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GHood { Graphial Visualisation andAnimation of Haskell Objet ObservationsClaus Reinke 1Computing Laboratory, University of KentCanterbury, UKAbstratAs a possible extension to his Haskell Objet Observation Debugger Hood [7℄, AndyGill has desribed the \dynami viewing of strutures", stepping through observa-tions instead of aumulating them into a stati view. Starting from this idea, wehave implemented and released an animation bak-end for Hood, alled GHood.Instead of the dynami textual visualisation based on pretty-printing proposed in[7℄, our bak-end features a dynami graphial visualisation, based on a simpletree layout algorithm. This paper reviews the main aspets of Hood, gives a briefintrodution to GHood's features and summarises our experiene so far.The visualisation of program behaviour via animations of data struture obser-vations has uses for program omprehension and exposition, in development, de-bugging and eduation. We �nd that the graphial struture failitates orientationeven when textual labels are no longer readable due to saling, suggesting advan-tages over a purely textual visualisation. A novel appliation area is opened by theuse of GHood as an applet on web pages { disussions of Haskell program behaviour,e.g., in eduational online material or in explanations of funtional algorithms, annow easily be augmented with graphial animations of the issues being disussed.1 Well-typed programs don't go anywhere { or do they?The war-ry of stati typing is that \well-typed programs don't go wrong", butsometimes the question is \where does this well-typed program go?", requiringa more detailed understanding of program behaviour.For a surprisingly long time, Haskell programmers have been deprived oftools that would enable them to investigate the behaviour of their programs ata suitable level of abstration. This lak of tool support, espeially in the areasof debugging and pro�ling, has been quoted as one of the reasons \why no oneuses funtional languages" [18℄. In the ontext of Haskell pro�ling, the lak has1 mailto:.reinke�uk.a.uk http://www.s.uk.a.uk/people/staff/r3/(aepted for Haskell workshop)



Reinkenot been felt quite so urgently, beause inreasingly sophistiated lower-leveltools have ontinued to appear (support still varies between implementations,though, and tools are implementation-spei�). Still, there is a disrepany:if programs are written in a nie high-level language, why do their dynamiaspets have to be studied in low-level terms of stak- and heap-usage? Andin the area of debugging, the situation has only just started to improve.A reent survey [3℄ ompares three tools for traing and debugging of lazyfuntional programs: Hat [20℄, Freja [13℄, and Hood [7℄. All of these systemso�er inspetion failities at a level lose to the programming language, basedon di�erent forms of exeution traes, and an be haraterised on the basisof the questions they help to answer. Hat 2 takes wrong program output asstarting points, enabling users to trae bakwards through redution sequenes(\where did this result or output ome from?"). Freja supports a tehniqueknown as delarative debugging, involving users in a dialogue that narrowsdown to the soure of errors (\this part of your program gives the followingresult. Is this orret (yes/no)?"). For Hood, it is useful to imagine a data-owmodel of funtional program exeution, with parameters owing into operatorsor funtions and results owing out. On this basis, programmers an use Hoodto insert probes into their programs to monitor or observe the ow of data atruntime (\what kind of data struture is owing through here?").Traing tools o�er high-level views into Haskell program exeutions. Fous-ing on di�erent aspets of program behaviour, the existing tools omplementeah other, but it turns out that they all provide essentially stati views ofprogram exeution traes, highlighting logial onnetions between interme-diate terms instead of exeution dynamis. As a possible extension to Hood,Andy Gill desribed the \dynami viewing of strutures", stepping throughobservations using a textual form of visualisation based on pretty-printing [7℄.Gill implemented and demonstrated a browser bak-end for Hood, based onthis idea (the bak-end itself is available from the Haskell CVS repository, butit is not supported by the Hood observation library, as released in July 2000;that Haskell library implements the observation ombinator by aumulatingobservations and printing a stati view at the end of program runs).We are here onerned with extending the usefulness of Hood (the mostreent of these tools, and also the only implementation-independent one) byadding dynami views of observation traes. Starting from Gill's idea, andbuilding on the Hood observation library, we have implemented and releaseda graphial animation bak-end for Hood, alled GHood. Instead of a dy-nami textual visualisation based on pretty-printing, our bak-end features adynami graphial visualisation, based on a simple tree layout algorithm. Af-ter reviewing the main aspets of Hood, this paper gives a brief introdutionto GHood's features, demonstrates some of the new appliations enabled byGHood by way of two small examples, and summarises our experiene so far.2 Hat has sine been extended onsiderably, and now supports several models of traing,implemented on top of a single program exeution trae (f. Setion 5.1, as well as [19,20℄).2



Reinke2 Hood { goodbye trae, hello observeThe pseudo-funtion trae :: String -> a -> a { not part of any Haskelllanguage de�nition, but supported by all Haskell implementations { is sup-posed to be ating as an identity with a String-label. When evaluated, itreturns its seond parameter, but also prints its label as a side-e�et. Rem-inisent of the print-statements with whih imperative programmers inspettheir programs in the absene of proper debuggers, side-e�eting output anthus be used to generate a trae of the exeution of a Haskell program.But in the end, unonstrained use of side-e�eting input/output operationsis no more suitable for debugging than for any other kind of input/output in alazy funtional language. Funtional input/output has moved on to more sys-temati, delarative means of expression, whih require to make e�ets visiblein the struture, and thus in the type of programs (Chapter 3 of [16℄ aims togive a logial reonstrution of the main lines in this development). But this isexatly what prevents the use of these more strutured means of input/outputfor debugging purposes, where one wants to inspet the behaviour of a givenprogram, without having to restruture it into something else �rst.Enter Hood (Haskell Objet Observation Debugger). One way of under-standing Hood is via a line of reasoning similar to that whih led to today'sfuntional input/output systems { it is not the idea of side-e�eting opera-tions that is at fault, it is their undisiplined use that auses problems. As therequirements of debugging di�er from those of standard input/output, a simi-lar line of reasoning will not neessarily lead to similar solutions. In standardusage, input/output is part of the program and should be reeted in its typestruture whereas, for debugging purposes, the input/output-operations arepart of the workbenh used to inspet the program, and the original programshould be disturbed as little as possible.Developing this idea, Hood onsists of a fairly omplex library with arelatively simple interfae. In fat, the type of the major funtion has nothanged muh: observe :: Observable a => String -> a -> a. Similarto trae, observe ats as an identity with a String label. But the similari-ties end here { alls to trae e�etively imitate imperative print-statements,whereas alls to observe apture the intention behind print-style-debugging(indiating interest in intermediate values) in a delarative way, leaving the\how" of apturing and presenting information to the implementation. Theombination of observe and its observation and presentation library elimi-nates all the major de�ienies of trae:(i) (a) With trae, all information is ommuniated via the String parame-ter. Programmers have to add ode to inspet parts of their program,and to inorporate the inspetion results into the String labels.(b) With observe, instanes of the Observable lass handle all aspetsof program inspetion, o�ering a muh more onvenient high-levelinterfae. The String parameter is just used as a label.3



