
Ryder, Chris (2001) Iguana: A management support tool using Haskell and
LDAP. Technical report. , University of Kent at Canterbury

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/13602/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/13602/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Computer Siene at Kent
Iguana:A management support tool using Haskell and LDAP
Chris Ryderr24�uk.a.ukTehnial Report No: 6-01Date: June 2001
Copyright 2001 University of Kent at CanterburyPublished by the Computing Laboratory,University of Kent, Canterbury, Kent CT2 7NF, UK.

1

AbstratHaskell is widely used within researh and aademia but is less well used for \real world"projets. This paper desribes a real world projet using Haskell in a larger sale data pro-essing appliation. The projet was undertaken jointly by British Airways and the ComputingLaboratory, University Of Kent.1 IntrodutionThis paper desribes a projet undertaken between British Airways and the Computing Laboratoryat the University of Kent. The projet involved developing a system in Haskell for use by BritishAirways' Information Seurity Department.1.1 Bakground to the ProjetBritish Airways (hereafter known as BA) have an LDAP (Lightweight Diretory Aess Protool)diretory whih ontains an entry for every member of sta� (approximately 100,000) and is used formany tasks from system authentiation to the provision of an on-line telephone diretory. Amongthe information stored about eah employee are their name, employee number, userid, and theidentity of their manager. From this information it is possible to build a model of the managementhierarhy within BA.A requirement in any large organisation is to measure how it is performing against a varietyof riteria. Frequently this is done by measuring some aspet of eah management unit and thenaggregating the sores. Moreover, one management know aggregate sores they invariably wantto \drill down" the organisation to understand whih management units are performing well andwhih need their attention. For some years, the Information Seurity department at BA hasbeen measuring the performane individual management units and, with the reent introdutionof the LDAP diretory, wished to produe aggregate reports based on the management struturerepresented within it. It was onjetured that Haskell, with its support for strutures suh asorganisational trees would be well suited to produe suh reports quikly, reliably and heaply.1.2 What is LDAP ?A Lightweight Diretory Aess Protool (LDAP) diretory is a speial form of database in whihdata is typially read many more times than it is written or modi�ed. It is thus optimised forreading data.All entries in an LDAP diretory ontain a distinguished name (DN), whih is a unique identi�erfor a given entry. A DN is hierarhial, similar to path names in a �le system or domain names inthe Internet world. For example, a textual representation of a DN might look something like:employeeNumber=123, ou=people, d=bapl.omThis spei�es the unique entry whih has the employee number 123, is part of the organisational unit(ou) \people" and is in the diretory whose root is the distinguished omponent (d) \bapl.om"whih is guaranteed unique by Internet naming standards. Struturing DNs in suh a way makessearhing for a spei� DN quiker, and also makes it easier to distribute the diretory over multipleservers (in a similar way to domain name server distribution).Entries may have other attributes as well as the DN, though they are not ompulsory. Attributesonsist of an attribute type and attribute values. These an be thought of as an attribute name andvalue. An entry may have only one instane of an attribute type (\name") but may have multiple2

