University of

'Sl Kent Academic Repository

Casino, Fran, Hurley-Smith, Darren, Hernandez-Castro, Julio and Patsakis, Constantinos
(2025) Not on my watch: ransomware detection through classification of high-entropy
file segments. Journal of Cybersecurity, 11 (1). tyaf009. ISSN 2057-2085.

Downloaded from
https://kar.kent.ac.uk/112636/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1093/cybsec/tyaf009

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) ‘Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/112636/
https://doi.org/10.1093/cybsec/tyaf009
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

ZN, JURNAL OF
@ CYBERSECURITY

Journal of Cybersecurity, 2025, tyaf009
https://doi.org/10.1093/cybsec/tyaf009

Research Paper

Not on my watch: ransomware detection
through classification of high-entropy file

segments

Fran Casino ©'2, Darren Hurley-Smith?3, Julio Hernandez-Castro?,

Constantinos Patsakis?®"

'Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Avinguda dels Paisos Catalans,

26, 43007, Tarragona, Spain

2Information Management Systems Institute, Athena Research Centre, Artemidos 6, Marousi 15125, Greece

SUniversity of Kent, Giles Ln, Canterbury CT2 7NZ, United Kingdom

*Universidad Politécnica de Madrid, Alan Turing, s/n, 28031 Madrid, Spain
5Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou str., 18534 Piraeus, Greece

*Corresponding author. Information Management Systems Institute, Athena Research Centre, Artemidos 6, Marousi 15125,

Greece. E-mail: kpatsak@athenarc.gr

Received 20 March 2024; revised 31 December 2024; accepted 27 February 2025

Abstract

The double-edged sword of continuous digitization of services and systems opens the door to a myriad of beneficial
opportunities, as well as challenging threats. Currently, ransomware is catalogued as the first threat in cybersecurity
due to its impact on organizations, critical infrastructure, industry, and society as a whole. Thus, devoting efforts to-
ward developing methodologies to effectively prevent and mitigate ransomware is crucial. In this article, we present
an accurate method to identify encrypted bit streams by differentiating them from other high-entropy streams (e.g.
compressed files), which is a critical task to detect potentially malicious file write events on the file system in current
operating systems. After extensive evaluation, our findings demonstrate that the proposed solution outperforms the
current state of the art in both adaptability and accuracy, enabling it to be integrated into current Endpoint Detection

and Response systems.

Keywords: ransomware; high-entropy sources; endpoint detection and response systems; randomness; encryption

Introduction

Ransomware has become a serious concern for modern organiza-
tions, resulting in direct costs of hundreds of thousands of dollars
(USD) and severe service disruptions. Additionally, reputations may
be harmed, and down-chain costs caused by the cessation of services
can reach millions. In 2023, the average recovery cost was slightly
above $2 million according to a report surveying over 3000 com-
panies across 14 countries [1]. Even more alarmingly, by 2031, ran-
somware is estimated to cause damages of $265 billion [2]. In most
cases, the modus operandi (Fig. 1) is relatively straightforward: an ad-
versary penetrates the network of an organization, either by exploit-
ing a vulnerability or through phishing emails, and then performs
lateral movement to find as many possible hosts and servers to en-

crypt with a subset of their files with a random key and a strong
encryption algorithm [3]. Next, the adversary leaves a notice to the
victim notifying how the ransom can be paid to receive a decryptor
to recover the file. On specific occasions, e.g. MAZE, CONTI, ad-
versaries may use a “double extortion” scheme in which, apart from
the extortion to recover the encrypted files, they also threaten the
victim to disclose files with sensitive information. In other cases, the
attacker may also threaten to communicate with clients or perform a
denial of service attack to put even more pressure on the victim and
pay the ransom. The above is part of a general crime scheme that
operates under the Malware as a Service model in which criminals
outsource services and products, e.g. malware, hacking tools, to their
peers [4].

© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons 1
Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the
work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

https://doi.org/10.1093/cybsec/tyaf009
http://orcid.org/0000-0003-4296-2876
mailto:kpatsak@athenarc.gr
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:journals.permissions@oup.com

2 Casino et al.

}
[—] I IT IT
= Lateral BT W BT
Internet movement Hasts

Attacker

facing server

T

o0e cmm—

: Exfiltration G

C2 server

- — -

/M) Network attached

Lateral storage
movement

Targeted victim’s

Phishing email Compromised host

Figure 1. Ransomware modus operandi.

The primary objective of this work is the early detection and
blocking of the encryption process of ransomware to prevent the
encryption of more files, considering that an adversary has man-
aged to get access to an endpoint and has established a connec-
tion to her C2 server; stage 6 of the cyber kill chain. There are
many options in the literature to achieve this objective, e.g. hook
cryptographic-related API calls, monitor the status of honey files,
and prevent deletion of shadow copies. Nevertheless, common prac-
tice has shown that threat actors bypass these measures. We argue
that the most effective way to achieve this is to monitor file system
changes and determine whether the new created files are encrypted.
To resolve this, one must be able to efficiently distinguish encrypted
files from those that are not. Clearly, due to their contents, such
files look more random and essentially have high entropy. The core
idea is that if one monitors file system changes and investigates the
write events, one could identify ransomware attacks, as the encrypted
files would write more files with content looking “random” than
others.

However, such an approach is inefficient, prone to high false pos-
itives, and introduces significant performance overhead. Clearly, pro-
cessing each file that is modified in a system, and each time this
happens, is a huge computational overhead that may render a com-
puter unresponsive. Sampling methods may alleviate this problem by
analysing fragments of the modified files and basing their assessment
on the extracted sample. Nevertheless, while entropy is a good indi-
cation that something looks random, using it alone is not an accurate
measure to determine that a file is encrypted. The reason is that high-
entropy files are not only encrypted files but also compressed files.
Note that the term compressed files does not refer only to traditional
compressed files, e.g. ZIP, GZ, and RAR. Many audio and video file
formats, as well as MS Office, JAR, and other proprietary formats,
use compression to shrink the file size. As a result, additional metrics

infrastructure

and tests must be performed on the extracted sample to prevent false
alerts when processing such files.

In this work, we first analyse the accuracy and performance of
several randomness tests in distinguishing encrypted from nonen-
crypted files, to distil a set of them to be used as features to train ma-
chine learning models. By properly selecting these tests, we may accu-
rately and timely classify encrypted and nonencrypted data streams
in real time. In addition, we provide a dataset with an equally dis-
tributed number of file types, which can be used as a benchmark by
researchers to assess the utility of our proposal and facilitate com-
parisons with the state of the art and research in the field.

The rest of this article is organized as follows. The next sec-
tion provides the reader with the relevant background on ran-
somware detection and existing approaches. Section Proposed ap-
proach describes our method, the dataset creation, and the feature
extraction methodology. Section Experiments is devoted to the ex-
perimental setup and the tests performed to evaluate our method.
Beyond merely theoretically testing our approach, we test and vali-
date our proof of concept approach using recent malware samples.
Section Discussion analyses the outcomes and findings. Finally, sec-
tion Conclusion summarises the contributions and identifies poten-
tial directions for future research.

Background

In this section, we describe the most widely used randomness eval-
uation methods to determine whether a specific data stream is en-
crypted, with special regard to the tests used in this article.

Entropy
According to Information Theory [5], the measurement of entropy
sets a numeric value on the unpredictability of data of an informa-

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

Ransomware detection through classification of high-entropy file segments 3

tion source. Entropy tests, however, tend to focus on either the iden-
tical or independent distribution properties of a sequence. Therefore,
the higher the entropy, the more independently (Correlation between
Successive Entropy Values [6]) or identically (Shannon-entropy) dis-
tributed bits are in the sample.

Chi-square test

This test measures the uniformity of the distribution of 1-byte or 1-
bit expressed as integers within any Z(A). This method determines
how much a dataset conforms to a particular distribution, expressed
as an absolute value alongside a confidence percentage x %. There
exist three possibilities [7]:

(1) 1% > x% or x% > 99%, the stream is not random.

(2) 1% < x% < 5% or 95% < x% < 99%, the stream is “sus-
pected” to be random.

(3) 5% < x% < 10% or 90% < x% < 95%, the stream is likely
not to be random.

As can be seen, this is a two-tailed test; it is a common error to
assume that only extremely low-confidence values indicate nonran-
domness. In this manner, unlike Shannon-entropy measurements, the
Chi-square test can identify any excessively uniform Z(A), such as a
counter (which would report a high Shannon-entropy).

Autocorrelation test

This test analyses correlations to discover cyclic or periodic patterns.
The randomness is computed by calculating autocorrelation for the
values of the data stream at different time lags [8]. Correlation values
close to zero correspond to a highly random pattern.

Jarque-Bera test

This test matches the skewness and kurtosis of the data and com-
pares them with the values of a normal distribution. More concretely,
the null hypothesis is a joint hypothesis that assumes zero values
for skewness and excess kurtosis, as expected from a normal distri-
bution. Any deviation from this increases the Jarque-Bera statistic,
which results in values far from zero if the data do not follow a nor-
mal distribution.

Shapiro-Wilk test

The Shapiro-Wilk test [9] estimates whether a random sample comes
from a normal distribution. The null hypothesis of this test assumes
that the population is normally distributed. Thus, the hypothesis is
rejected when the P-value < .05 (threshold value), denoting that the
data tested are not normally distributed.

Kolmogorov-Smirnov test

Given two empirical cumulative distribution functions, this test
quantifies the maximum absolute difference between them as a mea-
sure of disagreement [10].

Anderson-Darling test

This test is closely related to the Kolmogorov—Smirnov test. How-
ever, it performs better when applied to small data streams as seen in
[11].

Monobit test
This computes the balance of ones and zeros in a bit stream. Given a
sequence of # bits, it tests whether:

erfe <|#zeroes — #onesl) <001
nv2

Poker test

This test evaluates the number of repetitive patterns found in a data
stream. First, the input is split into 4-bit segments, which belong to
[0,15] when converted into an integer. Let us denote as f(i) the oc-
currences of each number 7. Next, we evaluate:

16

15
— N2
X= <500 gojf(z) 5000.

According to FIPS-2-140, the test is passed if 2.16 < X < 46.17.

Runs test

This test analyses consecutive patterns in a bit stream. Each run is
denoted as a set of consecutive bit patterns, which are counted to
assess the proportion of repeating patterns.

Long runs test
This test determines if there are runs of length above 25, which could
denote nonrandom bit streams.

FIPS-2-140 test

This test is a set of four empirical experiments to analyse the ran-
domness of binary data streams. For our experiments, we utilize the
FIPS-2-140 cryptographic module test with a minimum block size
of 20000 bits. This ensures that the tests are independently applied
to each data block. The set comprises the monobit, poker, runs, and
long runs tests described above.

The definitions for SP800-22 can be found in the official doc-
umentation for NIST SP800-22 [13]. Full equations and test de-
scriptions are available in that document. We provide a short-form
overview of the four tests used below:

Block frequency

This test identifies the number of 1’s within an M-bit block. It is ef-
fectively a x2 test on each M-bit block in a sequence of size N. The
proportion of blocks for which an approximately identical distribu-
tion (0.5) of 1s is identified determines whether this test passes or
fails. A minimum input size of 100 bits is recommended, and M must
be some smaller value by which N can be exactly divided.