Reinke(ii) (a) The extra inspetion ode needed to feed information into traelabels implies non-trivial program modi�ations, whih run the riskof introduing bugs and hanging stritness properties in the proess.(b) Prede�ned instanes for most standard types and a ombinator ap-proah to user-de�ned instanes of Observable imply smaller pro-gram modi�ations and ensure that stritness properties of the pro-gram under inspetion are not a�eted by the use of observe.(iii) (a) When evaluated, trae immediately attempts to output its label.Under a lazy evaluation strategy, this may ause other traed expres-sions to be evaluated, and the order of output an be onfusing.(b) Evaluation of observe auses information to be aptured, but this isdeoupled from presentation and output. In Hood, the observationevents are post-proessed when the observed program has terminated{ observations are grouped by their labels into omprehensive sum-maries, whih are pretty-printed as partially-known data strutures.For the full details, readers are referred to the Hood paper and doumen-tation [7,8℄, but for a two-parameter onstrutor C in an algebrai data type,the general mehanism an be illustrated by the following pseudo-ode:observer (C x y) = �position -> unsafePerformIO $do sendEvent <observed onstrutor C at position position>return (C (observer x position:0) (observer y position:1))where observer is a helper funtion alled by observe (initialising position),and position reords the position of the urrent subexpression in the observeddata struture. The de�nition is strit in the observed (sub-)struture, foringits evaluation to weak head normal form, but only if the weak head normalform of the whole expression is required by the evaluation ontext. On thisoasion, the observer generates an observation event, tagged with the po-sition information, wraps any onstrutor parameters in new observers, andreturns the observed onstrutor to the evaluation ontext.All those implementation details are hidden behind suitable monads andombinators, o�ering a simple user-level interfae, and observers for moststandard types are prede�ned. The (prede�ned) instane of Observable forlists may serve to illustrate that it is straightforward, if somewhat tedious, tomake new types observable:instane (Observable a) => Observable [a℄ whereobserver (a:as) = send ":" (return (:) << a << as)observer [℄ = send "[℄" (return [℄)Using observe is equally straightforward (runO :: IO a -> IO () runsan IO-sript while taking are of observation event proessing):import Observemain = runO $ print $ observe "just a list" [1..4::Int℄4



Reinke3 GHood { seeing what your program doesUsing a small set of ommonly implemented extensions to standard Haskell,Hood instruments existing Haskell implementations to generate observationdata during program evaluation, and when the observed program terminates,the stream of observation events is postproessed and pretty-printed. Theresult is a portable library that an be used with the full Haskell language.However, there is more information in the stream of observation eventsthan is utilised in the vanilla version of Hood. Eah observation event onveysthree kinds of information:(i) what onstrutor or onstant is observed?(ii) where is this part of a data struture loated?(iii) when is this part of a data struture observed?Hood uses loation information (where) to ollate related observations andthen pretty-prints the olletion of partial information (what) about the datastrutures under observation. The original Hood publiation [7℄ mentions \Wehave an extension to the released version of HOOD, that inludes a browserthat allows dynami viewing of strutures." and inludes sreenshots showingdynami pretty-printing, but this ombination has yet to be released 3 .For GHood, we have taken Gill's idea of using the when information ofobservation events as a basis for animating observations as our point of depar-ture. GHood an be haraterised as a new bak-end for Hood's observationlibrary { instead of textual visualisation, based on pretty-printing, we havehosen a graphial form of visualisation, based on a simple tree-layout algo-rithm. The visualisation onsists of displaying the struture under observationas a tree, and the animation re�nes the display whenever an observation eventadds information. With the potential exeption of funtions (see setion 4.2),all Haskell types are of the (reursive) sum-of-produts kind, and thus have asimple mapping to a tree representation. This is not always the most naturalmapping { e.g., GHood urrently renders Strings as binary lists of haraters.3.1 ImplementationWe have added extension hooks in the Hood observation library: apart frominitialisation and �nalisation, these hooks enable additional proessing of ob-servation events, either individually, as eah observation ours (extending thesendEvent used in observer), or on the event stream as a whole, betweenprogram termination and Hood's pretty-printing. These hooks give fairly goodontrol over the prodution and formatting of observation logs and ould beused by other postproessing tools. No further modi�ations of Hood's obser-3 nh98 omes bundled with pre-release versions of the browser (from the Haskell CVSrepository) and the Hood observation library, the latter modi�ed to produe the XML-based input expeted by the browser (referred to as THood in setion 5.1).5
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Fig. 1. GHood sreenshotvation library are neessary { the Haskell interfae remains unhanged.Using these hooks, the observation log is made available in a text �le. Tokeep parsing of these logs in our bak-end simple, log �les onsist of one lineof plain text per observation event, giving position information and type ofobservation (observation label, demand for evaluation, onstrutor or fun-tion) for eah event, as well as observation-type-spei� information (arityand onstrutor name for observations of onstrutors, label text for observa-tion labels). Observation logs an then be proessed, visualised and animatedin our graphial bak-end GHood. The hooks give a hoie between onlineand o�ine generation of external logs, with assoiated trade-o�s: On urrentmahines, the slow-down of programs by �le i/o during evaluation in the on-line variant appears to be more substantial than the extra spae usage by theo�ine version, so the latter is the default. The online version remains usefulwhen GHood is used to debug programs that do not terminate suessfully: ongh, Hood manages to proess the observation log anyway, apturing abnor-mal termination via exeptions, but on other Haskell implementations, onlyour online version of Hood generates an external log in these ases.The GHood viewer itself is Java-based, ensuring availability on most plat-forms that support Haskell implementations, and it an be used with any6



