This requires aess to the parameter of the type onstrutor, whih isahieved through multi-parameter type lasses. This is an example of overloading withonstrained parameters.Overloading with onstrained parameters allows the user ontrol over the type vari-able in a onstrutor lass, in ontrast to the single parameter ase where the typevariable is universally quanti�ed. Hene one is allowed to ahieve a higher level of ab-stration by reating a type lass of generi behaviours, and then support speializationwithin the ontext of the instane de�nition.One again we provide implementation ode and the orresponding FAD notationin Figure 50.lass Multi m a whereitem :: m aombine :: m a -> m a -> m ainstane Class1 a => Multi TypeCon a whereitem = ...ombine = ...Type relations allow the user to speify a set of behavioural relationships betweentwo types that are looser than those desribed in the previous two examples. Liang,Hudak, and Jones [76℄ present the following example of a lass de�ning an isomorphism
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Figure 50: Overloading with Constrained Parameters
Figure 51: Type Relationsbetween types.lass Iso a b whereiso :: a -> bosi :: b -> aThe FAD representation of this lass is presented in Figure 51.6.8 ML Strutures, Signatures and FuntorsAn ML struture is a olletion of delarations that an inlude types, funtions, val-ues, other strutures, and signatures. Eah struture an be named and has a defaultprinipal signature that is the olletion of type spei�ations of the struture's enti-ties. However, one an override this signature through expliitly assigning a delaredsignature to a struture. That is, ML supports independent modules (strutures) and



140 CHAPTER 6. FAD FUNCTIONAL DESIGNSsignatures. Thus several new strutures an be delared by assoiating a single struturewith di�erent signaturesAs with all funtional languages, modules are not �rst lass and hene annot bepassed as arguments to funtions, returned as results from funtions or appear in datastrutures. However, SML supports parameterised modules or funtors whih provide amehanism for reating new strutures from existing ones in an eÆient and reusablemanner. That is, a funtor takes zero or more strutures as parameters and returnsa struture as a result. Funtors with zero arguments are used simply to present aonsistent approah to struture development. Where a funtion is onstrained by itstype spei�ation, a funtor is onstrained by the stated signatures of the parametersand returned value.A struture's signature an be either transparent or opaque, the latter making thetype's delared in the struture abstrat. Another level of abstration ontrol is allowed,where the user expliitly delares partiular types in the struture abstrat. See [88℄ forfull details on SML's modular support.FAD ModelIn FAD we represent a struture as a module and an SML signature as an exlusive sig-nature. An opaque SML signature is represented by an exlusive signature in whih anytype is spei�ed without its onstrutor signature. That is, abstration is representedas desribed in Setion 6.4.We illustrate these ideas by presenting in Figure 52 the graphial representations ofthe following ML strutures based on those de�ned in Paulson's ML for the WorkingProgrammer [96℄. We present the strutures and signatures in elided form for spaereasons. struture Queue1 =struttype 'a t = 'a list;exeption E;val empty = [℄;fun enq(q,x) = q � [x℄;
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Figure 52: Strutures and Signaturesfun null(x::q) = false| null _ = true;end;signature QUEUE2 =sigtype 'a texeption Eval null : 'a t -> boolend;struture Queue2 : QUEUE2 = Queue1;struture Queue3 :> QUEUE2 = Queue1;When delaring a funtor, it is good pratie to make expliit the signature thateah parameter struture is required to support, and the signature of the returnedstruture. One annot model funtors diretly in FAD but one an model the resultof their appliation. A funtor when applied to its argument struture(s), whih eahsupport an expliit interfae, returns a struture that uses the argument strutures and
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Figure 53: Funtor Appliation Modelitself supports an expliit interfae. A funtor appliation an be modelled using FAD'smodules, exlusive signatures and the module use relationship.For example, the struture NewQueue is the result of the appliation of the funtorLimitedQueue to the existing struture OldQueue, and this relationship is representedin FAD as in Figure 53.funtor LimitedQueue (Queue: QUEUE) : QUEUE2 =strutstruture Item = Queue;...end;struture OldQueue : QUEUEstrut ...end;struture NewQueue = LimitedQueue (OldQueue);One an signal the potential for the implementation of a funtor by adding a om-ment to the diagram that states that the pattern of module development is likely to berepeated.
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Figure 54: Higher-Order Funtion Model6.9 Higher-Order FuntionsA funtion whih either takes a funtion as an argument or returns one as a result, isknown as a higher-order funtion. Thus, by de�nition all urried funtions are higher-order. These are supported in FAD as desribed in Setion 5.4.3.FAD ModelFuntions whih take funtions as arguments are modelled as funtions, with the fun-tional type enlosed in a type retangle. This is illustrated in Figure 54(a) with theHaskell funtion map. In Figure 54(b) we represent the partial appliation of map tothe funtion double whih doubles a number. The permissive signature assoiated withthe seond argument type, indiates that the funtion an only be applied to lists oftypes that support the various arithmeti operators (plus some other funtions). Thesignature only needs to be assoiated one when there is repeated use of a parameteror type name. Figure 54(a) delares that map is de�ned over all list types and thus anbe applied to values of a subset of these types as required by the assoiated permissivesignature in Figure 54(b).6.10 Existential TypesExistential types (or existentially quanti�ed type variables) are a mehanism for allowingvalues of di�ering types in a single data struture. That is, one an reate heterogeneousdata strutures. This is in ontrast to universally quanti�ed polymorphi types in whiheah value of the type must itself be monomorphi. That is, one an only onstruthomogeneous data strutures.However, the use of existential types is restrited. When a onstrutor with an



144 CHAPTER 6. FAD FUNCTIONAL DESIGNSexistentially quanti�ed type is used in pattern mathing, the atual type of the quanti�edvariable is not allowed to esape outside the expression tied to the pattern mathing.Existential types an therefore only be used in funtions where one does not try toaess an element of the data struture for external use. For example, a length funtionthat simply takes a list of items and returns the number of items, ould be applied toan existentially quanti�ed list type. However, a funtion that returns the nth elementof a list ould not be applied to values of an existentially quanti�ed list type, sine theatual type of eah element is unknown.Existential types are urrently supported by a minority of modern funtional lan-guages or implementations of languages. These inlude Clean and Hugs 98.La�ufer [74℄ argues that ombining type lasses and existential types in a singlelanguage delivers signi�ant expressive power. Existential types provide a mehanismfor delaring �rst-lass abstrat data types, and an assoiated type lass delares thetype's interfae. We present below an example based on one from [74℄, whih was writtenusing the Chalmers Haskell B. interpreter, HBI [7℄.data KEY = (KeyClass ?a) => MakeKey ?aSine all type variables that are free and have a name that starts with `?' in a typede�nition are onsidered to be existentially quanti�ed, the above delares a data typewith an existentially quanti�ed variable that is onstrained by the type lass KeyClass.Thus, the type lass KeyClass delares the interfae to the �rst-lass abstrat type KEY.FAD ModelFAD models existential types using types and the type use relationship. One an viewan existential type as a non-parameterised type with parameterised value onstrutorsthat uses unknown (but possibly onstrained) types to onstrut its values. The FADrepresentation is presented in Figure 55.The type key uses the values of unknown types signalled by the type variable a,whih is onstrained by the assoiated permissive signature KEYCLASS. It is thereforelear from the model that we have a non-parameterised type using an unknown type inthe onstrution of its values. Thus the type must be an existential type.



6.11. SUMMARY 145

Figure 55: Existential Type Model6.11 SummaryThis hapter has presented a non-exhaustive seletion of funtional programming de-signs. We have illustrated how they an be naturally modelled using the modellinglanguage of FAD. In pratie it is important for the model of the problem to guidedesign and not vie versa. In the following hapter we desribe the methodology, howit supports the development of an analytial model of a problem, and the iterativedevelopment of an implementable design.
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Chapter 7
FAD Methodology
In Chapter 5 we presented the units and relationships of the modelling language of FAD.We also provided a syntax and semantis for the models built using these elements. InChapter 6 we showed how ommon designs used in funtional programming an benaturally modelled in the language. In this hapter we present the tehniques of FADand desribe how they �t into an overall methodology. We will use the football resultsproessing ase study desribed in Setion 5.1, to illustrate elements of the methodology.Eah tehnique will be desribed by explaining its ativities and deliverables. Whereappropriate we will larify how it supports software development within the paradigmas desribed in Chapter 3, and how it ontrasts with objet-oriented development asoutlined in Chapter 2.FAD is best used within a proess that supports all phases of system development,whih are desribed in detail elsewhere [83, 12℄. FAD is a software analysis and designmethodology and therefore does not deliver any tehniques for analysing and designinga system's hardware needs. It provides tehniques for analysing the software-spei�goals proured through requirements analysis, and tehniques for developing a designsuitable for implementation in a modern funtional language.FAD an be used in the development of any software that ould be implementedin a funtional language. That is, its appliation domain is the same as that for anyfuntional language. This is in ontrast to, for example, the Spei�ation and Desrip-tion Language (SDL) [9, 19℄, whih is best applied to real-time systems, and Jakson'sstrutured programming method (JSP), whih is appropriate for serial �le proessing147



148 CHAPTER 7. FAD METHODOLOGYor information proessing, but inappropriate for systems with no dominant informationstruture [61, 22℄.We desribed in Chapters 5 and 6 how the modelling language supports inter aliafuntions (�rst-order and higher-order), abstrat datatypes, parametri polymorphism,type lasses (inluding single and multi-parameter), SML strutures and funtors, andmodules. In this hapter we will desribe how the methodology failitates the disovery,use and reuse of the building bloks and glue of the funtional programming paradigm.The tehniques are desribed within a methodology sine we are not simply present-ing a olletion of tehniques to be applied in an ad-ho manner. Rather we have spe-i�ed a modelling language through whih models are desribed, and present guidaneon the appliation of the tehniques and how their input requirements and deliverablesare related. This will be emphasised in this hapter as the desription of eah tehniquewill inlude details of both required inputs and deliverables.7.1 FAD's Phases and High-Level Proess ModelsThe methodology is divided into two main phases, analysis and design. However, thisneither implies a strit division between the two phases, nor a linear appliation of thetehniques within the phases. We believe that FAD is best applied within an iterativeand inremental development approah. Thus, for example, one ould develop on thebasis of a subset of funtional requirements and then iteratively develop as additionalrequirements are introdued. Sine FAD will use the same models, notation and dia-grams to support all parts of development through analysis and design, the developer isfree to deide on the hronology of the appliation of the methodology's tehniques. Amethodology with phase-linked models penalises the user for baktraking, sine latermodels that require signi�ant e�ort in onstrution will require reonstrution. Whenone has models and notation that are appliable throughout development, although anyhange still requires work on the part of the developer, this work tends to fous on themodi�ation of existing models and other supporting doumentation.Most strutured methods have phase-linked models and have historially been usedwithin a waterfall development proess, whih was �rst desribed by Roye [118℄. Thisproess is inherently linear in nature and has been ritiised for:



7.1. FAD'S PHASES AND HIGH-LEVEL PROCESS MODELS 149� not adequately addressing hanges;� assuming a relatively uniform and orderly sequene of development steps; and,� not providing for suh methods as rapid prototyping. [58℄These shortomings have been addressed both by Boehm's Spiral Model [13℄, whihexpliitly addresses the use of prototyping and other risk-resolution tehniques, and theiterative and inremental proess typially enouraged when using OOADMs. Here oneseparates the system into subsystems that an be delivered inrementally, and enouragean iterative approah to the development of a system's entities. Prototyping is alsoenouraged within an iterative approah to software development. The debate heretends to fous on the hoie between same-language prototyping and di�erent-languageprototyping [114℄.The reason for using the lassi�ation into the two phases of analysis and design,aside from simplifying exposition, is twofold. Firstly, although the methodology shouldnot be applied in a stritly linear fashion, there is a general linear movement throughthe methodology whih is highlighted by making these subdivisions. That is, initialtehniques are largely analytial in nature with design issues gradually taking preedeneas development proeeds. Seondly, some of the tehniques, suh as senario analysis,span more than one phase and annot be optimally desribed without referene to theiruse in eah phase. Senario analysis, to be desribed in Setion 7.2.2, is a tehnique ofFAD that is initially used to investigate the major uses of the system, but will later beused in the design of funtions. That is, some tehniques have phase-linked rôles.The appliation of FAD is linear in another sense. The early stages of analysis willtake non paradigm-spei� requirements and desribe them using the paradigm-spei�onstruts, funtions and types. As the system is developed, the ties to the paradigmwill beome stronger, resulting in a model whih is best implemented in a funtionallanguage. When the implementation language is known, one an (iteratively) developdesigns that reet the harateristis of the implementation language. This is learlya sensible approah, given that the early analysis part of any methodology needs tomodel the problem free of any implementation language onstraints, whereas the latterdesign stages should be seeking an eÆient, e�etive and maintainable solution. Allthese issues should beome learer as the methodology is desribed.



150 CHAPTER 7. FAD METHODOLOGYPhase Task TehniquesAnalysis Desribe major uses as a olletion Funtional Requirements Analysisof funtions.Investigate eah `use funtion' and Senario Analysisdesribe type and funtion Type Dependeny Analysisdependenies, and new `usefuntions'.Develop initial subsystem Subsystem Arhiteture Analysisarhiteture and assign types and Type/Funtion Host Analysisfuntions to subsystems.Further analyse funtions/types Senario Analysiswith inter-unit relationships. Type Dependeny AnalysisDevelop exlusive signatures. Exlusive Signature AnalysisDevelop initial prototype.Investigate subsystem `use Senario Analysisfuntions'. Type Dependeny AnalysisDevelop module arhiteture for Module Arhiteture Analysiseah subsystem and assign types Type/Funtion Host Analysisand funtions.Develop exlusive signatures. Exlusive Signature AnalysisTable 1: FAD Methodology { Analysis Phase
We will therefore present the methodology within two main setions titled Analysisand Design. In desribing eah tehnique, we will present the possible doumentarydeliverables, leaving it to the developer to deide what is atually appropriate for agiven projet.The methodology will be desribed as a olletion of tasks within eah phase usinga linear presentational style. Eah task is exeuted either through a single tehnique orseveral tehniques. Sine several of the tehniques span more than a single task, eahnew tehnique will be de�ned where it is �rst introdued. However, we also desribethe appliation of eah tehnique as it is used. FAD's analysis phase is summarized inTable 1, where we present the tasks of the phase and the tehniques used to exeuteeah task.



7.2. ANALYSIS 1517.2 AnalysisAnalysis fouses on modelling system requirements using the units and relationships ofthe modelling language. One should be fousing on what is required rather than howit will be delivered. However, in any paradigm-related ADM one is unable to totallyseparate the what from the how. For example, objet-oriented methodologies desribeuser requirements in terms of the objets whih host the methods whose ollaborationimplements eah requirement. Funtion or ation-oriented strutured methodologiesdesribe user requirements through data ow diagrams and thus in terms of independentdata and proesses [37, 152℄. Data-oriented strutured methods model user requirementsthrough their e�ets on the data of the system [73, 23℄. In all ases, one is fored intomaking paradigm-related design deisions.FAD supports software development within the funtional programming paradigmand thus user requirements will be desribed in terms of funtions where data owis made expliit. The initial emphasis during analysis is on the modelling of user re-quirements. Issues of implementation eÆieny, reusability and maintainability are ofinreasing importane as development proeeds.FAD, in ommon with several use-ase dependent OO methodologies [63, 64℄, is auser-driven methodology in that users' funtional requirements dominate initial devel-opment. Users ould be humans, hardware devies or another system. Initial tehniqueslarify the major uses that the system needs to support, and then investigate eah inturn. FAD enourages an iterative approah to development. One therefore may fo-us initially on a subset of the major user requirements, develop the system to satisfythese requirements, and then return to add extra funtionality to the system. The teh-nique that analyses the system's requirements and returns a list of the users' funtionalrequirements is funtional requirements analysis.7.2.1 Funtional Requirements AnalysisThis tehnique takes as input the system's requirements and returns the major fun-tional requirements of the system users. These are modelled as funtions. A detaileddisussion of requirements engineering is beyond the sope of this thesis but is om-prehensively desribed elsewhere [129℄. Eah funtion is delared in a FDD with its
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Figure 56: User Requirements Funtionsargument and results types reorded. This immediately emphasizes the expliit natureof data ow within the paradigm. Figure 56 presents the funtions that desribe theuser's - in this ase a data entry lerk - funtional requirements for the football resultsproessing system.To simplify exposition, eah funtion is spei�ed as a text-based I/O funtion. Weare not, however, enforing a partiular user interfae on the system. The modularapproah to development, enouraged by FAD and supported by modern funtionallanguages, will enable an alternative (possibly GUI) interfae to be introdued if re-quired. The important issue here is larifying the user's requirements.Pure funtional languages have developed various mehanisms for dealing with theimpurity of I/O suh as ontinuation passing, stream proessing and most reentlymonadi I/O [53, 103℄. The monadi approah is popular sine it presents a pattern ofomputation that is not restrited to I/O alone and beause[By using monads℄ we have the intuitive sequential nature of imperativeinput/output and the unluttered ode style that results from using globalvariables, but have neither the referential opaity onveyed by both thesethings in an imperative language, nor the exessive heavy framework andlak of expressive expression forms whih suh languages have.[52℄However, sine FAD is not tied to a spei� implementation language, one is free to



7.2. ANALYSIS 153desribe I/O funtions in one's own terms, as long as it is supported by lear, unam-biguous doumentation. We have hosen here a notation that is similar to that usedin the monadi I/O of Haskell [103℄ but is not meant to signal any partiular approahto I/O implementation. An I/O funtion has an argument type named IO (written inupper ase to indiate that this is not a typial type) and a return type that dependson the funtion's harateristis. For the above funtions, the return type is (), whihis the type with a single value of the same name. This type spei�es a funtion thatdoes some I/O and returns the value (). I/O funtions that return a value of someother type, suh as a string, are similarly spei�ed with a return type string. Ofourse, if one wants to develop a system in whih I/O is delivered monadially one anmake this expliit by assoiating the permissive signature MONAD with the IO type. Thishowever is a design deision whih is typially applied later in development, possiblywhen one is tailoring a design to a partiular implementation language. We desribethe development of permissive signatures in Setion 7.3.1.The six funtions that desribe the user's funtional requirements are:� inpRes whih implements the result input funtionality;� produeLT whih manages the prodution of a league table;� transfer whih implements the transfer of a player between two football lubs;� produeSoringTable whih implements the prodution of a soring table;� updPlayersPerfwhih updates a player's performane data given reent mathes;and,� updTeamsPerf whih updates the performane data of teams involved in reentmathes.Eah funtion will be doumented in a funtion desription doument (FDD). Ini-tially there will be little doumentation beyond the funtion's name, argument andresult types. However, the FDD is an appropriate host for a textual desription of thefuntion's purpose. This is illustrated in Figure 57 with the initial FDD for the I/Ofuntion for produing a league table, produeLT.Interested parties are informed of the initial olletion of `major use funtions' inorder to on�rm that the olletion is omplete and orret. Upon on�rmation, a
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Funtion Desription Doument FootballName: produeLTVersion: 19990620:0Module:Arity: 1Type Spei�ation: IO -> ()Contrat Assoia-tion:Instantiations:Funtions Used:Desription:The user requests the prodution of the urrent league table. Thetable is generated from the existing team data that is storedon �le. Eah football team hosts information regarding itsperformanes, whih is seleted and used to generate a leaguetable entry. This entry inludes the points ahieved by the team.The omplete league table is reated from the league tableentries for eah team where the position in the table is �rstdetermined by the number of points, followed by goal di�erene,goals sored, and �nally alphabetially. Eah league table isstored in a �le with previous league tables.Figure 57: Initial Funtion Desription Doument for produeLT



7.2. ANALYSIS 155deision needs to be made regarding how one proeeds. One an either adopt a `bigbang' approah and investigate all of the funtions, or fous on a subset and returnto others later during development. The `big bang' approah is appropriate if one isdealing with a system with relatively few user requirements. However, if there are asigni�ant number then one should adopt an iterative approah to development.Two tehniques are used to analyse the funtions: senario analysis, whih inves-tigates funtions and, type dependeny analysis, whih investigates types. They arepratised in parallel sine eah funtion is spei�ed in terms of its type.7.2.2 Senario AnalysisFuntional programs are built from funtions. Thus any model of a system's funtion-ality must be built using funtions. Senario analysis, a tehnique whih is pratisedat various stages of development, investigates a system's funtions and desribes themin terms of other funtions. Initially one uses the tehnique to model the major userrequirements of the system.Senario analysis investigates the behavioural harateristis of a funtion and de-sribes them in a set of models that are graphially presented in funtion dependenydiagrams. Eah diagram desribes a funtion in terms of one or more funtions to whihit is linked via a funtion use relationship. A single funtion will be desribed throughseveral funtion dependeny diagrams if the funtion has onditional behaviour. Thefuntional programming paradigm provides substantial support for funtion develop-ment and reuse and enourages the development of simple funtions that are then usedto develop more omplex funtions.When applying senario analysis, one should adopt a modular approah where eahbehavioural requirement of an analysed funtion is delivered by funtions upon whihit depends. The dependeny is not an implementation dependeny but a behaviouraldependeny. That is, a funtion depends on the behaviour implemented by the funtionsit uses. By adopting a modular approah, any implementation hanges remain loal andthus small sale. This inreases the potential for reuse of existing funtions, whih issupported by FAD as desribed in Chapter 8.The approah here is similar to that of use ase analysis as introdued by Jaobsonin his Objetory method [64℄. Although use ase analysis is a popular omponent of