Frequency (Monobits) test

Similar to FIPS-140-2 described above, this test counts the occur-
rences of ones and zeroes throughout the tested sequence, and checks
for an identical distribution (0.5 rate of occurrence for both 0 and
1). This test requires a minimum of 100 bits to function, and fails if
P-values resulting from the test fall below .01.

Overlapping templates test
This test uses an M-bit sliding window over an N-bit sequence to
search for specific M-bit patterns. This is effectively a test for the

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

Casino et al.

occurrence of specific M-bit strings within a sample. Should the M-
bit pattern not be identified within M, M shifts by one bit position
in the N-bit sequence. Unlike the nonoverlapping template test, it
also slides by only one bit position if the pattern is found. A table of
occurrences of values in the set M is produced, and the frequency of
specific patterns within an N-bit sequence is identified.

Cumulative sum

This is a test of excursion from a normal value (0 at initialization of
the test). If a 0 is detected, the index is incremented by 1, and a new
value of x — 1 is recorded. If a 1 is detected, the index is incremented
by 1 and x + 1 is recorded. This process is repeated for the length of
N in the input sequence. This test is a form of random walk, which
will detect some forms of nonrandomness, where sequences have an
over large, or periodic excursion from the normal.

Related work

It is the ideal of every organization’s information security team to
identify and prevent an attack before it has a chance to execute its in-
tended operations on a target system [14]. However, this is easier said
than done. Signature detection, even when enhanced with semantic
models and machine learning, cannot identify all potential attacks
[15,16]. Furthermore, the most sophisticated solutions are restricted
(by cost, required expertise, and resources) to the best-equipped orga-
nizations. Proof of prevention for a piece of malware is not proof of
prevention for the entirety of a ransomware attack. Contemporary
ransomware is a composite affair, with multiple infection vectors,
highly variable malware loaders, and further malware that executes
in parallel with crypto-ransomware binaries [17]. The latter is per-
fectly illustrated in the latest “Ransomware Activity Report” [18]
highlighting that since January 2020, the uploaded malware samples
belong to 130 unique families. Notably, these samples can be grouped
into more than 30 000 different similarity clusters. Sophos has iden-
tified that attacks are increasingly targeted, a trend first observed in
2018 that has become the dominant form of crypto-ransomware ex-
tortion since 2021 [1,19]. Such attacks include data theft (for resale)
alongside the ransomware itself. This makes the prevention of mal-
ware on an individual basis a poor guarantor of continued system
integrity.

As a result, in-line monitoring of the file-system state has re-
ceived increasing attention from the security community. The ran-
domness of encrypted files has often been used to detect ransomware
attacks in progress [20-22]. The core idea is that one may detect un-
usual increases in entropy on a local file system to identify whether
mass encryption is underway. Then, accounting for any scheduled
encrypted backups and other mass encryption operations, discern
whether this entropy increase is legitimate or potentially malicious.
Theoretically, this would allow one to identify a crypto-ransomware
attack in progress, potentially stopping it before many files have been
encrypted.

Nevertheless, there are several criticisms of this line of research.
For instance, both Mclntosh et al. [23] and Pont et al. [24] discuss
why such approaches are inefficient in practical applications. The
simple fact is that organizations are combating ransomware, hitting
a threshold value of encrypted files. Value, as opposed to a number,
as once business-critical operations are significantly disrupted, the
attacker has the leverage required to demand ransom. This thresh-
old can be understood as a “denial of capability.” Computational
efficiency is low in the proposed statistical approaches: a purely sta-
tistical approach to entropy measurement is prone to false positives

where data compression and encryption are both expected on some
scale. Web services often use compression for media to reduce the
throughput resulting from queries to their servers. Formats such as
WEBP are extremely hard to differentiate from encryption using the
few efficient statistical test batteries (FIPS 140-2, some subtests of
NIST SP800-22) [25]. Even JPEG, RAR, and ZIP files can be com-
plex for purely statistical approaches to differentiate from encrypted
data without further calls for file-specific metadata. These deficiencies
result in a slow, inaccurate classification that may identify encryption
in progress but not in a timely enough manner to prevent a malicious
actor from achieving the aforementioned “denial of capability”: the
point at which an organization must consider whether or not to pay
the ransom to restore services [26].

The open problem addressed by the authors in this article is not
the design of novel tests but the implementation of novel, high-speed
classification of randomness subtypes to differentiate legitimate pro-
cesses from potential ransomware activity. Tools like Paybreak [27]
rely on process hooking to identify interactions in dynamically linked
libraries to detect and attempt to thwart calls to system crypto-
libraries. This does not; however, solve the problem of obfuscated
calls or ransomware, which leverages trusted execution environments
to hide their activities [26]. To prevent file restoration, the bulk of
ransomware deletes the shadow copies in Windows systems. Thus,
Raccine [28] intercepts such calls to vssadmin and kills the invok-
ing process.

Beyond ransomware detection, the level of interest in distinguish-
ing between encrypted and compressed data streams has risen signif-
icantly. This can be partly attributed to the continuous integration
of end-to-end encryption in online communications. Commonly em-
ployed approaches involve measuring Shannon entropy or the chi-
square test on fixed-size data segments (e.g. 1, 2, and 4 KB) to differ-
entiate various data types, including compressed and encrypted data.
However, when there are limited samples, the entropy estimation ap-
proach is ineffective [29-31]. Moreover, high dependence on entropy
measures is not the best option in the presence of other high-entropy
data sources. Typical examples of such sources are compressed files,
MP3, PDF, or even MS Office files. Beyond the accurate classification
of high-entropy files, the time and resource allocation for this opera-
tion in a continuous monitoring setup presents one of the most chal-
lenging aspects of the problem. Clearly, such monitoring at the net-
work and file system level may introduce serious processing bottle-
necks if the necessary computations cannot be performed efficiently
enough.

Beyond ransomware detection, the same issue is also found in
traffic analysis [32]. Existing mechanisms rely on continuous traf-
fic monitoring, information about complete packet transmission, the
beginning (e.g. magic headers) and the end of a connection or a file,
and so on. Evidently, real-time monitoring is inefficient using such
strategies due to the huge volumes of data to be analysed. However,
these strategies demonstrate their usefulness when examining previ-
ous events or focusing solely on specific connections. Therefore, we
harness the most accurate yet fast to extract and process features to
unleash real-time classification when monitoring the payload of ran-
domly selected packet fragments. In the literature, there are a few
approaches in this research line, such as [33-38].

Proposed approach

In the following paragraphs, we define the capabilities and require-
ments of our proposal. First, we present the basic assumptions and
model. On this ground, we discuss efficient methods for implement-

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

Ransomware detection through classification of high-entropy file segments 5

ing the proposed solution on Windows systems, which is the primary
target of ransomware attacks. Then, we detail the feature selection
procedure and the methodology adopted for our study.

Basic architecture

As already discussed, our goal is to keep track of the file system
changes and determine whether a binary is writing encrypted files.
Due to the amount of file system changes in modern operating sys-
tems, this effort is rather high, and not all changes can be monitored
in terms of their whole content. Moreover, some processes are ex-
pected to write encrypted files, e.g. system processes may perform
memory dumps, browsers and other processes may keep sensitive
data in encrypted files, and so on. Therefore, detecting encrypted con-
tent does not necessarily mean that the process belongs to malware.
The decision must be based on the context of the write operations.
Note, however, that the latter is difficult as malware sometimes in-
jects into legitimate processes, and, in the case of Windows, the Con-
troller Access Folder feature may be tampered with malicious intent.
The basic factors can be stripped down to which process, of which
binary writes an encrypted file, to which folder, and how many times
this has been performed already. Note that for efficiency, we want
file segments. One may argue that since some file formats may lo-
cally contain an encrypted fragment (e.g. a digital signature), more
than one fragment may have to be collected to determine whether a
file is encrypted. However, we argue that, while this is true, such frag-
ments are highly unlikely to span across the length of the segments
we consider in our experiments.

Based on the above, in our model, we assume that a service S,
which runs in the background with kernel-level permissions, moni-
tors file system changes. To prevent computational overheads, S mon-
itors only file write events and may also have a whitelist of processes
that are not monitored, based, of course, on the location of their bi-
naries and or hashes. For each file write event, S keeps track of the
process p with process ID pid, the user who initiated this process, its
filename and path, as well as the filename and path of the affected file.
This information is compared against a policy table PT, which will
determine whether this change has to be further assessed. Then, S col-
lects a sample of size SZ of the affected files and uses a set of methods
to extract the necessary features from the file fragment. These mea-
surements are then fed to a pretrained model to determine whether
the affected file contains encrypted content. Should this be the case,
S raises a counter, which is pid specific. Once the counter exceeds a
threshold T, S considers that p is a ransomware-related process and
pauses p and all the children of pid. Note that using fragments of
size SZ prevents continuous computations, as changes to small files
and minor file changes to the file system can be omitted, resulting in
less resource consumption.

For Windows-based systems, S can be implemented with minifil-
ter drivers [39], which have kernel-level access and may efficiently
collect /O changes without introducing significant computational
overhead. Due to its access, such a driver not only monitors the file
system changes but can also determine which is the process of mak-
ing the change and pausing or even killing it. It should be noted that
PT may have fine-grained policies that prevent the usage of specific
processes from specific users or apply constraints based on time or
type of access (e.g. RDP). Similarly, PT may whitelist specific actions
from users/processes, significantly reducing the number of samples
that must be collected by S.

The basic flow is illustrated in Fig. 2. In essence, a file sys-
tem watcher monitors I/O changes. Once a change is performed,
an event is triggered, and the watcher collects the user who per-

formed the action, the process ID of the processes performing the
action, the name of the process, its path, the path of the affected
file, and the performed filesystem action; that is delete, write, and
so on. This information is compared against a policy table which
contains a set of rules. For instance, the table contains a list of bina-
ries, which are allowed to perform specific actions in specific folders.
If the process performing these changes does not conform to these
rules, a scanning process is requested. In this scanning, a file seg-
ment is selected and the corresponding features are extracted. The
features are then passed on to our trained machine learning to as-
sess whether the file is encrypted. Should the model determine that
the file is encrypted, since the process does not belong to the ones
with the allowed policies, the process with the corresponding PID is
killed.

Finally, we define a set of desired properties to be fulfilled by our
method that will guide the selection process of the features and ma-
chine learning models:

® Accuracy: the proposed method should be able to accurately dis-
tinguish encrypted from nonencrypted high entropy data seg-
ments.

® Efficiency: the outcomes must be fast and robust to allow real-
time responses.

® Adaptability: the proposed method must be versatile to allow cus-
tomization and fine-tuning of parameters/features, depending on
the size of the samples, to enable lightweight and faster classifi-
cation.

® Reproducibility: ensuring easy deployment and verification, the
proposed methodology should be user-friendly and allow seam-
less integration with existing solutions. To this end, we use state-
of-the-art methods and a set of rigorously defined strategies for
the collection, analysis, and subsequent classification of the bit
streams.

Benchmark dataset

As a typical procedure, the creation of a statistically sound bench-
mark is crucial to ensure the robustness of the outcomes [36]. Hence,
we use files collected from reputable and widely used sources, de-
tailed in Table 2, to create a benchmark dataset. We have carefully
curated our dataset to include an equal number of files for each file
type (text, image, binary, video, audio, and PDF) to eliminate possi-
ble biases. Note that the randomness of compressed files depends on
the original uncompressed file (see Section 6). Moreover, we highlight
that the selected file types are the most representative according to
the state-of-the-art [34,36,40,41].

