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Mobile Data, Dynamic Allocation and Zero
Aliasing: an occam Experiment

F.R.M. Barnes and P.H. Welch
Computing Laboratory, University of Kent, Canterbury, KEICT2 7NF
{frmb2,phw}@ukc.ac.uk

Abstract. Traditional imperative languages (such as C) and moderctiyfiented
languages are plagued by uncontrolled resource aliasimlgjggns. Add in concur-
rency and the problems compound exponentially. Impromsmchronised access to
shared (i.e. aliased) resources leads to problems of @zardh, deadlock, livelock and
starvation.

This paper describes the binding irdocam (a concurrent processing language
based on CSP) of a secure, dynamic and efficient way of shdaitagbetween parallel
processes with minimal synchronisation overheads. Thenkeyfacilities provided
are: a movement semantics for assignment and communicati@st zero-aliasing,
apparently dynamic memory allocation and automatic zereeoy-small-unit-time
garbage collection. The implementation of this mechansm@so presented, along
with some initial performance figures (e.g. 80ns for mobdeneunication on an 800
MHz Pentium 3).

With occam becoming available on a variety of microprocessors for Quiting,
internet services and small-memory-footprint embedded pets, these capabilities
are timely. Lessons are drawn for concurrency back in OOuaggs - and especially
for the JCSPCSP for Javapackage library.

1 Introduction and Motivation

Classicaloccam[1] has acopysemantics — data is copied from the sender to the receiver at
the point of synchronisation. In contrast, communicatiodCSP [2, 3, 4, 5, 6] goes with
the flow of Java and hasraferencesemantics — only object references are sent. The same
channel synchronisatiosemantics of CSP [7, 8, 9] applies to batbcam and JCSP, but
the after-effects are different. loccam, the sender and receiver hold sepam@atpiesof

the communicated data — subsequent work by both processbsiorespective data objects
causes no mutual interference. In JCSP, the sender angleebeid separate, but identical,
referencego the same object (which resides on #i@ared hea@nd hasn’t actually moved
anywhere) — this time, subsequent work by both on that oligeatrace hazard either of
them updates any part of it

In summary, th@ccam communication is secure, but expensive if the data beingisen
large. The JCSP communication is cheap (unit time cost déggs of data size), but secure
only if the system designer stays on guard against the coertaliasing problem and doesn’t
make any mistakes.

For this research, rather than fight the culture of OO langsigwhere free-wheeling
duplication of object references is the norm), we found itttwhile to turn again teccam
(where aliasing is at all times controlled) and see what aaddne to ease or eliminate the
copying costs of communication.

Between processes distributed over distinct memory spaogying the data will be
unavoidable. Between processes living within the same mgsmace, copying only the
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references is possible. The trick is to make both scenaeimsstically compatible and the
latter one semantically safe. And, of course, to do thismaplyi as possible (but no simpler
—occam’s razof10]).

This paper considerably expands on an earlier version [ith]details on mobile storage
management, dynamically sized mobiles, parameter passimdgfined usage checks and
performance.

2 Mobiles

For efficiency reasons, mobiles have been widely used in éiségs a design patteriby
occam programmers — for example in packet routers and GUI servidasious security
checks have to be overridden in order to compile it (which msethat it was not strictly
occam any more), but the performance gains have been felt suffitdguostify the risk.

Although not thought about in quite the same way, itinebile design patteris wide-
spread in much OO programming for communicating infornmatietween different parts of
a system — often with objects repeatedly created, used om@flyoband then dumped. For
applications that cannot tolerate the construction owatbggarbage collection and memory
fragmentation caused by this, explicit creation and mamagé of reusable object pools is a
common solution.

Our proposal binds this design pattern into tleeam language, ensuring its correct and
efficient implementation without compromising security.

2.1 Mobile Semantics

Consider thecopy and moveoperations provided by operating systems for managing files
The former duplicates the file, placing it in a target diregtonder a (possibly) new name.
The latter just moves the file to the target directory, pdgsgnaming it. A key factor in the
semantics of thenove[12] is that the original path/file name is no more.

Consider now the assignment statement. Its purpose is tehtae state of its environ-
ment, which we can represent as a set of ordered pairs mapaiiaples (od-valueg into
data values (or-valueg. In occam, because of its zero-tolerance of aliasing, assignment
semantics is what we expect:

(< mo,v9 >, < 1,01 >,...) "x0 = x1" (< @, 07 >, < 1,01 >,...)

In all other languages with assignment, the situation isenammplex — since the variable
‘x0" may be aliased to other variables and the values assoactatiedhose aliases will also
have been changed 9.

Consider next a mobile assignment statement. Its semastdaifferent in one crucial
place:

(< zo,v9 >, < 1,01 >,...) "x0 = x1" (< zg,v7 >, < 21,72>,...)

The difference is that the value of the variable at the soafdbe assignment has become
undefined- its value hasnovedo the target.

The semantics for mobileommunicationfiave to follow naturally from the semantics
for mobileassignmentin occam, communication is just a distributed form of assignment —
a value is computed in the sender process and assigned t@blean the receiver process
(after the two processes have synchronised). For examtile,abovex0’ and ‘x1’ variables
were of type F00’, then the above (copy) assignment has to be semanticaliyagnt to:
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CHAN OF FOO c:

PAR
c ! x1
c ? x0

That implies a key property of mobile communicationghe value of the output variable
becomes undefined

There is an argument as to whatdefinedshould mean. One possibility is to introduce
it as an extra value (perhaps with the namigLL’) on the underlying type and allow pro-
grammers explicitly to test for it. Another is to leave th@éyalone and definendefined
to meanany value of that type. This means that the state of a moved Jarl@romes the
same as that of a declared, but uninitialised, variable ®@fséime type — formally. in the
denotational semantics otcam [13, 14].