156 CHAPTER 7. FAD METHODOLOGYvarious OOADMs - it has reently been adopted for use within the Uni�ed SoftwareDevelopment Proess using UML as the modelling language [63, 127℄ - its prime fousis modelling user interations with a system whih are, of ourse, funtional in na-ture. Thus one an argue that it sits more naturally within a funtional developmentmethodology. Using an OO methodology one is required to deliver the results of usease analysis in a manner onsistent with the paradigm. Thus every funtion or methodis required to be the responsibility of a lass, whih fores early deisions regarding theassigning of methods to lasses. We will not present a desription of use ase analysishere but instead will desribe senario analysis and support its desription with ex-amples from the development of the football system. Use ase analysis is desribed inSetion 2.3.Senario analysis takes as input the desription of a partiular user requirement suhas that presented in an initial FDD. However, further information may be required,whih ould be delivered verbally, graphially or in some textual representation suhas informal English, pseudoode or a formal language. Eah analysis returns one ormore dependeny diagrams and aompanying supporting doumentation in the formof desription douments for the entities in the diagram(s).To illustrate senario analysis we present an analysis of the funtion produeLT,whih is informally desribed as below.The user requests the prodution of the urrent league table. The table isgenerated from the existing team data that is stored on �le. Eah footballteam hosts information regarding its performanes, whih is seleted andused to generate a league table entry. This entry inludes the points ahievedby the team. The omplete league table is reated from the league tableentries for eah team where the position in the table is �rst determined bythe number of points, followed by goal di�erene, goals sored and �nallyalphabetially. The latest league table is then appended to the �le whihhosts the previous league tables.One possible model of the funtion produeLT uses three funtions: readTeamsFile,whih retrieves the latest team data from a �le; generateLT, whih takes the olletionof teams and returns a league table; and, appendLTToFile, whih appends the latest
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Figure 58: Initial Funtion Dependeny Diagram for produeLTleague table to the �le that reords the history of league tables. Eah funtion is spei�edin terms of its type and it is inumbent on the developer to larify the desription ofeah type that is used. The type file used by readTeamsFile and appendLTToFileould simply be a type of �lepaths or ould be a reord like the Haskell library typeHandle, whih inludes properties that state whether a �le an aept input and/oroutput, or whether bu�ering is enabled or disabled and in what form [101℄.As indiated previously eah type used by a funtion will be investigated usingtype dependeny analysis, whih we desribe in Setion 7.2.3. Eah type dependenyanalysis delivers a model that is represented in a type dependeny diagram, a graphialrepresentation of a type and its dependenies.The initial funtion dependeny diagram for produeLT is presented in Figure 58.The funtion generateLT takes an argument of type teams for whih a type dependenydiagram is presented in Figure 59. It is lear from the type dependeny diagram (andassoiated doumentation) that the type teams provides the required input for thefuntion. The FDD for the funtion produeLT will be updated as a result of thesenario analysis, and FDDs and TDDs will be initiated for the new funtions andtypes.The seond illustrative analysis is applied to a funtion that exhibits onditionalbehaviour. inpRes is the I/O funtion that supports the user's requirement to input anew football result. An informal desription of the funtion's behavioural requirementsis presented below.
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Figure 59: Initial Type Dependeny Diagram for the Type teamsUpon initiation by the user, a result is read in as a string that is then parsed.If the parse is suessful the parsed result is onverted into a result value. Ifthe parse fails, then the user is informed of this failure and the interationis terminated. The urrent olletion of results are read from �le as is theurrent olletion of teams. The (suessfully parsed) result is then hekedfor the existene of the teams and non-existene of the result, and if OK oneproeeds by reading the urrent olletion of results from �le. If the resultfails the hek the user is requested to edit the result, whih then initiatesthe proess again. An OK result is added to the urrent olletion of resultsthat are then written to the results �le.This senario is modelled in three funtion dependeny diagrams presented in Figures60, 61, and 62. Figure 60 presents the dependenies where both the parse and the resulthek were suessful. That is, the result is inputted as a string using readInp. Thestring is parsed using parseRes whih returns a suessful parse of type parsedRes.A result is reated using reateRes. The results history and urrent teams data areretrieved from �le and the inputted result is tested for aeptability by resultChek. Asuessful hek is followed by the inputted result being added to the urrent olletion



7.2. ANALYSIS 159

Figure 60: Dependeny Diagram for the Suessful Case of inpResusing inputResult and the new olletion of results is returned and written to �leusing writeResFile.In Figure 61 we present the dependeny diagram whih represents the ase whenthe parse fails and results in the funtion failedResParse being alled. A failedresultChek where there is an error in the inputted result is desribed in Figure 62.In this diagram we have left out the funtions preeding the result hek sine these arerepresented in Figure 60. We have also used a omment to indiate a looping design.The funtions that model a senario analysis are dependent on the types that theyuse. It is therefore important that these types are analysed in parallel using the teh-nique type dependeny analysis, whih is desribed in the following setion.7.2.3 Type Dependeny AnalysisA type dependeny analysis takes a type desription and returns a model of the typebeing analysed. A type is desribed in terms of the types it uses in the onstrution of
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Figure 61: Dependeny Diagram for the Failed Parse inpRes

Figure 62: Dependeny Diagram for the Failed Result Chek Case of inpRes
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Figure 63: Type Dependeny Diagram for the Type teamits values. As development proeeds, the model may also inlude details that reet thesystem's modular arhiteture and behavioural requirements of the types signalled byassoiated permissive signatures.We illustrate the tehnique with the analysis of the type team. An informal de-sription is presented below and its type dependeny diagram is presented in Figure63. A value of the type team represents a football team. Eah team has aunique name and a reord of the team's season's performanes. In addition,standard team details suh as the manager and average home attendanesare reorded. Eah team value also has an assoiated date that reords thelast date of data entry (assuming at most one entry per day).Thus the type an be onstruted using four other types tName, date, perfData andteamInfo, whih represent football team names, dates, team's performane data andthe non-performane data of football teams. In ommon with funtion development,where possible a type should be built from existing types reeting the signi�ant typedevelopment support a�orded the funtional programmer. This approah maximizesthe potential for reuse of existing types whose storage and disovery we desribe inChapter 8. The information presented in Figure 63 is reorded in the TDD of Figure64. Type dependeny analysis, in ommon with senario analysis, spans more than onephase and one task of FAD. Initially it is used to desribe the types used by the funtionsreturned by senario analysis in order to on�rm that all the required information is
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Type Desription Doument FootballName: teamVersion: 19990619:0Kind: *Module:Types Used: date, tName, perfData, teamInfoParameters:Permissive sigs.:Desription:A value of the type team represents a football team. Eah team hasa unique name and a reord of the team's season's performanes.In addition, standard team details suh as the manager and averagehome attendanes are reorded. Eah team value also has anassoiated date that reords the last date of data entry (assumingat most one entry per day).Figure 64: Type Desription Doument for the Type team



7.2. ANALYSIS 163supplied by values of the type. Later it will be used within the design phase as inputinto the design and implementation of types.There is a similarity between the use in various strutured methods of data ow di-agrams (DFDs) and entity-relationship diagrams (ERDs) [26℄ or logial data struturediagrams [41℄, and the use here of funtion dependeny and type dependeny diagrams.Whereas data ow diagrams fous on the manipulation of data by various proesses,ERDs, or data struture diagrams, desribe details not supported by DFDs suh as thestruture of major data entities and their interdependenies [37℄. They tend to be usedin systems that are reliant on major data or �le strutures suh as database systems.Funtional programming's reliane on funtions with no side e�ets and therefore ex-pliit data ow, requires that signi�ant attention is always paid to the types of thefuntions that deliver the required funtionality of the system.The olletion of models generated through senario analysis and type dependenyanalysis provide inputs for subsystem arhiteture analysis, whih delivers a subsystemarhiteture for the system. If one is building the system initially on the basis of asubset of the users' funtional requirements then one is building an arhiteture thatwill need to support future iterations of development.7.2.4 Subsystem Arhiteture AnalysisSenario analyses and type dependeny analyses ould be applied ad in�nitum or at leastuntil every funtion is desribed in terms of a olletion of simple, atomi funtions andevery type desribed similarly. In a large projet this proess an soon beome unwieldyand thus one needs guidane regarding termination of the proess. A division of thesystem into manageable units that an be developed independently provides both astruture for future development and guidane regarding the termination of the initialset of senario and type dependeny analyses.Subsystem arhiteture analysis takes the deliverables of the previously applied anal-yses, and returns a projet partitioned into several subsystems. The partitioning ri-terion is information hiding [95℄ through enapsulation and abstration. That is, eahsubsystem hides the details of its design from its lients, who simply require knowl-edge of the entities available for use. One an therefore develop systems inrementallyand use the omponents beyond the immediate appliation for whih they are being



164 CHAPTER 7. FAD METHODOLOGYdeveloped.Suh a system will have ohesive units that are loosely oupled. That is, by groupingrelated abstrations within a subsystem (or module), and by minimising the dependen-ies between them, one builds a system through independent and foused omponents.In addition, information hiding is invaluable as a development tool sine it appliesthe priniple of least ommitment to program design [1℄. That is, one an delay designdeisions in the knowledge that it neither delays nor harms the development proess.Eah subsystem's development will be assigned to a development team. The informationrequired of any other subsystem is presented in an assoiated exlusive signature thatats both as a mediator of usage and a spei�ation for development.We will illustrate this tehnique with an analysis of the ase study. The projet anbe partitioned into �ve subsystems that deliver:� the interation with the user, UISS;� the parsing funtionality required to deal with the various entered data, ParseSS;� the �le handling requirements whih have been alluded to in the desription ofvarious funtions, FileSS;� the football-related funtionality, whih is unique to the ase study problem,FootballSS; and,� some general entities whih are either typially supported by the standard envi-ronment of an implementation language or need to be aessible to all entities ofthe system, GeneralSS.Eah of the subsystems are likely to support funtionality that is non-problem spe-i�. For example, ParseSS is a subsystem that supports parsing funtionality. Fun-tions of the subsystem will support the parsing of values of various types (not just thestring type) and for a range of grammars. Any required funtions will be spei�ed inan assoiated exlusive signature that hides implementation details. That is, the im-plementation of the parsing funtions (possibly via parser ombinators or even monadiparser ombinators) is left to the ode writers and is likely to be dependent on the imple-mentation language. This model is graphially represented in the subsystem dependeny
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Figure 65: Subsystem Diagram for the Projet Footballdiagram of Figure 65. Eah subsystem is assoiated with an exlusive signature thatare urrently vauous.FAD does not provide a standard blueprint for arhitetural design as does, for ex-ample, Coad and Yourdon's method [29℄, or metris for omparing one design againstanother. However, it enourages modularity through information hiding, whih if pra-tised, will result in sensible, reusable designs. Thus if a funtion is delared in subsystemS and its argument and result types are delared in subsystem T this suggests poor de-sign with a high degree of oupling between the two subsystems. The models developedthrough the appliation of FAD will provide an early indiation of (potentially) poordesigns.Type/funtion host analysis takes the urrent sets of types and funtions and assignseah one to a subsystem of the projet. One an then analyse their various dependeniesthat will be desribed either as an intra-subsystem dependeny or an inter-subsystemdependeny. One wants a design where the former is more frequently in evidene thanthe later.7.2.5 Type/Funtion Host AnalysisType/funtion host analysis takes the types and funtions desribed through earlieranalyses and assigns eah to one of the subsystems. That is, eah entity is the re-sponsibility of the development unit that develops the host subsystem. Type/funtion



166 CHAPTER 7. FAD METHODOLOGYhost analysis is also applied later in development when a subsystem's entities are as-signed to modules of the subsystem. The analysis returns updated funtion and typemodels whose use relationships reet the assignment of entities to subsystems. WithOO development data and the methods that at on the data are the responsibility ofa single objet. Through this mehanism one ahieves data protetion and loalisationof ontrol. In funtional programming the motivation for assigning entities to modulesor subsystems is to manage development and to support the reusability of omponentsof a system. Modules and subsystems host a olletion of entities but do not provide asingle unit whih an be the argument of a funtion or returned by a funtion.Eah subsystem will be doumented in a series of subsystem desription douments.A reord of the assignment will be written in new versions of the desription doumentsof the assigned entities. Every miro unit will eventually be assigned to a module of thesubsystem and the desription douments will be updated to reet this assignment.After presenting an illustrative example from the ase study, we desribe how the de-liverables of this analysis signal where it is neessary to apply further senario and typedependeny analyses in advane of the development of eah subsystem.We illustrate this tehnique with the analysis of the type dependeny diagrams forthe funtion inpRes presented in Figures 60, 61 and 62. The results are presented inTables 2 and 3 where eah entity is presented with its host subsystem and some briefommentary.The information in Tables 2 and 3 is aptured in updated dependeny diagrams. Theuse relationships now reet whether the related units are of the same subsystem or ofdi�erent subsystems. Inter-subsystem use relationships between two funtions or twotypes are represented by a broken line link. See Setions 5.4.1 and 5.4.8 for a desriptionof the various use relationships. These updated diagrams (presented in Figures 66, 67and 68) give a lear view of the impat of modular deomposition on the system.Eah subsystem will be developed to satisfy the requirements spei�ed in any asso-iated exlusive signatures, and in the knowledge that other subsystems will provide thetypes and funtions spei�ed in the exlusive signatures through whih they are used. Itis therefore essential that inter-subsystem dependenies are made expliit at this stage.These will provide input into the development of exlusive signatures that we desribein Setion 7.2.6.
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Funtion Subsystem CommentinpRes UISS An I/O funtion.readInp UISS An I/O funtion.parseRes ParseSS A parsing funtion.hekParse ParseSS A funtion that heks whether a parse issuessful.reateRes FootballSS A funtion that onstruts a value oftype result.resultChek UISS I/O funtion.hekResult FootballSS A funtion that tests a value of type result.readResFile FileSS File-handling funtion. Uses and requires`readability' of type results.inputResult FootballSS A funtion that implements a behaviourover the type results.writeResFile FileSS File-handling funtion. Uses and requires`writability' of type results.failedResParse UISS An I/O funtion.editResult UISS An I/O funtion.Table 2: Funtion Host Analysis for the Funtion inpRes

Type Subsystem CommentIO UISS I/O type.() GeneralSS Basi type.string GeneralSS Basi type.parsedRes ParseSS Parsing type.result FootballSS Football type.bool GeneralSS Basi type.file FileSS File-handling type.results FootballSS Football type.Table 3: Type Host Analysis for the Funtion inpRes
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Figure 66: Updated Suessful Dependeny Diagram for inpRes

Figure 67: Updated Failed Parse Dependeny Diagram for inpRes
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Figure 68: Updated Failed Result Dependeny Diagram for inpResAny inter-subsystem, funtion/type use relationship indiates that the funtionshould be subjeted to further analysis sine the funtion may use other funtions whihexist in the used subsystem. For example, if the type is abstrat various `get' and `set'funtions may need to be provided. Any other funtions should be briey analysed toon�rm that all used funtions and types will exist in the same subsystem or in theuniversally aessible subsystem GeneralSS.We illustrate with some examples from the ase study. The funtion reateRes,whih takes the parsed result of type parsedRes and returns a value of type result,is assigned to the subsystem FootballSS. The funtion uses the type parsedRes ofthe subsystem ParseSS. Assuming that the type parsedRes is abstrat relative to thefuntion, it will need to be aompanied by funtions that return the team name, goalssored and other information required to onstrut a value of type result.The seond example is an analysis of the related FileSS funtions readResFileand writeResFile. They both use the type results from the subsystem FootballSS.Their respetive behaviours inlude the onversion from (and respetively to) a print-able string representation of a value of type results, to (and respetively from)its atual value. They therefore depend on funtions that implement this behaviour,whih we all readResults and writeResults. Both funtions are assigned to the
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Figure 69: Read and Write Dependeniessubsystem FootballSS sine they implement behavioural requirements of the typeresults. Alternatively we ould delare that the type results must instantiate re-spetively the permissive signatures READ and SHOW in the delarations of readResFileand writeResFile. READ inludes a spei�ation of a simple read funtion and SHOWprovides a simple write funtion. Either approah desribes the same model. The analy-sis and use of permissive signatures is desribed in Setion 7.3.1 within the design phaseof the methodology. The dependenies desribed above are presented in Figures 69(a)and 69(b).The funtionality delivered by a subsystem and required of other subsystems bylients is urrently hidden within funtion and type models that are best used to ex-press partiular funtionality and type struture respetively. For an aurate view ofsubsystem funtionality and interation one needs to add interfae details to the subsys-tem model. This is ahieved through subsystem exlusive signature analysis the resultsof whih are represented in updated subsystem dependeny diagrams.7.2.6 Subsystem Exlusive Signature AnalysisADMs provide mehanisms for the division of a system into manageable omponentsthat an be developed independently. They also provide the mehanisms for gluing the



7.2. ANALYSIS 171omponents together to deliver a single system. The glue provided by FAD are sub-system (and module) use relationships. A use relationship links a lient subsystem toanother subsystem that provides servies that are spei�ed in an assoiated exlusivesignature. That is, the interation between entities of di�erent subsystems is marshalledthrough a olletion of interfaes emphasising the information hiding approah to mod-ular development.Subsystem exlusive signature analysis takes the various funtion and type modelsand �lters out those entities that are used via an inter-subsystem relationship. Theseentities should be spei�ed in the exlusive signature that is assoiated with their sub-system and mediates aess to entities of the lient subsystem. Thus exlusive signatureanalysis returns exlusive signatures that provide a spei�ation for the developmentof their assoiated subsystem. They also make expliit the entities of subsystems thatare aessible to lients. Exlusive signature analysis returns a subsystem model thatinludes interfae details. If one is looking to build a prototype of a system this modelprovides muh of the neessary information.At this stage we require enough information about eah subsystem in order to pro-eed with the independent development of the subsystems. A single exlusive signaturewill provide the neessary information even though it will not truly reet the depen-denies between various subsystems. Signatures that provide the interfae informationfor a spei� lient, lient-spei� signatures will be designed later in development whenan aurate desription of the system design is required. With an iterative approah todevelopment exlusive signatures are likely to be updated to reet the addition of newuser requirements to the system. We desribe the tehnique that returns lient-spei�signatures in Setion 7.3.5. The updated subsystem arhiteture for the ase study ispresented in the subsystem dependeny diagram of Figure 70.The signature FOOTBALLSIG mediates the use of entities delared in the subsystemFootballSS by entities of the subsystem UISS. Inluded in the signature are spei�a-tions of:� reateRes and inputResult, whih are used by the funtion inpRes; and,� hekResult, whih is used by resultChek.In addition, the subsystem FileSS uses the subsystem FootballSS through the same
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Figure 70: Updated Subsystem Dependeny Diagramsignature. Thus there are also spei�ations of:� the type results, whih is used by writeResFile and readResFile;� the funtion readResults , whih is used by readResFile;� the funtion writeResults , whih is used by writeResFile;� the type teams , whih is used by readTeamsFile;� the funtion readTeams , whih is used by readTeamsFile;� the type leagueTable , whih is used by appendLTToFile;� the funtion writeLeagueTable , whih is used by appendLTToFile.Therefore the signature FOOTBALLSIG urrently mediates aess to its assoiatedsubsystem for more than one lient subsystem. However, it is lear that eah requiresaess to a di�erent olletion of entities, whih will eventually be reeted in separateexlusive signatures.