Next, since one of the goals is to classify high entropy data
streams, we generate a set of fixed-size compressed and encrypted
bit streams that range from 64 up to 1024 KB, including all interme-
diate powers of 2. As several encryption and compression methods
are used in real-life scenarios, we selected a set of widely used ones
and summarized them in Table 1. The dataset creation procedure is
described in Algorithm 1. In the context of Algorithm 1, both ar-
rays Sizes and Methods employed in line 1 correspond to bit stream
sizes ranging from 64 to 1024 KB, and the components of Table 1,
respectively. Once we apply Algorithm 1 to the data extracted from
the benchmarks described in Table 2, the resulting output is an array
of datasets (one for each file size), each storing ~1.2 GB of com-
pressed and encrypted files. More concretely, for each file type, we
first generate 100 MB of encrypted files and 100 MB of compressed
files, that will be later split iteratively from 1024 to 64 KB sizes, con-
forming to a total of 6 GB, which is the size of the whole dataset.

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

Casino et al.

i

I D

Filesystem

] Non-encrypted file }
—m Encrypted file
Kill PID

Figure 2. Overview of the proposed approach.

Table 1. Selected encryption and compression methods.
Considering the possible combinations, each input generates 10
different new files.

Encryption Compression

AES (128 /192 /256)
Camelia (128 /192/256)

ZIP RAR BZIP2 GZIP

Table 2. Source datasets used to obtain the randomly selected
files for our benchmark.

File type Benchmark

IMG COCO Dataset [42]

IMG Microsoft RGB-D Dataset 7 Scenes [43]
PDF ArXiv.org e-Print Archive

TXT Project Gutenberg [44]

MP3 Several classical music symphonies

VIDEO YouTube-8M [45]

BIN/EXEC %$SystemRoot%\System32 in Winl0 x64

/sbin in Ubuntu 16.04

To achieve a balanced representation of files and avoid biases dur-
ing experimentation, we use random selection to form a subset with
an equal number of encrypted and compressed files for our exper-
iments. Therefore, we generate five datasets (i.e., one for each file
size denoted as 64, 128, 256, 512, and 1024), each composed of
exactly the same number of encrypted and compressed files. Note
that, in the case of extremely unbalanced samples, we could ob-
tain a very high overall accuracy, yet it could cover the fact that the
method cannot classify correctly the underrepresented class, which is
a classical problem [46]. Therefore, despite the potential real-world
prevalence of imbalanced datasets, such imbalance can hinder the
robustness of the performance of learning systems [47], and thus,
several balancing strategies can be used [48]. In our case, as we cre-
ated the dataset, we opted for a balanced one, to fulfil the previous
claims in the literature. We made our dataset available in Zenodo

I @ —
Process name >

User

Process full path

Affected file full path Policy Table

HEE
Trained ML Feature
model extraction

[49] to ease further comparisons and ensure the reproducibility of the
results.

Feature selection

After assessing the randomness tests, only some of them met the re-
quirements to be adopted in our system based on their performance
and computational cost. In particular, the chi-square test proved to
be an efficient mechanism to distinguish true identically distributed
random bit streams from nonrandom ones. Moreover, the chi-square
test achieved better accuracy than other distribution-based methods
such as Kolmogorov—Smirnov and Anderson-Darling. It is; however,
unable to identify correlations between bits in a sequence without
substantial further analysis [50]. FIPS-140-2 tests are efficient and
reliable for ensuring that encrypted bit streams exhibit basic levels
of bit-level independence and identical distribution. However, FIPS-
140-2 is known to be a poor detector of partially structured data:
the poker and run tests cannot differentiate between partially em-
bedded counters and truly ransom sequences [25]. However, they are
extremely fast and can detect egregious divergences from random-
ness, making them an ideal component of our statistical test battery.
Furthermore, the Monobit test can help identify potential bias in a
file or Random Number Generator output, providing a simple and
fast method of checking whether 1 or 0 occurs more frequently. This
does not allow for any detailed characterization of said bias, but is
a good first step and low enough in computational resource costs
that it is worth including as the first stage of more rigorous statistical
testing.

After selecting a set of unique tests (i.e., SP 800-22 and FIPS-
140-2 have overlapping tests), we tested a subset of SP 800-22 tests
according to their accuracy and efficiency in distinguishing between
encrypted and compressed files. The frequency within a block test, the
approximate entropy test, and the cumulative sums test were selected
for inclusion in the classification tool set due to their performance in
preliminary tests.

The average and correlation tests exhibited slightly better accu-
racy and less variability in encrypted streams than in compressed
ones. However, they failed to provide reliable results in the case of
high-entropy small data files. The remaining methods were not se-
lected since either (1) they were unreliable—Dboth encrypted and com-

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

Ransomware detection through classification of high-entropy file segments 7

Algorithm 1 Database Generation.

1: function CREATE DATASET(DataSet D, Array Sizes, Array Methods)

2:

3 while (FilesToProcess) do

4 fi = SelectTheNextFile(D);

S V = CreateFileVariants(f;, Array Methods);
6: S = SplitFiles(V, Array Sizes);

7 end while

8: end function

> The bit stream sizes and the set of comp. and enc. methods

> Next source raw file
> Processes f; to create Encrypted and Compressed variants
> Files in V are split into different sizes

Table 3. Initial set of features used in our approach.

Notation Description

The entropy of the sample

The Jarque-Bera statistical test
The Shapiro—Wilk statistical test
NIST SP800-22

NIST SP800-22

NIST SP800-22

NIST SP800-22

The Chi-square statistical test

Shannon-Entropy
Jarque-Bera
Shapiro-wilk
Block_freqg
Freq_average

Cumu_ sum
Overlapping template
Chi_score

Monobit Monobit test, as part of the FIPS-140-2
test

Long Run Long run test, as part of the FIPS-140-2
test

Poker Poker test, as part of the FIPS-140-2 test

Run Runs test, as part of the FIPS-140-2 test

Fips_out The final outcome of the FIPS-140-2 test

pressed files had indistinguishable results from a statistical point of
view—or (2) their computational cost is prohibitive. For instance, a
subset of the Diehard tests (birthday spacing, parking lot, and ran-
dom spheres) provide meaningless outcomes since they are usually
passed by both compressed and encrypted files. Additionally, Diehard
tests and many tests in the Crush batteries of TestU01 [51] require
considerable computational resources, and, as such, they are not effi-
cient enough to be used for real-time purposes. The selected features
are detailed in Table 3.

Experiments

Feature analysis

In this section, we analyse the values obtained by the features de-
scribed in Section 4.3 for each database. As it can be observed, this
analysis does not include the battery of FIPS tests, which are analysed
in Section 5.2. Therefore, Figs 3-5 represent the different features’
values for all datasets. Since the distribution of values in the case of
encrypted files was very stable across the different file types, we con-
sidered all the encrypted files of each dataset to compute them. Note
that each dataset was normalized before computing all values; thus,
the values range between 0 and 1.

In the case of the 64 KB dataset (cf. Fig. 3), we observe that the
binary and image compressed files have similar values for all fea-
tures, which are close to 0 for Block freq, Freq average, and
Cumu_sum. The compressed PDF, Video, and TXT files show higher
values in the aforementioned features. Finally, MP3 compressed
files obtain the highest range of values in the Freq average, and
Cumu_sum tests. The 128 KB dataset values are similar to those ob-
tained in the 64 KB dataset. The most noticeable difference is the
higher range of values obtained by Shapiro-Wilk and that the
Overlapping template’s range is the highest among all features.

According to the previous observations and the values of the 256 KB
dataset (cf. Fig. 4), the range of values of Shapiro-Wilk grows
according to the file size. Moreover, we can observe that the range
of Entropy and Chi_score values for the 256 KB dataset is also
higher than in previous file sizes. In the 512 KB dataset, we observe
a notable growth in the value range of Entropy, Shapiro-wilk,
Jarque-Bera and Chi_score. Interestingly enough, the range
values of other features such as Block fregq, Freq average,
Cumu_sum are reduced with respect to smaller file sizes. Finally, the
growth patterns observed in the 512 KB are extended in the case of
the 1024 KB dataset (cf. Fig. 5).

FIPS-140-2 test analysis

The well-known FIPS-140-2 (rng-tools rngtest utility in Linux) is a
battery of four tests. Their efficacy in distinguishing between com-
pressed and encrypted small file size bit streams has been proven in
the past [36]. However, an analysis of the performance of each of the
four FIPS-140-2 tests has not been done previously.

To analyse the accuracy of the FIPS-140-2 battery, we created a
uniform factor, namely a y factor, to relax the threshold values of
such a test by applying them as a multiplier of each test’s boundary
values. For instance, given a boundary value 4, the new value will
be set as a+ax* y, or a—ax*y in the case of a lower bound. The
aim of such y factor is to find the optimal relationship between the
different file sizes evaluated in this article and the strictness of FIPS-
140-2. Therefore, we applied the FIPS-140-2 test according to a set
of y values to all datasets and depicted the outcomes in Fig. 6.

As it can be observed, the values of y modify the outcomes ac-
cording to each file size. Overall, strict values (i.e. low values of y)
yield the best outcomes, except in the case of the Run test (cf. Fig. 6e),
which affects the overall outcome of the test (cf. Fig. 6a). Since we
applied a fixed set of y values, the thresholds are modified by multi-
plying the boundaries of each test. Thus, in the specific case of Long
Run (cf. Fig. 6¢), the upper threshold value is 26 until y = 0.04, in
which case it changes to 27, which explains the sudden reduction in
accuracy.

The outcome of the analysis is quite straightforward. Even though
the Runs test can be relaxed to obtain a more efficient outcome for
large files, the truth is that the most accurate test is Monobit. More
concretely, Monobit achieves better accuracy in its most strict form
(i.e., y = 0, thus the normal setup) than the rest of the tests in any
configuration and file size. Note that we tried negative y values, but
the accuracy decreased dramatically, and thus, they were not included
in the possible range of values.

Therefore, given the outcome of this experiment, we enhanced
our approach as follows: (i) we increased the accuracy due to the
reliability of Monobit by discarding the rest of FIPS-140-2 outcomes,
and (ii) we reduced the number of computations and features of the
system, improving the performance of the classification models.

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

8 Casino et al.
Entropy] Entropy - 00 ot 41 et Entropy -
Jarque-Bera| | Jarque-Bera| fms « ww oo Jarque-Bera| F
Shapiro-Wilk -} Shapiro-Wilk L -] Shapiro-Wilk s an o svomm—-{f
Block_freq| + [Block freq| pee + Block freq| poe + o+ . . . e
Freq_average| ———— {1 | Freq_average m++ ¢+ ' ' ' . Freq_average| [+ + ' ’ . '
Cumu_sum I (— CUMU_SUM | st io s smsn s ma s o CUMU_SUM | fmsemimme soons musassme sue vue e
Ov_temp| | [— Ov_temp| I Ov_temp |+ [T
Chi_score| + | Chi_score| | ' Chi_score| | .
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0
(a) Encrypted (b) Compressed binary (c) Compressed image
Entropy =4 Entropy —} Entropy vumt-f)
Jarque-Bera | ferr - Jarque-Bera| feeie e Jarque-Bera| |
Shapiro-Wilk evresms 0 vosmmmemt—{ | Shapiro-Wilk EERE wimnmesmmf | Shapiro-Wilk w——}
Block_freq| pes . . ' (I Block_freq| [+ . . . o Block_freq| [. . . (.
Freq_average| [. Freq_average, [}~ . ' ' . Freq_average| [. . (Y
Cumu_sum | [T Cumu_sum| [mes oo imonn e w0 0 Cumu_sum | [T NIRRT
Ov_temp| = Ov_temp|] Ov_temp| [T
Chi_score| | ' Chi_score| | ' Chi_score| | '
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(d) Compressed mp3 (e) Compressed pdf (f) Compressed txt
Entropy o)
Jarque-Bera| ¢ ¢ ¢
Shapiro-Wilk
Block_freq| [0} ' ' ' vow
Freq average, [} ' ' ' .