values for that type, e.g, an entry annot have multiple \telephonenumber" attributes, but mayhave a single \telephonenumber" attribute, ontaining two telephone numbers.The LDAP protool is a binary protool and the data stored within an LDAP diretory may bestored in a proprietary binary format. To aid moving data from one system to another, a textualrepresentation of entries from an LDAP diretory is often used. This textual form is alled LDIF(LDAP Data Interhange Format), whih looks like thisuid=12345, ou=People, d=ldaptestn=Fake Useruid=12345For this entry the DN is \uid=12345, ou=People, d=ldaptest" and the entry has two attributes,a n (ommon name) of \Fake User" and a uid (userid) of \12345". The entries in the BA LDAPdiretory have many more attributes, but for this projet only those mentioned here are relevant.Beause all the attributes of an entry are not always required, it is possible to ask for just asubset of the available attributes to be returned from a query. For example :ldapSearh "(uid=100)" ["n","telephonenumber"℄would searh for the entry with the uid of 100, and return only the ommon name and telephonenumber.There are numerous lient-side libraries in several programming languages for aessing LDAPdiretories. For this projet, a C library was used (See Setion 3). Further information aboutLDAP and the LDAP libraries an be found in [1℄ and [2℄.1.3 The ProjetThe purpose of the projet was twofold :-1. Eah employee within BA is assigned a sore in the range 0 to 100 inlusive. These soresare held in a at �le exported from a spreadsheet. The aim of the projet was to implementa system that generates aggregate sores by taking an average of the individual's sores andthe sores of their (immediate) subordinates. The information neessary to onstrut themanagement hierarhy is held within the LDAP diretory. Figures 1 through 3 illustratea partiular example of the proess in diagrammati form. The aggregate information isoutput in the form of a olletion of HTML �les that let management view the informationhierarhially. This allows management to quikly spot under-performing management units.2. To evaluate the suitability of Haskell as a language for implementing large systems involvinginterworking with non-Haskell systems in a real problem.1.4 Tools UsedThe bulk of the system was written using the Glasgow Haskell Compiler with a small part writtenin C. HaskellDiret was used to allow the Haskell ode to all the C ode. This is explained in moredetail in Setion 3. We additionally experimented with using Lambada to all Java ode. This istouhed on in Setion 3. Overall, the tools worked well and proved to be useful, partiularly in thease of HaskellDiret. 3

employeeNumber=104, ou=People, dc=baplc.com

employeenumber=104
uid=u104
manager=employeeNumber=110, ou=People,dc=baplc.com

cn=Unnerving Month

employeeNumber=111, ou=People, dc=baplc.com

employeenumber=111
uid=u111
manager=employeeNumber=110, ou=People,dc=baplc.com

cn=Lovingly Navel

employeeNumber=110, ou=People, dc=baplc.com
cn=Ralston Redly
employeenumber=110
uid=u116

employeeNumber=117, ou=People, dc=baplc.com

employeenumber=117
uid=u117
manager=employeeNumber=111, ou=People,dc=baplc.com

cn=Beatniks Billion

employeeNumber=129, ou=People, dc=baplc.com

employeenumber=129
uid=u129
manager=employeeNumber=111, ou=People,dc=baplc.com

cn=Neutron Pinball

LDAP Data Name:Unnerving Month
Enum:104
UID:u104

Scores:67.8
Man:employeeNumber−110,ou=people,dc=baplc.com

Name:Neutron Pinball
Enum:129
UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6

Name:Lovingly Navel
Enum:111
UID:u111
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.2, 32.3

Name:Ralston Redly
Enum:110
UID:u116
Scores:56.2

Name:Beatniks Billion
Enum:117
UID:u117
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:67.3

u116,56.2
u117,67.3
u129,54.6

u111,32.3
u111,67.2
u104,67.8

Scores Data

Figure 1: Data from the LDAP diretory is ombined with data from the sores �le into a Haskelldata type.
Name:Lovingly Navel
Enum:111
UID:u111
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.2, 32.3

Name:Neutron Pinball
Enum:129
UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6

Name:Ralston Redly
Enum:110
UID:u116
Scores:56.2

Name:Beatniks Billion
Enum:117
UID:u117
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:67.3

Name:Unnerving Month
Enum:104
UID:u104

Scores:67.8
Man:employeeNumber=110,ou=people,dc=baplc.com

Figure 2: The Haskell data type is onstruted into a tree.4

Name:Lovingly Navel
Enum:111
UID:u111
Man:employeeNumber=110,ou=people,dc=baplc.com
Scores:67.2, 32.3 Agg Score:49.75

Name:Neutron Pinball
Enum:129
UID:u129
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:54.6 Agg Score:54.6

Name:Ralston Redly
Enum:110
UID:u116
Scores:56.2 Agg Score:56.49

Name:Beatniks Billion
Enum:117
UID:u117
Man:employeeNumber=111,ou=people,dc=baplc.com
Scores:67.3 Agg Score:67.3