7.2. ANALYSIS 173Sine we enourage an approah built on information hiding if a type is spei�edin an exlusive signature it should not be aompanied by its onstrutor signature.Setion 6.4 desribes how one an model abstrat data types in FAD. The spei�ationof a type in an exlusive signature implies that entities of a lient subsystem an bedelared over the type, but the absene of a onstrutor signature signals that theyhave no knowledge of the onstrution of the type. Any intra-subsystem relationshipdoes not require an entry in an exlusive signature but may later be ategorised as aninter-module relationship and be spei�ed in an exlusive signature that mediates aessto a module. We desribe type/funtion host analysis at the module level in Setion7.2.7.Eah subsystem's subsystem desription doument (SSDD) will be updated to reordthe olletion of subsystems upon whih it is dependent. Eah subsystem is reordedwith its assoiated exlusive signature. This is illustrated with the SSDD for UISSpresented in Figure 71. The urrent version of FOOTBALLSIG is delared in an exlusivesignature desription doument, whih we present in Figure 72.The development of exlusive signatures for eah subsystem failitates the assigningof subsystem development responsibilities to development units. Eah unit will beresponsible for one or more subsystems, but no two units have responsibility for thesame subsystem. These assignments are reorded in new versions of the subsystemdesription douments.Development of a Subsystem's `used funtions'The development of eah subsystem is the responsibility of a designated developmentteam, whih is reorded in the relevant subsystem desription doument. The develop-ment of a subsystem mirrors that of the whole system and should proeed in ignoraneof the development of other subsystems, but in the knowledge of the interfae presentedby other used subsystems. One should begin by applying senario analyses to the fun-tions used by external users. The users in this ase will typially be funtions of othersubsystems. Types used by the funtions may need to be analysed simultaneously.We illustrate this appliation of senario analysis and type dependeny analysis usingthe funtion generateLT of the subsystem FootballSS, whih is used by the funtionprodueLT of the subsystem UISS as represented in the funtion dependeny diagram of
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Subsystem Desription Doument FootballName: UISSVersion: 19990721:1Module(s):Exlusive Sigs:Subsystems Used: GeneralSS : GENERALSIG(with signature) FootballSS : FOOTBALLSIGParseSS : PARSESIGFileSS : FILESIGDeveloped by:Desription:This subsystem hosts the funtions that implement the users'requirements. It also inludes general purpose text-based I/Ofuntions and may in future inlude entities that supportother user interfaes.Figure 71: Subsystem Desription Doument for the Subsystem UISS



7.2. ANALYSIS 175

Exlusive Signature Desription Doument FootballName: FOOTBALLSIGVersion: 19990820:0Subsystem:Type(s): results, teams, leagueTablePermissive sig(s):Funtion(s): reateRes: parsedRes -> resultinputResult:result -> results -> resultshekResult: result -> boolreadResults: string -> resultswriteResults: results -> stringreadTeams: string -> teamswriteLeagueTable: leagueTable -> stringInherited Sig(s):Desription:Interfae to the subsystem FootballSS used by entities of thesubsystems UISS and FileSS.Figure 72: Exlusive Signature Desription Doument for the Signature FOOTBALLSIG



176 CHAPTER 7. FAD METHODOLOGYFigure 58. generateLT takes a value of type teams and returns a leagueTable value.The type teams is informally desribed as follows.A olletion of football teams with an assoiated date that represents thelast date of entry of information. Given the number of teams there is norequirement that they are stored in any partiular order. Although supportmust be given for the retrieval, entry and updating of data there are noeÆieny requirements.The updated type dependeny diagram for the type teams is presented in Figure 73.The diagram now reets the assignment of entities to the subsystems of the system.The type is dependent on two types that will be delared in the utilities subsystemGeneralSS. The type olletion a whih may be an alias for a list type or some otherontainer type, and the type date. The type is also dependent on the type team, whihis delared in the same subsystem. The behavioural requirements of the type ould beaddressed at this stage but, reeting the linear nature of the presentation, will be leftto Setion 7.3.1 when we disuss the development of permissive signatures.The requirements of the funtion generateLT are presented below.The funtion is responsible for generating a league table from urrent teamdata. A league table entry must be generated for eah team. The entry willinlude the team's name, its performane data home and away, and its totalpoints. The team entries will be ordered �rst by total points, then by goaldi�erene, goals sored and �nally alphabetially.Adopting a modular approah, the funtion generateLT an be desribed in terms oftwo other funtions: a funtion that selets the required information from every team,seletNamesAndData, and another whih generates a league table from this information,reateLT. We desribe the model of this senario analysis in the funtion dependenydiagram presented in Figure 74.In ommon with the approah adopted earlier in Setion 7.2.4 eah subsystem willbe developed as a olletion of modules. Development of an initial module arhitetureboth supports the priniple of least ommitment and furthers the development of asystem based on information hiding.
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Figure 73: Updated Type Dependeny Diagram for the Type teams

Figure 74: Funtion Dependeny Diagram for generateLT



178 CHAPTER 7. FAD METHODOLOGY7.2.7 Module Arhiteture AnalysisThe guiding priniples of modularity applied at the system level are equally appliableat the subsystem level. That is, one should seek to develop independent ohesive unitsthat are loosely oupled with other units. Module arhiteture analysis takes the de-sription of a subsystem, its assoiated exlusive signatures and the results of senarioand type dependeny analyses applied to `use funtions', and returns a model of themodule arhiteture of the subsystem. The model is desribed through a olletion ofmodules that are linked through module use relationships via their assoiated exlusivesignatures.The model will satisfy the modular development riterion through loalizing `in-timate' knowledge requirements within eah module. That is, if an entity requiresknowledge of another entity's implementation then they are andidates for housing inthe same module. If, however, the relationship is one where an entity only requiresknowledge of the existene of another entity (and possibly some assoiated operations)then they an probably be delared in separate modules. For example, the standardlibraries for Haskell 98 [101℄ are a olletion of modules where a type is typially de-lared with a olletion of funtions that support behaviour over the type, and requireintimate knowledge of the onstrution of the type.Information hiding an be ahieved by reating a module for eah type spei�ed inan exlusive signature assoiated with the subsystem. One then assigns the type andfuntions that implement behaviour over the type to the same module. A module mayalso inlude other types that are used by the signature type but are only of loal use.For example, the type perfData that represents the performane data of a football teamwill be delared in the same module as the type team. The initial module arhiteturefor the subsystem FootballSS has seven modules:� TeamsMod, whih hosts the type teams that represents a olletion of footballteams;� TeamMod, the module housing the type team, whih represents an individual foot-ball team. A football team has an unique name, performane information, andother team-spei� data;� ResultsMod, whih hosts the type results that represents a olletion of football



7.2. ANALYSIS 179Funtion Module CommentgenerateLT LeagueTableMod The funtion that generatesa league table.seletNamesAndData TeamsMod Seletion funtion for teams.seletNameAndData TeamMod Seletion funtion for team.seletData TeamMod Seletion funtion for team.seletTName TeamMod Seletion funtion for team.reateLT LeagueTableMod The funtion that reatesa league table.teamEntry TeamMod Seletion funtion for team.Table 4: Funtion Host Analysis Related to the Funtion generateLTresults;� ResultMod, the module housing the type result that represents a single footballresult;� PlayersMod, whih hosts the type that represents a olletion of players, players;� PlayerMod, the module housing the type player that represents a football player;and,� LeagueTableMod, whih hosts the type of league tables, leagueTable.One a set of modules have been delared one applies type/funtion host analysis tothe miro unit entities of the subsystem. In this inarnation of the tehnique entities arebeing assigned to modules rather than subsystems. We present in Tables 4 and 5 theresult of type/funtion host analysis applied to the entities in the funtion dependenydiagram of Figure 74.The funtion generateLT ould be either assigned to the module TeamsMod or themodule LeagueTableMod sine it uses types delared in these modules. The fun-tion reates values of the type leagueTable and thus should be delared with thetype. The funtion requires aess to the implementation of the type leagueTable,where in ontrast it has deferred suh requirements of the type teams to the funtionseletNamesAndData. Hene the funtion was assigned to the module LeagueTableMod.



180 CHAPTER 7. FAD METHODOLOGYType Module Commentteams TeamsMod Host for type teams.team TeamMod Host for type team.leagueTable LeagueTableMod Host for type leagueTable.namesAndData TeamsMod Type onstruted from omponents of teams.nameAndData TeamMod Type onstruted from omponents of team.perfData TeamMod Type used to onstrut values of team.tName TeamMod Type used to onstrut values of team.teamLTEntry TeamMod Values generated from values of team.Table 5: Type Host Analysis Related to the Funtion generateLTThe type team has been assigned to a separate module from the type teams sinethe module TeamsMod should support the behaviour required of the type teams and notthat of the type team. Any funtions over the type teams that use funtions over thetype team should not require aess to their implementation. The type team and itsassoiated funtions an therefore implement their behaviour using any design withouta�eting the dependenies. The reusability of omponents is signi�antly enhanedthrough this type of modular approah.One all entities have been assigned to a module one an update the various depen-deny diagrams to reet the module arhiteture. The subsystem arhiteture resultedin the use relationships being ategorised either as inter-subsystem or intra-subsystem.Now we further ategorise the intra-subsystem relationships into either an inter-modulerelationship or an intra-module relationship. This is illustrated in Figure 75 where wepresent the updated funtion dependeny diagram for the funtion generateLT.The module TeamMod hosts the funtion seletNameAndData and the two funtionsupon whih it depends as indiated by the thik use relationships onneting the fun-tions. However, reateLT is delared in the module LeagueTableMod and the funtionit uses teamEntry is delared in TeamMod. The funtion generateLT of the moduleleagueTableMod uses the argument type teams of a di�erent module teamsMod, whihis indiated by the vertial line on the funtion side of the type box.Any funtions that use a type through an inter-module relationship should be fur-ther investigated using senario analysis. Abstration will probably result in any suhfuntion depending on other funtions delared in the type's module.
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Figure 75: Updated Funtion Dependeny Diagram for generateLTEntities assigned to module M an use entities of module N of the same subsystemif and only if there is a module use relationship from M to N and the required entitiesare spei�ed in the assoiated exlusive signature. We desribe the development of aninitial set of exlusive signatures in the following setion. Upon ompletion one has aset of models that ould be used to support the prototyping of a subsystem.7.2.8 Module Exlusive Signature AnalysisModule exlusive signature analysis takes the results of the analyses desribed in theprevious setion, and the signatures assoiated with the host subsystem, and develops aolletion of exlusive signatures through whih a subsystem's modules are used. Everyentity delared in an exlusive signature assoiated with the host subsystem must alsobe delared in at least one signature assoiated with a module of the subsystem. Forexample, the funtion generateLT of the subsystem FootballSS is used by the funtionprodueLT of the subsystem UISS. It is therefore delared in the exlusive signatureFOOTBALLSIG assoiated with the subsystem FootballSS. The funtion generateLThas been assigned to the module LeagueTableMod and therefore must be delared in
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Entity Type Spei�ation SignaturereateRes parsedRes -> result RESULTSIGinputResult result -> results -> results RESULTSSIGhekResult result -> bool RESULTSIGreadResults string -> results RESULTSSIGwriteResults results -> string RESULTSSIGreadTeams string -> teams TEAMSSIGwriteLeagueTable leagueTable -> string LTSIGresults RESULTSSIGteams TEAMSSIGleagueTable LTSIGgenerateLT teams -> leagueTable LTSIGseletNamesAndTeams teams -> namesAndData TEAMSSIGseletNameAndData team -> nameAndData TEAMSIGteamEntry nameAndData -> teamLTEntry TEAMSIGTable 6: Entity Signature Spei�ationsthe exlusive signature that links the partition relationship to the module. If one wasimplementing the system in Haskell this signature would typially be the export listprovided by the module. All other signatures will be implemented as import lists whenthe module is used.Any entity used by an entity delared in another module of the subsystem must bespei�ed in the exlusive signature that mediates aess for the relevant lient module.Initially eah module will be assoiated with a single exlusive signature and the lient-spei� signatures will be developed during the design phase of the methodology. Thisis desribed in Setion 7.3.5.We will illustrate module exlusive signature analysis through analysis of the sub-system exlusive signature FOOTBALLSIG - desribed in Figure 72 - and the results ofthe funtion/type host analysis applied to generateLT. Table 6 presents the results,where eah funtion is reorded with its type spei�ation and the signature in whihit is spei�ed. The module with whih eah signature is assoiated should be obviousfrom the signature's name.The signature RESULTSSIG is reorded in the desription doument of Figure 76. The
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Exlusive Signature Desription Doument FootballName: RESULTSSIGVersion: 19990823:0Subsystem: FootballSSType(s): resultsPermissive sig(s):Funtion(s): inputResult:result -> results -> resultsreadResults: string -> resultswriteResults: results -> stringInherited Sig(s):Desription:Interfae to the module ResultsMod.Figure 76: Exlusive Signature Desription Doument for the Signature RESULTSSIG

module arhiteture for the subsystem FootballSS is presented in a module dependenydiagram in Figure 77. This is based on the analyses desribed thus far but will beiteratively developed as a result of further analyses.The analysis phase is omplete for the system (at least for this iteration) one a mod-ule arhiteture has been developed for eah subsystem. With an inremental approahto development eah subsystem an be developed at its own pae as long as milestonesfor the whole projet are met. The design phase takes the deliverables of analysis anddevelops implementable designs of the maro and miro units. This will inlude furtherinvestigation of funtions so that an eÆient funtional design an be modelled whihuses, for example, polymorphism, overloading and higher-order funtions. This involvestaking advantage of existing entities reorded in the data ditionary. We desribe FAD'sdata ditionary in Chapter 8. The following setion desribes the tasks and tehniquesof the design phase.
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Figure 77: Module Arhiteture for FootballSS7.3 DesignDesign fouses on the delivery of a solution-domain foused model of the system. Thatis, where analysis is tied to the problem-domain albeit desribed in terms of the requiredparadigm, design aims to produe a model whih an be implemented in as an eÆientand e�etive manner as possible. However, it is lear that the importane of modularity,both in maro unit and miro unit development, has had a design impat within theanalysis phase of development.During the design phase, one takes the deliverables of the analysis phase and, usingthe various mehanisms provided by the paradigm, designs the various miro and marounits suh that an eÆient implementable design is returned. The transition from alargely analytial model to an implementable design is supported by the onsistentparadigm-fous of the methodology and the fat that the diagrams and many of thetehniques used during analysis are the same as those used during design. This alsoaids any iterative steps between phases or tasks within the phases. One an of oursetake the transition one step further and develop a model that reets the idiosynrasiesof a partiular implementation language.During analysis OOADMs enourage the developer to build models of the system
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Phase Task TehniquesDesign Design funtions for Senario Analysispurpose and reuse. Permissive Signature AnalysisPolymorphism/Overloading DesignHigher-Order DesignType design. Type Dependeny AnalysisPermissive Signature AnalysisDesign permissive and Exlusive Signature Designexlusive signatures. Permissive Signature DesignTable 7: FAD Methodology { Design Phasebased on interating objets. The design phase tends to fous on developing the in-ternals of objets, introduing new lasses that provide a ontroller rôle or some otherimplementation-spei� rôle, and redrafting the inheritane hierarhy for eÆieny rea-sons. For example, abstrat lasses are introdued to at as interfaes to several sub-lasses and generalization/speialization relationships are introdued where appropriate.One an also take advantage of the growing olletion of reusable design patterns [49℄.That is, one is looking to onvert an analytial model that is drafted in terms of unitsof the OO paradigm into one that takes full advantage of the glue available to the OOdeveloper.With FAD one wants to take advantage of funtional glue, whih inlude parametripolymorphism and higher-order funtions and the mehanisms available for the devel-opment of data types. An important part of design is the reuse of existing entities.We desribe FAD's data ditionary and its support for reuse in Chapter 8. The de-liverables of this phase aid the storage of entities in the data ditionary in a mannerthat improves the hanes of reuse, and the disovery of potentially polymorphi, over-loaded, or higher-order funtions. This is simply ahieved through adding to the keyinformation that desribes a funtion or type. The tasks and tehniques of the phaseare presented in a linear format as summarized in Table 7.Arhiteture design is not inluded in Table 7. This is beause the results of typeand funtion designs will determine both the module arhiteture of subsystems and



186 CHAPTER 7. FAD METHODOLOGYthe subsystem arhiteture of the projet. For example, if a type is implemented usinga tree type, then use relationships between the relevant maro units will be delaredand exlusive signatures introdued where neessary.The initial fous of the design phase is funtion design. This task takes the urrentdesription of a funtion or olletion of funtions and further analyses them in terms oftheir behavioural requirements. The potential for polymorphism, overloading and thereplaement of a olletion of �rst-order funtions with a single higher-order funtionare all reviewed.Funtions are the building bloks of funtional software as desribed in Chapter 3.If the software implementers are provided with inadequate information upon whih toimplement the required funtions then the software is likely to be inadequate itself.One annot guarantee orretness through a FAD model, sine the modelling languageof FAD is not a formal spei�ation language like Z [39℄ or VDM [151℄. However, there isno reason why one an't support development within FAD with formal models written ina formal language. One an add formality to UML models through the objet onstraintlanguage (OCL) [145℄.Senario analyses applied during the analysis phase deliver a olletion of modelsthat desribe (to a ertain level) the analysed funtions. The analyses are applied untila set of exlusive signatures an be developed whih reet those entities of a marounit whih are used by lients. Thus funtions that depend on other entities delaredin the same module may not yet have been analysed. We enourage further analyses tobe applied to suh funtions. For example, the funtion teamEntry that is used by thefuntion reateLT as illustrated in Figure 75, takes the name and performane data ofeah team and returns a league table entry. It uses two other funtions delared in itsmodule TeamsMod that generate the total points for a team and its goal di�erene. Thefuntion dependeny diagram is presented in Figure 78.A tehnique whih provides further funtion development (and type development)information is permissive signature analysis.7.3.1 Permissive Signature AnalysisThe modelling language of FAD inludes two types of signatures that were desribed inSetions 5.2.3 and 5.3.3. An exlusive signature presents to a lient maro unit, exatly
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Figure 78: Funtion Dependeny Diagram for the Funtion teamEntrythose entities that an be used from its assoiated maro unit. A permissive signaturespei�es some behaviour that is implemented over its assoiated type(s). That is, wherean exlusive signature signals only this, a permissive signature indiates at least this. Apermissive signature therefore makes behaviour expliit and spei�es the entities thatsupport the behaviour. Eah permissive signature an be reused through assoiationwith another type whose type onstrutor is of the same kind. One an also reate newsignatures through inheriting the spei�ations of an existing signature as desribed inSetion 5.4.7.Permissive signature analysis takes a funtion and determines whether it requiresits types to support any partiular behaviour. The behaviour may be required over atype used by one of its types. If required, then one an either use an existing permissivesignature that spei�es suh funtionality or delare a new one. Existing permissivesignatures are reorded in FAD's data ditionary and we will desribe how they areategorised and the support for reuse in Chapter 8. The signature is then assoiatedwith the appropriate type in the funtion spei�ation. The type is said to instantiatethe permissive signature and this will be reorded in the type desription doument.We present an example from the ase study using the funtion seletNamesAndDataof the module TeamsMod. The funtion is used by the league table generating funtiongenerateLT as modelled in Figure 75. The funtion is desribed in the FDD in Figure79. From the textual desription of the funtion one an build an abstrat model of thefuntion's behaviour. The funtion applies a data extrating funtion to eah item of
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Funtion Desription Doument FootballName: seletNamesAndDataVersion: 19990810:1Module: TeamsModArity: 1Contrat Assoia-tion:Instantiations:Type Spei�ation: teams -> namesAndDataFuntions Used: seletNameAndDataDesription:This funtion takes the olletion of teams and returns the nameand performane data of eah team. Eah team is seleted andits name and performane data is retrieved.Figure 79: Funtion Desription Doument for seletNamesAndDataits olletion-type argument. The funtion therefore requires the olletion type usedby the type teams to support the appliation of a funtion to eah of its items. This anbe modelled by assoiating the type olletion a with the permissive signature MAPwhih spei�es mapping funtionality. The signature spei�es the higher-order funtionmap. We present the desription doument for MAP in Figure 80 and the updated funtionspei�ation for the funtion seletNamesAndData in Figure 81.The funtion dependeny diagram in Figure 81 provides the developer with a rangeof information that inludes:� an abstration of the funtion's main behaviour. This abstration is reusablebeyond its urrent appliation;� the funtions used to deliver the required funtionality;� the potential for the implementation of an overloaded funtion in a language whihsupports overloading. Setion 7.3.2 desribes how FAD supports the design ofpolymorphi and overloaded funtions. If the implementation language does not
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Permissive Signature Desription Doument FootballName: MAPVersion: 19990824:0Module:Parameter(s)(kind): m : * -> *Entities: map :(with type spes.) (a -> b) -> m a -> m bInherited Signature(s):Desription:This signature spei�es mapping behaviour.Figure 80: Permissive Signature Desription Doument for MAP