Cumu_sum| [

Ov_temp{ |

Chi_score| |

 — —

0.0 0.2

0.4

0.6 0.8 10

(g) Compressed video

Figure 3. Detail of the features’ values for 64 KB files. x-axis correspond to the normalized values between 0 and 1 for each feature measured in y-axis. The

larger the box, the higher the feature’s variability.

Classification experiments

To measure the capabilities of our proposed features for binary classi-
fication (i.e. to differentiate between compressed and encrypted sam-
ples), we selected some well-known and widely used machine learn-
ing methods. We used a Support Vector Classifier (SVC), a nonpara-
metric ensemble classifier (Random Forest), and XGBoost, which im-
plements gradient-boosted decision trees.

The selected classification methods are shown to be efficient (i.e.
requiring minimal processing of the input data) and accurate with
both small and large feature sets, being less prone to overfitting than
deep learning methods, especially when working with tabular data
[52].

We tuned the hyperparameters with grid search, using 10-fold
cross-validation over the full dataset in an independent experiment to
maximize classification performance. Table 4 describes the features
that achieved the best performance. In the case of the SVC model,
the best-performing configuration was achieved when using a radial
basis function (RBF) kernel. We used 10-fold cross-validation and
repeated the experiments three times to get an unbiased estimate of
the performance of the predictive models.

For this and the rest of the experiments performed in the article,
we selected the popular platform Google Colab! in its free version
(2x 2.3GHz CPU and 12 GB of RAM), while we utilized the imple-
mentations of the scikit-learn? library, to ensure the replicabil-
ity of our experiments. Such specifications establish a baseline that
can be easily outperformed by that low-mid performance desktop

1 https://research.google.com/colaboratory/
2 https://scikit-learn.org

computers. For the sake of reproducibility of the experiments, the
sources are available on GitHub?.

To simplify comparisons, we use standard classification metrics
to evaluate the performance of the trained classifiers. Hence, the out-
comes achieved by each model were computed in terms of precision,
recall, accuracy, and F; score, and are summarized in Tables 5 and
6. As can be observed, the results improve according to the file size,
with Random Forest and XGBoost exhibiting the best performance
compared to the SVC model, which is clearly outperformed in all ex-
periments. The low values of standard deviation obtained by all the
classifiers indicate the robustness of the selected features.

In general, according to individual experiments, the most difficult
file types to capture are Video, Image, and MP3, while the easiest
ones are Binary and TXT. The misclassification errors occur exclu-
sively in the case of compressed files (i.e. the precision in the case of
encrypted files is 100%), which sometimes exhibit values that resem-
ble those of encrypted files. Therefore, the system is able to capture
all encrypted files due to the specific range of their feature’s values,
which is the level of restriction that we aimed for in our system (i.e.
misclassifying an encrypted file would incur further security issues
than misclassifying a compressed file).

Regardless of the file type, the outcomes show minimal errors on
average in 256 KB files (i.e. average F1-score is 0.98, and it is equal
to 1 in TXT files) and close to none in 512 KB files (i.e. average F1-
score is 0.9965). Note that the experiments reported in the All rows
correspond to blind experiments (i.e. training the models with all the
possible file types, thus a more challenging experiment) considering

3 https://github.com/francasino/Ransomware_analysis

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

https://research.google.com/colaboratory/
https://scikit-learn.org
https://github.com/francasino/Ransomware_analysis

Ransomware detection through classification of high-entropy file segments 9

Entropy] Entropy B i Entropy o evmeme ||
Jarque-Bera| | Jarque-Bera| oo o Jarque-Bera|
Shapiro-Wilk - Shapiro-Wilk = wo—H Shapiro-Wilk e s [}
Block_freq| (S I d Block_freq| p+ + ' ' ' Block_freq| pv e + ' ' ' '
Freq average, ———— 1 | Freq_average| p+ + Freq_average| [+ « . .
Cumu_sum I Cumu_sum | fese Cumu_sum | fresssicsins tae waw we
Ov_temp ! . Ov_temp | T Ov_temp |+
Chi_score| | Chi_score| | Chi_score| | .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0

(a) Encrypted

(b) Compressed binary

(c) Compressed image

Entropy L] Entropy Entropy —
Jarque-Bera| [Hm=sr - Jarque-Bera Jarque-Bera| |
Shapiro-Wilk — 1Tk Shapiro-Wilk Shapiro-Wilk ~sf
Block_freq| p++ + ¢ Block_freq Block_freq| [. . .
Freq_average, [— . Freq_average Freq_average| [| —— . '
Cumu_sum | R e Cumu_sum Cumu_sum | [now o
Ov_temp|] Ov_temp Ov_temp| [T
Chi_score| | ' Chi_score| | ' Chi_score| |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(d) Compressed mp3 (e) Compressed pdf (f) Compressed txt
Entropy el
Jarque-Bera| b
Shapiro-Wilk fpe—
Block_freq| [0} . . e

Freq_average| [~ +

Cumu_sum| [l mes mirinimn w0

Ov_temp{ *

Chi_score| |

0.0 02

0.4

0.6 0.8 1.0

(g) Compressed video

Figure 4. Detail of the features’ values for 256 KB files. x-axis correspond to the normalized values between 0 and 1 for each feature measured in y-axis. The

larger the box, the higher the feature’s variability.

the whole dataset for training and testing, and hence are not a direct
average computed from the rest of values.

Since each model processes data and features differently, we
selected the Random Forest due to its high interpretability [53,54]
to derive the relevance of each feature in the tree decision. The
relevance evaluation of the features in the Random Forest model
for each dataset is depicted in Fig. 7. As it can be observed, a
specific subset of features always has the most significant relevance
regardless of the file size. We noticed that Entropy, Chi_ score,
Monobit, and Cumu_sum are the most relevant features regardless
of the model used.

Regarding entropy, we observed that encrypted bit streams al-
ways provide the highest possible value of entropy, yet this is not al-
ways the case for compressed bit streams. The challenge arises when
we find compressed bit streams that achieve indistinguishable en-
tropy levels from those of encrypted bit streams. Thus, entropy is
a reliable indicator in most cases but not for a percentage of them,
explaining why it has a high relevance but a low variation according
to Figs 3-5.

Interestingly, we further noticed that the relevance of some fea-
tures varied according to data size. More concretely, the relevance of
Entropy and Chi_score slightly grows according to the file size,
becoming more relevant than the rest in the 1024 KB dataset.

Model performance and optimizations

To further assess how well the model would perform in contexts
where computing power and memory are scarce (e.g. [oT devices),
we studied the accuracy of the Random Forest model when consider-

ing a small subset of features according to their relevance. Therefore,
we repeated the classification experiments by creating a new subset
of datasets (i.e. considering one, two, three, and all features), only in-
cluding the selected features in each case. Table 7 shows the accuracy
obtained in each case.

As it can be observed, the more features used, the more accu-
racy, yet by using only one feature, the model already achieves out-
standing accuracy, especially for large file sizes, aligned with the fea-
ture relevance observed in Fig. 7. Note that the fact that Entropy
achieves such high accuracy does not diminish the rest of the fea-
tures since, for instance, Chi_score obtains similar values when ap-
plied independently. Due to the high correlation between Entropy
and Chi_score, the improvement is reduced when using both fea-
tures. When Monobit is added to the feature set, the improvement
is greater, since the model has a richer set of observations to operate
with. The main result of this experiment is that selecting a subset of
features according to each file size enables adaptable configurations
when considering the trade-off between computational cost and ac-
curacy.

The latter can be used to establish different sets of policies accord-
ing to the system under surveillance and the hardware capabilities,
thus enabling devices with low computing resources (e.g. edge IoT
devices) to perform faster analysis (e.g. using larger sets of data and
not computing the whole feature set when possible), at the cost of
having a slightly lower accuracy. Such dynamism enhances the adop-
tion of our solution and provides efficient use of resources regardless
of the device under analysis.

Regarding performance, for instance, the XGBoost model re-
quired less than 20 s to train and 0.1 s to classify all the values for a

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

10 Casino et al.

Entropy 1 Entropy| * ' . P —— Entropy R ——Y
Jarque-Bera| | Jarque-Bera| ke ¢ Jarque-Bera| =
Shapiro-Wilk w} | Shapiro-Wilk e + {0 | shapiro-Wilk oo —
Block_freq| — [Block_freq| b + -+ . . Block_freq{ b+ + . ' . .
Freq_average| ———— I} | Freq_average| k + + ¢ . Freq_average| [+ + ' ' .
Cumu_sum | =i, { Cumu_sum/| b = ' .o Cumu_sum| feroeiime 0 0 0w e .
Ov_temp| * T 4 ov_temp Ov_temp| I ——————
Chi_score| | Chi_score Chi_score| |
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) Encrypted (b) Compressed binary (c) Compressed image
Entropy 4+ Entropy " o Entropy —T)
Jarque-Bera| [E— Jarque-Bera| ® . . o Jarque-Bera| |
Shapiro-Wilk —_{ T Shapiro-Wilk| + + # . v +em —f0- | Shapiro-Wilk ok
Block_freq| f + ¢ . . g ' Block_freq| [+ « ¢ . . . Block_freq| [0 .
Freq_average| [0 . Freq_average| [0 — . . ' . Freq_average| [. . .
Cumu_sum | [T oo Cumusum| [» v o v 0 0 e Cumu_sum| [071 e m o am e w
Ov_temp| |] e Ov_temp{ 11 Ovtemp
Chi_score| | Chi_score| | Chi_score| |
0.0 02 04 06 08 10 0.0 02 0.4 0.6 08 10 0.0 02 04 06 08 10
(d) Compressed mp3 (e) Compressed pdf (f) Compressed txt
Entropy I
Jarque-Bera| b
Shapiro-Wilk —
Block_freq| [—— ' v
Freq average| [H:+ + ' '
Cumu_sum| [l e mee s 0w
Ov_temp| [T |
Chi_score| |

0.0 0.2 0.4 0.6 0.8 10

(g) Compressed video

Figure 5. Detail of the features’ values for 1024 KB files. x-axis correspond to the normalized values between 0 and 1 for each feature measured in y-axis. The
larger the box, the higher the feature’s variability.