For semantic and pragmatic reasons, we have chosen thedatteese two possibili-
ties. The first leaves us open tULL-pointer errors at run-time and a somewhat artificial
decision to make as to whether to alloWULL’ values to be assigned or communicated.
The second gives us a semantics for mobile assignment anchgoitation that istrictly
weakerthan that for copy assignment and communication — and wetaké advantage of
this presently (see the start of section 3). It also allovestighly efficient management of
fixed-sizemobiles (sections 3 and 4). The downside is the need to gumithst acciden-
tal use of undefined values (see section 7) — although we hatevie have always had this
problem for uninitialised variables and (mostly) ignoréd i

2.2 Mobile Syntax

We propose two new keywords for the languageM@BILE’ qualifier for data types and a
‘CLONE’ prefix operator.

The MOBILE qualifier doesn’'t change the nature of the typeastypes- for example,
MOBILE types are compatible with ordinary types in expressionsassignment. This is
important, since we may wish to constri@0Cedures FUNCTIONS and operators [15] that
will work when given variables of either type (see section 6)

However, it does impose th@obile semanticen assignment and communication be-
tweenMOBILE variables. So, if we have the following declarations:

DATA TYPE FOO
MOBILE RECORD
fields

F0OO0 x0, x1:

then the assignment and communication code fragments lasheection have theobile
and not the usuaopy, semantics.

The MOBILE qualifier need not be burnt into the type declaration — it carafsociated
just with particular variables. For example, the followis@n alternative to the above:

DATA TYPE BAR
RECORD
fields (same as F00)

MOBILE BAR x0, x1:
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In some cases, we may actually want copy semantics for madilables. For this pur-
pose, a CLONE” operator is provided. This generates a copy of a mobile orthvive can
then perform the required operation. For example, in:

SEQ
x0 := CLONE x1
c ! CLONE x1

both operations leave the valuexdf value unchanged (i.e. we are back to copy semantics).
Indeed, without the firsCLONE above, the last line would be unsafe (since the valueiof
would be undefined) — see section 7.

2.3 Mixed Mobiles and non-Mobiles

At present, we allow mobiles to be assigned to non-mobilése$ame underlying type (and
vice-versa). The semantics reverts to copying. MMBILE BAR andBAR variables may be
inter-assigned — though not, of cour8ep andBAR variables (type equivalence is based on
nameot structure.

To be consistent, we also allow mobiles to be communicatashatannels carrying the
underlying non-mobile type. The sent variables are copmetlaft unchanged.

However, we do not allow non-mobiles to be communicatedssceochannel carrying a
compatible mobile type. That would requiegther a run-time penalty at the receiving end
(which would have to detect whether the incoming data wasile)obr the creation of an
anonymous mobile (and a copy into it). Neither seems vergcitve. The need for mixed
mobile assignment and communication is not apparent — saytha neater just to ban it.

There is another form of mixing that is more useful and we ttmxaloccam PROTOCOLS
define message structures and there is no reason why thdy siebhavemixedMOBILE and
nonMOBILE components. For example, if:

PROTOCOL MIXED IS FOO; BAR; FOO
CHAN OF MIXED mixed:
BAR y:

then:
mixed ! x0; y; x1

leavesx0 andx1 undefined — buy unchanged.

We had earlier toyed with the idea of having special symhbmisrfobile assignmenk()
and output€!). Then, the use between mobiles of ordinary symbotsand!) would mean
copy semantics and there would be no need foICILBE operator. But that would remove
the above flexibility for mixed messages.

3 Implementation of Mobiles

As mentioned in section 2.1, implementing mobile operatioy copying is a perfectly legal
mechanism. For efficiency, this is precisely hemallmobiles (e.gMOBILE REAL64sS or any
data type less than or equal to around 8 bytes) are managedcerthpiler simply ignores
theMOBILE qualifier on them. Copying is also used for communication obiles between
processes occupyirdifferentmemory spaces (virtual machines).

The interesting case is communication between procesfi@ssamememory space and,
of course, for mobile assignments.
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3.1 Mobiles in the Same Memory Space

Mobile data cannot live in the workspace of the process teas uhem — that workspace
may be reused by another process runninggiuence with it, or by other processes in any
encapsulatingLTernative or conditionalIf and CASE processes). They have to persist in
a heap-likespace that is globally available. Unlike conventional Isgape enforcezero-
aliasingon its elements (the mobileg)ero-time constructiososts (for most of them) and
zero-time garbage collectiotosts (again for most and unit-time, per-element-gathdozd
the rest).

The obvious scheme is used: mobile variables hold only pmntio their actual data.
Those pointers, of course, will not be apparent or accessithe programmer. Mobile as-
signment and communication requires the copying of thogegs — not the data. However,
unlike OO languages, we are not going to allow this to set ypadiases.

The semantics chosen (section 2.1) avoids the conceftlaf values — they are unnec-
essary, a source of run-time error and require checkingnatinoe (or suitable handling after
accessing data at an invalid address). Therefore, we etizafrenobile variables hold, at
all times,valid pointers— although the data pointed at might tlmedefinedthe problems of
which are addressed in section 7).

Classicaloccam has constraints designed to meet security requiremenenibedded
systems operating within finite — sometimes very small — mgm&uch constraints are
highly relevant to modern applications. Forbidden aremgon, run-time computed parallel
(PAR) replication counts and run-time array sizes. Stickindhse constraints enables some
interesting optimisations, but going beyond them is notitowible (section 5) — and it does
not prevent our optimised managementigéd sizenobiles.

For example, the total number of all mobile variables (or iedields, if we allow nested
mobiles) that will become active in a system is discoverethieycompiler — and this is not
prevented by separate compilation of components. Assuengizk of all the types underly-
ing those mobiles is known. Thethe total size needed for the mobile hezm be exactly
calculated. All space for mobile structures can be allatated initialised before main sys-
tem startup (section 4) — hence, zero runtime constructetsc

An early plan was to maintain free-lists of mobile nodes — fmameeach underlying type
— within mobile space. When a mobile variable lost its dateabee itreceiveda new mo-
bile by assignment/communication or because it went outops, the lost data was added
to the relevant free-list. When it lost data because it wassthurceof a mobile assign-
ment/communication, it picked up somedefinedmaterial from the free-list. Both these
operations would be unit time.