ReinkeHaskell implementation that supports Hood (plus hooks). The graphial userinterfae (�gure 1) is straightforward, omprising a drawing panel in whihpartially observed strutures are displayed using a tree-layout algorithm, anda few buttons to play, stop, reset, and single-step the animation (forwards orbakwards), or to print snapshots (printing produes bitmap-style Postsript,so export of vetorised enapsulated Postsript was added for use in print pub-liations). When observation trees get large, they an be saled down, or thepanel an be srolled, providing survey views or aess to parts of the stru-tures under observation. To provide for omprehensible automati steppingon di�erent platforms, ontrolable delays have be added between observationevents in automati animation. In the following, we fous on the observationtrees, as shown in the drawing panel, but produed by the EPS export.The main reason for implementing our own viewer was that existing graphdrawing tools -as far as they have not gone ommerial- appear to be lim-ited to ertain platforms or speialised towards pretty, reasonably fast (a fewseonds) layout, whereas our appliation required portability and a quik andsimple tree layout for an inrementally updated tree. The only ompliationresulted from the single-threaded design of Java's GUI libraries (event han-dlers are sheduled non-preemptively). Fortunately, GHood an be deom-posed into two threads (observation tree update and GUI), only one of whihrequires aess to the GUI, but both threads operate on the observation tree.Synhronising the threads on a per-node basis, with an atomi transationorresponding to the proessing of eah observation event, appears to give areasonable ompromise between GUI responsiveness and animation progresswhile avoiding erroneous displays of partially updated trees.GHood an be used as a standalone Java appliation or as a Java applet inweb pages, and the prodution and visualisation of observation event logs anbe deoupled. This means that online ourse material, doumentation andpubliations of funtional algorithms an be enhaned with dynami visuali-sations without requiring a Haskell implementation on the browser side.3.2 Observations about unsafePerformIO and extension hooksIn the implementation of observe, the non-standard, but ommonly imple-mented, pseudo-funtion unsafePerformIO :: IO a -> a is used to turn ane�et (logging an observation event), doumented in the type of an expression,into a side-e�et, so that the expression tagged with a all to observe an beused just as the original expression.Traditionally, unsafePerformIO is seen as a means to extend programswith impure operations in suh a way that their use, as seen from the evalu-ating ontext, an be shown to be unritial (the pre�x unsafe is meant todoument this proof obligation). In the ase of observers, however, the idea isto leave the program under observation entirely undisturbed while extendingthe implementation that runs the program. In other words, unsafePerformIO7



Reinkean also be seen as a hook provided in the Haskell evaluation mehanism.This hook is used in observe to instrument the evaluator so that it per-forms useful logging funtions when evaluating strutures under obervation.And just as Hood uses an implementation hook to reuse and extend the fun-tionality of existing Haskell implementations, GHood uses hooks in Hood toreuse the observation funtionality while extending it for purposes of graph-ial visualisation. Suh implementation extension hooks enormously simplifythe implementation of portable tools, and it would seem worthwhile to reateand standardise a atalogue of suh hooks aross Haskell implementations,moving towards portable tools that an plug into di�erent implementations,using only the standardised extension interfaes.One it is understood that unsafePerformIO funtions as an extensionhook in the underlying implementation, other uses beome possible as well.Instead of just logging the evaluation of some expression, the hook ould beused to wait for user input before ontinuing the evaluation. Suh user inputould even be used to modify the struture under observation before passingit on to the evaluation ontext, enabling interative debugging.In the spei� ontext of GHood, another useful implementation hookwould be to the memory manager, permitting GHood to show when stru-tures beome unobservable. Aording to the doumentation (module Weak inHsLibs), addFinalizer :: a -> IO () -> IO () should do just that. Thisoperation should assoiate an IO-sript with an expression, so that the sriptis guaranteed to be run after the expression gets garbage olleted. Unfor-tunately, implementation optimisations urrently subvert this operation formost types, rendering it unusable in the general form.4 GHood appliations, by examplesTo demonstrate the opportunities opened by GHood, we hoose two examplesthat display non-obvious behaviour but have either been analysed reently(the breadth-�rst numbering problem) or an be assumed to be well-known toHaskell programmers (the interation of non-strit evaluation with the use offoldl as a pattern for tail reursion). We an thus fous on the visualisationand on the information that an be derived from it. Both of the followingsubsetions an also be seen as examples of how desriptions of funtionalalgorithms an be augmented with animations of program behaviour. To avoidpage-�lling series of snapshots, we oasionally resort to radio-style textualommentaries of animations that do not easily �t into the stati publiationformat here. Online versions of the examples disussed here are providedon the GHood home page 4 , and readers are strongly enouraged to use theonline animations side by side with the text here (for ompleteness, and togive a rough impression of the graphial animations, samples of redued-size4 http://www.s.uk.a.uk/people/staff/r3/toolbox/haskell/GHood/8
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E EFig. 2. End-of-run observation of breadth-�rst numberingsnapshot series are provided in the appendix of this paper).4.1 Breadth-�rst numbering revisitedAs a �rst small example, onsider the breadth-�rst numbering problem pro-posed in a reent funtional pearl [14℄ as \an interesting toy problem thatexposes a blind spot ommon to many {perhaps most{ funtional program-mers". The problem is stated as follows:Given a tree T, reate a new tree of the same shape, but with the values atthe nodes replaed by the numbers 1. . . jTj in breadth-�rst order.Readers who have not ome aross this problem before are enouragedto try �nding a solution for themselves before reading on (our Haskell odeis in Appendix A). Originally, we tried to animate our solutions more togain insight into the pratialities of visualisation than in the expetation tolearn anything new about the problem. As a �rst illustration, �gure 2 showsobservations of two trees, one before and one after breadth-�rst numbering,in the �nal state of the animation. All observations are grouped under a rootnode, whih also gives the name of the observation �le. Below the root nodeome observation labels (the String parameters to the funtion observe),followed by tree-representations of the observed Haskell strutures.The observation labels are underlined and oloured blue 5 , onstrutorsand onstants are oloured blak, unobserved subexpressions (thunks) areshown as red boxes. Thunks under observation are represented as orangeboxes with red outlines until their weak head normal form beomes available,and the thunk is replaed by some onstrutor. The typial lifeyle of a nodeis from \not yet inspeted" (red, losed box) to \under observation, but weakhead normal form not yet available" (orange, open box) to some onstrutor(blak onstrutor label).Trees are either empty (E) or nodes (N) with left and right subtree andsome label, so the display in �gure 2 gives the information expeted from the5 Presentation sheme hanged for publiation, to failitate readability of both olour andgreysale renderings (red and orange appear as dark and light shades of grey, respetively).9
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N NFig. 4. Stritness problem solved?problem spei�ation, in that only the shape, but not the node labels of theinput tree need to be inspeted to onstrut the resulting tree, in whih nodesare labeled with positive integers in breadth-�rst order.The surprise ame while inspeting intermediate stages of the animation{ �gure 3 shows an extreme situation in the middle of the run. The thunkwhih will evaluate to the tree after renumbering is represented as an openedbox, indiating that it is being inspeted by the evaluation ontext, but thatits weak-head normal form has not yet beome available. It has been in thatstate all the way from just after the start, while more and more of the shape ofthe input tree has been observed. In other words, this solution has an extremestritness problem, inspeting parts of the input long before they should beneeded! Only the very next step will replae the thunk under inspetion by anode labeled N, with three unobserved thunks as subnodes, so no part of theresult tree beomes available for observation until after all observations of theinput tree shape have taken plae.One the animation had so drastially brought this stritness problem toour attention, improving the program was not too diÆult. Choosing roughlythe same stage in a run of the modi�ed program, the intermediate observationin �gure 4 shows the di�erene quite learly (wathing the observed struturesunfold dynamially during animation, it is almost impossible not to notie thedi�erene between the two programs): parts of the resulting tree have beome10