Name:Unnerving Month
Enum:104
UID:u104

Scores:67.8 Agg Score:63.23
Man:employeeNumber=110,ou=people,dc=baplc.com

Figure 3: The aggregate sores are alulated.1.5 Why Haskell ?The projet required the system to be developed quikly and heaply. Sine the system is intendedto be used by only one department at BA, and is not operationally ritial, it was felt that it wasworthwhile for BA to experiment with Haskell for this projet.The projet onsists of an algorithmi part and an I/O part. Beause the algorithmi partonsisted of building a tree struture, it was thought that Haskell would be partiularity suited tothe task. Having deided on Haskell, we were left with two main hoies for languages to use forthe low-level I/O. These were Java and C. The original hoie of Java as the interfaing languageproved unworkable in pratie (see Setion 3) and so C was used.1.6 Overview of PaperThe remainder of this paper is divided up thus : Setion 2 explains the projet task in greaterdetail. Setion 3 details the software tools we used to omplete the projet. Setion 4 shows howwe �nally implemented the system. Setion 5 introdues the problems we enountered during theprojet, and how we solved them. Setion 6 presents our onlusions from this projet.1.7 AknowledgementsAknowledgements go to BA, for suggesting and funding the projet. Domini Steinitz, BA, forsuggest the problem and for general advie during the projet. Simon Thompson, UKC, for helpand advie during the projet, and for editing this paper. Eri Meijer, for help and advie withLambada. Claus Reinke, UKC, for support with understanding laziness. Graham Walter, BA, foradvie on LDAP. Paul Barnett, BA, for system support at BA.
5

2 Deeper disussion of projetSolving the problem an be divided into three phases. The �rst is reading in the data to work with,the seond is onstruting the tree struture and the �nal phase is outputting the results.2.1 Reading InputThe input to the program omes from two soures, the LDAP diretory and the sores �le. Readingthe sores �le is a trivial parsing exerise.Reading of the data from the LDAP diretory is more interesting. Unfortunately, there areno LDAP lient libraries available for Haskell. Beause of this it was neessary to use a C LDAPlibrary and use HaskellDiret to interfae to it. HaskellDiret provides ode to onvert betweenHaskell values and C values. This is alled marshalling. The reverse proess, onverting C valuesinto Haskell values is alled un-marshalling. This introdues some overhead (illustrated in Figure4) when requesting an item from the LDAP diretory. For instane, in the example query in Setion1.2, the following steps must be taken to omplete the query :1. The parameters to the ldapSearh ommand must be marshalled into C values. This requiresthat they are opied into C variables, taking both time and spae.2. The appropriate C funtion is alled.3. The LDAP query is transmitted over the network. This reates a time delay.4. The result(s) of the query are also sent over the network, reating further delay.5. The returned results must be un-marshalled into Haskell values. This again requires thatthey values are opied.6. The result of the query is of type[(AttributeName,[AttributeValue℄)℄where both AttributeName and AttributeValue are of type String. This is not an easytype to manipulate so it is likely to be parsed into a more useful Haskell data type. e.g, forthe example query :Person Name PhoneNoThere are a few things we an do to minimise these overheads. First, making one LDAP requestthat returns several results is more eÆient in terms of marshalling overhead than sending lots ofsmall queries. This is beause marshalling only ours one, when the query is initiated; there isstill an un-marshalling overhead for every entry returned, but there is little that an be done aboutthis. An additional method to minimise both the time and spae overhead is to use asynhronousommuniation with the LDAP diretory. The time overhead is redued beause it is possible toun-marshall one result while the next result is being sent aross the network.The reason for the dereased spae usage is less obvious. When a synhronous request is sentto an LDAP diretory, the request bloks until all the results have been returned. Hene, all thoseresults must be stored somewhere until the request is omplete. The result is that a large hunk ofmemory is used to bu�er all the results in the LDAP library before they are then un-marshalled.6

Haskell Program

H/Direct

LDAP Library (C)