Figure 81: Updated Model for the Funtion seletNamesAndData
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Figure 82: Updated Funtion Models for readResFile and writeResFilesupport overloading then either unique or quali�ed names will be required for thefuntions that math those spei�ed in a permissive signature;� some guidane on the development of the type olletion a whih we expandon in Setion 7.3.4.For the seond example we return to the funtions readResFile and writeResFilethat were �rst desribed in Setion 7.2.5. They used the funtions readResults andwriteResults to implement the required `readability' and `writability' funtionalityover the type results. Permissive signatures provide an alternative means of desrib-ing the required funtionality, with the bene�t that the signature is reusable and anbe assoiated with more than one type. We therefore introdue two permissive signa-tures READ and WRITE that inlude the spei�ations read : string -> a and write: a -> string respetively. We present the updated spei�ations for the funtionsreadResFile and writeResFile in Figure 82.Permissive signature analysis returns models of funtions that inlude desriptionsof behavioural abstrations. In the following setion we desribe how these models playan important rôle in the disovery of potentially polymorphi or overloaded funtions.7.3.2 Polymorphism/Overloading DesignParametri polymorphism and onstrained polymorphism (overloading) provide meh-anisms for reuse in funtional languages. Where parametri polymorphism supportsthe use of the same ode over multiple types, onstrained polymorphism supports thereusability of a name but not neessarily ode. A desription of polymorphism withinthe funtional programming paradigm and how it ompares to that of OO is provided



7.3. DESIGN 191in Chapter 3.A polymorphi funtion an replae several monomorphi funtions whose behaviouris exatly the same. For example, monomorphi identity funtions over eah type an bereplaed by a single polymorphi funtion. Funtions that return the length of a list ofsome monomorphi type an be replaed by a single polymorphi funtion that returnsthe length of any list. In both of these ases the set of monomorphi funtions exhibitexatly the same behaviour, and are not reliant on any funtionality being supportedby their types.In ontrast onstrained polymorphi funtions do require some spei�ed funtionalityto be supported either by their types, or some type(s) used by one or more of theirtypes. Jones [66℄ motivates the argument in favour of type lasses through examples offuntions that sum two values of the same type and test the equality of two values ofthe same type. Monomorphism is too restritive in both ases sine in most funtionallanguages there are several numeri types and even more types whose values an betested for equality. However, a polymorphi funtion is inappropriate in both asessine there are non-numeri types that don't support, for example, arithmeti operatorsand some non-equality types suh as the funtional types.The developer therefore needs support, both in the disovery of potentially (on-strained) polymorphi funtions and in the reuse of suh existing funtions. We leavethe desription of the latter proess to Chapter 8. Permissive signatures, or the lak of,provide signi�ant support in the development of (onstrained) polymorphi funtions.We suggest that the following guidelines should be followed.� If a funtion is spei�ed with types with no assoiated permissive signatures thenthe funtion ould have a polymorphi type. This is beause the funtion's typeshave no expliit required funtionality, whih suggests that the type's values donot inuene the behaviour of the funtion. The identity funtion is an exampleof this type of a funtion;� If a funtion's types have assoiated permissive signatures whose parameters areall of non-* kind then it ould have a polymorphi type. The values of the typesused to onstrut an argument value are not required to support any partiularfuntionality. The length funtion is an example of this type of funtion;
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Permissive Signature Desription Doument FootballName: CONTAINERVersion: 19990826:0Module:Parameter(s):  : * -> *Entities: add : a ->  a ->  a(with type spes.) remove : int ->  a ->  afind :(a -> bool) -> [a℄ -> maybe aInherited Signature(s):Desription:This signature spei�es ommon funtionality over ontainertypes.Figure 83: Permissive Signature Desription Doument for CONTAINER� If the funtion is spei�ed with at least one permissive signature then it ouldbe delared as an overloaded funtion. Clearly this will require implementationlanguage support for overloading. There is learly an overlap with the above aseillustrated by the length funtion that ould be delared as an overloaded funtion.Another example is the funtion that sums two numeri values.We will illustrate appliation of these guidelines with some examples from the asestudy. The I/O funtion inpRes uses the funtion inputResult to input a new resultinto the urrent olletion of results (see Figure 60). Permissive signature analysis hasresulted in the delaration of a new permissive signature with a parameter of kind *-> *, CONTAINER, whih supports typial funtionality of a ontainer type suh as theaddition of a new item and the removal of an existing item. The signature is desribedin the permissive signature desription doument presented in Figure 83.Three funtions are spei�ed that implement the addition of an item, the removalof an item in a spei�ed position, and �nding a value whih satis�es a partiular pred-iate. We have not inluded a funtion whih removes all items mathing an inputtedvalue sine this would require equality funtionality of the items' type. The funtion
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Figure 84: Potential Polymorphi or Overloaded FuntioninputResult is modelled as in Figure 84. The type olletion a is used to onstrutvalues of type results, whih is fully desribed in Setion 7.3.4.The behaviour of inputResult does not require any behaviour over the type resultthat supplies the items ontained in the olletion. Thus the funtion ould be de�ned as(or use) a polymorphi funtion over the type olletion a or an overloaded funtionover any type that instantiates the permissive signature CONTAINER.As a seond example we return to the funtions readResFile and writeResFilethat are used by the funtion inpRes to read results from a �le and write results toa �le. The funtions, whih are modelled in Figures 82(a) and 82(b), require the typeresults to support the behaviour spei�ed by the assoiated permissive signatures READand WRITE. These signatures speify funtions for reading and writing behaviour. SineREAD and WRITE have parameters of kind * the funtions ould not be polymorphi butould possibly be implemented as overloaded funtions.A polymorphi funtion whose type inludes unonstrained type variables must beuniversally aessible and thus delared in a module in the subsystem GeneralSS. Poly-morphi funtions that are de�ned over onstruted types should be assigned to thesame module as the type. For example, funtions that are delared over any list shouldbe assigned to the module that hosts the list type. Overloaded funtions that are spe-i�ed in a permissive signature will be delared in the module that hosts the type thatis assoiated with the signature. Other onstrained polymorphi funtions are delaredin a module in the subsystem GeneralSS.In the following setion we desribe how permissive signatures an signal the poten-tial for development of higher-order funtions.
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Figure 85: The Higher-Order Funtion selet7.3.3 Higher-Order Funtion DesignFAD supports the modelling of multiple argument funtions in their urried and un-urried form. With the urried form, new funtions an be reated through the partialappliation of the funtions to an inomplete set of arguments. In the following hapterwe desribe how entities are stored in the data ditionary and how this supports thepotential for funtion reation through partial appliation.In this setion we desribe how FAD supports the development of funtions withfuntional arguments. Higher-order funtions apture a ommon pattern of omputa-tion aross several funtions. Thus one is able to replae several �rst-order funtionswith a single higher-order funtion. In eah ase the funtion is applied to a fun-tional argument whih was previously used in the body of the �rst-order funtion.Permissive signatures an be used to highlight ommon patterns of omputation. Forexample, the funtion seletNamesAndData desribed in Figure 81, applies the fun-tion seletNameAndData to eah value of type team in a olletion of teams. Thepattern of omputation is made expliit by the assoiation of the permissive signatureMAP with the unary type onstrutor olletion used by the type team. We ould re-plae seletNamesAndData with a higher-order funtion selet that takes a funtional�rst argument as desribed in Figure 85. The model of the funtion generateLT thatpreviously used seletNamesAndData requires updating as illustrated by the funtiondependeny diagram of Figure 86.Of ourse not all higher-order funtions are so easily disovered. Two funtions mayuse a funtion of the type t1 -> t2 but without any expliit behavioural requirementbeyond the appliation of the used funtion to an argument. If the funtions havesimilar models then they may exhibit ommon abstrations. That is, if their funtiondependeny diagrams present ommon patterns then there is the possibility of a ommonabstration. Common model patterns ould indiate ommon abstrations, whih may
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Figure 86: Updated Version of the Funtion generateLTresult in some eÆieny in design. Although not urrently a part of FAD, one ouldlook to reord partiular model patterns to support reuse of design and the disoveryof ommon abstrations. Design patterns are an interesting area of future researhwithin the funtional programming ommunity. They are already pratised within OOdevelopment [113, 47, 49, 27, 18℄.In onlusion, FAD provides signi�ant support for funtion development. Thisinludes modelling a funtion as a olletion of funtions upon whih it depends andproviding support through permissive signatures for the development of polymorphi,overloaded, and higher-order funtions. In Chapter 8 we desribe FAD's data ditionaryand its support for reusing existing funtions and developing funtions in parallel. Thenext setion desribes the task of type design.7.3.4 Type DesignDuring the analysis phase, senario analyses and type dependeny analyses are pratisedin parallel in order to provide the information neessary to e�etively speify a funtion.



196 CHAPTER 7. FAD METHODOLOGYIn ommon with funtions, types are investigated until every use relationship is an intra-module one. Some types might therefore require further type dependeny analysis inadvane of implementation.Eah non-basi type should be modelled in a type dependeny diagram. In addi-tion, permissive signature analysis makes expliit the behaviour that must be de�nableover a type. For example, the signatures MAP and FOLD indiate partiular patterns ofomputation over any instantiating type, and EQ and ORD signal an equality type andordered type respetively. Thus far permissive signatures have been assoiated withtypes in response to a behavioural requirement of a funtion. During type design onean take eah type and determine whether any further permissive signatures should beassoiated with the type or any types upon whih it is dependent. Types an then bedeveloped that either use existing types whih instantiate the permissive signatures orrequire the delaration of new signature instantiations.We illustrate the results of further analysis with a detailed model of the typeresults. Its type dependeny diagram is presented in Figure 87.Thus the type resultsmust be delared using a type that instantiates the permissivesignature CONTAINER, and the date type. For example, using Haskell notation, one ouldimplement the type as a produt type as follows:data Results = Rs Date [Result℄where the type olletion a has been implemented as a list. The list type has therequired CONTAINER funtionality. We desribe in the following hapter how one anmath a type in development against an existing type.Type designs may have an impat on the subsystem arhiteture, and module ar-hiteture of subsystems. For example, ResultsMod will now use ListMod, the modulethat hosts the list types and their assoiated operations. Module arhiteture design istherefore intimately linked to the design of types.A value of the type result has four omponents: a date value, homeTeam andawayTeam values (whih are implemented identially), and an attendane value. Onethe design of a type is on�rmed a onstrutor signature an be delared and assoiatedwith the type. Here is a possible implementation for result.data Result = R Date (HomeTeam,AwayTeam,Attendane)
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Figure 87: A Model of the Type results



198 CHAPTER 7. FAD METHODOLOGYSine the types results and result are delared in separate modules and the typeresult is abstrat, one ould hange this implementation with any hanges restritedto the module ResultMod whih houses the type result. The date type an be imple-mented as any appropriate type that instantiates the permissive signature ORD, whihspei�es an ordering funtionality over its instantiating types. Sine the signature ORDinherits the signature EQ, any instantiating type must also have equality funtionality.Details regarding permissive signature design are desribed in Setion 7.3.6.7.3.5 Exlusive Signature DesignExlusive signature design takes the urrent set of exlusive signatures (whih are typi-ally one-one mapped with a subsystem or module) and designs a set of signatures thatstate the exat interfae presented to eah lient of a module or subsystem. Duringthe analysis phase exlusive signatures provide a spei�ation for maro unit develop-ers and a guide to the funtions (and their types) available for use from other marounits. Subsystem exlusive signatures provide input into the development of exlusivesignatures assoiated with their modules. One now needs to provide a truer reetionof the interation between maro units. That is, the signature assoiated with a unitmay be redelared as a olletion of signatures eah mediating aess to the unit for adi�erent lient.For example, the module arhiteture for FootballSS presented in Figure 77 is up-dated to that presented in Figure 88. The only hange is that the signature RESULTSSIGhas now been redesigned as three signatures that provide the exat interfae requiredby the lient. Details of two of the signatures are presented in Figure 89.7.3.6 Permissive Signature DesignEvery permissive signature is reorded in a desription doument. In Chapter 8 wedesribe the approah to storing permissive signatures on the basis of the number andkind of their parameters.Permissive signatures are used to delare a behavioural requirement over a type.To avoid potential onfusion a permissive signature should speify only that whihis required. That is, if a funtion requires mapping behaviour over a type then theassoiated permissive signature should speify only that behaviour. Through signature
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Figure 88: Updated Exlusive Signature Design for Modules of FootballSS

Figure 89: Exlusive Signatures Assoiated with the Module ResultsMod



200 CHAPTER 7. FAD METHODOLOGYinheritane one an develop signatures that speify a range of behaviour. However, oneshould not develop a signature through inheritane unless the resulting olletion ofbehaviour is atually required. That is, one should err on the side of aution, and nottie signatures unneessarily to an inheritane hierarhy.For example, the signature ORD that spei�es funtions that implement ordering overa type, is an extension of one that supports equality, EQ. Thus one an delare ORD byinheriting the spei�ations of EQ and adding other required spei�ations.7.4 SummaryIn this hapter we have presented the methodology of FAD by desribing its tasks andthe tehniques used to implement a task. The tehniques deliver models desribedin terms of the modelling language of FAD. The methodology is neither intended toreinvent good pratie in funtional programming nor prevent bad pratie, as was themotivation for the introdution of strutured programming and its assoiated analysisand design methodologies. Rather FAD should support software development in thefuntional programming paradigm by plugging the hole due to the lak of paradigm-spei� methodologies. FAD's modelling language and tehniques support good pratierather than enouraging a new approah to building systems within the paradigm.The �nal element of the methodology is its data ditionary. The following hapterpresents an overview of FAD's data ditionary, how it supports the reuse of existingentities, and the design of entities in development.



Chapter 8
Data Ditionary
One of the bene�ts of using an ADM as a tool in software development outlined inSetion 4.2.4, is that it provides signi�ant support for doumenting development. Thishas several uses of whih we highlight two of the most signi�ant. Firstly, it providesa reord of development for future referene either during maintenane or as an inputinto the development of a new system. Seondly, it an provide exellent support duringdevelopment espeially in relation to disovering ommon abstrations and reusableentities. Of ourse implementation ode provides its own form of doumentation, butthis is only available when the ode is written. Unsurprisingly it presents a piture ofthe idiosynrasies of a partiular language rather than a lear statement of a system'sdesign and funtionality.With large projets developed by multiple units there is a danger of substantialdupliation of e�ort. An ADM with a supporting CASE tool an redue this risk boththrough reording entities and designs in an eÆient manner, and providing mehanismsfor reuse and the disovery of ommon abstrations in existing entities and entities indevelopment.In Setion 8.2 we desribe FAD's data ditionary. We desribe how eah type of unitis stored and how this supports the requirements stated above. In the following setionwe review related work on mathing entities in development to existing entities.201



202 CHAPTER 8. DATA DICTIONARY8.1 Related WorkMost of the researh within the funtional programming ommunity on supporting reusehas foused on mathing funtions in development to those de�ned in a library. Themathing key in most ases is the funtion's type signature. Therefore, the mathingriterion is syntati and not semanti.Runiman and Toyn [122℄ desribe an approah where the funtion in developmentmay not have an expliit type signature. They present tehniques for developing a keytype for the new funtion, whih an be ompared against the types of existing funtions.One major limiting fator of their approah is that it enfores an ordering on the ar-guments. That is, although the types a -> b -> [b℄ and Int -> Char -> [Char℄math, the type Char -> Int -> [Char℄ will not math the latter type. Severalreusable funtions will be missed due to this onstraint.Rittri [117℄ removed the restrition on the order of a funtion's arguments anddeveloped a proess where one ould math a query type against an isomorphi type,where the isomorphisms are the ones that hold in all artesian losed ategories. Rittrienfores the expliit delaration of a query type but only allows exat mathes up toisomorphism. Thus, for example, a monomorphi type will not math a polymorphitype. One again potential mathes may be missed due to this onstraint.Zaremski and Wing developed two approahes to mathing modules as well as fun-tions. They have a syntati approah alled Signature mathing [154℄ whih matheson types, and a semanti approah alled Spei�ation mathing [155℄, whih mathesformal spei�ations of the behavioural harateristis of funtions and modules. Sineformal methods are beyond the sope of FAD, we will only review signature mathing.Zaremski and Wing de�ne a olletion of basi mathes of funtion signatures thatan be ombined to produe other mathes. Modules are mathed on the basis of theirsignatures using these basi mathes. The basi mathes are:exat math: two signatures are equal up to variable names and user-de�ned typenames;generalised math: the query type exat mathes an instane of the library ompo-nent type;



8.1. RELATED WORK 203speialized math: the library omponent type is an exat math of an instane ofthe query type;unify math: the two types have ommon instanes that math exatly;unurry: the unurried versions of the two types are exat mathes;reorder math: a reordering of the library omponent type is an exat math for thequery type.A signature mather has been implemented in SML and integrated into the author'sloal SML programming environment. However, the onus is on the user to determine theappropriate mathes to apply. This is not a trivial task sine some relaxed (non-exat)mathes may result in far too many funtions and an exat math in too few. Thereare no metris whih measure the most eÆient route to a suessful math.Park and Ramjisingh [94℄ take a signi�antly di�erent approah to those desribedabove. They argue that an eÆiently organised omponent library would maximisethe potential for reuse. They desribe an approah to the storage of funtions wherefuntions are grouped through their arity. Intra-group funtions are linked through type-substitution and inter-group funtions are linked through argument-substitution. Thatis, two funtions f1 and f2 of the same group are linked if the type of f1 is more generalthan the type of f2. Alternatively one an say that the type of f2 is an instane of thetype of f1. The type of f2 an therefore be reated through substituting one or moretypes for type variables in the type of f1.Two funtions f3 and f4 of di�erent groups are linked if the one of lower arity hasa type that is an instane of the type of the funtion of higher arity with one or morearguments removed. That is, the type is an appliative type instane of the higher aritytype. A query type an therefore be mathed against the same type, a more generaltype, a more spei� type, or a type with more arguments, whih an be made aninstane of the query type one some arguments are removed. However, mathing isonstrained by the order of the arguments.An and Park [4℄ have taken grouping a step further and removed the emphasis onthe order of arguments. Thus funtions are assigned to funtion groups based on theirarity, and within eah funtion group is a olletion of extended set types. For example,



204 CHAPTER 8. DATA DICTIONARYthe extended set type {int,har} -> bool inludes the types int -> har -> bool,har -> int -> bool, (int,har) -> bool, and (har,int) -> bool. That is, eahextended set type is a olletion of isomorphi types as desribed by Rittri [116℄. A nodeis reated for eah set type. Intra-group links are now between two nodes within thesame group and inter-group links between two nodes in di�erent groups. The linksare de�ned as in Park and Ramjisingh [94℄. Hene one bene�ts both from having astrutured repository of omponents and aess to isomorphi funtions within a node.Although this setion is titled Related Work the work on mathing omponents hasfoused on mathing entities - typially funtions - in development with funtions de�nedin libraries. The mathing requirements for a methodology are more varied. Mathingwith existing entities is still required, but so are mathing entities being developed withsimilar behavioural requirements and mathing non-funtion entities suh as types andsignatures.In the following setion we desribe FAD's data ditionary and how it provides aneÆiently organised approah to entity storage and satis�es the above requirements.
8.2 FAD Data DitionaryFAD's data ditionary is a medium for the storage of the olletion of desription dou-ments for all the delared miro and maro entities. We desribe in the following setionsthe riteria for plaement of eah form of entity. Those entities that are not desribedin a setion are simply stored alphabetially. Eah system entity will be desribed byone or more desription douments that provide an historial reord of development ofthe entity. The information reorded will inlude desriptions of any hanges and thereasons for the hanges. We desribe in the following setions the storage of the set ofdesription douments for eah entity, but will use the latest version to determine itsstorage situation. That is, as entities are developed they may be repositioned withinthe data ditionary. For example, a type may be assoiated with a permissive signa-ture when previously it had no suh assoiation. This will hange where it is stored asdesribed in Setion 8.2.2.