Reinkeavailable for observation, right down to the �rst omplete non-trivial sub-treeat the left, while still not all of the input tree shape has been observed.In spite of the drasti improvement, a areful inspetion of the animationfor the new version shows that it still does not behave as one might expet.The relabeled tree is observed in depth-�rst order, whereas the input treeis observed in breadth-�rst order. At �rst, that looks reasonable: the prob-lem spei�ation alls for a breadth-�rst traversal of the input tree, and theprinting routine traverses the result in depth-�rst order. On seond thought,though, only the omputation of the new labels should depend on a breadth-�rsttraversal of the input, and printing the result should give the whole leftmostbranh of the tree before inspeting any node labels.At this point, we need to explain our approah to the problem and thedi�erenes between the versions. In our earliest attempts, we did indeed ex-periene the blind spot disussed by Okasaki, though not for the reasons listedby him. Instead, our road-blok was that any solution seems to involve twodi�erent views of the input trees: whereas the problem spei�ation learlyalls for a breadth-�rst traversal, the easy way to desribe a reursive algo-rithm over the trees follows their reursive struture { in depth-�rst order!Our very �rst solution side-stepped the issue in an overautiously systematiapproah, restruturing the input tree into a list of levels, then doing therelabeling (straightforward in this form), and �nally rebuilding a tree of theoriginal struture, with the new labels. But one we had managed to �nd atleast one solution to Okasaki's problem, and identi�ed our own blind spot onthe way, we then sought to get rid of the blind spot by onstruting a moresuitable solution. This led to the variants desribed in the present paper (theoriginal brute-fore solution had similar stritness problems).The new approah does not impose a breadth-�rst traversal on the inputtree, but instead follows its natural reursive struture, generating a pool of\things to do" on the way. The tasks -one for eah subtree- are onnetedby data-dependenies whih represent the breadth-�rst traversal onstraint,and it is left to the inspetion of the result tree to atually ause those tasksto be evaluated, in a o-routine-like fashion. In other words, the produerof relabeled trees onsumes the input trees in a depth-�rst traversal, and anyonsumer of the result tree will impliitly (by the virtues of lazy evaluation andthe data dependenies set up by the produer) ause a breadth-�rst traversalto take plae. This deoupling of the two oniting traversals solves ourblind-spot problem and gives a onise �rst variant of a solution, alled task1(�gures A.2, A.6, 4).After reading Okasaki's omments [14℄, we notied that his suggestionabout replaing two-way queues by unidiretional queues in languages thatdo not support mathing on both ends applied to our task pool (representedas a list, with an awkward use of splitAt to pattern-math at its bak end).So task1 beame task2 (�gures A.3, A.5, 3) { and aquired the extremestritness problem desribed earlier: Okasaki's workaround maintains queues11
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Fig. 5. Stritness problem solved!in reversed order (so that elements an be taken from the output ends usingpattern-mathing), whih happens to put the relabeled top node at the veryend of the queue, so that the whole task queue has to be proessed -and thewhole input tree be observed- to get to the very �rst node of the result tree.Swithing bak to our original variant got rid of this problem, but leftanother, only slightly more subtle stritness problem: to show the result treeup to the �rst label, as in �gure 4, it should not be neessary to observe threelevels of nodes in the input tree. The node labeled 4 in the result is the �rst atlevel three, so observing two levels of the input tree should suÆe to omputethe label! Perusing the animation again gives the embarrassing insight: justtraversing the struture of the result tree seems to trigger the breadth-�rsttraversal of the input tree, even before any labels are inspeted. And indeed,this variant takes the result struture from the task pool that was set up toenfore the breadth-�rst traversal. Separately passing the struture of theinput tree and �lling in the labels omputed on demand solves this problem,and the animation of our �nal variant, task1new (�gures A.4, A.7, 5), exhibitsa nie, demand-driven pattern of observations.Note that this kind of dynami stritness problem, where parts of inputsare demanded too early, di�ers from the kind of problems that ould be inves-tigated using stati stritness information (is a part of input ever demanded ornot at all?). If the iteration bounds that guarantee termination of a stritnessinferene system an be inreased in ases where termination is obvious forother reasons, the best information suh a system ould give orresponds tothat deduible from �gure 2. But that information is the same for all variantsof the solution!4.2 A well-known stritness problemReursive algorithms over lists an often be expressed more onisely as folds,avoiding expliitly reursive de�nitions. For lists, there are two standard foldoperators, foldr and foldl, whih ombine the list elements by right- and left-assoiative operators, respetively. More generally, a fold operator replaesonstrutors in a parameter struture by operators of appropriate arity, thus12
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Fig. 6. foldl versus foldl' { tail reursion with (non-)strit aumulatorexpressing the reursive struture of the algorithm in terms of the reursivestruture of its input. Viewed in these more general terms, foldr expressesa standard reursion along the list struture, whereas foldl expresses a tailreursion with an aumulator. Suh tail reursions are usually assoiatedwith onstant stak-usage.foldr op  [℄ = foldr op  (x:xs) = x `op` (foldr op  xs)foldl op  [℄ = foldl op  (x:xs) = foldl op (op  x) xsAs many Haskell programmers disover for the �rst time in more omplexprograms, this idea does not quite work { for large inputs their programs anrun out of stak spae in spite of the areful use of tail reursion! This isquite a ommon experiene, and so it seems worthwhile to see how muh ofthe problem reveals itself by areful analysis of an example, using only thegraphial animation of observations. The reader should keep in mind thatthis subsetion is not onerned with new aspets of folds { rather, it servesto illustrate the novel ways of explaining more or less well-known propertiesof funtional algorithms, made possible by visualisation tools suh as GHood.Figure 6 (left) shows an end-of-animation snapshot of the all:observe "foldl" foldl (+) 0 [1..4::Int℄13