Data copied
in both

directions

Network

Time Delay

LDAP Directory

Figure 4: Overhead assoiated with an LDAP queryConversely, using an asynhronous query means the searh request returns immediately, butthe funtion to retrieve a result bloks until either a result is returned or the query ends. Hene,if the program an un-marshal and proess the results more quikly than they are returned fromLDAP, only a very small number of results will ever be stored in the bu�er of the LDAP libraryprior to proessing.2.2 Building the treeTo onstrut the management hierarhy from the data retrieved from LDAP it is neessary toonsider two points.First, the only information within the LDAP diretory from whih to build the managementhierarhy is the manager attribute of the entries. Thus, it is neessary to build the tree in a \bottom-up" manner from the manager bak pointers. This should not be a problem for a funtional languagesuh as Haskell.Seondly, the onsisteny of the data within the LDAP diretory is not guaranteed. Entriesmay not have a manager attribute (in whih ase they are \top-level" managers) or entries mayhave a manager attribute, but it might ontain the DN of an entry that no longer exists. Suhentries beome \top-level" entries but must be distinguished from those entries with no managerattribute.It is worth noting that it is possible to alulate aggregate sores in two ways. They an bealulated, from the bottom up, as the tree is onstruted, or they an be alulated by walkingover the tree one it has been onstruted.2.3 Outputting the resultsThe output of the tree is relatively trivial. There are a number of hoies for the format of theoutput. Our original intention was to produe a Comma Separated Variable (CSV) �le, but thisresulted in a �le that was too long to load into the Mirosoft Exel spreadsheet. It would be possibleto output other formats suh as XML, however we eventually settled on using HTML.HTML was hosen as the output format for a number of reasons. It is simple to produe, whihredued the amount of time spent on the output module of the program. HTML also o�ers easyways to represent hierarhial data. This, along with the wide availability of web browsers for manyplatforms, made HTML a good hoie.
7

LDAP Directory

Network

OpenLDAP SDK

LDAPPrimC

LDAPPrim

ScoresReader

Tree Building Code

ScoreCalculator

HTMLWriter

LDAPReader

Haskell Code

C Code

Figure 5: Simpli�ed model of the program arhiteture.3 More About The Tools UsedThe program was initially developed using GHC 4.04 and HDiret 0.16, whih seemed to be theonly ompatible versions at the time the projet was started in July 2000. Later on we moved toGHC 4.08 when HDiret 0.17 was released.HaskellDiret [3℄ [4℄ is an IDL (Interfae De�nition Language) to Haskell ompiler. It allowsyou to write desriptions of C libraries in IDL and generate Haskell ode that will allow you to allthe library from Haskell and vie versa.To do this it uses the Foreign Funtion Interfae[5℄ built into newer Haskell ompilers, andprovides some libraries of its own that provide marshalling and un-marshalling funtions. [6℄ and[7℄ have more information on the subjet.HaskellDiret also provides failities for alling Java from Haskell using Lambada [8℄. Lambadais still in the early stages of development. Beause of this, it proved to be triky to ompile andwas also rather buggy in use. It has great potential, but requires more development.GHC an be triky to ompile from soure, due to bootstrapping problems (as it is written inHaskell), and eventually we used a pre-ompiled binary. One up and running, GHC is very stable.A useful feature of GHC is its ability to generate Make�le dependenies for a given program.We had some problems �nding a ompatible ombination of HaskellDiret and GHC versions,due to hanges in the Foreign Funtion Interfae. One ompatible version had been found,HaskellDiret worked well for straight forward marshalling/un-marshalling but some problems wereenountered when un-marshalling the result of a funtion that returned har** (an array of strings).HaskellDiret un-marshalled this into [Ptr℄, instead of [String℄. This was �xed by modifying themarshalling ode by hand.4 Implementation OverviewThis setion o�ers a brief overview of the �nal implementation. It is not an exat desription ofthe implementation, but o�ers a general idea of how the program works.The program has a layered struture. Eah layer is generally self ontained in a single soure�le or module. The only exeption to this is the tree-building ode whih is atually in several �les.Some of the layers are written in C rather than Haskell. The struture is illustrated in Figure 5.8