However, a much simpler idea emerged. The free-lists areneetled. Instead, mo-
bile communication and assignment are implemented simplwapping pointers between
source and target variables.

Formally, the model seen by the user remains that the dwectf data movement in
assignment and communication is one-way, even though tpéementation is two-way.
This is important to allow the normal copying implementasoeferred to earlier fosmall
mobiles and for communication across memory space boweslari

If it turns out thatswappingmobile assignments and communications are a useful par-
adigm in their own right, we shall consider providing thempaisnitive operations. Their
implementations will be trivial (albeit with extra costscunred for small mobiles and dis-
tributed communications).
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3.2 Mobile Assignment

We are modifying the KBC[16, 17] compiler. This uses an extended transpBieeCode
(ETC) [18] as an intermediary, before generating nativeecotheTransputer Virtual Ma-
chine(TVM) has a simple stack architecture. So, the assignment:

X =y —-— for any MOBILE type
compiles to:

LD x -- load ‘x’

Dy -- load ‘y’

ST x -- store in ‘x’

ST y -- store in ‘y’

where what is actually being loaded and storedpariatersto the data. Simple and fast.

3.3 Mobile Communication

We could implement this using two channels and two commuioica— one in either direc-
tion. But that is expensive — two synchronisations instdaohe. Instead, we have further
extended the intermediate (transput@yjeCodewith two new instructions:

MIN -- mobile input
MOUT -- mobile output

These instructions take pointers to the mobile variablegffiect, a pointer to a pointer)
and swap them. Those arguments are pre-loaded on the TV slaog with the channel
address, in the usual way. Even though they both effect tine sgoeration,MOUT’ needs to
deal with the case that the inputting process is not comdh(ite. it isALTing). The same
algorithm used for the non-mobile channel output instarcOUT) is safely reused.

3.4 Cloning

A CLONE operator on the RHS of amssignmenturns the mobile operation intocpy. A
CLONE operator on the RHS of asutputintroduces an anonymoM8BILE — with very local
scope — into which the outpMDBILE is copied This is followed bymobileoutput from the
anonymous variable&LONE operators appearing anywhere else withiregpressiorhave no
semantic effect (section 6) and are ignored by the compilae only other place where a
CLONE operator has impact is on an argument passed to a fol0BaLE reference parameter
of aPROC (also section 6).

4 Mobile Storage Allocation

Mobile data lives iiTmobilespace- along withshadowf all mobile variables. This applies
to fixed sizemobiles only -dynamically sizeanobiles are discussed in section 5. Figure 1
shows an expanded declarationraiD from section 2.2, along with the layout shadow
variables and pointers imobilespace

The compiler generates a static mapping of all mobile véegabnd data on tomobile-
space This is similar to how the (procesgjorkspaceand (array and recordjectorspace
allocations are performed. For each declared (and anongymabile variable, space is
reserved inmobilespacdor its initial mobile data, along with room for a pointer tbat
data — that pointer is thehadowof the mobile variable. For each instance dirdCedure,
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shadow (a) - fmee
shadow () - feeeeeoe

DATA TYPE FQO
MoBI LE RECORD |

[4] INT dest: shadow(payload) -
MOBI LE [ 32] BYTE payl oad: -

: [ 32] BYTE
FOO a, b: -
SEQ [4] I NT
ce shadow(payload) o
[ 32] BYTE

Figure 1: Example layout in mobile-space f®00 a,b”

FUNCTION or operator requiringnobilespacgspace is reserved in the callenwbilespace
— as is the case fawvorkspaceandvectorspace The mobilespaceequirements for R0C,
FUNCTION or operator are recorded in the output of the compiler, aategtheworkspace
andvectorspaceisage.

In order for aPROCess FUNCTION or user-defined operator) to find its mobiles, an extra
parameter is passed providing the addressabilespacen which its mobile shadows live.
The start oimobilespacés passed as a hidden parameter to the top-level processisTthe
same mechanism already used to aceessorspacestructures.

On initialisation, the KRC run-time system allocates the whole mabbilespacgini-
tialises it to MOSTNEG INT’, then passes it to the top-levet0Cess. In eacimobile-requiring
PROC, FUNCTION and operator generated, a speci8dO0BILESPACEINIT’ ETC [18] instruc-
tion is generated, which encodes tnebilespacenap for thatPROC/FUNCTION. This holds
the workspaceoffset of the hiddermobilespacearameter (MSP), the number of mobile
variables to initialise, then for each variable, the shaddiset and the (initial) data-offset.

The translator turns this special ETC instruction into ctudi@itialise that part ofnobile-
spacethe first time thaPROC, FUNCTION or operator instance is called. The initialisation
checks to see if the first word mobilespacés ‘MOSTNEG INT', if it is, then the initialisation
of mobile shadow variables (i.e. pointing them at theiriahitlata blocks) is performed.

When a mobile variable comes into scope (i.e. at the poirtsafeclaration), the pointer
to its data is copied from itshadowword (already set up imobilespackinto the process
workspaceword allocated for it. The compiler can statically deterenthe offset of a par-
ticular shadow variable from the hiddemobilespacgarameter passed to the process. For
the duration of the variable’s lifetime, only this pointewmin the workspace is used (to save
repeatedly loading frormobilespack

When a mobile variable goes out of scope, the pointer it aosiia copied back into its
shadow inmobilespaceThis may well be a different pointer to the one originalladied (if
the mobile variable has been assigned or communicated).