ReinkeTo make up for the lak of animation here, nodes in this �gure are annotatedwith supersripts giving the number of observation events between the begin-ning of their observation and the availability of their weak head normal form(shown only if that number exeeds one). As in Hood, the observed part of afuntion is presented as a �nite map of input/output pairs. Those pairs arelabeled with arrows here, so FUN{6->FUN{4->10},3->FUN{3->6},..} repre-sents a funtion f that, when applied to 6, returned a funtion that, whenapplied to 4, returned 10 (f was also applied to 3, and returned a funtionthat, when applied to 3, returned 6). The overall piture tells us that foldlis a ternary funtion, mapping a binary funtion (itself applied four times, asthere are four pairs in its map) to a funtion, that maps the integer 0 to afuntion, that maps the list [1,2,3,4℄ to the integer 10.In the animation, several phases an be distinguished. First, foldl itself isobserved to reveal its arity, then evaluation demands that its result be observed(the box orresponding to this thunk is opened). Before this beomes available,the spine of the input list is observed in full, whih in itself is a stumbling blokin many programs operating on lists of substantial size: the whole length of theinput list is reated in memory before any other omputations take plae (thespine of the list an be olleted immediately, but the thunks for its elementstake up spae, even though these elements are not yet about to be inspeted).Using foldr would avoid this problem, at the expense of linear stak usage.Next, observation of the result of applying the binary operator is de-manded, leading to a demand for the �rst parameter of this appliation. This,in turn, demands observation of the result of another appliation of the opera-tor, and so on, reating a hain of thunks under observation until the demandfor the �rst parameter of the fourth appliation is ful�lled by observing theseond parameter to foldl. After that point, the hain unwinds step by step,demanding suessive observations of all input list elements before, �nally, theresult of the all to foldl beomes observable.Returning to the annotated snapshot in �gure 6 (left), we see that some 58events passed during observation of the �nal result, 10, and that the hain on-sisted of omputing, starting in this sequene 6+4->10, 3+3->6, 1+2->3, and0+1->1, and terminating in reversed order, taking 42, 31, 20, and 9 observedsteps, respetively. In summary, the all to foldl was indeed tail reursive,but it only observed the spine of the input list and delivered a thunk involvingthe list elements as an interim result. Evaluating this thunk then unfoldedanother, impliit reursion (orresponding to the evaluation of a nested arith-metial expression) with just the kind of linearly growing stak-usage (thehain of opened boxes) we wanted to avoid.The obvious ountermeasure is to fore evaluation of the aumulator toavoid this split into a tail-reursive thunk onstrution and a not tail-reursiveevaluation of that thunk, e.g., by using the all-by-value appliator $!:foldl' op  [℄ = foldl' op  (x:xs) = (foldl' op $! (op  x)) xs14