- 64 #- 128 —=— 356 —#— 512 —+ 1024

10
095
090 09
085 08
080 07
075 06
070
05
0 o001 o002 003 004 005 01 0I5 02
Gamma
(a) FIPS combined outcomes (b) Monobit test
—— 8w 128 —e- 256 -4 512 —— 104 —- 8 - 18 —e- 256 —+= 512 —e 1024 — 8 - 128 —e 256 —4- 512 —e 1024
ars 095 QJQ-JO-—’——-Q——Q—_.‘_N
085
——t———p
070 090 g | om0
- +
—
0865 085 a5 075
-
—
060 0s0{ % W—A—n—s— 4 ore
—
| oes
0s5 075 .—-—-.L—.._.___. x
_‘.\. 060
e '
aso - - ; 070 —®
6 O,ﬁl ﬂ,ﬁ) 1163 0,64 O,ﬁﬁ ﬂ,ll ﬂ,ll5 ﬂ!z 1'] O,ﬁl 0,62 1163 D,lll4 O,ﬁﬁ ﬂ,ll ﬂ,iE ﬂ!z 1'] D,ﬁl ﬂ,[lll ﬂ,é] 1164 D,ﬁﬁ 0,'1 ﬂ,iS 0!2
Gamma Gamma Gamma
(c) Long run test (d) Poker test (e) Run test

Figure 6. Detail of the FIPS tests’ accuracy for each file size and gamma.

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

Ransomware detection through classification of high-entropy file segments 1

Table 4. Configuration parameters of each model.

Model Best configuration

Random n_estimators = 100, max_depth = 10

Forest

XGBoost learning_rate = 0.01, max_depth = 4, subsample
=0.6

SVC kernel = ‘rbf’

full 10-fold cross-validation loop in the case of the 64 KB dataset (i.e.
considering a model with all features, thus the worst-case scenario).
Therefore, assuming that such a dataset contains 19 200 records, the
individual prediction time is far below the order of milliseconds. Note
that, due to the richness of our dataset, the models need to be trained
only once at the beginning. Nevertheless, if new file types were added
to the dataset, the model would only require some seconds to be up-
dated. It is relevant to note that the reported times consider that no
parallelization is applied, thus enabling a large margin of improve-
ment, also considering the possibility of reducing the number of fea-
tures of the system according to the file size, as previously discussed.

To further illustrate computational load and efficiency, we com-
puted the feature computation times for the most challenging file size,
namely 64 KB. Figure 8 shows the average times for each feature.
In particular, all features require times on the order of milliseconds
to be computed, with the Cumu_sum test being the one requiring
more time. Next, we computed the training time for each file size
and the features selected, as shown in Fig. 9. As it can be seen, due to
the dataset size as described in Section 4.2, the number of files used
in the dataset increases the training times, paired with the number
of features used. The latter, combined with the feature computation
times, enables the creation of optimization strategies, as previously
discussed. Overall, considering that the prediction time of the mod-
els is far below the order of milliseconds, we observe that our full
pipeline requires from milliseconds to a fraction of a second in the
worst case to compute the features and classify a sample. Note, how-
ever, that we used the a baseline Google Colab CPU instance without
parallelization, and, thus, these measurements could be lower in bet-
ter performing CPUs.

Experiments with raw and compound files

To further assess the challenging nature of distinguishing between
high-entropy files, we performed a test over the raw documents of
our dataset. We selected the most challenging size, namely 64 KB, and
created file chunks of the original file types. Next, we computed the
entropy and the Monobit test, and depicted the outcomes in Figs 10
and 11. As shown in Fig. 10, each file type has a different distribution
of features (e.g. only compressed and encrypted files achieve entropy
values very close to 8 consistently). Furthermore, only encrypted files
pass the Monobit test (i.e. as seen in Fig. 11) and can thus be distin-
guished with efficacy. The latter showcases that distinguishing raw
files from high-entropy ones is a far less challenging experiment than
the previous ones, where we focus only on compressed and encrypted
files.

As an additional experiment, we wanted to observe the behaviour
of compound files containing different data types. We selected a set
of MS Office files from a known dataset [55] and created a small
database with them, following our database creation procedure, ob-
taining files from 64 to 1024 KB. The outcomes of the classifica-
tion can be seen in Table 8. As it can be observed, the behavior is
again close to compressed TXT files, as internally these documents

are mostly code and text, even though they could contain some im-
ages and compressed parts.

Comparison with the state-of-the-art

In this section, we discuss the most relevant state-of-the-art ap-
proaches and discuss their benefits and drawbacks compared to our
solution.

The first approach dealing with high entropy random data traf-
fic classification was proposed by Hahn et al. [34]. The authors pro-
posed k-NN and convolutional Neural networks to classify small files
(1 KB) with an accuracy of 0.669. Lin [33] proposed a Support Vector
Machine (SVM) classifier to classify compressed and encrypted files.
This approach considers several features related to traffic, achieving
an accuracy of 0.798 with variable-sized packets bigger than 1 KB. In
[35], Kozachok and Spirin [35] used file chunks of 600 KB encrypted
and compressed files generated from a set of meaningful text files (i.e.
thus a less representative set of files than in our approach, noting that
compressed txt files are easier to classify), and used a large number
of features for classification (~250 features), to obtain an accuracy of
0.97. Moreover, when using fewer features (e.g. 10 features), their ac-
curacy drops to 0.81, a fact that highlights the performance of the fea-
tures selected in our article (i.e. we need nine features to provide 0.99
accuracy with even smaller file chunks). Considering smaller files (e.g.
50 KB), their accuracy is close to 0.81, while the accuracy obtained
by our approach for 64 KB files is above 0.95. De Gaspari et al. [38]
presented EnCoD [37], a deep neural network classifier that provided
a highly accurate classification of small-size files. In their approach,
the largest file size tested is 8 KB with an accuracy of 0.94, with
the drawback that the dataset contains only txt compressed files, as
seen in [35]. Later, in [38], the same authors created a content-type
detector based on a neural network model that uses autoencoders. In
this case, they experimented with a richer and more balanced dataset,
reporting binary classification accuracies between 0.83 and 0.94 for
files between 512 Bytes and 8 KB. Table 9 illustrates a descriptive
comparison with the current state-of-the-art. As it can be observed,
our method provides a rich and reproducible database and achieves
higher accuracy than the rest of the methods, considering the spe-
cific file sizes tested. Moreover, we performed experiments consider-
ing longer file sizes than the rest of the methods, achieving the maxi-
mum possible accuracy and, thus, establishing the required lengths to
guarantee unequivocal classification. Note that, in the case of produc-
tion file systems that use frequent compression and encryption, even
a low percentage of errors could translate into tenths or hundreds of
failed operations in short periods. Thus, this article is the first to pro-
vide a complete study in this regard, showing the adaptability of our
method.

Casino et al. [36] proposed HEDGE, a threshold-based approach
to classify small files up to 64 KB. Their approach considered the
Chi-squared statistical test and the FIPS-140-2 test to leverage a clas-
sification, thus enabling a memory-efficient simple system that could
be deployed regardless of hardware constraints. Nevertheless, to ob-
serve the reliability of this method when larger files are processed, we
leveraged a comparison in Table 10. As it can be observed, HEDGE
has been applied with different parameters (i.e. y variability as de-
fined by the authors) to provide a fair comparison. The method pro-
posed in this article clearly outperforms HEDGE in all cases due to
the difficulty of larger files passing the FIPS-140-2 tests, which in-
creases the number of false negatives (i.e. encrypted files not passing
the test) dramatically. This behavior can be observed in the analysis
performed in Section 5.2 and in Fig. 6(a), in which the FIPS-140-2

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

12 Casino et al.

Table 5. Average outcomes for file sizes between 64 and 256 KB, and their corresponding standard deviation o. The outcomes of each row
correspond to independent experiments performed according to each dataset, file type, and classification model. The best F, — score has
been highlighted in each combination of the dataset and file type experiment.

Precision Recall Accuracy Fy-score
Dataset (KB) File type Model Average o Average o Average o Average o
Random Forest 0.9927 0.0680 0.9941 0.0078 0.9934 0.0042 0.9934 0.0042
64 Binary XGBoost 0.9911 0.0084 0.9964 0.0056 0.9937 0.0047 0.9937 0.0047
SvC 0.9742 0.0138 0.9920 0.0059 0.9828 0.0073 0.9830 0.0071
Random Forest 0.8886 0.0222 0.9779 0.0106 0.9273 0.0155 0.9310 0.0140
64 Image XGBoost 0.8827 0.0235 0.9856 0.0691 0.9269 0.0154 0.9311 0.0136
SvC 0.8751 0.0214 0.9916 0.0064 0.9247 0.0144 0.9296 0.0126
Random Forest 0.8864 0.0218 0.9877 0.0093 0.9302 0.0132 0.9341 0.0117
64 MP3 XGBoost 0.8812 0.0229 0.9950 0.0060 0.9301 0.0145 0.9345 0.0128
SvC 0.8762 0.0233 0.8893 0.0197 0.8815 0.0163 0.8825 0.0158
Random Forest 0.9096 0.0178 0.9887 0.0079 0.9451 0.0115 0.9474 0.0105
64 PDF XGBoost 0.9039 0.0189 0.9887 0.0074 0.9416 0.0129 0.9443 0.0119
SvC 0.8675 0.0186 0.9889 0.0072 0.9187 0.0135 0.9241 0.0120
Random Forest 0.9900 0.0077 0.9902 0.0076 0.9901 0.0047 0.9901 0.0048
64 TXT XGBoost 0.9876 0.0090 0.9925 0.0072 0.9900 0.0050 0.9900 0.0049
SvC 0.8293 0.0209 0.9589 0.0188 0.8804 0.0157 0.8892 0.0138
Random Forest 0.8744 0.0162 0.9795 0.0095 0.9192 0.0103 0.9239 0.0092
64 Video XGBoost 0.8657 0.0180 0.9816 0.0118 0.9144 0.0124 0.9199 0.0112
SvC 0.8450 0.0204 0.9893 0.0080 0.9036 0.0151 0.9113 0.0130
Random Forest 0.9190 0.0097 0.9893 0.0038 0.9510 0.0055 0.9528 0.0051
64 All XGBoost 0.9144 0.0100 0.9909 0.0028 0.9490 0.0058 0.9511 0.0053
SvC 0.8577 0.0090 0.9819 0.0039 0.9094 0.0067 0.9156 0.0059
Random Forest 0.9967 0.0064 0.9954 0.0083 0.9960 0.0050 0.9960 0.0050
128 Binary XGBoost 0.9950 0.0076 0.9966 0.0065 0.9958 0.0050 0.9958 0.0050
SvVC 0.9746 0.0191 0.9950 0.0070 0.9843 0.0104 0.9846 0.0102
Random Forest 0.9117 0.0276 0.9795 0.0137 0.9418 0.0169 0.9441 0.0154
128 Image XGBoost 0.9097 0.0287 0.9850 0.0124 0.9431 0.0189 0.9456 0.0172
SvC 0.8933 0.0249 0.9912 0.0087 0.9360 0.0170 0.9395 0.0153
Random Forest 0.9136 0.0268 0.9873 0.0146 0.9425 0.0170 0.9446 0.0158
128 MP3 XGBoost 0.9117 0.0278 0.9841 0.0135 0.9439 0.0172 0.9463 0.0159
SvC 0.9071 0.0316 0.9133 0.0270 0.9093 0.0214 0.9098 0.0209
Random Forest 0.9260 0.0284 0.9791 0.0174 0.9500 0.0176 0.9515 0.0166
128 PDF XGBoost 0.9222 0.0286 0.9800 0.0184 0.9481 0.0173 0.9498 0.0162
SvC 0.8893 0.0327 0.9900 0.0115 0.9327 0.0224 0.9366 0.0201
Random Forest 0.9967 0.0077 0.9962 0.0066 0.9964 0.0051 0.9965 0.0050
128 TXT XGBoost 0.9955 0.0087 0.9962 0.0087 0.9958 0.0055 0.9958 0.0055
SvC 0.8558 0.0265 0.9766 0.0181 0.9054 0.0163 0.9118 0.0142
Random Forest 0.9180 0.0252 0.9687 0.0217 0.9408 0.0194 0.9425 0.0187
128 Video XGBoost 0.9144 0.0265 0.9812 0.0182 0.9443 0.0199 0.9464 0.0189
SvC 0.8759 0.0326 0.9929 0.0112 0.9254 0.0222 0.9304 0.0196
Random Forest 0.9410 0.0099 0.9911 0.0045 0.9644 0.0054 0.9653 0.0051
128 All XGBoost 0.9355 0.0102 0.9922 0.0039 0.9618 0.0053 0.9629 0.0049
SvC 0.8799 0.0116 0.9871 0.0051 0.9261 0.0067 0.9304 0.0058
Random Forest 0.9975 0.0074 0.9975 0.0076 0.9975 0.0050 0.9975 0.0050
256 Binary XGBoost 0.9975 0.0075 0.9975 0.0076 0.9975 0.0051 0.9975 0.0051
SvC 0.9951 0.0116 0.9900 0.0155 0.9925 0.0084 0.9924 0.0084
Random Forest 0.9556 0.0270 0.9741 0.0266 0.9641 0.0217 0.9645 0.0214
256 Image XGBoost 0.9531 0.0275 0.9816 0.0206 0.9662 0.0177 0.9668 0.0170
SvVC 0.9394 0.0324 0.9900 0.0140 0.9625 0.0196 0.9637 0.0184
Random Forest 0.9784 0.0165 0.9716 0.0224 0.9750 0.0135 0.9748 0.0137
256 MP3 XGBoost 0.9801 0.0162 0.9800 0.0178 0.9800 0.0137 0.9799 0.0138
SvC 0.8994 0.0466 0.9658 0.0231 0.9275 0.0292 0.9307 0.0266
Random Forest 0.9484 0.0299 0.9716 0.0252 0.9587 0.0161 0.9593 0.0155
256 PDF XGBoost 0.9511 0.0242 0.9750 0.0217 0.9620 0.0152 0.9626 0.0149
SvC 0.9033 0.0372 0.9900 0.0155 0.9412 0.0264 0.9443 0.0239
Random Forest 1 0 1 0 1 0 1 0
256 TXT XGBoost 1 0 1 0 1 0 1 0
SvC 0.8932 0.0348 0.9866 0.0204 0.9337 0.0258 0.9373 0.0240
Random Forest 0.9689 0.0242 0.9775 0.0239 0.9729 0.0207 0.9730 0.0206
256 Video XGBoost 0.9717 0.0255 0.9833 0.0211 0.9770 0.0185 0.9772 0.0184
SvC 0.9206 0.0370 0.9950 0.0101 0.9537 0.0225 0.9559 0.0206
Random Forest 0.9716 0.0105 0.9905 0.0063 0.9807 0.0048 0.9809 0.0047
256 All XGBoost 0.9700 0.0109 0.9912 0.0059 0.9802 0.0062 0.9805 0.0060