To keep the compiler generatetbbilespaceffsets low, the allocation strategy ensures
that all shadow pointers for mobile variables in a particpl@cess are allocated at the start
of the (mobilespackblock addressed by the hidden parameter — these are fallbywéehe
actual dataMobilespacdor sub-processes are allocated below this. Of course,ez188n
and mobile operations proceed and mobile variables entele@ve scope, the mobile data
areasownedby shadow variables migrate all ou@iobilespace
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4.1 Nested Mobiles

Nested mobile types (demonstrated byxbe declaration in figure 1) present two problems.

Firstly, the data belonging to the mobile is no longer cambigs in memory (unlike the
case for ordinary data types and non-nested mobiles). Hssrhplications for th&€LONE
operator, which must now perforndaepcopy. It also complicates the case when a mobile is
output down a channel of its underlying (non-mobile) typ&isThas to be by a (contiguous
block) copy since the receiving variable may be non-molaled(contiguous) — see sec-
tion 2.3. Space for aerialisedversion must have been allocated and serialisation peeirm
At least this will be simpler than the equivalent operationJava (because the zero-aliased
mobile structures can only leee9, but it is still not very pretty. This gives another reason
to disallow such operations.

The second problem is sub-mobiles within non-mobile ty@@gpose th8AR data type
(section 2.2) is as described — i.e. it isvan-mobilethat contains the same fields
(which now includes anobilepayload — see figure 1). Non-mobile variables are normally
allocated inworkspaceor vectorspacebut, due to the recycling of these spaces by serial
processes, we would lose the mobile field pointers (e.gpdgioad). It would be possible
to use a mobile shadow variable for each mobile field in a nobila type, but this would
incur anO(n) time cost (where: is the number of mobile fields) every time the variable
entered or left scope.

For this reason we constrain any type with mobile compontntse a mobile itself,
and handle the(n) initialisation cost once when the enclosirRROC’ or ‘FUNCTION' is
entered for the first time. This could be handled (secretithie compiler, but we prefer the
programmer to tag explicitly such outer types as mobile —geawkrate a compiler error if
they are not.

Finally, we note that nested mobiles cause no problem foirlmabsignment and mobile
communication within the same memory space. We still meselgp the top-level pointers
— the lower-level ones need no adjustment.

5 Dynamically Sized Mobiles

So far, the mobiles presented have had statically allogatsmory. But they have many of
the characteristics dfeapallocated objects (e.g. system-wide visibility and fastrbution
via references) — except that construction never fails amglick (just load the pointer from
the shadow variable), there are noll states, naull-pointer errors, no aliasing problems
and no garbage collection.

On systems with no memory constraints — such as those segpoytvirtual memory
— one other kind of mobile becomes possible: thatime sizedarray. These are much
like other mobiles, except that they are allocated and fidgthmically, rather than kept
in mobilespace Dynamic mobile array types omit the dimension in their deation. For
example:

MOBILE [IBYTE buffer:
INT n:
SEQ
in ? n
buffer := [n]BYTE
process using buffer

In theirundefinedstate, dynamic mobile array variables are implementedfér te zero
sized arrays. Memory allocation is done with the use of aigpegpressiorthat describes
the quantity (and type) of memory to allocate. Whendheam compiler cannot determine
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the size of an array at compile time (whichuisuallythe case for dynamic mobiles) it inserts
run-time checkso ensure that any accesses on the array happens withiruitsi®o

Note that although space for theuffer’ mobile is allocated by the above assignment,
its elements are stilindefined

Unlike other mobile data-types, dynamic mobiles do not red@&ect counterpart in the
non-mobile world —i.e., we reject declarations of the folhBYTE x’.

5.1 Implementing Dynamic Mobiles

As mentioned previously, dynamic mobiles do not occompbilespacelnstead, two words
are allocated in the processmrkspace One for the pointer to the array, and one for the size
(in elementsof the array. When the dynamic mobile comes into scopesifis-slotis set
to zero — the pointer is left untouched (and possibly inyaliflhis avoids the problem of
nullnesssince any use of an unallocated array will be caught by aima-4bounds check (or
by a compile-time check — section 7).

To avoid large overheads in memory allocation, we use asersi the Brinch-Hansen
algorithm for workspace allocation in parallel recursidi®], with half-power-of-2-size-
quantisatiorof its free-lists (Wood [20]). To implement this dynamic mermy management,
two new ETC instructions were adde®dALLOC’ and ‘MRELEASE'. There are only two places
where dynamic memory allocation can occur — through the 6ISEndBYTE’, or through the
use of CLONE'. In both of these cases, a new chunk of memory is pulled eftthrresponding
free-list — the run-time system will allocate more heap menifat finds the free-list empty.
In contrast, releasing memory to the free-lists can paténthappen in a number of places
— before allocation, input and assignment. The generatéQ)Eode for a dynamic mobile
check-and-fresequence is:

-- check-and-free code for ‘var’

LD (var + 1) -- load array size
CJ :skip -- jump if zero, else
LD var - load array pointer
MRELEASE - free memory
:skip —-- program continues

Unlike ordinary (non-dynamic) mobile assignment and comitation in the same mem-
ory space (section 3.1) we do not employ the same pointepEwa technique — mainly be-
cause the source and target arrays may not be the same sEadnwe revert back to the
‘early plan’ described in section 3.1 (but with thalf-power-of-2sized free-lists).