8.2. FAD DATA DICTIONARY 2058.2.1 FuntionsEah funtion is reorded in a series of funtion desription douments. The desriptioninludes: the funtion's arity, type spei�ation and assoiations between argumentand result types and permissive signatures. These are the important entries whendetermining the storage loation of the funtion and links between funtions.Funtions are stored using the following riteria, whih are applied in the enumeratedorder.1. Funtion arity.2. Assoiated permissive signature kind.3. Alphabetial.Funtions are initially grouped by their arity. That is, we have adopted Park andRamjisingh's approah of grouping all funtions with a single argument together, allfuntions with two arguments together and so on.We then assign the funtions in eah group to a subgroup of funtions whose typesinstantiate a permissive signature of a spei�ed kind. A permissive signature's kindis reorded in its desription doument. All funtions whih require a type/signatureassoiation of kind * are grouped together. Funtions whih require the instantiation ofa permissive signature of kind * -> * but not any of kind * are grouped together andso on. Finally, any funtions whih do not require the instantiation of any signatureare grouped together. Within eah of the subgroups the funtions are stored alphabeti-ally. For example, the funtion inputResult (see Figure 84) will be grouped with thefuntions of arity 2, with a permissive signature of kind * -> *. Thus if one wants todevelop a funtion that takes two arguments and has mapping behaviour, one an lookin this group.In ontrast to the mathing of funtions with impliitly or expliitly delared types,during development a funtion may use types that simply have a name and some as-soiation with permissive signatures. This approah to organising funtions will plaethese funtions with other funtions with similar behavioural requirements.Funtions with the same arity and permissive signature assoiations will therefore



206 CHAPTER 8. DATA DICTIONARYbe stored in the same group. This enhanes the hanes of disovering potential poly-morphi funtions and overloaded funtions. It also redues the likelihood of identialde�nitions being bound to two di�erent funtions of the same type. In addition, if onewants a funtion of arity n with a behavioural requirement spei�ed by a permissivesignature of kind * -> *, then one may �nd a funtion in the subgroup of arity n+1and permissive signature assoiation of the same kind that ould reate the funtionthrough partial appliation.Finally, if one wants a funtion over a type t then one an initially searh in thefuntion's arity/permissive signature subgroup, and if unsuessful, an then review themodule that hosts the type. Sine systems are built on information hiding, funtionsthat implement behaviour over the type should be delared in the module that hoststhe type.8.2.2 TypesA type is reorded in a series of type desription douments. The desription inludesthe kind of the type's onstrutor and any permissive signature assoiations. The typesare ategorised using the following riteria applied in the enumerated order.1. Type onstrutor kind.2. Permissive signature instantiation.3. Alphabetial.A type is initially assigned to a group on the basis of the kind of its onstrutor. Thusall types with nullary type onstrutors will be grouped together, as will all types withunary type onstrutors. Within eah of these groups the types are multiply assignedto the subgroup of types that instantiate a spei�ed permissive signature. However, ifa type instantiates several signatures whih are related through inheritane, then it isonly assigned to the signature whih permits the most behaviour. Within eah of thesegroups the types are stored alphabetially.Thus if one wants to �nd a type that instanitates the permissive signature ORD oneonly has one plae to look. This redues the hanes of repetition of type de�nition andinreases the likelihood of reuse.



8.3. SUMMARY 2078.2.3 Permissive SignaturesA permissive signature is reorded in a series of permissive signature desription do-uments. The desription inludes a listing of parameters and their kind. Permissivesignatures are ategorised using the following riteria applied in the order enumerated.1. Number of parameters.2. Kind of parameters.3. Alphabetial.Eah permissive signature is assigned to a group on the basis of their number ofparameters. The signatures NUM, ORD, FOLD, and MAP eah have one parameter and willtherefore be grouped together. Within eah group, signatures with a parameter of kind* are assigned to a subgroup. The remaining signatures with a parameter of kind * ->* are assigned to another subgroup and so on. Within eah subgroup the signaturesare stored alphabetially. Thus NUM and ORD are assigned to the same group, as are MAPand FOLD.If one is developing a signature with a single parameter of kind * -> * then onean look in the appropriate group and determine if an aeptable one exists, or if oneould be reated that extends an existing one through inheritane. Alternatively, thenew signature ould be extended to reate an existing signature.8.3 SummaryWe have outlined in this hapter how the FAD data ditionary provides an organisedrepository for de�ned elements and elements in development. The riteria for storingeah element were desribed. Organised storage inreases the likelihood of reuse andthe disovery of ommon abstrations.
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Chapter 9
Summary
In this thesis, we have presented arguments in favour of an analysis and design methodol-ogy whih supports software development within the funtional programming paradigm.We presented evidene of signi�ant support for objet-oriented development and thegeneral bene�ts of inluding a methodology within the proess of software development.Popular methodologies, suh as the Booh Method and SSADM, are underpinnedby a graphial modelling language whih delivers abstrat models of software designs.They are not however visual programming languages sine they deal with abstrationsrather than implementation details. We believe that a methodology whose languagehas elements in harmony with the funtional programming paradigm and whose teh-niques enourage and support the development of funtional designs is required. Weannot prove, in any formal and rigorous sense, that applying the methodology atuallyimproves the eÆieny with whih one develops software, or the e�etiveness of theimplemented solution. However, we an o�er software developers a pakaged approahto development where the media used allow fous on the essential omplexity of soft-ware development, whilst avoiding the aidental omplexity inevitable when swithingparadigms.In the appendix to this thesis we applied FAD to the development of a onsistenyheker for a CASE tool. Its support for the building bloks and glue of the funtionalparadigm enfored an approah that was onsistent with the paradigm from the initialstages through to design. We list below the spei� suesses of the appliation followedby the modi�ations/additions that we believe will enhane the modelling language and209



210 CHAPTER 9. SUMMARYmethodology.We laim the following suesses:� the notation was easy to use, unambiguous and presented the models in a learand readable manner. Other notations have embedded a funtion's arguments andreturn values within the funtion notation. We believe presenting types externalto their assoiated funtion - as �rst desribed in Setion 5.2.2 - provides severalbene�ts. These inlude:{ a funtion's type spei�ation is lear;{ it emphasises the importane of types during development; and,{ it allows behavioural requirements to be assoiated with the types in a learand expliit form.� the multiple views of a system supported by FAD deliver lear, foused modelsunluttered by unneessary information;� the adoption of a single set of diagrams naturally supported the iterative develop-ment of models throughout development. Models tend to require updating ratherthan replaement;� permissive signatures (see Setion 5.2.3) are an important element of the modellinglanguage. They allow behavioural requirements to be added to type informationin a form that is independent of any type and thus reusable aross types of theappropriate kind. They an be naturally implemented as types lasses in imple-mentation languages that o�er suh support as desribed in Setion 6.6;� independent maro unit and interfae model elements. This proved invaluableduring development where one wants to be able to speify an interfae to a modulethat is appropriate for a partiular relationship. For example, in the appendix wehave developed three exlusive signatures that provide interfaes to the moduleStateMod. Eah satis�es a partiular abstration requirement. Full details of thisexample are provided in Setion A.6;� an initially type-entri approah to module development and interation supportsthe disovery of the funtions that exist over a type. In some ases one may have a



9.1. SUMMARY OF CONTRIBUTIONS 211hoie of modules whih ould host a funtion, but it will still minimize the searhspae;� delaying the implementation details of a type in favour of speifying the be-havioural requirements and types used, enourages an approah to developmentin whih one is not tied prematurely to a partiular set of implementations. Thatis, we have adopted the priniple of least ommitment, whih requires as muhabstration as possible in order to minimize the sope of future implementa-tion deisions. This was illustrated, for example, in the development of the typeomponents (see Setion A.6.4) and the various substate types.We also believe that in light of our experienes with the ase study there are areasof the modelling language and methodology that ould bene�t from modi�ation andextension. We list these below:� there is a need for a `shorthand' notation for an interfae that spei�es everythingin its assoiated module or all but a few of the hosted units. This also applieswhere an interfae spei�es everything hosted by a module used by its assoiatedmodule;� a review of `ase' notation. That is, where a funtion has input-spei� behaviourwe urrently present eah alternative in a separate diagram although typiallyin the same model. This an result in a lot of omponent repetition and is thussomewhat ineÆient. Other modelling languages have adopted an approah whereone presents the various ases on a single diagram, whih although more eÆient,an result in a less readable model;� the ase study did not address any of what Peyton Jones has desribed as theawkward squad [99℄. FAD urrently supports development using pure funtionalprogramming languages. It will require extension to support the various means ofinterating with the external world.9.1 Summary of ContributionsThe major ontribution of this thesis is a methodology for developing funtional soft-ware. Although popular within other paradigms this development medium has been



212 CHAPTER 9. SUMMARYhitherto absent from the funtional programming paradigm.We laim the following partiular ontributions:1. A modelling language for building abstrat models of funtional designs. Thesyntax and semantis of the language were desribed informally as is ommonwith modelling languages.2. A olletion of integrated tehniques whih takes the deliverables of requirementsengineering and return software design that is best implemented in a funtionallanguage.3. A set of doumentation whih provide a medium for reording system entities andpresenting a history of design deisions. Eah doument inludes entries whihguide the storage of the doument in the data ditionary. The data ditionaryis an organised repository for storing entities. It supports the reuse of existingentities and the disovery of ommon abstrations between entities.4. A ase study that provides evidene of the suitability of FAD in a funtionalsoftware development proess.9.2 Future ResearhThere are several areas of future researh that would be of lear bene�t in the appliationof FAD.There is a need for a CASE tool that supports the appliation of FAD. A methodol-ogy without a CASE tool is like a programming language without a ompiler. Develop-ers are attrated to methodologies through their CASE tools, and thus, future researhmust fous on the development of a CASE tool for FAD. FAD provides no guidelines foronsisteny-heking and version ontrol. This is not unique to FAD sine it is unom-mon for a methodology to provide (non-generi) details on how onsisteny-heking orversion ontrol an be pratised. One an of ourse use the doumented material tomanually hek for onsisteny of design, and manage version ontrol, but this ouldsoon beome unwieldy. CASE tools typially provide support for onsisteny hekingmodels developed using their assoiated methodology. Thus any CASE tool would need



9.2. FUTURE RESEARCH 213to support onsisteny-heking. The ase study presented in the appendix ould beused as part of this researh.Design patterns are inreasingly popular within the OO ommunity. The sope andusefulness of suh patterns with funtional designs is an interesting area of researh. Afuntional modelling language ould be used to desribe reusable abstrat designs andpossibly to unover ommon abstrations in existing designs.
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Appendix A
Analysis and Design of aConsisteny Cheker
In this appendix we present a signi�ant example of the appliation of FAD. FAD isbest applied through a CASE tool that will support inter alia the reording of units indevelopment and the heking of the onsisteny of the various models that togetherdesribe a design. It is the CASE tool's onsisteny heker that is the fous of thisappliation. It will be developed as one of the subsystems of the CASE tool projet.In the following setion we provide a desription of a onsisteny heker that in-ludes a de�nition of an inonsisteny, and in Setion A.2 there is a detailed overviewof the requirements of the onsisteny heker. Setions A.3 and A.4 present a repre-sentative seletion of senario and type dependeny analyses that span the major issuesregarding the development of the funtionality of the onsisteny heker. In SetionA.5 we analyse the module arhiteture of the subsystem where the modules, exlusivesignatures and module use relationships required by the onsisteny heker are devel-oped. Design issues are disussed and illustrated in Setion A.6, and a summary of thedevelopment and a brief overview of work to be done are given in Setion A.7.FAD, in ommon with most ADMs, provides multiple views of a system in develop-ment. This is one of the major bene�ts of their appliation. However, multiple viewsan lead to inonsistenies between the views, and these inonsistenies may be verydiÆult to disover if the system is of a non-trivial kind. Thus most CASE tools providea means of resolving suh problems in the form of a onsisteny heker.215



216 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERA.1 Consisteny ChekerA onsisteny heker is a signi�ant part of a CASE tool. Although a modellinglanguage supports the delivery of a design for a system one annot assume that thedesign is onsistent. That is, one annot assume that the design is implementable.This is partiularly true when designing a large system that may be represented in aseries of models. This is preisely the ase when using FAD where one is enouraged todevelop models that provide various views of the system in development. A visual sanof suh models is unlikely to disover potential inonsistenies either within a model orbetween models. A onsisteny heker is the tool that enables a methodial approahto the disovery of design inonsistenies. In addition, the inremental and iterativeapproah to development enouraged by FAD, an only be pratised e�etively if onehas a mehanism for ontrolling the introdution of new elements, and the replaementof existing elements in an updated design.Here we are using the term model as an identi�ed olletion of elements of themodelling language. An element is any miro unit, maro unit or relationship of FAD.Thus, for example, a model ould be a module dependeny diagram or a funtiondependeny diagram, a mixture of both, or simply a olletion of unrelated elements.Sine one is building a system with the intention of future implementation, it is neessaryto build one that an be implemented. An inonsisteny is something that annot beimplemented. We illustrate an inonsistent design with an example. In Model 1, thefuntion aFun uses the funtion bFun. In Model 2, aFun is hosted by module AModand bFun is hosted by module BMod. In Model 3, BMod uses AMod via the exlusivesignature ASIG but there is no module use relationship in the other diretion. Figures90(a), 90(b), and 90() present a graphial representation of these three models.An inonsisteny exists between the dependene of aFun on bFun and the lak of amodule use relationship from AMod to BMod. Thus any implementation of this designwould inlude an error due to the lak of visibility of bFun from aFun. For example,in Hugs 98, if the module AMod is delared in the �le AMod.hs and BMod is delared inBMod.hs then the following error ours:ERROR "AMod.hs": Undefined variable "bFun"
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Figure 90: An Example of InonsistenyA onsisteny heker should report the above inonsisteny thus allowing the de-velopers to resolve the problem pre-implementation. However, a onsisteny hekerneither provides solutions to any problems nor reports on poor or ineÆient design. Itmay highlight potential areas of onern but its primary rôle is to determine whether adesign based on the models of development is onsistent and thus implementable. Thisis analogous to the program error-spotting rôle played by a ompiler.In the following setion we present the requirements of a onsisteny heker. Thesewill provide the basis for the development of the heker.A.2 Requirements AnalysisWe present in this setion a list of identi�ed requirements eah aompanied by someommentary. Eah requirement is a onsisteny hek. However they an be furtherategorised as either pass/fail heks or warning heks. A pass/fail hek must bepassed. The failure of suh a hek signals an inonsisteny. A warning hek disoversan aspet of a design whih may result in an inonsisteny, but either beause of thelimitations of a onsisteny heker or the variability in implementation languages, oneannot guarantee that it is an inonsisteny.Many of the pass/fail heks rely on one unit being visible from another. This is anon-symmetrial relationship that we de�ne as follows:A miro unit B is visible from the miro unit A if preisely one of the



218 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERfollowing is true:� either A or B is not assoiated with a host module. During the earlystages of development miro units may be introdued without a hostmodule. The default is that suh units are visible from any other unitand vie versa. This is to avoid unwanted onsisteny heking failuredue to an inomplete design;� A and B are hosted by the same module;� B is hosted by a module BMod in the same subsystem as the moduleAMod that hosts A. There is either a module use relationship fromAMod toBMod withB spei�ed in the mediating exlusive signature,or there is a path from AMod to BMod via one or more intermediatemodules where eah module use relationship linking the modules ismediated by an exlusive signature that spei�es B;� B is hosted by a module BMod hosted by a subsystem BS that isused by the subsystem that hosts the module in whih A is delared.B must be spei�ed in the exlusive signature that mediates use of thesubsystem, and in the exlusive signature that mediates the partitionrelationship between the subsystem BS and BMod, or a module thatis linked to BMod via a path as desribed in the ase above. This isillustrated in Figure 91, where to aid readability, we have limited thespei�ations presented in the exlusive signatures to those required forthe example.A module M is visible from a module N if preisely one of the followingholds:� either M or N is not hosted by a subsystem for the same reasons givenabove; or� modules M and N are hosted by the same subsystem.The pass/fail heks are:Model Consisteny: a model must be onsistent relative to existing models. The



A.2. REQUIREMENTS ANALYSIS 219

Figure 91: Illustration of visible from Relationshiponsisteny of a model will depend on the onsisteny of its elements. This is fullydesribed in Setion A.3.1.Funtion Argument and Result Types: the types whih provide the argument orresult values of a funtion must be visible from the funtion.Funtion Use: all funtions used by a funtion must be visible from the funtion.Type Use: all types used by a type must be visible from the type.Module Use: a module may only use a module whih is either hosted in the samesubsystem or if either is unassigned to a subsystem. That is, moduleM may onlyuse module N if N is visible from M. A module is hosted in a unique subsystemfor a given projet. It may be assigned to another subsystem in a di�erent projet.Exlusive Signature Mediation 1: a module/exlusive signature assoiation mustbe onsistent. This is true if preisely one of the following holds for eah mirounit spei�ed in the exlusive signature:� it is hosted by the assoiated module;



220 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER� it is spei�ed in an exlusive signature that mediates aess to a module usedby the assoiated module and this module/exlusive signature assoiation isonsistent.Exlusive Signature Mediation 2: a subsystem/exlusive signature assoiationmust be onsistent. This is true if preisely one of the following holds for eahmiro unit spei�ed in the exlusive signature:� it is hosted by a module M hosted by the subsystem and is spei�ed in theexlusive signature that mediates the partition relationship with M;� it is hosted by a module whih itself is hosted by a subsystem used by the sub-system, and is spei�ed in the mediating exlusive signature and the previousrule holds for the used subsystem.Permissive Signature Instantiation: a type/permissive signature assoiation mustbe onsistent. This holds if:� the permissive signature is visible from the type(s);� for eah parameter of the permissive signature there is an assoiated typewhose type onstrutor is of the same kind. Setion 5.4.4 provides details ofthe instantiation of a permissive signature by one or more types;� for eah miro unit spei�ed in the signature a miro unit exists of the typerequired by the signature.Constrained Polymorphism: a funtion that inludes a type/permissive signatureassoiation must be onsistent. This holds if:� the funtion argument types and result type are visible from the funtion;� the permissive signature instantiations exist and are onsistent. That is, theinstantiation must have been previously delared;� the type(s) assoiated with eah permissive signature are visible from therelevant argument or result type. That is, the type with whih the permissivesignature is assoiated must either be the type to whih it is (graphially)juxtaposed or a type used by this type. We present an illustrative example



A.2. REQUIREMENTS ANALYSIS 221in Figure 92 where the permissive signature EQ is instantiated by the typeaType that is used by the type bType. This is a onsistent design.Permissive Signature Inheritane: a permissive signature inheritane relationshipmust be onsistent. This holds if:� the inheriting signature has a parameter (or parameters) of the same kind asthe parameter(s) of the inherited signature.Uniqueness: this inludes:� uniqueness of type onstrutor names. Eah type must have a unique name,whih will be the type onstrutor name if it takes no arguments, or the typeonstrutor name plus assoiated parameters (type variables or types) fornon-nullary onstrutors. A type onstrutor name must begin with a lowerase letter;� uniqueness of permissive signature and exlusive signature names. Thesenames must use only upper ase letters;� uniqueness of module and subsystem names. These names must begin withan upper ase letter;� eah miro unit hosted by a single module;� eah module hosted by a single subsystem;� a miro unit spei�ed in at most one permissive signature up to inheritane;� eah maro unit use relationship must be unique. For example, if AMod usesBMod then there must be a unique exlusive signature whih mediates thisusage.but does not inlude:� uniqueness of funtion names. Sine polymorphism - onstrained and un-onstrained - is enouraged by the methodology, the reuse of funtion namesmust be allowed. However, they should only be reused where there is po-tential for one of the forms of polymorphism. That is, if two funtions ofdi�erent arity share the same name then this is an inonsisteny. This is
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Figure 92: Constrained Polymorphism Examplebeause urrent funtional languages do not support this form of funtionname overloading. Sine a onsisteny heker is not a type heker one an-not perform the mathing algorithms required to on�rm the mathing oftypes. Thus one an hek for arity mathing but not for type mathing.However, one an report when a funtion name has been reused and leave itto the user to deide on the appropriate ourse of ation. That is, this hekuses a pass/fail hek and a warning hek. Arity mathing is a pass/failhek and funtion name reuse is a warning hek.New Host Cheks: these are a olletion of heks that are triggered when mirounits of existing models are assigned to a module, or a module of an existingmodel is assigned to a subsystem in the new model. Elements of existing modelsneed to be reheked sine previously onsistent designs may now be inonsistent.For example, a type use relationship may now be inonsistent if the related typesare hosted in di�erent non-related modules.Update Cheks: these are heks that are triggered when a model has been updatedand may ause a previously onsistent design to beome inonsistent.The following heks are warning heks or use warning heks.Abstration: if there is an abstration barrier between a funtion and eah of its types,and the funtion only uses funtions that are not operations of the abstrat type(s),then the user should be warned of the potential for the breakage of abstration.Although this is not an inonsisteny sine it is perfetly valid for an abstrat type