ReinkeThe new annotated end-of-animation snapshot in �gure 6 (right) alreadyindiates a major hange. With the exeption of the �nal result, no morethan 9 observation events our between the beginning of a node observationand the availability of its weak head normal form. As those delays roughlyorrespond to stak usage, getting rid of the ghost-reursion has establishedthe bound on stak usage that was the original goal. The order of appliationsof the binary operator seems to have hanged as well.Going through the full animation sequene shows further di�erenes: thespine and elements of the input list are now inspeted in a stepwise fash-ion, interleaved with appliations of the binary operator, now in the sequene0+1->1, 1+2->3, 3+3->6, and 6+4->10. This ordering ensures that intermedi-ate results are already available when demanded by the next appliation andis the result of foring the evaluation of the aumulator. So, not only has theunbounded use of stak spae been avoided, but a spae leak (observing thefull spine of the input list -thus reating impliit thunks for all elements- longbefore its elements are inspeted) has been plugged as well.4.3 Summary, and further examplesThe examples in this setion have been hosen to be small, relatively well-known, yet displaying interesting behaviour and illustrating di�erent aspetsof GHood. In the ase of breadth-�rst numbering, animation of observationswas used during algorithm development and helped to disover unexpetedproperties of early program variants, as well as pointing to the soure of theproblems. In the ase of foldl, the algorithm and problems are usually on-sidered to be well-known, but resurfae with surprising reliability, and theanimation was used to demonstrate and explain how a tail-reursive funtionould still lead to linear resoure usage for intermediate strutures. The ex-amples di�er in another notable aspet: for breadth-�rst numbering, the treelayout imposed by GHood naturally mathes the trees in the problem, whereasthe tree layout is rather less natural for foldl.In both examples, observation of unexpeted behaviour ould be traedbak to problems and led to modi�ations of the programs observed. It wouldbe misleading, though, to assume that the main use of GHood was in debug-ging { it just happens that understanding what a program does an be a usefulasset in debugging (delarative debugging, as in Freja [13℄, suggests that suhan understanding is not always neessary). For a nie example of how ani-mation of observations an aid program omprehension outside of debugging,readers are again referred to the GHood home page: the online examples in-lude an animated observation of Colin Runiman's Haskell implementationof the \wheel sieve" algorithm for generating prime numbers [17℄. The pro-gram is onsiderably more omplex than the examples disussed here, and theanimation provides a nie omplement to the disussion in the JFP paper.15



Reinke5 Evaluation, related and further work5.1 Experiene, feedbak, and evaluationAfter some internal testing at UKC, �rst versions of GHood were made avail-able to the Haskell ommunity in January 2001. Sine then, we have reeiveda lot of positive feedbak, very few feature requests, and problem reportshave mostly been limited to problems with the Java 2 runtime installationson whih our viewer depends. This suggests that the tool, while far from per-fet, is already onsidered good enough to �ll its nihe. In other words, whileour urrent users might welome re�nements of the urrent features, suh im-provements will not be onsidered essential unless they reet hanges in thebasi approah. Our plans for GHood are thus limited to ompletion of themodi�ations urrently under development (see below), to be inorporated ina �nal release later this year.In Marh, we also had the opportunity to visit 6 the funtional program-ming group in York and take part in a repetition of the usability study de-sribed in [3℄, with updated variants of the same tools. Though limited toase studies in debugging, the experiment provided a host of useful feedbakand ideas. The most important outome was that the tools (Freja, Hat, andGHood) had atually managed to explore, and partially �ll, di�erent nihes inthe area of debugging Haskell programs. Eah tool was useful for debugging,but eah tool was useful in a di�erent way, and more than one, we wouldhave wanted an easy way to swith from one tool to another { not only withthe same Haskell implementation, but in the same debugging session, takingthe urrent debugging state and investigating it from a di�erent perspetive.As the Hat trae seems to ontain most of the information needed for eahof the tools, the York group has now started to move in that diretion, and�rst results are visible in the new Hat toolsuite bundled with the just-releasednh98-1.04 [20,19℄ (the suite inludes a variant of Hood-style observation, im-plemented on top of Hat's redex trails instead of Hood's observation library).In the following, we distinguish between Hood -the Haskell library releasedin July 2000, GHood -the graphial bak-end for Hood desribed in this paper,and THood, by whih we refer to the version of Hood that omes bundledwith nh. The latter inludes Gill's textual browser from the Haskell CVSrepository, and a pre-release version of the Hood library, modi�ed to generatethe XML input expeted by the browser. In its urrent pre-release form,THood su�ers from di�erenes to the released Hood (this is easily repaired)and from a lak of automated animation (only single-stepping forwards andbakwards and jumps to beginning and end of observations are provided).All Hood bakends inherit the ore funtionality and some limitations fromthe library. In pratie, the most annoying limitation is the need to inspetand modify the soure ode in order to import the module Observe and to6 This visit was supported by EPSRC grant number GR/M81953.16



Reinkede�ne instanes of the lass Observable for all non-standard data types, asfar as values of these types need to be observed (this set of types needs tobe losed with respet to embedded types). Further modi�ations inludea all to runO in main and running the implementation with options indi-ating extensions beyond Haskell 98. In ontrast to alls to observe, whihindiate programmer intentions, these modi�ations are implied, boring, anderror-prone. Even though errors introdued in the proess are isolated fromthe program, easily spotted and �xed, they ould be avoided entirely by au-tomating these tasks (Malolm Wallae suggested using Drift to generate theinstanes of Observable). The main problem with alls to observe is toidentify program positions where suh alls will provide useful information.The York experiment was limited to debugging, and as far this is on-erned, the most useful feature of GHood surprisingly turned out to be infor-mation about what is not there: again and again, unevaluated thunks providedshortuts to spotting bugs (one example was a bugged ompiler in whih asymboltable lookup managed to return values without the symboltable everbeing observed). Both Hood and THood indiate unevaluated thunks as sim-ple undersores, and neither shows temporal relations between di�erent obser-vations (Hood has no animation, THood treats observations under di�erentlabels separately). GHood, in ontrast, displays unevaluated thunks in learlyvisible red, and animates all observations under a single root node, failitatingomprehension of interrelationships. Deriving information from non-availabledata (thunks) seems to take some getting-used-to, though: the important on-netion is that Hood-based tools show what the program sees, so if GHooddoes not show the value of a thunk, there is no need for the debugger to knowthe value, simply beause the program never asks for that value.Of the tools in the experiment, GHood seemed to ope best with largestrutures, but it was not entirely without problems in this regard: saling(both in time and in spae) is useful beause the graphial struture supportsorientation even when textual labels are no longer readable, but beause ofthis graphial struture, small strutures are not represented as ompatly asin Hood or THood. If THood would be extended with automated animation,it would be at an advantage for small, not inherently tree-like strutures, suhas the observation of foldl. For slightly larger observations, suh as the lazywheel sieve, THood's ompat representation an no longer entirely make upfor the lak of saling (saling the pretty-printed representation to point sizewould give a graphi represention without muh struture, but it would beinteresting to ompare that representation to GHood's).GHood extends Hood, so the stati pretty-printed observations are stillavailable to omplement the dynami graphi visualisation, but some graphs,espeially Strings, should be represented more ompatly, to improve read-ability. Another problem onerns navigation in large strutures: the stan-dard two-srollbars solution is rather unsuited for onurrently navigating inboth dimensions and needs to be replaed, and although both survey views17