5.1.1 Dynamic Mobile Assignment

For assignments involving mixed dynamic mobiles and nomagtyic mobiles, the assignment
reverts to the defauttopysemantics. This is a fairly special case, and only works vthen
arrays are of equal size (the compiler will insert checksre@mecessary). For the other cases
(where the LHS is a dynamic mobile), the code generated dispem what the RHS is. A
dynamic mobile allocation of the form:

buffer := [n]BYTE

compiles to:
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check-and-free code on ‘buffer’

LD n -- load new size

LD <typesize> —-- load element size (constant)
PROD -— multiply to get number of bytes
MALLOC -- allocate memory

ST buffer -- store pointer

LD n -- load new size

ST (buffer + 1) -- store in size-slot

This is a fairly generic version — the actual code generatay Ibe quite a bit more com-
plex, if ‘n’ is a FUNCTION call or aVALOF expression for example. The code generation for a
dynamic mobileCLONE is slightly more complicated than the allocation code, faraple:

thing := CLONE buffer

where thing’ is of the same (dynamic mobile) type asiffer’ would compile to:

check-and-free code on ‘buffer’

LD (buffer + 1) -- load size of buffer

LD <typesize> -- load element size (constant)
PROD -- multiply to get number of bytes
MALLOC -- allocate memory

ST thing -- store pointer

LD (buffer + 1) -- load size of buffer

ST (thing + 1) -- store in thing’s size-slot

LD buffer -- load source pointer

LD (buffer + 1) -- load size of buffer

LD <typesize> -- load element size (constant)
PROD -- multiply to get number of bytes
LD thing -— load dest pointer

REV -— re-order top two stack elements
MOVE —-- copy data

The code-generation can get messy here sinceithel transputer stacks only three
entries deep, hence thgEverse’ instruction. The final special-case assignment igevbiee
dynamic mobile is assigned directly to another — this is $&mfn time complexity) than the
above two, for example:

thing := buffer
where thing’ is of the same (dynamic mobile) type asiffer’ would compile to:

check-and-free code on ‘thing’

LD buffer -- load pointer

ST thing —-- store pointer

LD (buffer + 1) -— load size

ST (thing + 1) -- store size

LDC O —— load constant O

ST (buffer + 1) -- store in buffer’s size-slot

In all of these three cases, the compiler will attempt to @\ge#nerating code where is
safely can. The initiatheck-and-freean be avoided if we know that the array has a zero
size at that point in the program. Additionally, for dynammobile BYTE arrays, the LD
<typesize>; PROD’ sequence can be omitteck€ypesize>’ is 1). For sizes which are
powers of 2, a shift-left instruction can be generated.



F.R.M.Barnes and P.H.Welch / Mobile Data: @tam Experiment 253

5.1.2 Dynamic Mobile Communication

Communication of dynamic mobiles is carried over channélhe® dynamic mobile type.
For example, the channel declaration:

CHAN OF MOBILE []INT c:

would be able to carryMOBILE [JINT arrays. In addition to transferring the pointer between
the sender and receiver, the size of the array must also beaaormated. Ordinary mobile
communication is handled by thBIN’ and ‘MOUT’ instructions. We have added two more in
line with this to handle dynamic mobile communicationifé4’ and ‘MOUT64". Unlike the
non-dynamic pair, these instructions implement a 64-bé&-way transfer.

Before a dynamic mobile input is generated (for the inpgtpnocess), @heck-and-free
sequence is inserted to ensure that any previously held myeisioeturned to its free-list.
Similarly, the size-slotin the outputting process is set to zero after the output. Ak w
assignment, we avoid generating tiieeck-and-fresequence if it is safe.

6 Mobile Parameters

Parameter passing is justnaming— at least, that is the formal position atcam. It is
different to assignment and communication. So, there ammolole semantic implications
arising from this.

For instance, when we use mobiles within expressions (agimor user-defined op-
erator arguments), we do not lose them. Recall dwam functions and operators are
guaranteed free from side-effect — so there is no way theycearmunicate or assign from
any mobile arguments we supply.

Initially, we implementedVAL MOBILE' parameters, ensuring that the mobile variable is
only ever read from — this involves extra checking foAL MOBILE’'s on the RHS of mobile
assignments and outputs. In doing this however, we losetilieydo exploit themobileness
of VAL MOBILE parameters, since any mobile assignment or communicatitaparameter
mustuse theCLONE operator. There is, therefore, no semantic point in haViAigMOBILE
parameters and we ban them. Of course, a mobile variableecpadsed to ®AL parameter
of the underlyingnon-mobiletype (the BAR’ type in section 2.2 for example).

DisallowingVAL MOBILE parameters also solves a problenFolCTIONS that might take
mobiles as arguments and return them as results. That watnddluce aliasing.

Referencenobile variables passed t®PR0Cess may, of course, eovedby that process
(to another variable or down a channel). No problem. To enthat any changed parameters
are correctly restored, the compiler generai@sy-in, copy-outype code. For dynamic mo-
biles, this includegsopy-in, copy-oubn hidden array dimension(s). It would be additionally
beneficial to use theopy-in, copy-ouparameter passing mechanism for small sizeéd3(
bytes —INT, REAL64, etc.) reference parameters, as this would avoid a lot oftpoderefer-
encing when using those parameters. Another option woutd bleadow the parameter with
a suitably typed variable allocated in the processkspaceand employ a similacopy-in,
copy-outstrategy, but performed by the called process, rather tiidhebone invoking it.

Table 1 summarises the allowed formal and actual paramgierecombinations (where
there are noVAL MOBILE THING' formal parameters — see above).

In the cases where the actual parameter 0ILE THING' and the formal parameter
is not ‘MOBILE’, we do not need to worry about handling nested mobilesi(igdeTHING).
The policy of nested-mobile typing (section 4.1) meanstii#ING’ could not contain mobile
sub-fields.

Dynamic mobile actuals follow the same parameter passingestdions as given by ta-
ble 1.
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formal parameter
actual parameter THING VAL THING MOBILE THING

THING yes yes no
VAL THING no yes no
MOBILE THING yes yes yes

Table 1: Summary of formal vs. actual parameter combination

7 Undefined Usage Checks

A variable whose current data valuevalue) is undefinedgshould never be used in that state.
This is the initial state obccam variables — unless explicitly declared witNITIAL values
[21]. We now have mobile assignment and communication téetheir source variables
back to thisundefinedstate.