A.2. REQUIREMENTS ANALYSIS 223to be an argument of a funtion that is not an operation of the type, and thusan be implemented in most funtional languages, there is the potential for theabstration barrier to be broken in the implementation of the funtion. The usershould be advised of this type of design so that a deision an be made regardingthe appropriate ation.We present an illustrative example in Figure 93. The funtion aFun uses theargument types aType and bType that are abstrat relative to the funtion, sinethey are hosted in used modules and are spei�ed in the mediating exlusivesignatures ASIG and BSIG without their onstrutor signatures. aFun uses thefuntions usedFun1 and usedFun2, neither of whih is hosted with either of thetypes. Thus abstration is potentially violated. See Setion 6.4 for full details ofFAD's support for abstrat types.Argument and Return Values: a funtion an be applied (partially or not) to valuesof the appropriate type and/or return a value of the appropriate type. Sine aonsisteny heker is not a type heker one annot on�rm that a value mathesthe required type. However, if a type has known values one an do a mathing onvalues. Also, if the type is a funtional type one an hek the arity of the funtionvalue against that of the funtional type. Thus one an provide information forthe user regarding the appropriateness of the value(s) used. The user reeives awarning if any of the following situations ours:� a value is not a known value of the spei�ed type;� a funtion value's arity does not math that of the spei�ed type.Reursive Dependenies: any reursive dependenies are reported. This requiresthe investigation of eah set of use relationships. For example, if a moduleM usesa module N, whih itself uses moduleM, this is reported sine the design may benon-implementable in some languages, and furthermore, it may indiate a poormodule arhiteture design.Eah of the requirements listed above an be desribed as a funtion. For example,we have the funtion funtionUseChek that heks for the onsisteny of a funtion userelationship against the existing set of elements. These funtions provide the foundation
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Figure 93: Abstration Exampleupon whih a system will be analysed. Eah funtion will be analysed in regard to bothits type and behavioural requirements. The aggregation of these analyses should bethe main funtions and types required to implement the system. funtionUseChek isanalysed in Setion A.4.1.We proeed in the following setion with a seletion of analyses of the funtions thatdeliver the requirements outlined in this setion.A.3 Senario and Type Dependeny AnalysesWhen applying the senario analyses one has to appreiate the inter-dependeny be-tween types and funtions. How one develops types will have a diret impat on funtiondevelopment and vie versa. We will therefore present a mixture of senario and typedependeny analyses that will highlight the interplay between these tehniques. The�rst senario that we will investigate is that of heking the onsisteny of a model sinethe other requirements are subordinate to this one.We have previously outlined how a system developed using FAD an be desribedby a olletion of models. We will take a model-based and inremental approah toonsisteny heking. That is, rather than trying to ompare a olletion of models,as eah model is submitted it is heked against existing models that have satis�ed theonsisteny heker. Model submission is the proess of adding the model to the urrentolletion of system models. The aggregation of the elements of the existing models is



A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 225used as the basis for the determination of the onsisteny of the submitted model. Thisalso applies to the heking of a model whih is an update of an existing model.We will adopt an approah in whih we present an informal desription of an analysisfollowed by a desription of the development of a FAD model. The informal desriptionwill typially provide a signi�ant input into the desription presented in the DesriptionDouments for the units being analysed.A.3.1 Consisteny of a ModelInformal DesriptionThe onsisteny of a model is tested relative to the aggregate of existing models. Thatis, one does not pratie pairwise omparisons between the new model and eah of theexisting models but instead ompares the design desribed by the new model againstthat desribed olletively by the existing models. We all this information the state ofthe system. A model is onsistent if and only if eah of its elements is onsistent whenheked against the state. It is therefore inonsistent if any of its elements introduean inonsisteny. The onus is therefore on the new (or updated) model to be onsistentrelative to the existing design and not on the existing design to hange in order toaommodate the new model. However, inonsistenies an be introdued into the statedue to new hosting relationships or a model being updated.The onsisteny of an element of a model will also depend on those elements of themodel whih have already been heked. That is, one needs to update the informationagainst whih the model is being heked as the hek is being proessed. For example,if a model introdues a new type dependeny diagram with some new types, then thetypes will be heked �rst. If these heks sueed then the types are added to the stateagainst whih the type use relationships are heked.The manner in whih a hek proeeds depends on whether a model is new or anupdate of an existing model. If new, then one heks the model against the existingstate. If an update, then the state requires some modi�ation before heking. Thatis, sine the model is replaing an existing model, some of the elements of the existingversion may no longer be part of the state. This depends on whether they are part ofany other existing model or are reused in the updated version of the model. If either or



226 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 94: modelChek funtion and the type stateboth of these situations hold then they remain, and if not then they should be removed.FAD DesriptionThe funtion modelChek, whih heks the onsisteny of a model, takes two argu-ments of type model and state. The type model has as values the FAD models, andstate inludes the aggregation of existing elements. modelChek returns a value of typestate sine it not only heks for onsisteny but updates the state for future heks.The type state uses the type passOrFail whose values reet whether the hek hasbeen suessful or not, and provides supporting information. The FAD graphial repre-sentation of modelChek is presented in Figure 94(a) and a preliminary design for thetype state is presented in Figure 94(b).The funtion needs to determine whether the model is new or an update. Refer-ring now to Figure 95, the type model must be an equality type whose equality isdetermined through its identi�er. It therefore uses the type modelID that uniquelyidenti�es eah model and is also an equality type. Using the funtion isIn, one maytest whether the model is new, and if so, one proeeds with the hek of a new modelusing newModelChek. Sine one is heking for the existene of a model, the funtionmodelChek needs aess to existing models either within the type state or as a sepa-rate type. We have deided to inlude this within the type state sine this informationwill need to be updated upon the suessful ompletion of the hek.If the model fails the new test - if isIn returns True - whih implies that the model



A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 227is an update of an existing model, then the state value requires modi�ation usingthe funtion modifyState, and the funtion oldModelChek is applied to the statevalue that is returned. These two alternatives are given in Figure 95 and a FuntionDesription Doument for modelChek is provided in Figure 96.newModelChek and oldModelChek have similar behavioural requirements. Theyboth san the elements of the model value being heked and will terminate the hek ifany element hek fails, and will update the state value as eah hek sueeds. Thusone must be able to apply a onsisteny hek to any element value. That is, a funtionelementChek must exist over the element type and also over any type used by thistype that represents the di�erent units and relationships of FAD. These types, suh asfuntion and typeUseRel will be used either diretly by the type element or via typesused by this type. Details of the design of the type element are left to later in thedevelopment proess and analyses of newModelChek and oldModelChek are presentedin Setions A.3.3 and A.3.4.At this point it is worth analysing the types state and modelA.3.2 The Types state and modelInformal DesriptionThe type state plays a entral rôle in the design of the onsisteny heker. It ats asa repository for the elements of existing models, a reorder of the identities of existingmodels and an indiator of the suess or failure of the most reent hek with additionalinformation for the user. It is the state value that will provide the information againstwhih a model is heked for onsisteny, and the information that determines if a modelis new or is replaing an existing model. It is important therefore that one an add,remove and �nd elements, and similarly add, remove and �nd model identi�ers.If one is updating an existing model then the state requires modi�ation in advaneof the onsisteny hek. However, if the hek fails one wants to be able to return thestate to its pre-modi�ation form. This implies a design where one has three substates:� one that reords the aggregation of elements of existing models;� one that reords the elements of the model being heked that have passed theirhek. These elements are used together with those of the �rst substate in the
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Figure 95: Conditional Behaviour of modelChek and Design of model
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Funtion Desription Doument CASEName: modelChekVersion: 20000710:0Module:Arity: 2Type Spei�ation: state -> model -> stateContrat Assoia-tion:Instantiations:Funtions Used: isIn : modelIDs -> modelID -> boolnewModelChek : state -> model -> statemodifyState : state -> model -> stateoldModelChek : state -> model -> stateDesription:The onsisteny of a model is tested relative to the aggregate of existing models.That is, one does not pratie pairwise omparisons between the new model andeah of the existing models but instead ompares the design desribed by thenew model against that desribed olletively by the existing models. We allthis information the state of the system. A model is onsistent if and only ifeah of its elements is onsistent. It is therefore inonsistent if any of itselements introdue an inonsisteny. In addition, the onsistenyof an element in a model will also depend on those elements of themodel whih have already been heked. That is, one needs to updatethe information against whih the model is being heked as the hekis being proessed.The manner in whih a hek proeeds depends on whether a model isnew or an update of an existing model. If new, then one heks the modelagainst the existing state. If an update, then the state requires somemodi�ation before heking. That is, sine the model is replaing an existingmodel, the elements of the existing version may no longer be part of thestate. This depends on whether they are part of any other existing model orare reused in the updated version of the model. If either or both of thesesituations hold then they remain, and if not then they should be removed.Figure 96: Funtion Desription Doument for the Funtion modelChek



230 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERheking of future elements of the model. If the model hek terminates suess-fully then these elements are added to those of the �rst substate. If the hek isunsuessful then the �rst substate is left unhanged; and,� one that reords the elements that are (temporarily) removed from the �rst sub-state when the state is modi�ed in advane of heking a model that is an updateof an existing model. These are the elements that only exist in the previous ver-sion of the model. If the model hek terminates suessfully then these elementsare disarded sine they no longer exist in the design of the system. If the modelhek is unsuessful then these elements are returned to the �rst substate sinethe previous version of the model remains in existene. Full details of the be-havioural requirements when updating a model are presented in the analysis inSetion A.3.4.A model is an identi�ed olletion of elements. Eah element an appear in one ormore models and must be hekable for onsisteny against the state.FAD DesriptionHere we are referring to the Type Desription Doument presented in Figure 97 and thetype dependeny diagram in Figure 98. The type state uses the following �ve types:� modelIDs, whih is the type of a olletion of model identi�ers;� subState1, whih is the type of existing model elements;� subState2, whih is the type of elements that satisfy heks during a model hek;� subState3, whih is the type of elements that exist only in the previous versionof a model for whih an update is being heked; and,� passOrFail, whih signals suess or failure of a hek with supporting informa-tion.subState1, subState2 and subState3 make use of the type elements, whih usesvalues of type element. These three types may eventually be replaed by a single typethat provides three �elds of the type state. However, by treating them as separate typesone has the exibility either to implement them di�erently or deide to unify them into
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Type Desription Doument CASEConstrutor Name: stateVersion: 20000710:0Kind: *Module:Types Used: modelIDs, subState1, subState2subState3, passOrFailParameters:Permissive sigs.:Desription:The state value provides the information against whih a model is hekedfor onsisteny and the information whih determines if a model is new or isreplaing an existing model. It is important therefore that one an add, removeand �nd elements, and similarly add, remove and �nd model identi�ers.If one is updating an existing model then the state requires modi�ation inadvane of the onsisteny hek. However, if the hek fails one wants to beable to return the state to its pre-modi�ation form. This implies a designwhere one has three substates:- one whih reords the aggregation of elements of existing models;- one whih reords the elements of the model being heked that havepassed their hek. These elements are used in together with those ofthe �rst substate in the heking of future elements of the model. Ifthe model hek terminates suessfully then these elements are addedto those of the �rst substate. If the hek is unsuessful then the�rst substate is left unhanged; and,- one whih reords the elements whih are (temporarily) removed fromthe �rst substate when the state is modi�ed in advane of heking a modelwhih is an update of an existing model. These are the elements that onlyexist in the previous version of the model. If the model hek terminatessuessfully then these elements are disarded sine they no longer existin the design of the system. If the model hek is unsuessful thenthese elements are returned to the �rst substate sine the previousversion of the model remains in existene.Figure 97: Type Desription Doument for the Type state



232 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERa single type. One is therefore not fored into an early design deision. The typeelements and modelIDs must use a olletion type whih instantiates the permissivesignature CONTAINER. This signature spei�es the funtions add, remove, empty andisIn whih guarantee:� the ability to add an item to a olletion;� the ability to remove an item from a olletion;� an empty value for the olletion; and,� the testing for the existene of an item in the olletion.Both remove and isIn require the item type to be an equality type sine in bothases they depend on the mathing of an item with one in the olletion.We now refer to Figure 99 and to the Permissive Signature Desription Doumentpresented in Figure 100. Sine eah element value needs to be heked for onsistenyand the state value reets the umulative result of the appliation of the heks, theolletion type used by elements must also support the folding of a funtion into theolletion of values. This is guaranteed by the permissive signature FOLD, whih weassoiate with the olletion type. In addition, eah element type must instantiate thepermissive signature CHECKABLE that spei�es the funtion elementChek.The type model uses two types:� the equality type modelID whose value uniquely identi�es a model; and,� elements whih is the type of the elements of the model.We will ontinue in the next setion with an analysis of heking the onsisteny ofa new model.A.3.3 Cheking a New ModelInformal DesriptionA new model is heked against the existing set of models by heking eah element ofthe model. As eah element passes a hek it is added to the state against whih futureheks are applied. If any element hek fails then the model hek fails and the details
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Figure 98: The Types state and model
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Figure 99: The Permissive Signatures FOLD, EQ, CHECKABLE and CONTAINERPermissive Signature Desription Doument CASEName: CHECKABLEVersion: 20000712:0Module:Parameter(s):  : *Operations: elementChek : state ->  -> state(with type spes.)Inherited Signa-ture(s):Desription:This signature spei�es the funtion elementChek that deliversonsisteny heking over an instantiating type.Figure 100: Permissive Signature Desription Doument for CHECKABLE



A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 235of the failure are added to the state. Conversely if all element heks sueed then themodel hek sueeds. However, the user may still be informed of potential reursionor breaking of abstration by inluding this information in the state.The ordering of the heking of elements is important. The general approah is thatan element should be heked before used. Thus, for example, a type should be hekedbefore one heks its use by a funtion or another type, and a permissive signatureshould be heked before heks are applied to its instantiation by a type. We de�ne apartially ordered set (S;�), where S is the set of onsisteny heks, and for two heksx and y, x � y is de�ned as x must be applied in advane of y. We present a graphialrepresentation of (S;�) in Figure 101. Eah hek is presented on a node, and for anytwo heks where x is the immediate predeessor of y, the node x appears above thenode y and they are onneted by a link. For any two heks s and t where s � t, sappears above t and there is a path - or sequene of nodes onneted by links - from sto t.A total ordering whih satis�es the partial order is presented in the following enu-merated list. In eah ase we qualify the position of a hek in the list by stating thoseheks that are immediate suessor heks.1. Uniqueness of type onstrutors. Types are fundamental to the developmentof FAD models and are used in the development of all other miro units. The onlyhek that is required on a type is that it does not reuse a type onstrutor name.That is, one wants to prevent the use of the same onstrutor with di�erent kinds.Thus if the type onstrutor aType is urrently used with kind * and then is reusedwith kind * -> * then this seond ourrene is an inonsisteny. Multiple useof a type onstrutor name with the same kind refers to the same type. Hene ifone has multiple type dependeny diagrams for a single type the onjuntion ofdiagrams must be used. This hek must be applied in advane of:� uniqueness of miro unit host heks sine the type's existene must beheked before it is assigned to a module;� uniqueness of permissive signature spei�ations some of whih may use ex-isting types; and,� uniqueness of exlusive signature names and miro unit existene heks of
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Figure 101: Partial Order for Consisteny Cheks



A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 237whih one or more may be a type.2. Uniqueness of funtion names. Funtions are also fundamental to the devel-opment of FAD models. As stated in the requirements analysis this hek usesa pass/fail hek of the arity of funtions that share a name, and if this hekis passed, a warning hek is applied to indiate that the name is being shared.In ommon with types, multiple use of a funtion name (and assoiated types)results in the funtion adopting the aggregate of the information. This hek mustbe applied in advane of the same heks as hek 1 and for equivalent reasons.3. Uniqueness of module and subsystem names. This is simply to prevent onename being used for a module and a subsystem. Modules whih share the samename are assumed to be idential and therefore host the aggregate of elementshosted by eah. The same rule applies for subsystems. These must be heked inadvane of these maro units being used in hosting relationships. That is, theymust be applied in advane of uniqueness of miro unit host heks and uniquenessof module host heks.4. Uniqueness of miro unit host. Every miro unit must be hosted by at mostone module. These heks must be applied in advane of module use heks whihdepend on the assignment of miro units to host modules.5. Uniqueness of module host. Every module must be hosted by at most onesubsystem. These heks must be applied in advane of module use heks sine amodule may only use another module that is either hosted by the same subsystemor if either is unhosted.6. Uniqueness of exlusive signature names and unit existene. Eah exlu-sive signature spei�es a partiular set of miro units. Eah of these units mustexist in the state before being spei�ed in an exlusive signature. Exlusive signa-tures whose spei�ations do not math must have di�erent names. These heksmust be applied in advane of module use heks in whih exlusive signatureshave a mediating rôle.7. Permissive signature inheritane. One way of reating new permissive signa-tures is by inheriting from and possibly adding to existing signatures. The heks



238 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERare based on mathing the kinds of the parameters of the inheriting and inheritedsignatures. That is, for eah parameter of the inherited signature(s) there mustbe a parameter of the same kind in the inheriting signature. These heks mustbe applied in advane of uniqueness of permissive signature spei�ation heksthat may depend on the inheritane assoiation between permissive signatures.8. Uniqueness of permissive signature spei�ations. This inludes hekingthat any spei�ation appears in at most one permissive signature up to inheri-tane. Permissive signatures whose spei�ations do not math must have di�erentnames. In addition, one heks that any type used in a spei�ation exists in thestate. These must be heked in advane of the use of a permissive signature in atype/permissive signature instantiation.9. Module use. These heks need to be applied in a partiular order. The mod-ule use relationships in a module dependeny diagram should be heked in thefollowing order where we are assuming no reursion in the diagram:(a) those at the base of the diagram should be heked �rst. That is, those forwhih any item spei�ed in the exlusive signature must be hosted by theassoiated module should be heked �rst;(b) those in the next layer up should be heked next;() ontinue until one reahes the relationship(s) at the top of the diagram whihshould be heked last.Where one has reursive dependenies the use relationships involved in the re-ursion are heked in any order within the appropriate position in the aboveordering.Module use heks inlude:� uniqueness of module use relationship heks; and,� the exlusive signature mediation 1 heks desribed in Setion A.2.They must be applied in advane of partition heks whose suess may dependon the relationship between modules in a subsystem.



A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 23910. Partition. Any partition relationship between a subsystem and a module mustbe unique. That is, there must be a unique exlusive signature that mediatesthe relationship. In addition, the exlusive signature mediation 1 heks must beapplied to the exlusive signatures and their assoiated modules. Partition heksmust be applied in advane of subsystem use heks that may rely on the partitionrelationships between server subsystems and their modules.11. Subsystem use. These heks use two heks:� uniqueness of the use relationship between any two subsystems. That is,mediation must be through a unique exlusive signature; and,� exlusive signature mediation 2 heks, whih were desribed in Setion A.2.These heks must be applied in an order that takes into aount the subsysteminterdependenies. They must be applied in advane of new host heks, sine afuntion and one or more of its types may be hosted in modules that are hostedby di�erent subsystems.12. New host. The introdution of hosts for miro units or modules that have beendelared in existing models may a�et the onsisteny of elements that have pre-viously passed a hek. For example, a funtion use relationship or type userelationship may now be inonsistent due to hanges of the modules whih hostthe related funtions. We therefore need to hek all elements whih are a�etedby the new host relationships. These heks must be applied in advane of fun-tion argument and result type heks whose suess may depend on the hostingrelationships of types that appear in existing models.13. Funtion argument and result type heks. The argument and result typesof a funtion must be visible from the funtion. These heks must be applied inadvane of:� argument and result value heks sine a funtion an only use values onethe visibility of a type has been heked; and,� permissive signature instantiation heks that require the existene of thespei�ed funtions.