SvC 0.9209 0.0144 0.9901 0.0058 0.9524 0.0091 0.9542 0.0084

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

Ransomware detection through classification of high-entropy file segments 13

Table 6. Average outcomes for 512 and 1024 KB file sizes, and their corresponding standard deviation o. The outcomes of each row
correspond to independent experiments performed according to each dataset, file type, and classification model. The best F — score has
been highlighted in each combination of the dataset and file type experiment.

Precision Recall Accuracy F;-score
Dataset (KB) File type Model Average o Average o Average o Average o
Random Forest 1 0 1 0 1 0 1 0
512 Binary XGBoost 1 0 1 0 1 0 1 0
SvC 1 0 0.9800 0.0385 0.9900 0.0192 0.9895 0.0204
Random Forest 0.9857 0.0221 1 0 0.9924 0.0116 0.9926 0.0113
512 Image XGBoost 0.9888 0.0204 1 0 0.9941 0.0107 0.9943 0.0104
SvVC 0.9951 0.0147 0.9800 0.0337 0.9875 0.0182 0.9871 0.0188
Random Forest 0.9856 0.0252 0.9883 0.0215 0.9866 0.0170 0.9867 0.0168
512 MP3 XGBoost 0.9856 0.0251 0.9933 0.0217 0.9891 0.0181 0.9892 0.0182
SvC 0.9349 0.0380 0.9800 0.0249 0.9550 0.0221 0.9563 0.0211
Random Forest 0.9803 0.0380 0.9850 0.0325 0.9816 0.0236 0.9818 0.0232
512 PDF XGBoost 0.9803 0.0381 0.9900 0.0203 0.9841 0.0212 0.9845 0.0201
SvC 0.9675 0.0433 0.9750 0.0286 0.9700 0.0281 0.9705 0.0265
Random Forest 1 0 1 0 1 0 1 0
512 TXT XGBoost 1 0 1 0 1 0 1 0
SvC 0.9760 0.0271 0.9900 0.0203 0.9824 0.0187 0.9827 0.0185
Random Forest 0.9937 0.0200 0.9983 0.0091 0.9958 0.0115 0.9959 0.0111
512 Video XGBoost 0.9906 0.0225 1 0 0.9950 0.0121 0.9951 0.0116
SvC 0.9768 0.0356 0.9900 0.0203 0.9824 0.0198 0.9828 0.0192
Random Forest 0.9950 0.0063 0.9980 0.0035 0.9965 0.0036 0.9965 0.0036
512 All XGBoost 0.9934 0.0072 0.9986 0.0031 0.9959 0.0035 0.9959 0.0035
SVC 0.9617 0.0167 0.9841 0.0124 0.9723 0.0101 0.9727 0.0098
Random Forest 1 0 1 0 1 0 1 0
1024 Binary XGBoost 1 0 1 0 1 0 1 0
SvC 1 0 0.9800 0.0484 0.9900 0.0242 0.9892 0.0262
Random Forest 1 0 1 0 1 0 1 0
1024 Image XGBoost 1 0 1 0 1 0 1 0
SvC 1 0 0.9700 0.0466 0.9850 0.0233 0.9842 0.0245
Random Forest 0.9909 0.0277 1 0 0.9950 0.0152 0.9952 0.0145
1024 MP3 XGBoost 0.9909 0.0277 1 0 0.9950 0.0152 0.9952 0.0145
SvC 0.9812 0.0382 0.9700 0.0466 0.9750 0.0314 0.9747 0.0317
Random Forest 1 0 1 0 1 0 1 0
1024 PDF XGBoost 1 0 1 0 1 0 1 0
SvC 1 0 0.9800 0.0406 0.9900 0.0203 0.9894 0.0214
Random Forest 1 0 1 0 1 0 1 0
1024 TXT XGBoost 1 0 1 0 1 0 1 0
SvC 1 0 0.9900 0.0305 0.9950 0.0152 0.9947 0.0160
Random Forest 1 0 1 0 1 0 1 0
1024 Video XGBoost 1 0 1 0 1 0 1 0
SvC 0.9909 0.0277 0.9800 0.0406 0.9850 0.0233 0.9847 0.0237
Random Forest 1 0 1 0 1 0 1 0
1024 All XGBoost 1 0 1 0 1 0 1 0
SvC 0.9950 0.0098 0.9783 0.0181 0.9866 0.0094 0.9864 0.0096

accuracy (i.e. for y = 0, thus the classical test) for large sizes is lower
for smaller sizes.

Proof of concept implementation

To validate the efficacy of our approach in a real-world scenario, we
implemented our proposed solution in Python. To monitor filesystem
changes, we used watchdog* and native Python libraries without fur-
ther optimizations, e.g. parallelization, pypy, and so on. Moreover, we
set our timer to 10 ms and the sampling to 64 KB. Then, we created
a virtual machine with Windows 10, 12 GB of RAM, and allocated
12 Cores from the processor, a 13th Gen Intel Core i9-13900K with
32 cores. We made all the necessary updates to the operating system,

4 https://github.com/gorakhargosh/watchdog

populated the host with several files that would be found in a typi-
cal user host, e.g. PDF and MS Office files, and added some history
to the browser to show that this is an actual system. Nevertheless,
we did not try to hide that the system is a virtual machine or intro-
duce additional measures to hide our monitoring activity. The latter
led some samples, e.g. Akira, not to encrypt the files as they under-
stood that they were monitored and seized their actions, a common
malware behavior to evade their analysis [56,57]. Yet, despite the
possible computational improvements that Virtual Box Guest Addi-
tions could introduce, we opted not to use them to avoid making the
virtual machine fingerprint bigger. Given that the scope of this test-
ing is not to counter the antianalysis mechanisms of ransomware, we
omit these samples from our report. Furthermore, to ensure that the
ransomware will be executed and we will not have interference with

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

https://github.com/gorakhargosh/watchdog

14 Casino et al.
I 64KB 128KB In 256KB In 512KB 0m 1024KB _

40
=]
.z
&
3] 30
g
g
g
= 20
Q
(=}
g
o
= 10
g
=

(] Oy % Nk
\&OQ‘% S”O& \1;5& 05”&0 060\ qa‘b?o & $$¢ \?J&Q
& N O o & i &
A% ¢ O O&'Q’ > oF &0\} _@Qx‘f Q)

Figure 7. Details of the feature relevance for each dataset in the Random Forest classifier setup.

Table 7. Outcomes when using a different number of features in
the Random Forest model.

Dataset Feature set 1 ~ Feature set 2 Feature set 3 All features
(Entropy and
(Entropy and Chi_score and

(Entropy) Chi_score) Monobit)
64 0.9192 0.9202 0.9353 0.9528
128 0.9425 0.9441 0.9599 0.9653
256 0.9662 0.9680 0.9753 0.9809
512 0.9925 0.9930 0.9955 0.9965
1024 1 1 1 1

other security mechanisms, we have disabled Microsoft Defender and
the firewall. Nevertheless, to avoid further propagation, the virtual
machine was blocked from the network and the Internet by detach-
ing the network card from the virtual machine. Finally, we collected
recent ransomware samples from Malware Bazaar of Abuse.ch® to
validate our detection capabilities in a real scenario. In Table 11, we
report the ransomware family, the average time it took to determine
that a file is encrypted, and the standard deviation in seconds.
Evidently, using a minifilter, a more efficient programming lan-
guage, and parallelization, the reported times would be drastically
lower. Yet, the accurate identification of ransomware encryption on
the scale of a second from our approach in our proof-of-concept im-
plementation showcases the efficacy and validity of our approach in a
real-world scenario. The results illustrate huge discrepancies between
the ransomware families. For instance, there are detections that need
just a couple of milliseconds, while others take around a second.
We attribute these discrepancies to the different ways that each ran-
somware family encrypts the files. The use of parallelization, different
file prioritization for encryption, as well as the cryptographic prim-
itives used from each ransomware family are obvious factors that
variate when each ransomware makes the filesystem changes that we
monitor. In this regard, we expect that when files are processed se-

5 https://bazaar.abuse.ch/

quentially, we will have a shorter detection time, but when the files
are processed in parallel, a longer delay is expected.