Checking against the use of uninitialised variables has la@eomission from previous
occam compilers. In the process of this research, we have addeddefinedisage-checker
to the (KRoC) occam compiler, that tracks the state of variables and channedgigiin se-
guential code. Sequential channel usage checking is atbadied to catch code that would
always result in deadlock — for example:

CHAN OF INT c:

INT x:

SEQ
c ! 42 -- blocks here, waiting for
c?x -- this input process

Essentially, at any point a variable is used, we determite lite in one of three states:
defined undefined or unsure(which means itslefinednesstate depends on run-time hap-
penings). For the most part, variables becateénedwhen they appear on the LHS of an
assignment, the RHS of an input, or as an actual parametardn-@AL formal.

For assignments, if any part of the RHSusdefinedor unsurethen the corresponding
variable on the LHS is set to a similar statm{lefinednesis expressions overridesisure-
nes$. This extends t&#UNCTIONS and operators on the RHS of assignments, whose results
are consideredndefinedr unsurebased on the state of the actual parameters.

After mobile assignment or communication mobile varialidesome undefined. The
compiler handles this correctly and will generate the appate warnings. For example,
code such as:

01 PROC foo (CHAN OF MOBILE INT out)

02 MOBILE INT x:
03 SEQ

04 x := 42

05 out ! x

06 out ! x

07 :

08

09 PROC bar (CHAN OF MOBILE INT out)
10 MOBILE INT y:
11 SEQ

12 y := 42

13 WHILE TRUE
14 out ! y
15 :

generates the following compiler warnings:
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Warning-oc-ucl9.occ(6)- Variable ‘x’ is undefined here
Warning-oc-ucl19.occ(14)- Variable ‘y’ might be undefined here

7.1 Implementing Undefined Usage Checks

Theundefinednesshecker is implemented as a separate stage in the compilieh vg per-
formed after the alias and parallel-usage checking. Fon #adablé which comes into
scope, a newudv_t’ structure is created and added to a list which holds all teables
currently in scope. The key fields of this structure are:

struct {

udv_t *next; // next in scope

char state[]; // state array

treenode *nameof; // pointer to symbol-table entry
} udv_t;

The state of the variable is recorded in thedte’ field, which is an array indicating the
variable’sdefinednesat different points in the program. Thistate’ array is treated as a
stack, indexed byudv_vstacklevel’, and is used to evaluate the state of variables inside
nested code-blocks, such Bsguards, or the code withinWILE loop.

Tracking the state of variables through branches of evestdguand conditionalLTs,

IFs andCASEs) is done by examining each branch, and its effects on themustate of
variables at that timeALTs require more careful handling thafs andCASEs due to the
possibility of declarations before the guard. For exaniple code:

01 PROC dull (CHAN QOF INT in, out)

02 ALT

03 INT x, y:

04 in ? x

05 out ! (x + y)
06 :

generates the appropriate warning:

¢

Warning-oc-ucl9a.occ(5)- Variable ‘y’ is undefined here

Figure 2 shows how thendefinednesshecking for ariF conditional is performed. Just
prior to theIF conditional, h’ is defined andd’ is undefined. As each guard is processed,
the stack-level is incremented and the state prior taltheopied. The body of the guard is
then examined, leaving the resulting variable states atthak-level. After theF, a merge
is performed which examines the output state of each gudhdtiae initial input state (before
theIF) and generates a resultant state. When the condition aftlsefound to be undefined,
there is some argument as to whether analysis should bepedoon the guarded process.
The current situation is that this undefined analysis isquaréd for all code, regardless of
any undefined variable usage leading up to it.

Checking parallel processes is done in a similar manndgatoig output states for each
branch of thePAR, but the merge is different. Only one branch needs to chamgstate of
a variable, and that will be carried through to the outpuiesté thePAR. Theparallel usage
checker ensures that adherence to the CREMidurrent read, exclusive writenodel [22]

IS maintained.

ReplicatedSEQs andWwHILE loops are handled by examining the loop body twice, along

with the condition for th&/HILE loop. As before, the stack-level is incremented and the stat

1The use of ‘variable’ extends ttameswhich are not necessarily variables, imt. INT i IS (j \ n)”
for example.
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Stack-level "n" "y
undefined undefined
Copystatefor | |
each branch of
the IF defined undefined
defined undefined
defined undefined
defined defined ...
defined undefined
undefined undefined ---------..
unsure unsure -
Merge states
after IF

Warnings

generated

Figure 2: Undefined checking on @g conditional

copied before the loop body is examined. After each checkebbdy, the states are merged
back together. In this mergensurevariables before the loop remaimsure Definedor
undefinedvariables change tansureif their output state is different from the input state,
otherwise they remain the same. This can be relaxed slightlg know in advance how
many iterations of the loop will be performed.

ReplicatedIFs, ALTs andPARs are handled slightly differently, since there is no logpin
involved as such. For these, the replicated process is eeg@ltering the current state
directly — no merging after the replicator is needed. We asrantee that the body executes
exactly once for replicatetFs andALTs, and possibly more times for a replicarga.

Value parameters must not be passedefinedor unsurevariables. Reference param-
eters can be, however, since the invoked process may userdttoning a result. The ex-
plicit RESULT qualifier ofoccam3[21] would raise quality here, as we could then enforce all
NoONRESULT reference arguments to lbefined Additionally, we could ensure th&ESULT
parameters insideRROC were left in adefinedstate when th@R0C returns to the caller.

A more difficult issue is tracking the state of individual fielin array variables. In prac-
tice we treat arrays as atomic to keep the implementatiatively simple, although there is
future scope for subscript analysis — the alias and usageetsin the compiler go to great
lengths to check array subscripts and slices. Analysindgial record variables is not too
difficult however — we just treat eachvariable, field>-pair as an individual name.