The layers below the tree building ode are onerned only with providing data to the higherlevels. They ould easily be replaed or modi�ed to import data from some other soure.The tree building ode works by reating a large IOArray (a mutable array) whih is largeenough to hold all the entries from the LDAP. Eah element of the array holds a Person. A Persononsists of the following data.� Data for the person from the LDAP diretory.� Data for the person from the sores �le (initially empty).� Indies of all subordinates entries in the array (initially empty).� The aggregate sore for this entry (initially empty).The data from the LDAP diretory is read diretly into this array. Next, a hash table is reatedthat maps a person's DN to their index in the array. This is done by walking over the array addingeah entry's index and DN into the hash table.One the hash table is reated, it is then possible to onstrut the hierarhy tree. This is doneby walking over the array adding eah Person's index into their manager's subordinate list. To dothis, it is neessary to �nd an entry in the array from a DN. This is the purpose of the hash table.So, after two passes over the array, the hierarhy tree is onstruted. The next step is to readin the sores data from the sores �le. Unfortunately, the sores �le uses the UID attribute of anentry as the key. To be able to read in the sores data it is neessary to replae the hash table withone that maps the UID attribute (userid) of an entry to its index. This is done with another passover the array. This makes it possible to read eah line of the sores �le and �ll in the appropriateelements in the array.From this point it is possible to walk over the tree using a simple reursive algorithm to alulatethe aggregate sores. This gives a ompleted tree, whih an then be displayed.The display is handled by the HTMLWriter module. This uses a reursive algorithm to walk overthe tree and generates a diretory ontaining HTML �les. It would be easy to modify or replaethis module to output the results in a di�erent format.5 Problems FaedThere were two main areas where problems ourred during this projet. The �rst area, interfaingto LDAP, was mainly aused by bugs in software and inompatibilities between versions as desribedin Setion 3.The seond and bigger area where problems ourred was in memory usage. At the minimum itis neessary to store a person's DN, their manager's DN, their user ID and their sores; we also storetheir CN (ommon name) for pretty output. A DN string is, on average, about 50-60 haraterslong. With the large number of entries that need to be worked on this memory usage an grow tobe quite large.Early attempts at storing the results and building the hierarhy tree resulted in programs thatworked �ne for small test diretories (approximately 2000 entries), but used large (greater than400MB) amounts of memory on realisti diretories of approximately 100,000 entries. Sine theprogram was intended to run on a omputer with 160MB RAM this was unaeptable.From the experiments we made to redue memory usage it appears that Strings in Haskell anbe expensive in memory usage. For this reason, the two DNs that were stored for eah person wereonverted to MD5 heksums [9℄. MD5 is a method of generating a message digest (a \�ngerprint")9