240 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER14. Permissive signature instantiation. These were desribed in Setion A.2 andmust be ompleted in advane of type use heks that may require used type(s)to instantiate one or more permissive signatures.15. Type use. These were desribed in Setion A.2 and must be applied in advaneof:� onstrained polymorphism heks that may require type/permissive signatureinstantiation heks between a permissive signature and a type used by anargument or result type; and,� reursion heks over types that depend diretly on the type use relationships.16. Constrained polymorphism. These were desribed in Setion A.2 and mustbe applied in advane of funtion use heks. A funtion may use a funtion thatrequires a type/permissive signature instantiation.17. Argument and result values. These heks were desribed in Setion A.2. Afuntion whih is either (partially) applied to its arguments or has a given returnvalue needs to be heked in advane of the use of the funtion in a funtion userelationship.18. Funtion use. These were desribed in Setion A.2 and must be applied inadvane of abstration and reursion heks sine they both diretly depend onthe set of funtion use relationships.19. Abstration. These heks were desribed in Setion A.2. These warning hekshave no heks whih are dependent on their outome.20. Reursion. These heks were desribed in Setion A.2. These warning hekshave no heks whih are dependent on their outome.Module use (9) and subsystem use (11) heks aside, there is no required orderingof heks of the same sort.
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Figure 102: Analysis of type elementFAD DesriptionWe now refer to Figure 103. newModelChek uses two funtions hekElements andupdateState. hekElements takes arguments of type state and elements and re-turns a value of type state. The elements value omes from the model value to whihnewModelChek is applied. hekElements's seond argument of type elements usesa olletion type that is assoiated with the permissive signature FOLD sine the fun-tion elementChek is folded over the elements. The permissive signature CHECKABLEguarantees the existene of the elementChek funtion.The type element is a union of types that represent miro units, miroUnit, marounits, maroUnit, and relationships relationship. Eah of these types also instantiatethe permissive signature CHECKABLE and are themselves unions of types, whih we willreturn to later in the analysis. We present the urrent design of the type element inFigure 102.The funtion hekElements uses two funtions. applyOrdering ats as a ontrollerof the appliation of the element onsisteny heks. That is, it heks for the existeneof di�erent types of elements and applies the relevant elementChek to them usingthe total order desribed earlier in this setion. applyOrdering takes three arguments



242 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERof type state, elements and the funtional type state -> element -> state. Thefuntion is partially applied to the value elementChek. warningCheks uses the fun-tions reursionChek and abstrationChek, whih are non-element spei� warningheks. That is, they are not diretly bound to a partiular element, and their ap-pliation does not a�et the various substate values. warningCheks takes a singleargument of type state and returns a value of the same type. reursionChek andabstrationChek have the same type as warningCheks.The funtion applyOrdering uses two funtions. orderModuleUseCheks managesthe appliation of the funtion moduleUseChek and orderSubsystemUseCheks pro-vides a similar servie for the funtion subsystemUseChek. That is, they make surethat these partiular heks are applied in the appropriate order. Eah funtion takesthe olletion of the relevant use heks as one of the arguments, and requires the userelationship type to instantiate the permissive signature ORD that guarantees an orderingof values of the instantiating type.Upon ompletion of the heks the state will require updating. This is implementedby the funtion updateState that manages the state at the termination of a suessfulor failed hek. It simply takes the urrent state value as its argument, sine it inludesall the information required, and returns the updated state value. If the model hekwas suessful then the subState1 value should be updated to reet the `addition' ofthe elements of the subState3 value. Addition ould mean either the introdution ofnew elements or the on�rmation of the use of existing elements in the new model. Inaddition, the type passOrFalse's value will indiate suess and inlude a message thatreets this outome.If the hek of the model failed then the empty value of the type subState3 isreturned, and the passOrFail value signals failure with a message whih desribes thedetails of the failure.Eah type that represents a miro unit, maro unit or relationship - suh as the typefuntion - uses the type modelIDs to reord the models in whih an element appears.The funtion add de�ned over the type elements uses the funtion add de�ned over thetype modelIDs to deliver the required funtionality. Both of these funtions use the addfuntions guaranteed by the instantiation of the permissive signature CONTAINER by theolletion types used by the types elements and modelIDs. In Setion A.6 we desribe



A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 243the design of the permissive signature CONTAINERPLUS that inherits the funtionalityspei�ed in CONTAINER but enables behaviour that is dependent on the ontained item'stype.In the following setion we present the senario analysis when a model is an updateof an existing model.A.3.4 Cheking an UpdateInformal DesriptionCheking an update of an existing model requires modi�ation of the state in advaneof any onsisteny hek. This is beause the state, among other things, is meant torepresent the urrent set of elements against whih the hek of the model is being ap-plied. Those elements that exist only in the previous version of the model being updatedshould not inuene the heker. Thus the modi�ation of the state involves removingthose elements that appear only in the previous version of the model. Obviously if theyappear in other models or are repeated in the updated version then they should remainas data in the onsisteny hek.One the state has been modi�ed one an proeed with the onsisteny heks. Theymust now inlude not only the heking of elements in the model but also heking forany inonsistenies that may have arisen due to the hanges. That is, some elementsin the state will need to be reheked. The model is heked in advane of the mod-i�ed state. This is beause, if one adopts the opposite approah, one may unoverinonsistenies that are due to the non-existene of elements delared in the model.For example, an existing type use relationship may be made inonsistent due to theremoval of a module use relationship. However, the updated version of the model mayinlude a new module arhiteture that satis�es the visibility requirements of the typeuse relationship.If the model is heked suessfully then one an hek for inonsistenies in thestate. That is, have any inonsistenies arisen due to the removal of elements from thestate? We use the partial order presented in Figure 101 to determine whih elementsmay a�et the onsisteny of existing elements if they are removed from the state. Wepresent eah element with the elements they may a�et.
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Figure 103: newModelChek Funtion



A.3. SCENARIO AND TYPE DEPENDENCY ANALYSES 245Funtion: the removal of a funtion may a�et:� the instantiation of a permissive signature sine one has to hek for theexistene of a funtion of the required type; and,� the unit existene heks for an exlusive signature sine again one heks forthe existene of the units spei�ed in the signature.Type: the removal of a type may a�et:� the spei�ation of a permissive signature that may inlude one or more unitswhose types inlude the removed type; and,� the unit existene heks for an exlusive signature sine one heks for theexistene of the units spei�ed in the signature.Permissive Signature: the removal of a permissive signature will have no e�et. Ifit doesn't exist in any models then it is not being used either in assoiation with atype or in the onstrution of a new signature through the inheritane relationship.Module: the removal of a module will have no detrimental e�et on the onsistenyof existing elements sine any units that were previously assigned to the modulewill now be visible from any lient unit;Subsystem: the same result as for modules.Module Use Relationship: the removal of a module use relationship may result inpreviously visible units beoming invisible to their lients. This may a�et theonsisteny of type use, funtion use, funtion argument and result type relation-ships and other module use relationships.Partition Relationship: the removal of a partition relationship may result in previ-ously visible units beoming invisible to their lients. This may a�et the onsis-teny of type use, funtion use, funtion argument and result type relationships.Subsystem Use Relationship: the removal of a subsystem use relationship mayresult in previously visible units beoming invisible to their lients. This maya�et the onsisteny of type use, funtion use, funtion argument and result typerelationships and other subsystem use relationships;



246 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERExlusive Signature Spei�ation: the removal of a miro unit from an exlusivesignature may also a�et any relationship that depends on the visibility of thatunit.Type/Permissive Signature Instantiation: the removal of a type/permissive sig-nature instantiation may a�et the onsisteny of funtions with types assoiatedto permissive signatures. That is, a onstrained polymorphism hek depends onthe existene of the required type/permissive signature instantiations.Type Use Relationship: the removal of a type use relationship may a�et the on-sisteny of funtions with types assoiated to permissive signatures. That is, aonstrained polymorphism hek may depend on a type use relationship betweenan argument or result type and the type that instantiates the permissive signature.Those elements that exist in the previous version of the model but are absent fromthe new version therefore provide a guide for the heks that are required on the re-maining state. One should not simply rehek all elements of the types indiated above,but rather those elements that have an assoiation with the removed element. Forexample, if a type use relationship is removed, then one has knowledge of the lientand server types and this should guide the onstrained polymorphism heks that needre-appliation.FAD DesriptionWe now refer to the update of the funtion dependeny diagram for modelChek pre-sented in Figure 104. The original diagram was presented in Figure 95. The funtionmodifyState modi�es the state. modifyState uses singleUse, whih takes argumentsof type state and model and returns a value of type elements, whih represents those el-ements that only appear in the previous version of the model being updated. singleUsemakes use of the modelIDs value that is used by the types that represent eah form ofFAD element. For example, the miro unit types type, funtion and permSig eahuse the type modelIDs. This design is presented in the model in Figure 108 at the endof this setion, and singleUse is further analysed in Setion A.5.4.Eah element returned by singleUse is removed from the subState1 value usingremove and added to the subState3 value using add. The subState3 value is initially
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Figure 104: Update of modelChek Funtionempty. If the model hek fails then one an rereate the version of the state prior toheking by returning the empty subState3 value and adding the previous subState3value to subState1. The funtions add and remove are guaranteed by the permissivesignature CONTAINER instantiated by the olletion type used by the type elements. Ifan element appears in other models it remains in the subState1 value but the modelIDvalue of the model being heked is removed from its modelIDs value.The modi�ed state provides the �rst argument for the funtion oldModelChek.This funtion uses three funtions that are applied in the order of the following list:� the funtion reuse is alled and returns those elements that are used in both theprevious version and updated version of the model. These elements do not needto be reheked;� the funtion hekElements is applied to the urrent state value, and thoseelements of the model not returned by reuse. That is, those elements that are



248 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERnew to the model; and,� if the previous hek terminates suessfully then the state is heked for inonsis-tenies using the funtion hekExistingElements that takes a single argumentof type state. This funtion manages the onsisteny heks applied to elementsthat existed prior to the hek of the urrent model. For example, any type userelationship whose host modules are no longer assoiated through a module userelationship needs to be reheked for onsisteny. The removal of the relationshipdoes not by default imply an inonsisteny sine another module use route may ex-ist. Thus hekExistingElements uses the subState3 value to determine thoseheks that are required of the elements of the subState1 value. The funtionuses the elementChek funtion to apply the relevant heks.We have onentrated thus far on the heking of models. In the following setionwe present some illustrative examples of analyses of element hek funtions upon whihthe model heks largely depend.A.4 A Seletion of Element Chek AnalysesIn this setion we present a representative sample of analyses of element hek funtions.Those seleted highlight both the similarities in their behavioural requirements and overthe interation between units of the same sort and those of di�erent sorts. We thereforepresent a miro unit use hek, a maro unit use hek and a non-use hek, whih isan example of what is required when heking the interation between units of di�erentsorts. The �rst analysis that we present is that of the funtion whih heks funtionuse relationships.A.4.1 Analysis of funtionUseChekInformal DesriptionIf the element - a funtionUseRel value - is present in the state then there is no needto further hek its onsisteny sine its presene implies that it has previously satis�eda hek. However, one needs to update the element entry in the state to inlude itsappearane in the model being heked. This is true of all element heks. Thus the



A.4. A SELECTION OF ELEMENT CHECK ANALYSES 249�rst requirement of any hek is to determine whether the element is present in thestate. If the funtion use relationship does not exist then the use of one funtion byanother funtion is onsistent if and only if the used funtion is visible from the usingfuntion.
FAD DesriptionWe now refer to Figure 105. The funtion funtionUseChek takes two arguments oftype state and funtionUseRel (the type of funtion use relationships) and returns avalue of type state that will reet the outome of the hek. funtionUseRel �rsttests for the existene of the relationship using the funtion inState. inState takestwo arguments of type state and funtionUseRel (whih is required to instantiate thepermissive signature EQ) and returns a Boolean value that indiates whether the itemexists in the state or not. The permissive signature instantiation is required sine onewants to math the relationship against one in the state.If the relationship exists in the state then the hek is terminated, and the statevalue is updated to reord suess and the fat that the element appears in the model.If it does not exist, funtionUseChek uses the funtion visibleFrom to test whetherthe used funtion is visible from the using funtion. The funtion visibleFrom takesan argument of type state and two of type funtion and returns a bool value. Itrequires the state argument sine the various hosting and use relationships are storedin the state.If the appliation of the funtion visibleFrom returns True then one adds thefuntion use relationship to the state using addToState. This funtion uses the addfuntion where the �rst argument is of type elements (whose value omes from thesubState1 value). If the visibility hek fails then funtionUseChek alls the funtionreportFailure that returns the state, where the value of type passOrFail inludes amessage indiating the failure.
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Figure 105: Analysis of funtionUseChek



A.4. A SELECTION OF ELEMENT CHECK ANALYSES 251A.4.2 Analysis of moduleUseChekInformal DesriptionA module use hek begins in the same manner as the previous hek. That is, onetests for the existene of the relationship in the state. If it exists then one terminatesthe hek suessfully. The module use relationship of the model is the same as one inthe state if the lient and server modules are the same in eah ase, and the exlusivesignature that mediates the relationship mathes. If it does not exist then one has totest for the uniqueness of the relationship between the stated modules. That is, anytwo modules M and N should have at most one module use relationship where M isthe lient. This means that the use of module N by module M should be mediatedby a unique exlusive signature. If the test fails then the hek is terminated and theuser informed of the problem. If the test sueeds one heks that the server module isvisible from the lient module.One again if this test fails the hek is terminated and the user informed of thefailure. If the hek sueeds, the assoiation between the mediating exlusive signatureand the server module needs to be heked. If this hek sueeds then the whole hekis suessful and the state an be modi�ed to reet this.FAD DesriptionWe refer now to the funtion dependeny diagram of Figure 106 and the funtion de-sription doument in Figure 107. The funtion moduleUseChek takes two argumentsof type state and moduleUseRel (the type of module use relationships) and returns avalue of type state. It uses the funtions:� inState that takes the same argument types as moduleUseChek but returns avalue of type bool, whih reets whether the element exists in the state or not;� unique that tests for the uniqueness of the relationship and has the same type asinState. In an optimised implementation one may merge inState and uniqueinto a single funtion that returns a pair of Boolean values;� visibleFrom that takes an argument of type state and two of type module andreturns a value of type bool; and,
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Figure 106: Analysis of moduleUseChek� mediationChek that heks the assoiation between the exlusive signature andmodule. It takes three arguments of type state, exlSig and module respetively.The state value ontains the existing elements whih may be alled upon toon�rm the onsisteny of the assoiation between the exlusive signature andthe module. This funtion implements the exlusive signature mediation 1 hekdesribed in Setion A.2.If inState returns True then the hek terminates suessfully. In the ase thatinState returns False, if any of the other funtions returns False then the hekterminates unsuessfully.A.4.3 Analysis of typePermSigChekInformal DesriptionThe assoiation between a permissive signature and one or more types (the numberdepends on the number of parameters of the permissive signature) initially proeeds ina similar fashion to the previous heks. That is, one heks for the existene of therelationship in the state. If it exists the hek terminates suessfully. If it doesn't thenone needs to hek that the permissive signature is visible from the type(s). A sensible
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Funtion Desription Doument CASEName: moduleUseChekVersion: 20000712:0Module:Arity: 2Type Spei�ation: state -> moduleUseRel -> stateContrat Assoia-tion:Instantiations: EQ moduleUseRelFuntions Used: inState : state -> moduleUseRel -> boolunique : state -> moduleUseRel -> boolvisibleFrom : state -> module -> module -> boolmediationChek : state -> exlSig -> module-> boolDesription:If any element exists in the state then there is no need to further hek itsonsisteny sine its existene implies that it has previously satis�ed a hek.This is true of all element heks. Thus the �rst requirement of any hek isto determine whether the element exists in the state.The module use relationship of the model mathes one in the state if the lientand server modules math in eah ase, and the exlusive signature whihmediates the relationship mathes. If it does not exist then one has to test forthe uniqueness of the relationship between the stated modules. That is, anytwo modules M and N should have at most one module use relationship whereM is the lient. This means that the use of module N by module M should bemediated by an unique exlusive signature. If the test fails then the hek isterminated and the user informed of the problem. If the test sueeds oneheks that the server module is visible from the lient module.One again if this test fails the hek is terminated and the user informed of thefailure. If the hek sueeds the assoiation between the mediating exlusivesignature and the server module needs to be heked. If this hek sueeds thethe whole hek is suessful and the state an be modi�ed to reet this.Figure 107: Funtion Desription Doument for the Funtion moduleUseChek



254 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERdesign is one where all permissive signatures are visible from all types. Thus if thishek fails this should provide a warning signal regarding the design.Upon suessful ompletion of the visibility hek one heks that the permissivesignature and type(s) have mathing kinds. That is, the kind required by eah parameterof the permissive signature is mathed by the kind of the type onstrutors of theinstantiating types. If this hek sueeds then one needs to hek for the existene ofthe units spei�ed in the permissive signature.FAD DesriptionThe funtion typePermSigChek takes two arguments of type typePermSigRel (thetype of type/permissive signature relationships) and state and returns a value of typestate. It uses the funtions:� inState that takes the same argument types as typePermSigChek but returnsa value of type bool;� visibleFrom that takes three arguments of type state, permSig and type andreturns a value of type bool. This is the third oasion that we have used afuntion alled visibleFrom and in eah ase with a di�erent type. In SetionA.6 we use this as an illustrative ase of funtion development guided by namereuse;� kindChek that takes two arguments of type permSig and type and returns abool; and,� allInState that takes the same arguments as visibleFrom and returns a bool.It uses the funtions inState to determine whether eah spei�ed unit of therequired type exists in the state. In Setion A.6 we take the various inStatefuntions and design a single funtion in their plae;The types permSig of permissive signatures and type of types must both use thetype kind, the set of kind values. We present the design of the type miroUnit inFigure 108 and the type desription doument for the type permSig in Figure 109.That ompletes our seletion of element heks. In the following setion we desribethe development of an initial module arhiteture for the subsystem.
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Figure 108: miroUnit Type Design
Type Desription Doument CASEConstrutor Name: permSigVersion: 20000713:0Kind: *Module:Types Used: kind, modelIDsParameters:Permissive sigs.: CHECKABLEDesription:The type permSig is the type of permissive signatures. Eah signature has akind and a reord of the models in whih it is used. As with all elements apermissive signature must support onsisteny heking.Figure 109: Type Desription Doument for the Type permSig



256 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERA.5 Module ArhitetureIn this setion we introdue a module arhiteture into the system. This involves thedelaration of modules, the assigning of miro units to host modules, and the introdu-tion of module use relationships between modules and partition relationships betweenthe subsystem and some of its modules. These relationships require the development ofexlusive signatures to mediate aess to hosted units.The guiding priniple here is to host a type with the funtions that deliver therequired behaviour over the type, and to put an abstration barrier around the type.That is, eah type should be hosted in its own module with the operations over the type.When it is spei�ed in an exlusive signature it should be spei�ed, if possible, withoutits onstrutor signature. The ost of this approah is that one may require get and setfuntions to support aess to the type by lients that are external to the abstrationbarrier. Although this is a sensible way initially to develop a module arhiteture (andmoreover one that will enable the loalization of future hanges), it is unlikely that itwill result in a design devoid of imperfetions. There are oasions where one may needto introdue modules that do not host any types but:� manage the interation between two or more types hosted elsewhere;� present a olletion of polymorphi funtions that are linked by the behaviour thatthey implement;� present a olletion of onstrained polymorphi funtions that are linked by thepermissive signature(s) that need to be instantiated; or� simply avoid overburdening a module with an exessive number of units suh thatit beomes diÆult to manage.The initial foi of attention are therefore the types. One deisions have been maderegarding the required modules for hosting the types one assigns the remaining mirounits to the appropriate modules. Senario and type dependeny analyses are thenapplied where extra information is required due to the design of the module arhiteture.In the following setion we develop an initial module arhiteture for the subsystemusingmodule arhiteture analysis. One again we will �rst present a textual desriptionof the analysis followed by a desription of the development of FAD models.