For well-designed processes, these undefined usage chifldies straightforward. Com-
piler rejection (currently a warning) of the use of variable undefinedor unsurestates —
as well as partiallydefinedarrays/records — will encourage better style. Warningsnate
generated immediately, but collected and sorted first. Ehits avoid repeated warnings,
for example in i := (v + (v * v))” where ‘v’ is undefined, and to force them out in
source-line order.
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7.2 Undefined checks on nestrfCs

occam allowsPROCedures an@UNCTIONS to be declared wherever a normal declaration is
allowed. This is generally a useful thing, but presentseegifficulty to the undefinedness
checker. Take the following code for example:

01 PROC foo (CHAN OF MOBILE INT out, CHAN OF INT out.2)

02 MOBILE INT a:

03

04 PROC bar (VAL INT n, INT v)
05 SEQ

06 v := (n + a)
07 :

08

09 INT x:

10 SEQ

11 a := 42

12 bar (10, x)

13 out.2 ! x

14 out ! a

15 bar (10, x)

16 out.2 ! x

17 :

Here, the bar’ procedure uses the” variable, which is part of thefoo’ procedure.
Performing a simple undefinedness checkr* would lead to warnings being generated
for *a’, since it will always be considered to hendefined- it has just been declared. For
this reason, nestekR0Cs are checked at the point of instantiation, and the stateecdi¢tual
parameters followed through into the formal parameterschigacking nesteBR0OCs this way,
the undefinedness o&™ will be reported correctly. After examining the body of asted
PROC, the state of any noMAL formals are copied back to the actuals. The compiler output
for the above code is:

Warning-oc-uc20.occ(15) - In call of ‘bar’:
Warning-oc-uc20.occ( 6)- Variable ‘a’ is undefined here
Warning-oc-uc20.occ(16)- Variable ‘x’ is undefined here

and no warnings are issued on lines 12 and 13 (wherie tefined).

For top-levelPROCS, we assume that any formal parameters are inléfi@edstate when
the PROC is called. However, within the same file, top-le\e®0Cs are examined at their
points of instantiation, as well as a normal “could be caffedhn somewhere else” check.

7.3 Extra rules for mobile assignment and communication

The motivation, of course, for these undefined usage cheakgtve extra dangers introduced
by our choice of mobile semantics. Whereas previouslyatdes could change state only
once from initiallyundefinedo defined mobile variables may switch between these states
any number of times.

However, this introduces no serious extra problems to tlaéyars described above. The
whole code is checked in any case. We just have to record alenadmiable becoming
undefinedollowing its use on the RHS of a mobile assignment or outpts is trivial. No
other changes to the analysis are required.
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7.4 Note on the defined states of dynamic mobiles

Dynamic mobiles are treated slightly differently in thedefinednesshecker. Any dynamic
mobile array is consideredndefineduntil it is allocated through the use of afn]TYPE’
expression, or input from a (dynamic mobile) channel. Fanegle, the following code
generates an undefined variable warning fatr'ay’:

MOBILE []BYTE array:
SEQ
array := "hello world!*n"

becausedrray’ has had no space allocated yet.
However, we are thinking of allowing this assignment for #imve example and other

array-literals (i.e. tables), interpreting in the obviousy:

MOBILE [IBYTE array:

SEQ
VAL [1BYTE tmp IS "hello world!#n":
SEQ
array := [SIZE tmp]BYTE

array := tmp

Indeed, we are thinking of extending this to cover the gdnmaae ofnon-mobile-to-
mobileassignment and communication. So,xf s a MOBILE [JTHING and y’ is a non-
mobile [n] THING (wheren is a known constant), then:

X =Yy
is compiled with:
SEQ

X
X :

[SIZE y]THING —-- dynamic mobile allocation
y —-- copy assignment

8 Performance of Mobiles

Figure 3 shows the process networks of a producer-consundea @ing-pong benchmark
program, the results of which are shown in figures 4 and 5 otispéy.

Ping > Pong

Figure 3: Benchmark process networks for producer/consangping-pong
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Communication overhead for fixed-size arrays (producer-consumer)
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Figure 4: Producer-consumer communication overheadsffereht array sizes (measured on a P3 800 MHz)
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Figure 5: Ping-pong communication overheads for diffeegrdy sizes (measured on a P3 800 MHz)
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In the producer-consumer network, the producer repeatediguts a local variable,
which the consumer repeatedly inputs. In the ping-pong oskiwthe PrefiX process out-
puts a variable then waits for input. Thiel* process is simply a buffer which performs an
input then returns the variable to threfiX process. An array of varying size (1 to 128
bytes) is communicated over the channel connecting the taegses. Two sets of results
for copycommunication are given, one is for an ordinary compile,dtresr is wheninlin-
ing is enabled in the translatotfanx86 [23]). Inlining here expandsIN’ and ‘OUT’ kernel
calls for efficiency — as seen by the difference between tlwectwves. Inlining for mobile
inputs and outputs has not yet been implemented, but shedlde the overheads of mobile
communication by a similar amount.

For the producer-consumer network (figure 4) a local vagiablcommunicated unini-
tialised (generating the appropriatadefinedvarnings — section 7), except in the dynamic
mobile case, where it is allocated in the producer beforagheutput to the consumer. Be-
cause of this, the dynamic mobile consumer process mustrpeid check-and-fre@n the
target variable before the input. This accounts for the éiglost in communication for dy-
namic mobiles. However, as noted in section 5.1.1, we do saveck-and-fresequence
before the allocation in the producer, since it is known thatarray is always undefined at
this point (it has either just been declared or output).

The ping-pong network (figure 5) produces slightly largezrtnveads for mobile commu-
nication (104ns compared to 80ns), but much lower overheadiynamic mobiles ( 99ns
compared to 230ns). The improvement in dynamic mobile perdoce is attributable to
the removal of repeated allocations atlieck-and-freesequences, made possible by the
undefined-variable checker (section 7). As can be seen inefigudynamic mobiles ex-
perience slightly less overheads than static mobiles, stipthie difference between a 32-bit
swap (static mobiles) and a 64-bit one-way copy (dynamicitegfp The general differences
between the two graphs, where the producer-consumer neexbibits larger overheads for
data copy than the ping-pong network, are attributable dogssor caching effects. The sig-
nificant improvement in thenlined copy is a feature of the inlining used, which reduces the
amount of executed code considerably.