Reinkeand zooming to details are urrently supported, they should not exlude eahother. On a related note, we should point out that Hood-based animationtools not only enable programmers to fous on the parts of the program tobe observed, deoupling program size from the size of observations. To someextent, the level of abstration at whih to animate program observationsan also be ontrolled: at the level desribed in setion 3, entirely di�erentapproahes to the breadth-�rst numbering problem, suh as the brute-forelevel-and-reonstrut approah, will display similar behaviour, even thoughtheir behaviour would di�er substantially under more detailed observations.Other issues inlude online versus o�ine generation of observation logs (f.setion 3.1), observability of �-onversion (observe "f" f shares a single ob-servation label between all uses of f, whereas \x->observe "f" f x reatesseparate observation labels for eah all), the need to remove alls to observeto avoid lutter (GHood should be extended to permit seletive observation),and the need for \pakaging" of observations, preserving the onnetion be-tween them (for instane, several loal variable bindings in a funtion body).As mentioned earlier, the approah taken by Hood and GHood does not inpriniple exlude interative debugging, and the February 2001 release of Hugs(www.haskell.org/hugs) o�ers support for a built-in variant of Hood, alledHugsHood, whih heads in this diretion by supporting breakpoints. Similarly,there is no fundamental reason against online visualisation (during programexeution) but our urrent o�ine approah to visualisation has opened newappliation areas beyond debugging.5.2 Other related workThe idea to visualise and animate the exeution of funtional programs in or-der to gain insights into their behaviour is an old one. For an overview of theproblems and opportunities see Sandra Foubister's thesis [5℄. We are not awareof a survey overing this area, but various proposals and even implementationshave been put forward, inluding Foubister's \hint" tool and an animation ofa G-mahine implementation using the graph layout tool daVini [15℄, not tomention proposals for speially designed visual funtional languages. More re-ent inarnations of the idea inlude a graphial debugger/traer in the CurryIntegrated Development EnviRonment CIDER [11℄, and the Kiel InterativeEvaluation Laboratory [2℄ for a simple �rst-order subset of ML. For om-pleteness, text-based navigation through redution sequenes should also bementioned, as in the DrSheme environment [4℄ or in the redution systemsin the Berkling and Kluge tradition [10℄.Animation of observations in GHood is distintly di�erent from traditionaltext- or graphis-based animation or navigation of redution sequenes. Com-paring our experiene with GHood and with textual single-stepping throughredution sequenes, as a�orded, e.g., by the redution systems developed byKluge et. al. [10,6℄, we �nd both disadvantages and advantages.18



ReinkeAt �rst, the disadvantages seem overwhelming: without any extra e�ort byprogrammers, redution systems provide a diret experiene of the operationalsemantis, as well as navigation, editing, and seletive redution of parts ofintermediate programs in a redution sequene. GHood, as a bak-end forHood, only animates observations of intermediate strutures. Observationsare approximations of weak head normal forms of those intermediates, andthe animation shows the sequene in whih parts of strutures under observa-tion are inspeted. This allows only indiret onlusions about the programbehaviour. In pratie, it an be rather diÆult to try and infer the algorithmfrom the visualisation alone but, starting with a onjeture or some approxi-mate understanding of the program behaviour, it tends to be straightforwardto on�rm or refute suh hypotheses in the visualisation.On the positive side, graphial visualisation is more suitable for overviewsof larger programs and of animation sequenes, where textual informationis no longer readable. The observational approah also makes it easier tofous visualisation on interesting aspets of program behaviour, exluding bothunobserved parts of programs and intermediate expression representations onthe way to weak head normal forms. Nevertheless, observation graphs forrealisti programs grow quikly, demanding further work on the user interfae.The general problem faed by developers of exeution monitoring tools isthe need to use (and most likely reate) speially instrumented implementa-tions. As a onsequene of the e�orts involved, suh speialised implementa-tions tend to support only small subsets of the original languages, visualisationoften takes plae at the implementation level, and the speialised implemen-tations do not evolve with the language and its standard implementations.Tools based on speialised implementations are by de�nition not portable,and if separate implementations are needed for normal and for visualisationuse, di�erenes in evaluation mehanisms may our.Another alternative is to use a separate evaluator with built-in exeutionanimation failities and to provide mappings between subsets of that evalu-ator's language and subsets of the language to be extended with exeutionmonitoring. Wolfram Kahl has demonstrated this approah with his term-graph-based program development and transformation environment HOPS [9℄,but it means that two evaluators, their languages, and the mapping betweenthem have to be kept in synh, not to mention portability issues.Hood avoids all these problems by using a ommonly implemented im-plementation hook (unsafePerformIO) to instrument existing Haskell imple-mentations, reusing and extending their funtionality. The resulting library isportable and an be used with the full Haskell language. GHood uses hooksin Hood to reuse the observation funtionality while extending it for purposesof dynami graphial visualisation, using Java as a widely available imple-mentation platform. Reeting on the suess of these hook-based solutions,implementation hooks turn out to be (appliation-spei�) residues of moregeneral meta-programming infra-struture.19