A.5. MODULE ARCHITECTURE 257A.5.1 Module Arhiteture AnalysisInformal DesriptionEah of the types whih are exported from ConsistenyChekerSS is assigned to itsown module. One then assigns those funtions that implement the behaviour requiredover a type to the same module as the type. If a funtion implements behaviour overmore than one type, one assigns it to a module that hosts one of the types, developsthe module arhiteture with the required module dependenies, and then analyses thedesign of the arhiteture. For example, one may require mutual dependeny betweenmodules or one may disover that a olletion of funtions are best hosted by a modulethat delivers a partiular funtionality that may be reusable over more than one typeor olletion of types. That is, at this stage of development one is trying to minimizethe number of modules and to emphasize the need to loalize funtions and their types.The subsystem supports the onsisteny heker of the CASE tool and exports modelheking funtionality as well as the types diretly assoiated with model heking. Thedetails of the implementation of model heking are of no interest to lients withinthe system. That is they will be presented with a minimal interfae to the types andfuntion(s) assoiated with model heking. This enables both inremental developmentof parts of the system, and minimal disruption due to maintenane or extension of thesystem.FAD DesriptionWe now refer to Figure 110. The subsystem ConsistenyChekerSS is assoiated withthe exlusive signature CCSIG that mediates aess to the subsystem. The funtionmodelChek, whih implements the onsisteny heking of a model, and the typesstate and model are spei�ed in the signature. Thus the types state and modelare our initial foi. They eah need to be assigned to a module to whih aess isontrolled by an exlusive signature. Eah exlusive signature will initially speify thetype(s) they are hosting with any required funtionality added during development.The modules are StateMod and ModelMod respetively. Eah of these modules will beassoiated to ConsistenyChekerSS through a partition relationship that is mediatedby an exlusive signature. Other modules of the subsystem have no partition relationship



258 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERwith the subsystem and are not spei�ed in the mediating exlusive signatures, sinetheir units should remain invisible to any lients of the subsystem.We now proeed with type and funtion host analysis applied to the types used bystate and model, and the funtions used by modelChek. With referene to Figures 98and 110, the �ve types used by the type state are assigned to di�erent modules:� subState1 is hosted by SubState1Mod;� subState2 is hosted by SubState2Mod;� subState3 is hosted by SubState3Mod;� modelIDs is hosted by ModelIDsMod; and,� passOrFail is hosted by PassOrFailMod.Similarly we assign the two types used by the type model to two separate modules:� elements is hosted by ElementsMod; and� modelID is hosted by ModelIDMod.Immediately one an sketh an initial module arhiteture that satis�es the visibilityrequirements of the types state and model. For example, the module StateMod usesthe modules that host the types used in its onstrution. That is, SubState1Mod,SubState2Mod, SubState3Mod, ModelIDsMod and PassOrFailMod. Both ModelMod andModelIDsMod use ModelIDMod, and ElementsMod is used by ModelMod, SubState1Mod,SubState2Mod and SubState3Mod.We now proeed with funtion host analysis in whih we assign funtions to theirrelevant host module.A.5.2 Funtion Host AnalysisInformal DesriptionEah of the funtions that appears in funtion dependeny diagrams is assigned to ahost module. We use the modules desribed in the previous setion as the hosts. If noneof these modules is appropriate then either a new module is introdued or the funtionshould be the responsibility of a di�erent subsystem.
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Figure 110: Initial Design of Subsystem ConsistenyChekerSS



260 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER

Figure 111: Update of Module ArhitetureFAD DesriptionWe present a summary of the outomes in Tables 8 and 9. Eah funtion is listed along-side its host module with some ommentary supporting the assignment. This ommen-tary inludes any module use relationships that are required. In Figure 111 we presentthe new relationships between the modules StateMod and ModelMod, whih also uses theresults of the exlusive signature development desribed in Setion A.5.3. The reursivedependeny between the modules (and the modules StateMod and ElementsMod) will behighlighted by the warning hek on reursion and suggests a poor module arhiteturedesign. In this instane the reursive dependeny is present in a single model. How-ever, the dependenies ould have been desribed in two di�erent models, and wherethere are intermediate modules, several models may require investigation to unearth thereursion. An alternative design that avoids reursion is presented in Setion A.6.Initially exlusive signatures only speify the types that they host, but one funtionsare assigned to modules their assoiated signatures must be hanged in order to avoid
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Funtion Module CommentmodelChek ModelMod This funtion takes two arguments of typesstate and model. However, it is the modeltype whose behaviour it implements. Themodule StateMod must be used byModelMod.isIn No Assignment This funtion is spei�ed in the permissivesignature CONTAINER and will be hostedwith whihever olletion type is used bymodelIDs. This module will be hosted bythe subsystem that delivers the generalbasi types and permissive signaturessine it is not spei� to onsistenyheking.newModelChek ModelMod This funtion delivers funtionality overthe type model.modifyState StateMod This funtion requires aess to theonstrution of the type state and deliversfuntionality over the type. The moduleStateMod uses the module ModelMod.oldModelChek ModelMod This funtion delivers funtionality overthe type model.Table 8: Funtion Host Analysis
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Funtion Module CommentupdateState StateMod This funtion requires aess to theonstrution of the type state andimplements funtionality over the type.hekElements ElementsMod This funtion implements a behaviouralrequirement of the elements type.The module ElementsMod uses themodule StateMod.applyOrdering ElementsMod This funtion requires aess to theonstrution of the type elementsand implements funtionality over thetype. The module ElementsMod usesthe module ElementMod.reuse ModelMod This funtion tests for the reuse ofelements in the update version ofa model.singleUse ModelMod This funtion requires aess to theonstrution of the type model andimplements funtionality over the type.warningChek StateMod This funtion implements funtionalityover the type state.abstrationChek StateMod This funtion implements funtionalityover the type state.reursionChek StateMod This funtion implements funtionalityover the type state.Table 9: Funtion Host Analysis (ontinued)



A.5. MODULE ARCHITECTURE 263inonsisteny. It is the user who has to ensure this. This proess is desribed in thefollowing setion.A.5.3 Exlusive Signature AnalysisThe development of a system based on abstration and enapsulation requires a modulearhiteture in whih exlusive signatures mediate aess to the units hosted by eahmodule. Initially we assoiate a single exlusive signature with eah module. Thissimpli�es the initial development of use relationships by providing the developer witha single interfae to any maro unit. In addition, it emphasises the importane ofenapsulation early in development by making expliit all that an external lient mayknow. Later in development, multiple exlusive signatures for a single module aredesigned that deliver the required mediation for a partiular relationship and thus makeexpliit exatly what an external lient needs to know. That is, a partition relationshipbetween subsystem S and module M is likely to require a di�erent exlusive signatureto that whih mediates the use relationship from module N to module M.Units are spei�ed in an exlusive signature if they are either used in a use relation-ship, or are permissive signatures assoiated with one or more types. Thus one sansthe type dependeny and funtion dependeny diagrams for those units whih shouldbe spei�ed in an exlusive signature. Construtor signatures will not initially appearin any exlusive signatures.We will illustrate this analysis with the development of the exlusive signatureMODELSIG that mediates aess to the module ModelMod.Informal DesriptionMODELSIG initially spei�ed the type model. However, it hosts some funtions that needto be visible to lients that are external to the module. The obvious example is thefuntion that implements model heking, whih must be visible to lients outside ofthis subsystem. Thus it must be spei�ed in the exlusive signature that mediates thepartition relationship between the subsystem and the module.In light of the host assignments desribed in Tables 8 and 9, the use relationshipbetween modifyState and singleUse requires singleUse to be spei�ed in the exlusivesignature that mediates aess to ModelMod. In Setion A.6 we illustrate exlusive



264 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERsignature design with those that mediate aess to the module StateMod.All other funtions of the module are used only by funtions of the same moduleand therefore are not spei�ed in the exlusive signature.FAD DesriptionWe refer now to Figure 111. Only three units need to be spei�ed in MODELSIG:� the type model that is used, for example, by the funtion modifyState whih ishosted by the module StateMod;� the funtion modelChek that implements the externally visible funtionality sup-ported by the module ModelMod; and,� the funtion singleUse that is used by the funtion modifyState that is hostedby the module StateMod.The funtions newModelChek, oldModelChek and reuse are used by funtions ofthe same module and do not have any lients from other modules or subsystems. Theydo not therefore need to be visible from external lients and hene are not spei�ed inthe exlusive signature. The module ModelMod is used by the module StateMod sinethe funtion singleUse must be visible from the funtion modifyState. This resultsin an update of the module arhiteture.The introdution of abstration barriers inurs a ost on the developer. One has tointrodue operations whih replae diret aess to the onstrution of a type. Furtheranalyses should be applied to disover suh requirements. We present suh an analysisin the following subsetion.A.5.4 Senario Analysis of the Funtion singleUseIn this setion we provide an analysis of the funtion singleUse that is inuened bythe urrent module arhiteture.Informal DesriptionsingleUse returns the elements of a model that only appear in the previous version ofthe model. Thus one needs aess to the elements in the state and those in the urrent



A.5. MODULE ARCHITECTURE 265version of the model. Eah state element whose model identi�ers inlude the urrentmodel identi�er are heked against the elements of the model. Any whih are notmembers of the model's elements are returned by the funtion.FAD DesriptionWe refer here to the funtion dependeny diagram in Figure 112 and to the FuntionDesription Doument in Figure 113. singleUse requires aess to the elements of themodel and of the state. Sine singleUse is hosted by the same module as the typeModel it doesn't need to all any get funtions on the type. Thus the elements of themodel an be aessed diretly, but those of the state require the funtion getSubState1to be alled with a state argument. This returns the subState1 value, whih providesthe argument for getElements. The funtions getSubState1 and getElements arerequired sine the types state and subState1 are abstrat relative to the funtionsingleUse.The funtion seletInModel returns those elements in the state whih appear inthe previous version of the model. It takes an argument of type elements and anotherof type modelID, and returns those elements for whih the model identi�er is inludedin the modelIDs value. seletInModel uses the funtion getModelIDs, whih takes anargument of type element that is abstrat relative to the funtion seletInModel thatis hosted with the type elements. getModelIDs returns the identi�ers of the modelsin whih an element appears. The modelID argument of seletInModel is aesseddiretly.The olletion type used by elements needs to support �ltering behaviour to imple-ment seletInModel. This is guaranteed by the assoiation with the permissive signa-ture FILTER  whih spei�es the funtion filter : (a -> bool) ->  a ->  a.The elements returned by seletInModel are eah tested for membership of the newversion of the model using the funtion setDiff. This funtion takes two argumentsof type elements and returns those elements from the �rst argument that are not inthe seond. That is, it returns those elements whih are not in the new version of themodel. setDiff uses the funtion isIn that is guaranteed by the permissive signatureCONTAINER assoiated with the olletion type used by the type ontainers.This ompletes our seletion of analyses. In the following setion of this appendix
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Figure 112: Funtion Dependeny Diagram for singleUsewe give some illustrative examples of design phase development.A.6 Design of ConsistenyChekerSSDesign fouses on the delivery of a solution-domain foused model of the system. Thatis, where analysis is tied to the problem-domain albeit desribed in terms of the requiredparadigm, design aims to produe a system whih an be implemented in as an eÆientand e�etive manner as possible. However, the two phases are not mutually exlusiveand, for example, modularity, both in maro unit and miro unit development, has hada design impat within the analysis phase of development.During the design phase, one takes the deliverables of the analysis phase and, usingthe various mehanisms provided by the paradigm, designs the various miro and marounits suh that an eÆient implementable design is returned. The transition from alargely analytial model to an implementable design is supported by the onsistentparadigm-fous of the methodology and the fat that the diagrams, and many of thetehniques used during analysis, are the same as those used during design.Thus upon ompletion of this phase one wants:
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Funtion Desription Doument CASEName: singleUseVersion: 20000720:0Module: ModelModArity: 2Type Spei�ation: state -> model -> elementsContrat Assoia-tion:Instantiations:Funtions Used: getElements : subState1-> elementsgetSubState1 : state -> subState1seletInModel : elements -> model-> elementssetDiff : elements -> elementsDesription:singleUse returns the elements of a model that only appear in theprevious version of the model. Thus one needs aess to the elementsin the state and those in the urrent version of the model. Eah stateelement whose model identi�ers inlude the urrent model identi�er,are heked against the elements of the model. Any that are notmembers of the model's elements are returned by the funtion.Figure 113: Funtion Desription Doument for the Funtion singleUse



268 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKER� a module arhiteture built on reusable units with minimal interfaes to otherunits;� exlusive signatures that are designed to mediate a spei� relationship;� permissive signatures whih are developed to guarantee a partiular behaviourand support reuse; and,� to make use of funtional programming's glue suh as parametri polymorphismand higher-order funtions.We present in the following subsetions some illustrative examples of element design.We begin by updating the module arhiteture of ConsistenyChekerSS. In SetionA.6.2 we present the (related) design of exlusive signatures that mediate aess tothe module StateMod. In Setion A.6.3 we desribe the development of the permis-sive signature CONTAINERPLUS, and in Setion A.6.4 the (related) design of the typeelements. In Setion A.6.5 we desribe the development of the funtions visibleFrom,visibleFromModule and inState, and �nish with a brief summary of the the remainingwork to be done.A.6.1 Module Arhiteture DesignInformal DesriptionThe urrent module arhiteture inludes a mutual dependeny between the modulesModelMod and StateMod. This is beause they eah host the type for whih they arenamed, and eah host funtions that use the type hosted by the other module. Thevarious get and set funtions must remain in the same module as the type to whih theyapply beause they require diret aess to the onstrution of the type.However, one may require modules that host funtions separately from the typesover whih they are de�ned. This is either beause the funtion does not sit naturallywith a partiular type, or beause one requires a module to deliver a partiular setof behavioural requirements rather than to host a type and its related funtions. Forexample, the Haskell 98 libraries [101℄ List and Monad are in turn, a module that hostsfuntions over a type hosted by another module, and a module whose funtions arede�ned over a olletion of types related by the funtionality they support.



A.6. DESIGN OF CONSISTENCYCHECKERSS 269Here we introdue the module ChekMod that hosts the funtions that implementheking funtionality but does not host any types. This module hosts the funtionsthat implement the heking funtionality required over the types state and model.That is, the module manages the interation between these types and therefore usesthe modules that host the types. In addition, it provides a single entry route into themodule arhiteture for external lients and a single fous for heking behaviour.The modules ElementsMod and StateMod also exhibit a mutual dependeny. Oneagain one an reassign the funtions that implement the heking behaviour over thesetypes to a module that uses the above modules. As with ChekMod this module managesthe interation between the types hosted by these modules.FAD DesriptionWe refer now to Figure 114 and to the Module Desription Doument in Figure 115.The module ChekMod provides both a single entry point into the module arhiteture,and ollets together the main funtions that implement the model heking funtion-ality required by the onsisteny heker. The exlusive signatures assoiated with themodules StateMod and ModelMod now inlude several get and set funtions that are usedby the funtions hosted by ChekMod.The module StateMod is assoiated with two exlusive signatures:� STATESIG1, whih mediates aess to lients in the module ChekMod; and,� STATESIG2, whih mediates aess to lients in the module ModelMod.Thus updateState, whih is used by newModelChek, is spei�ed in STATESIG1 but notin STATESIG2. The funtion reuse is now spei�ed in the exlusive signature MODELSIGsine its lient funtion oldModelChek is now hosted in a di�erent module.We present a similar design in Figure 116. The module ElementsChekMod im-plements the element heking behaviour that uses the types state and elements.Here we have developed a third exlusive signature to mediate aess to the moduleStateMod that spei�es the funtion warningCheks, whih is used by the funtionhekElements. The funtions reursionChek and abstrationChek only have aloal lient, warningCheks, and thus are not spei�ed in the signature. The exlu-sive signature ELEMENTSSIG1 also spei�es the funtion elementChek that is used by



270 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERelementsChek but is hosted by a module used by ElementsMod.More details regarding exlusive signature design are provided in the following se-tion.A.6.2 Exlusive Signature DesignInformal DesriptionSTATESIG was developed to present a single signature to mediate aess to StateModwhether as part of a partition relationship or a module use relationship. However, whenimplementing the system one needs more aurate information regarding the visibilityrequirements of lients of a module's units. This was illustrated in Setion A.6.1 wherethree uses of the module StateMod were mediated by three di�erent exlusive signatures.In Chapter 2 we quoted Pooley and Stevens [109℄ de�nitions for abstration andenapsulation:Abstration is when a lient of a module doesn't need to know more thanis in the interfae. Enapsulation is when a lient of a module isn't able toknow more than is in the interfae.We believe that an exlusive signature's rôle during analysis is to deliver enapsu-lation: this is all that a lient is allowed to know. Then during design its rôle beomesthe delivery of abstration: this is what a lient needs to know. Thus the exlusivesignatures delivered in the design phase should speify a subset (upto hanges enforeddue to a redesign of the module arhiteture) of the units spei�ed during analysis. Oneis speialising the interfae to a module for a partiular purpose.Thus one needs to analyse the requirements of a partiular use relationship or par-tition relationship and speify only those units in the mediating exlusive signature.FAD DesriptionWe refer again to Figures 114 and 116. The exlusive signatures speify that whih isrequired for a partiular relationship and no more. For example, STATESIG3 spei�esthose units required by lients hosted by ElementsChekMod. The exlusive signatureELEMENTSSIG1 spei�es elementChek sine it is used by the funtion hekElementswithout requiring a use relationship from ElementsChekMod to ElementMod.
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Figure 114: Module Arhiteture Design
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Module Desription Doument CASEName: ChekModVersion: 20000722:0Type(s):Permissive sig(s):Funtion(s): modelChek: state -> model -> statenewModelChek: state -> model -> stateoldModelChek: state -> model -> statemodifyState: state -> model -> stateModules used: StateMod : STATESIG1ModelMod : MODELSIGSubsystem: ConsistenyChekerSSFile:Desription:The module ChekMod hosts the funtions that implement model hekingfuntionality but does not host any types. This module therefore uses themodules whih host the types state and model, but provides a single entryroute into the module arhiteture for external lients.Figure 115: Module Desription Doument for the Module ChekMod
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Figure 116: Another Module Arhiteture Design



274 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERIn the following setion we desribe the development of the permissive signatureCONTAINERPLUS.A.6.3 Design of the Permissive Signature CONTAINERPLUSInformal DesriptionThe permissive signature CONTAINER spei�es the behavioural requirements of a stan-dard olletion type. However, it does not support any behavioural requirements of theitems being olleted. The permissive signature CONTAINERPLUS inherits the spei�a-tions of CONTAINER but adds the exibility required over the ontained items.That is, when an element is `added to' or `removed from' a olletion of elements onedoesn't simply update the olletion with one more or one less element. When `adding'an element one needs to test whether the element already exists in the olletion. If itdoes then one reords that the element is used in a new model. That is, one updatesits model identi�ers entry. If it doesn't exist in the olletion then it is added to theolletion.The behaviour when `removing' an element depends on whether the element nolonger appears in any models. If this is the ase then it is removed from the olletion.Otherwise it remains and its model identi�ers entry is updated to reord its removalfrom a model.FAD DesriptionWe refer now to Figure 117. CONTAINERPLUS inherits from CONTAINER and spei�es thefuntions addPlus and removePlus. CONTAINERPLUS has two parameters of kind * ->*and * respetively. addPlus and removePlus have the same type as remove (addPlusrequires the item type to be an equality type) but now support behaviour spei� tothe instantiating element type as well as the instantiating olletion type.The type elements has to be updated as desribed in the following setion, andfuntions over the type that used the funtions add and remove will now use addPlusand removePlus.
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Figure 117: Design of CONTAINERPLUSA.6.4 Design of the Type elementsInformal DesriptionThe urrent design of the type elements states that it uses the types element anda olletion type that must instantiate the permissive signatures CONTAINER, FOLDand FILTER. The new design inludes the instantiation of the permissive signatureCONTAINERPLUS by the olletion type and the type element. We have deided toimplement the olletion type as a list, [a℄, sine it delivers all of the required be-haviour and there are no stated requirements regarding the eÆieny of �nding, addingand retrieving elements that would require a type suh as a balaned tree.However, the type element, the types miroUnit, relationship and maroUnit,and all the types of the various sorts of miro units, maro units and relationships shouldbe ordered types. This is beause it will ease the disovery of existing elements both forretrieval and reuse purposes. Thus eah type will instantiate the permissive signatureORD. This signature inherits the spei�ations of the permissive signature EQ and henethe types remain equality types as previously delared.
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Figure 118: Design of the type elementsFAD DesriptionWe refer now to Figure 118 that presents an update of the model of the type elements,whih inludes the various permissive signature instantiations desribed above.In the �nal subsetion we desribe funtion development.A.6.5 Funtion DesignInformal DesriptionThe following visibleFrom and inState funtions are used in the development of theCASE system. visibleFrom : state -> funtion -> funtion -> boolvisibleFrom : state -> module -> module -> boolvisibleFrom : state -> permSig -> type -> boolinState : state -> funtionUseRel -> boolinState : state -> moduleUseRel -> boolinState : state -> typePermSigRel -> bool



A.7. SUMMARY 277Further senario analyses have required visibleFrom funtions where the seond andthird argument types are: type and type; type and funtion and so on. That is, thereare several visibleFrom funtions de�ned over two types used by the type miroUnit.Eah of these funtions will be implemented identially sine they all implement thevisibility test over two miro units as desribed in Setion A.2. They an therefore bereplaed by the funtionvisibleFrom : state -> miroUnit -> miroUnit -> boolThe visibility relationship between modules is di�erent than that between mirounits and thus requires a di�erent funtion. This funtion now requires a di�erentname. We all it visibleFromModule.The various inState funtions an similarly be replaed by a single funtion whoseseond argument is of type element.The heks of the miro unit use relationships - suh as funtionUseChek desribedin Setion A.4.1 - have the following operational behaviour:1. hek if the element is present in the state using inState; and, if not2. hek that the server unit is visible from the lient unit using visibleFrom; and,if it is3. add the element to the state using the funtion addToState.We therefore replae them by a single funtion miroUnitUseChekwhose seond ar-gument an be a value of type funtionUseRel, typeUseRel, or funtionTypeUseRel.FAD DesriptionVarious models will need to be updated to inlude the above hanges. In the last setionof the appendix we summarize the development of the subsystem and desribe work tobe done.A.7 SummaryIn this appendix we have presented the appliation of FAD to the development of aonsisteny heker for a CASE tool. The notation, tehniques and methodologialapproah have been thoroughly tested.



278 APPENDIX A. ANALYSIS AND DESIGN OF A CONSISTENCY CHECKERRequirements analysis produed a olletion of onsisteny heks many of whihprovide a servie to the main heking of a model. Through senario analyses andtype dependeny analyses we established the main set of types, their requirementsand interations, and the operational requirements of the funtions that implement theonsisteny heks.A module arhiteture was then introdued to support the development of a systembased on enapsulation and abstration. Initially we adopted a type-entri approahto module assignment that was later reviewed in light of mutual dependenies and theneed for a more e�etive and eÆient design. Exlusive signatures that mediate aessto the modules were developed in tandem, and it is these that enfore the requiredabstration barriers to external lients.Developing the system to an implementation would involve:� tailoring the design to a partiular implementation language;� implementing setions of the design and updating them based on the results ofthe implementation. Sine the development models and their assoiated dou-mentation provide a reord of development, they should be updated in light ofimplementation experiene;� modi�ations due to the requirements of other subsystems. The onsistenyheker has been developed in isolation of the other parts of the CASE tool.Although the methodology supports an inremental approah to development, itis most unlikely that the various subsystems will simply glue together as a systemfree of imperfetions. However, one would hope that any modi�ations are of arelatively minor nature and have a loalised rather than widespread e�et.
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