As expected, mobile communication has a roughly constastt cegardless of the data
size. The cost for allocating and freeing dynamic mobilesightly more variant, but mostly
constant. This verifies that our free-list implementationdynamic mobiles has a roughly
constant overhead, regardless of the size of the data bbouated or freed. There is an
initial (but hidden) cost initially to allocate a block of mery from the system, since the
free-list will be empty when the first allocation happens.

Figures 4 and 5 show the times for the communication of ddia-omone of the processes
involved access any array elements.

9 An Example of Using Mobiles

In order to test the implementation of mobiles, a small gregohbrary and test application
has been written. The process network for the test prograhmoian in figure 6. The graphics
library, called ‘xraster’, implements the minimal funatality required to get a bitmap from
occam onto the user’'s X desktop. For this we have used MIT-SHM (Mhgai®d Memory
Extension) [24] — this provides memory-to-memorgopy for an XImage’ (one method X
uses to represent bitmaps inside client applications)ppssed to sending the bitmap data
across the X server connection. Of course, this only worksnathe client and the X server
are running on the same same (System V IPC supported) system.

The library defines a mobile typeBASTER’, and aPROCess to do the hard-work, using
the declarations shown in figure 6.
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. testprog

C mandelbrot > char.gen - text.scroll.gen :)
dot.matrix - XRaster - dot.walk

|

I
control connection ! S ‘
to the X server . :

Y

X server i

DATA TYPE RASTER IS MOBILE [200][320] [4]BYTE:
PROC XRaster (DISPLAY disp, VAL INT fps, CHAN OF RASTER in, out)

Figure 6: Process network for tN@BILES test application

The ‘fps’ parameter toXRaster’ specifies the speed (in frames-per-second) of the dis-
play. The connection to the X server is specified by thiesp’ parameter, which is obtained
from another call in this graphics library. InternallRaster’ calls theselect () blocking
system call (through a suitable interface in the C world J26)wait for an event from the X
server or a timeout.

Initially, the ‘XRaster’ process outputs an undefinRASTER before entering its process-
ing loop. When a timeout occursRASTER is read from thein’ channel and placed on the
screen. The ol®&ASTER is then sent down theotit’ channel. The various other processes
in the network simply read RASTER from their input, add some graphics, then send it on.
The ‘mandelbrot’ process generates a real-time fractal zoom for a whilen tentinues
generating the same image — usin¢LaNE.

In our test application,XRaster’ is set to go at 20 frames-per-second. This results in
a CPU load of around 1% (on an 800 MHz Pentium-IIl) after thendsdbrot zoom has
finished. Increasing the frame rate to 50 frames-per-sepssudts in a CPU load of 2%
after the zoom. Even at 200 frames-per-second, the CPU $oahiginal, but the graphics
hardware is incapable of displaying every frame. When wé the test application with a
non-mobileRASTER, the CPU load was around 20% at 20 frames-per-second. Madnidea
clear winner for this and other similar applications.

10 Conclusions and Future Work

Mobile communicatiormovesdata from the source process (which loses it) to the target.
If source and target live in theamememory space, implementation is fast (just pointer
swapping), secure (no aliasing is introduced) and congistéh communication between
differentmemory spaces (ordinary copying). To nail the aliasing @b the concept of
mobile assignment has to be introduced — with complememanemensemantics and fast
and secure implementation. The trick sought at the end ¢ibset has been achieved.
Repeating this trick for existing OO languages (such as daGat+) is not possible. We
can get most of the semantics and fast implementation, buaweotautomaticallycontrol
the aliasing and make it secure. This is the position of J@®re we rely on the user
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knowing the rules.

OO language change has to happen — essential concepts anegnidne of these is to
separate, by good language engineering differentuses to which pointers are put. They
can still stay hidden (as in Java), but we must distinguisfvéen their use fosharing
informationbetween different parts of the system (as in mobiles) antddddinginteresting
information structuregsuch as doubly-linked lists). These ideas are discussttefun Tom
Locke’s paper to this conference [26].

The status of theccam (KRoC) work is that non-nested fixed-sizMOBILE types, vari-
ables, assignment, communication, parameter passing,.esdge checks, the storage alloca-
tion scheme (section 4) and the undefined usage checkofs@ttiave been done. Dynamic
mobiles have also been implemented, using free-lists am@timch-Hansen dynamic allo-
cation scheme — section 5. Nested mobiles have not yet bégimfiplemented.

The KRoC compiler only recognises the extensions described inegkperiment if a
special flag (+X5’) is used. These extensions will be available in the forthc KRoC 1.3
release. We invite people to try using the®BILES and feed back their experiences to the
community.

There is no space left to describe further applications. Welier we have the pattern of
accessing some data, processing it and passing it on, thes® 0MOBILE data are relevant
— and that pattern is fairly prolific. Another example is toeam based web server [25, 27],
where socket connections migrate from one end of the netteditke other, having different
operations performed on them by each process. MDB&LE qualifier was introduced on to
the relevant data type and our experimental compiler preslacstill working system! We
haven't yet measured them, but the overheaitisbe lower.

We are also working on a full graphics/GUI library foccam, where almost all the com-
municated packets can be declam®8ILE and the load on the system significantly reduced.
Currently, we are secure — but we copy.

The mobile pattern is endemic throughout OO systems (umtmunsly) and most indus-
trial scale applications adccam (sadly, from past years). But there is no automated secure
management of that pattern and we have to take great careveandften fail. This paper
contributes to the automation of that care and a reductidindrrost of its execution.
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