Discussion

As previously seen in the literature [36,37], there is a strong corre-
lation between the randomness of the file type and the randomness
of the corresponding generated compressed file. As seen in Tables 5
and 6, the best outcomes were obtained by the binary and txt files,
which were the ones that exhibited more identifiable patterns accord-
ing to our selected features (and thus, less randomness), as depicted
in Figs 3-5. Moreover, as discussed in Section 5.1, such identifiable
patterns expand from small file sizes to larger ones, yet with specific
changes that ease the distinction between compressed and encrypted
bit streams when their length grows. The above can be justified by
the fact that these are the most “structured” files in our dataset. That
is because image files, PDFs, MP3s, and videos already contain in
some forms compressed information. For instance, PDF stores PDF
commands and text and vector objects in ZIP format, JPEG uses
Huffman coding, and PNG format uses Huffman and Lempel-Ziv
77 compression algorithms. As a result, possible structures are lo-
cal, e.g. PDF trailer and cross-reference tables (xref), so most of these
files are more random-looking. Recalling the necessity to minimize
the cost of misclassification, our system is able to detect and flag all
encrypted files without error due to their stability, as seen in Fig. 5.
Thus, the challenge appears in zip files that resemble encrypted ones.
As stopping a compression process is less critical than letting a ma-
licious encryption one pass, we assume that these misclassifications
are assumable errors, which minimize the compromise of the system
as the opposite would do.

By recalling the design objectives stated in Section 4.1, we can
claim that our proposal fulfilled them remarkably. First, as discussed
in Section 5.6, the accuracy of our system outperforms the current
state of the art, and it does so efficiently, enabling real-time classifi-
cation. Next, our system can be dynamically adapted to different file
sizes and features to reduce the number of computations while ob-
taining outstanding accuracy, as described in Section 5.4. In this re-

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

https://bazaar.abuse.ch/

Ransomware detection through classification of high-entropy file segments 15

0.050 1

0.040

0.030 4

Time (Seconds)

0.020 1

0.010 1 é

==

— _—

0.000 A

£ & & & & & & &
N <& NS 7 <O & N S
K3 & S & « % & &
@° & & & lod v
4 L (-?@
&
Ole

Figure 8. Average feature computation times for 64 KB file size.

7
—o— All features
—¥— Three features
6 —t+— Two features
—&— One feature
5
m
k-
o4
V]
Q
2
o3
E
=
2
1

256 512 1024

Dataset

Figure 9. Training time for each file size and number of features in the Random Forest model.

gard, a versatile approach to enable efficient intrusion detection sys-
tems in the context of resource-constrained devices is implementing
Multi-Agent Systems (MAS). In MAS, multiple autonomous agents
operate within a network, each possessing specialized capabilities
[58]. They can communicate and collaborate to achieve a common
goal, such as detecting and mitigating ransomware attacks by sharing
information to ease the cybercrime fight [59]. In MAS, the flexibility
to adaptively select features based on the nature of data and con-

straints of devices, as demonstrated in our model, becomes a critical
aspect. Thus, each agent could be equipped with multiple versions of
the model discussed in this article, having a flexible model that main-
tains performance while being adaptable in its feature set [60,61].
Furthermore, using MAS allows for decentralized processing, reduc-
ing the load on individual IoT devices [62].

Finally, we publicly shared our dataset and experiments, and de-
scribed the features and parameters we used for the classification

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

16

Casino et al.

=
>
a
2
e
w54
4
34
Y < & 2 G &
& & $ & & _‘\he-" <& Laé‘q &
File Types
) ? 1 %I)
7.8
7.6
2
=
a
e
E
c
w
741
12
7.0 T T T T T T T
h el b % o o] o 2 L
< & $ & < & ¢ & &
File Types

Figure 10. Detail of the entropy values of nonencrypted, compressed, and encrypted files. The second figure represents a zoomed version of the outcomes for

clarity.

methods in Section 4. While this eases the reproducibility of the ex-
periments and further comparisons, we also allow fellow researchers
to use a significantly richer baseline dataset, fostering the progress of
the state of the art. Note that dependence on small and unrepresenta-
tive datasets carries inherent risks [46]. For instance, this shortcom-
ing may foster biases, distorting the understanding and interpretation
of the actual data, and, as a result, lead to wrong analysis and mis-
leading conclusions.

A further distinctive characteristic of our design is that, contrary
to the current state of the art, it can be used both in traffic analysis and
in the context of file write operations monitoring. The latter, paired

with the adaptable feature selection, results in a versatile solution
toward malware detection, with a particular focus on ransomware.
Due to its minimal computational overhead, the proposed ap-
proach could be integrated into existing Endpoint Detection and Re-
sponse (EDR) solutions and increase their detection capabilities. No-
tably, while many of them use honey files [63] to detect ransomware
infection or prevent the execution of binaries with high entropy,
threat actors have found ways to bypass these measures. On the con-
trary, our solution accurately detects ransomware execution by fo-
cusing on the very nature of the outcomes and the timely detection
of encrypted files. In fact, identifying the running process from the

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

Ransomware detection through classification of high-entropy file segments

17

Monobit Test Outcome (1 = Pass, 0 = Fail)

1.0

0.8 4

0.6 4

041

0.2 1

0.0

4

& &

o

File Types

‘GQ

Figure 11. Outcomes of the Monobit test when applied to raw files, compressed, and encrypted ones.

Table 8. Average outcomes for the classification of compressed office files versus encrypted office files dataset and their corresponding
standard deviation o when using the Random Forest classifier.

Precision Recall Accuracy Fl-score

File size Average o Average o Average o Average o

64 0.9818 0.0370 0.9900 0.0305 0.9850 0.0233 0.9852 0.0230

128 0.9909 0.0277 0.9900 0.0305 0.9900 0.0203 0.9900 0.0204

256 0.9909 0.0277 1 0 0.9950 0.0153 0.9952 0.0145

512 0.9909 0.0277 1 0 0.9950 0.0153 0.9952 0.0145

1024 0.9944 0.0304 1 0 0.9967 0.0183 0.9970 0.0166

Table 9. Descriptive comparison with the state-of-the-art.

References Model Comments

[33] SVM classifier Small file sizes, with accuracies below 0.80

[34] k-NN and convolutional neural networks Classification accuracy of 0.67 with small file sizes (1 KB).

[36] Threshold-based Classification accuracy between 0.69 and 0.95 for files
between 1 and 64 KB. Accuracy decreases with file size
above 64 KB.

[37] Deep neural network Only small file sizes tested (from 512Bytes to 8 KB files)
over a less representative dataset than ours.

[35] Random Forest Accuracies ranging between 0.81 and 0.97 in the case of
600 KB file size, with a less representative dataset and a
much higher number of features.

[38] Deep neural network with autoencoders Only small file sizes tested (from 512Bytes to 8 KB files)
with accuracies between 0.83 and 0.94.

Current Random Forest Accuracies ranging between 0.95 and 1 for files between

work 64 KB and 1024 KB.

file system changes can solve another issue that some EDR block-
ing mechanisms face. EDR systems utilize a variety of techniques

for detecting malicious activities. These techniques generally include
signature-based detection, behavioral analysis, heuristic analysis, and

machine learning. According to the MITRE ATT&CK framework,
common techniques observed in malware are often tied to specific be-

havioral patterns, such as process injection, process hollowing, priv-

ilege escalation, and lateral movement. EDR solutions rely on these

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

18

Casino et al.

Table 10. Comparison with HEDGE [36].

Dataset Model F1 Dataset Model F1
HEDGE y =0 0.7488 HEDGE y =0 0.7211
64 HEDGEy =1 0.8762 128 HEDGE y =1 0.8598
HEDGE y =2 0.9424 HEDGE y =2 0.9078
Our approach (RF) 0.9528 Our approach (RF) 0.9653
HEDGE y =0 0.7025 HEDGE y =0 0.6654
256 HEDGEy =1 0.8339 512 HEDGE y =1 0.7645
HEDGE y =2 0.8818 HEDGE y =2 0.7995
Our approach (RF) 0.9809 Our approach (RF) 0.9965
HEDGE y =0 0.5983
1024 HEDGE y =1 0.6591
HEDGE y =2 0.6833
Our approach (RF) 1

Table 11. Statistics from our proof of concept implementation.
Time is reported in seconds.

Ransomware Sample Average SD

Chaos 4dd53alb9a5bc8elc327abfa7774e287 1.165 2.613
Conti 71d43bb68ae566de0d8183d223b56e5d 0.081 0.141
Dharma 32e3001eb783b182de6b45e5£729d3ba 0.822 0.588
Fog d72c3508cbb968c478e0bd91e0£11424 0.005 0.005

InterLock £7£679420671b7e18677831d4d276277 0.735 0.461
Mammon ccaa87a7a44fa59ae536138e2313bc3e 0.021 0.041
Phobos 6096dec7644520baladfdc04183bb62f 0.009 0.032
Termite 6b06aae5ec596cdbclb9d4ca57£45£81 0.931 0.327

techniques to detect and respond to malware in real-time. In several
instances, EDRs may detect malicious behavior of a process and kill
the process; however, the process may spawn another instance, so
while the original process is sacrificial and is killed, the actual en-
cryption is performed by the spawned process, which is not moni-
tored any more. In other instances of human-operated ransomware,
the EDR may have initially detected and blocked the malicious binary
that would encrypt the victim’s files, the process is killed, and the bi-
nary is sent for automated scanning. However, suppose the proper
input (e.g. used arguments) is not sent. In that case, the ransomware
performs a graceful exit on the sandbox environment so the EDR
does not consider it a threat and may allow its execution the next
time. On the contrary, by integrating our approach into EDR rules,
file system monitoring could be configured to trigger alerts when-
ever encryption-like patterns are detected (e.g. sudden high-entropy
changes to files). The latter would allow the EDR to react immedi-
ately by issuing alerts, terminating the rogue processes responsible
for encryption, and quarantining the malicious binaries before sig-
nificant damage occurs. Indeed, as illustrated with our proof of con-
cept experiments, our approach can timely identify the ransomware
encryption.

Conclusions

In the context of cyber security, the accurate and efficient identifica-
tion of encrypted bit streams is an open challenge that affects several
areas, such as file system security and network traffic analysis, to
name a few. Thus, leveraging automated systems such as the one
presented in this article is crucial, especially considering the current
threat landscape, in which ransomware seems to be a long-term
menace.

This work performs a thorough evaluation of available random-
ness tests to determine the ones that are efficient and allow their out-

put to be used as features to accurately classify random bit streams
into either encrypted or compressed ones. We created and used a
statistically sound dataset to test our experiments, achieving an ac-
curacy between 0.9528 (64 KB bit streams) and 1. We also ob-
served and analysed the correlation between the different file types
and the randomness of the corresponding compressed files. We con-
cluded that (compressed) binary and text files can be easily iden-
tified by our method with almost no errors, even in 64 KB bit
streams. This is validated with our proof of concept using recent
ransomware samples. Although our method can detect the nature
of high-entropy bit streams, some applications, including compres-
sors, may use encryption at some stages. The latter opens the door
for optimization mechanisms in the form of OS-level policies, such
as setting up whitelisted applications or directories and performing
an overall control of the file system’s entropy to detect an attack as
early as possible. These interesting paths will be explored in future
work.

The efficiency of our method was highlighted, exhibiting better
performance than competing state-of-the-art works while enabling
feature-based adaptability to achieve real-time classification in dif-
ferent contexts. The latter enables it to be used in existing endpoint
security solutions through, e.g. minifilters and the inotify API® in
Windows and linux-based hosts, respectively, as illustrated with our
proof of concept implementation testing.