from a given string. It is onjetured that it is omputationally infeasible to produe two stringswith the same message digest. Using MD5 heksums signi�antly redued the memory usagebeause an MD5 heksum is 128 bits long. This is represented in Haskell as a String of sixteenharaters. There is a small risk that two DNs may be enoded to the same heksum value, but thiswas onsidered an aeptable risk. Although reduing the DNs to heksums redued the memoryusage it was still unaeptably large.Another ause of high memory usage was due to the way data from the sores �le needed tobe merged with the data from the LDAP diretory. The LDAP diretory uses DNs to identifyindividual people, and so DNs were used as the unique identi�ers for building the hierarhy tree.However the sores �le uses a person's userid to identify people. Beause of this it was neessaryto have some way of mapping userids to DNs. Experiments were made with balaned trees (bothimplemented by hand, and using Haskell's FiniteMap) but this made a large ontribution to thememory usage.The early version of the program stored data from the LDAP diretory in a list of type [Person℄.It then onverted this list into a balaned tree that mapped a userid to a Person. At that point thesores were read from the sores �le into the entries in the balaned tree. This merged the soresand LDAP data together. Next, the balaned tree was modi�ed so that it was possible to searhfor the entry with a spei� manager attribute. The program then walked over the balaned tree�nding all the entries who had inorret or missing manager attributes. These entries formed theroot nodes of the hierarhy tree (atually a forest). From these entries, the whole hierarhy wasonstruted in a top-down fashion using the following data type.data Tree = Manager Person [Tree℄| Sub PersonThe main users of memory in this proess were the original (large) list, and the two balaned trees(although the �nal hierarhy tree also used a big hunk).To ombat this memory usage we eventually used a single mutable array (IOArray) and madeseveral passes over this array. We used indies stored with the data in the array to build thehierarhy tree within the array, rather than building an expliit tree. Although it would have beennie to only make passes over the array, it is still neessary to have some mapping between DNs andindies and also between userids and indies (although not at the same time). For this purpose,a seond mutable array was used to reate a hash table (using haining for handling ollisions).This used signi�antly less memory than the previous approah whih built balaned trees and anexpliit hierarhy tree.Although this improved version was loser to running in an aeptable amount of memory itstill required more memory than was available. After further investigation it appeared that parts ofthe program were being lazy in an unforeseen way. Experimenting with fored evaluation in partsof the program (partiularly the parsers) resulted in a dramati redution in memory usage. Afterthis result, further parts of the program were modi�ed to fore evaluation, before it was settled onwhih parts of the program bene�ted from lazy evaluation and whih parts didn't. At this pointthe program was running in a satisfatory amount of memory.6 ConlusionsIn this setion we will try to summarise our observations during this projet. The biggest problemfaed in the projet was ontrolling memory usage. It proved to be quite diÆult to monitorand understand memory usage in the program. Pro�ling tools helped but we experiened some10

diÆulty pro�ling programs using the FFI. This appeared to be �xed in GHC 4.08. Additionally,there appears to be little solid doumentation on how to interpret the output of the pro�ling tools.Suh doumentation would greatly inrease the usability of the pro�ling tools. Beause of theseproblems, the memory usage was mostly ontrolled through trial and error. This approah workedbeause this is a relatively small program but suh an approah would not be possible on a largersale. It is also interesting to note that, in this instane, lazy evaluation was more of a hindranethan a help. Indeed, the program ended up with large parts of the ode having an imperative styleto them. This was not our original intention but was fored upon us by the need to redue memoryusage.It was pleasing to see how well Haskell interated with other languages, although it was notalways straightforward to generate orret marshalling ode. However, one the marshalling odewas orretly written the interation between the two languages was perfet. It is the opinion ofthe author that this is an important area of the language. Haskell annot \stand alone"; it mustbe able to interat well with other languages. HaskellDiret provides a good base from whih to dothis.Using Haskell in this projet enabled us to quikly build a working system and as suh showedit is possible to build systems heaply with Haskell. Unfortunately, there is not enough experieneof using Haskell on large sale problems. It is also unfortunate that understanding the memoryusage of lazy Haskell problems an be very triky. This was where a large amount of time was lostduring the projet.All in all, Haskell shows great promise for this kind of appliation. We believe that Haskell willbe a suitable language given time and extra tools to ease the understanding of memory usage.Referenes[1℄ RFC2251, http://www.ietf.org/rf/rf2251.txt[2℄ Howes, T., Smith, M. and Good, G. Understanding And Deploying LDAP Diretory Servies[3℄ http://www.haskell.org/hdiret[4℄ Finne, S., Leijn, D., Meijer, E., and Peyton Jones, S. H/Diret: a binary foreign language interfae forHaskell.[5℄ Finne, S. A foreign funtion interfae for Haskell[6℄ Finne, S., Leijn, D., Meijer, E., and Peyton Jones, S. Calling hell from heaven and heaven from hell.[7℄ Peyton Jones, S. Takling the Awkward Squad: monadi input/output, onurreny, exeptions, andforeign-language alls in Haskell[8℄ Meijer, E. and Finne, S. Lambada, Haskell as a better Java.[9℄ RFC1321, http://www.ietf.org/rf/rf1321.txt
11