ReinkeIn language ommunities with suessful tool-building traditions, suh asLisp, Prolog, and Smalltalk, tool development seems to rely on well-developedinfra-strutures for meta-programming and reetion. At a prototype stage,the key idea is to write a meta-interpreter (between a few lines and a pageof ode for these languages) that reuses existing implementation funtional-ity, and then to instrument the meta-interpreter for purposes of monitoring(animation in our ase). Suessful prototype tools an then be implementedmore eÆiently, often using standard tehniques. To ahieve eÆieny, themeta-interpreter should delegate standard funtionality to the standard eval-uator with as little overhead as possible. In suh embedded meta-interpreters,only the extra funtionality (e.g., for program monitoring) inurs interpreta-tive overhead, and if suitable extension interfaes to the standard evaluatorare available (aka reetion or introspetion apabilities), the meta-interpreterbeomes the standard interpreter, instrumented via its extension hooks.In the ontext of delarative debugging, Naish and Barbour [12℄ have usedthis idea to design a \portable lazy funtional delarative debugger" whihould be implemented in the funtional language to be debugged, assuming asingle impure primitive, alled dirt (display intermediate redued term).Haskell neither supports reetion 7 nor does it o�er well-doumented in-terfaes to implementation funtionality (f. the SML/NJ Compiler struture[1℄), or other typial parts of a meta-programming infra-struture. Its syntaxis more omplex than Lisp's S-expressions, and reusable parsers for full Haskellhave only reently started to appear, but the parsers in the various Haskellimplementations remain pratially unaessible; all Haskell implementationsinternally build up a symbol-table, assoiating identi�ers with attributes, suhas types or stritness, but there is no standard interfae by whih Haskell pro-grams ould load a Haskell program and query the symbol-table information.6 ConlusionsGHood is a new bak-end for Hood, providing graphial visualisation and an-imation of Haskell program exeution. Unlike traditional approahes to graphredution animation, GHood is not based on a speial-purpose implementa-tion, but extends and reuses existing Haskell implementations, via Hood. Thevisualisation itself is also di�erent, in that it does not animate redutions ofterms to normal form, but inspetion of terms by their evaluation ontexts:instead of evolution of a term through intermediate representations, an anima-tion shows re�nement of information about a term in a single representation.Portable tools suh as Hood and GHood depend ritially on being ableto instrument and thus reuse existing Haskell implementations by means ofextension hooks, and the ease with whih tool implementers an reuse existing7 How to do this properly in a statially typed, pure, and non-strit funtional language isanother researh diretion that would merit more attention20



Reinkeimplementation funtionality has an important impat on the development oftools for Haskell. We suggest that a ommon (implementation-independent)infra-struture for meta-programming and reetion in Haskell, with standardinterfaes to implementation funtionality, ould improve the basis for Haskelltool development, and that both the general framework and spei� imple-mentation extension hooks should beome a fous of researh.In the present paper, we have foussed on illustrating the way in whihGHood an be used to help omprehension of Haskell program behaviour,using small examples from everyday pratie. Our own experiene and feed-bak from users shows that dynami observation of intermediate strutures isa useful addition to the Haskell programmer's toolbox. Although the `d' inHood stands for \debugger", we prefer to see GHood as a workbenh: Haskellprogrammers an use it to set up and perform experiments involving dynamiaspets of their programs. Suh experiments an be used to validate theoriesof program behaviour or they an deliver the data points from whih suh the-ories an be abstrated. For both uses, experiments have to be set up and thedata be interpreted arefully, so Hood and GHood are tools that an informthinking about programs, but they annot replae suh thinking.We hope to see GHood or similar tools for the visualisation of funtionalprogram behaviour used in eduation (online ourse material), doumentation,and publiation (online supplements to artiles on funtional algorithms). In-strutors might want to onsider the motivational aspet as well { severalorrespondents ommented the �rst pre-releases with the words \GHood isool!". Another orrespondent remarked \�nally, I an show my olleagueswhat non-strit evaluation means".Referenes[1℄ Standard ML of New Jersey, http://www.smlnj.org.[2℄ Berghammer, R. and M. Tiedt,Kiel Interative Evaluation Laboratory, Tehnial report, Institute of ComputerSiene and Applied Mathematis, Christian-Albrehts-University, Kiel (1999),http://www.informatik.uni-kiel.de/~progsys/kiel.html.[3℄ Chitil, O., C. Runiman and M. Wallae, Freja, Hat and Hood - AComparative Evaluation of Three Systems for Traing and Debugging LazyFuntional Programs, in: Proeedings of the 12th International Workshop onImplementation of Funtional Languages, Aahen, Germany, September 4th -7th 2000, LNCS 2011, 2001, pp. 176{193.[4℄ Clements, J., M. Flatt and M. Felleisen, Modeling an Algebrai Stepper,in: Programming Languages and Systems, 10th European Symposium onProgramming, ESOP 2001 Held as Part of the Joint European Conferenes onTheory and Pratie of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,Leture Notes in Computer Siene 2028 (2001).21
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Reinke[19℄ Wallae, M., O. Chitil, T. Brehm and C. Runiman, Multiple-View Traingfor Haskell: a New Hat, in: ACM SIGPLAN Haskell Workshop, Firenze, Italy,2001.[20℄ York Funtional Programming Group, Hat - The Haskell Traer, http://www.s.york.a.uk/fp/hat/ (2001).A Soure ode and animation sequenesA note on the use of animation sequenes: online animations for all examplesare available on the GHood home page. Snapshot samples of animation sequenesare inluded in this appendix for arhival reasons, but as the stati medium annotportray the advantages of dynami visualisation, the online animations should bepreferred, if at all possible. Readers without aess to the online animations will�nd it helpful to print or display this appendix separately from the main text, sothat they an see both side by side without having to jump bak and forth.

import Observedata Tree a = E | N (Tree a) a (Tree a) deriving (Show)instane Observable a => Observable (Tree a) whereobserver E = send "E" (return E)observer (N l x r) = send "N" (return N << l << x << r)main = printO $ observe "after" $ bfnum $ observe "before" xxxwhere { xxx = N xx 2 xx; xx = N x 1 x; x = N E 0 E }Fig. A.1. task-based breadth-�rst numbering, ommon pre�x23
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Fig. A.8. foldl steps 2, 9, 18, 24, 29, 41, 47, 53 and 6628
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Fig. A.9. foldl': steps 2, 9, 17, 25, 34, 38, 47, 51, 60 and 66
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