In future works, we plan to (i) refine our method to increase
its accuracy further; especially for short length bit streams, (ii)
study further learning strategies that can be combined with our
method to efficiently detect ransomware-related behaviours in real
time, and (iii) explore other feature generation methods. Another
line of research will explore ad-hoc models to maximize the de-
tection accuracy for file types and sizes used in particular scenar-
ios. We consider incorporating the model optimizations discussed
in this article into a MAS to enable an efficient and potent solu-
tion for ransomware detection in distributed, resource-constrained
environments. Finally, we will explore the possibility of detecting
ransomware in the early stages of the binary execution, e.g. when
the binary is unpacked, and the initial system calls are made before
encryption.

Acknowledgements

The content of this article does not reflect the official opinion of the European
Union. Responsibility for the information and views expressed therein lies en-
tirely with the authors.

6 https://man7.org/linux/man-pages/man7/inotify.7.html

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

https://man7.org/linux/man-pages/man7/inotify.7.html

Ransomware detection through classification of high-entropy file segments 19

Author contributions

Fran Casino (Conceptualization, Investigation, Methodology, Project admin-
istration, Software, Validation, Writing — original draft, Writing — review &
editing), Darren Hurley-Smith (Software, Validation, Writing — original draft),
Julio Hernandez-Castro (Conceptualization, Formal analysis, Methodology,
Writing — review & editing), and Constantinos Patsakis (Conceptualization,
Formal analysis, Investigation, Methodology, Validation, Writing — original
draft, Writing — review & editing)

Conflict of interest: The authors reported no potential conflict of interest.

Funding

This work was supported by the European Commission under the Horizon
Europe Programme, as part of the projects SAFEHORIZON (grant agreement
number 101168562) and LAZARUS (grant agreement number 101070303).
This work was also supported by the European Union’s Internal Security Fund
as part of the ALUNA project (grant agreement number 101084929). This
work was also supported by the COST Action GoodBrother, Network on
Privacy-Aware Audio- and Video-Based Applications for Active and Assisted
Living, (CA 19121). This work was partially supported by Ministerio de Cien-
cia, Innovacion y Universidades, Gobierno de Espafia (Agencia Estatal de Inves-
tigacion, Fondo Europeo de Desarrollo Regional -FEDER-, European Union)
under the research grant PID2021-1274090B-C33 CONDOR. Fran Casino
was supported by the Spanish Ministry of Science and Innovation under the
“Ramon y Cajal” programme (RYC2023-044857-1), and by AGAUR with the
project ASCLEPIUS (2021SGR-00111).

References

1. Sophos. Sophos the state of ransomware 2023. https:/assets.sophos.co
m/X24WTUEQ/at/c949g7693gsnjh9rb9gr8/sophos-state-of-ransomwa
re-2023-wp.pdf (4 January 2024, date last accessed).

2. Braue D. Global ransomware damage costs predicted to ex-
ceed $265 billion by 2031. Cybersecurity Ventures, 2022.
https://cybersecurityventures.com/global-ransomware-damage-costs
-predicted-to-reach-250-billion-usd-by-2031 (11 February 2023, date
last accessed).

3. Cohen A, Nissim N. Trusted detection of ransomware in a private cloud
using machine learning methods leveraging meta-features from volatile
memory. Expert Syst Appl 2018;102:158-78.

4. Patsakis C, Arroyo D, Casino F. The Malware as a service ecosystem.
In: Malware: Handbook of Prevention and Detection. Berlin: Springer
Nature, 2024, 371-94.

5. Shannon CE. Communication theory of secrecy systems. Bell Syst Tech |
1949;28:656-715.

6. L’Ecuyer P, Compagner A, Cordeau JF. Entropy tests for random number
generators. In: GERAD report G-96-41. Montréal: GERAD, 1996.

7. D’Agostino RB. Goodness-of-fit-techniques. London: Routledge, 2017.

8. Ghosh BK, Sen PK. Handbook of Sequential Analysis. Boca Raton, FL:
CRC Press, 1991.

9. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete
samples). Biometrika 1965;52:591-611.

10. Lopes RHC. Kolmogorov-Smirnov test. In: International Encyclopedia
of Statistical Science. Berlin: Springer, 2011, 718-20.

11. RazaliNM, Wah YB. Power comparisons of Shapiro-Wilk, Kolmogorov—
Smirnov, Lilliefors and Anderson-Darling tests. | Stat Model Anal
2011;2:21-33.

13. Rukhin A, Soto J, Nechvatal J. A statistical test suite for random and
pseudorandom number generators for cryptographic applications. NIST
DTIC Document. NIST DTIC Document NIST SP800-22. Gaithersburg,
MD: National Institute of Standards and Technology, 2010.

14. Casino F, Dasaklis TK, Spathoulas GP. et al. Research trends, challenges,
and emerging topics in digital forensics: a review of reviews. IEEE Access
2022;10:25464-93.

15.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Yang W, Kong D, Xie T. et al. Malware detection in adversarial set-
tings: exploiting feature evolutions and confusions in android apps. In:
Proceedings of the 33rd Annual Computer Security Applications Confer-
ence. New York, NY: ACM Digital Library, 2017, 288-302.

Kara 1. Fileless malware threats: recent advances, analysis approach
through memory forensics and research challenges. Expert Syst Appl
2022;214:119133.

Kara I, Aydos M. The rise of ransomware: forensic analysis for windows
based ransomware attacks. Expert Syst Appl 2022;190:116198.
VirusTotal. Ransomware activity report. 2021. https://storage.googleap
is.com/vtpublic/vt-ransomware-report-2021.pdf. (4 January 2024, date
last accessed).

Kara I, Aydos M. The rise of ransomware: forensic analysis for windows
based ransomware attacks. Expert Syst Appl 2022;190:116198.

Jung S, Won Y. Ransomware detection method based on context-aware
entropy analysis. Soft Comput 2018;22:6731-40.

Cuzzocrea A, Martinelli F, Mercaldo F. A novel structural-entropy-based
classification technique for supporting android ransomware detection and
analysis. In: Proceedings of the 2018 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). Piscataway, NJ: IEEE, 2018, 1-7.

Lee K, Lee SY, Yim K. Machine learning based file entropy analysis for
ransomware detection in backup systems. IEEE Access 2019;7:110205-
15.

MclIntosh T, Jang-Jaccard J, Watters P. et al. The inadequacy of entropy-
based ransomware detection. In: Proceedings of the International Confer-
ence on Neural Information Processing. Berlin: Springer, 2019, 181-9.
Pont J, Arief B, Hernandez-Castro J. Why current statistical approaches
to ransomware detection fail. In: Proceedings of the International Con-
ference on Information Security. Berlin: Springer, 2020, 199-216.
Hurley-Smith D, Patsakis C, Hernandez-Castro J. On the unbearable
lightness of FIPS 140-2 randomness tests. In: Proceedings of the IEEE
Transactions on Information Forensics and Security. Piscataway, NJ:
IEEE, 2020, 1-1.

Bhudia A, O’Keeffe D, Sgandurra D. et al. RansomClave: ransomware
key management using SGX. In: Proceedings of the 16th International
Conference on Availability, Reliability and Security. New York, NY: ACM
Digital Library, 2021, 1-10.

Kolodenker E, Koch W, Stringhini G. et al. Paybreak: defense against
cryptographic ransomware. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. New York, NY:
ACM, 2017, 599-611.

Roth F, Lambert J, Yom-Tov E. et al. Raccine. GitHub, 2021. https:
/lgithub.com/Neo23x0/Raccine. (4 January 2024, date last accessed).
Paninski L. Estimation of entropy and mutual information. Neur Comput
2003;15:1191-253.

Paninski L. Estimating entropy on m bins given fewer than m samples.
IEEE T Inf Theor 2004;50:2200-3.

Davies SR, Macfarlane R, Buchanan WJ. Comparison of entropy cal-
culation methods for ransomware encrypted file identification. Entropy
2022;24:1503.

Cunha VC, Zavala AZ, Magoni D. et al. A complete review on the ap-
plication of statistical methods for evaluating internet traffic usage. IEEE
Access 2022;10:128433-55.

Wang Y, Zhang Z, Guo L. et al. Using entropy to classify traffic more
deeply. In: Proceedings of the 2011 IEEE Sixth International Conference
on Networking, Architecture, and Storage. Piscataway, NJ: IEEE, 2011,
45-52.

Hahn D, Apthorpe N, Feamster N. Detecting compressed cleartext traffic
from consumer internet of things devices. 2018. arXiv:1805.02722. (4
January 2024, date last accessed).

Kozachok AV, Spirin AA. Model of pseudo-random sequences gener-
ated by encryption and compression algorithms. Prog Comput Softw
2021;47:249-60.

Casino F, Choo KKR, Patsakis C. Hedge: efficient traffic classifica-
tion of encrypted and compressed packets. IEEE T Inf Foren Secur
2019;14:2916-26.

De Gaspari F, Hitaj D, Pagnotta G. et al. Encod: distinguishing com-
pressed and encrypted file fragments. In: Proceedings of the International

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

https://assets.sophos.com/X24WTUEQ/at/c949g7693gsnjh9rb9gr8/sophos-state-of-ransomware-2023-wp.pdf
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031
https://storage.googleapis.com/vtpublic/vt-ransomware-report-2021.pdf
https://github.com/Neo23x0/Raccine

20

Casino et al.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.
50.

Conference on Network and System Security. Berlin: Springer, 2020, 42—
62.

De Gaspari F, Hitaj D, Pagnotta G. et al. Reliable detection of compressed
and encrypted data. Neur Comput Appl 2022;34:20379-93.

Microsoft. Filter Redmond, WA, 2021.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filte

manager concepts.
r-manager-concepts. (4 January 2024, date last accessed).

White AM, Krishnan S, Monrose F. Clear and present data: opaque
traffic and its security implications for the future. In: Proceedings of the
NDSS. San Diego, CA: Network and Distributed System Security, 2013.
Khakpour AR, Liu AX. An information-theoretical approach to high-
speed flow nature identification. IEEE/ACM Trans Netw 2013;21:1076—
89.

Lin TY, Maire M, Belongie S,. et al. Microsoft Coco: common objects
in context. In: Proceedings of the European Conference on Computer Vi-
sion. Berlin: Springer, 2014, 740-55.

Criminisi A. Rgb-d dataset 7-scenes. Redmond, WA: Microsoft, 2013.
https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-sce
nes/. (4 January 2024, date last accessed).

Hart M. Project Gutenberg. 1971. https://www.gutenberg.org/. (17 De-
cember 2023, date last accessed).

Abu-El-Haija S, Kothari N, Lee J. et al. Youtube-8m: a large-scale video
classification benchmark. arXiv:1609.08675.2016.

Casino F, Lykousas N, Homoliak I. et al. Intercepting hail hydra: real-
time detection of algorithmically generated domains. | Netw Comput
Appl 20215190:103135.

Karatas G, Demir O, Sahingoz OK. Increasing the performance of ma-
chine learning-based idss on an imbalanced and up-to-date dataset. IEEE
Access 2020;8:32150-62.

Batista GE, Prati RC, Monard MC. A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD
Explor Newsl 2004;6:20-9.

Casino E Distinguishing between high entropy bit streams. GitHub, 2021.
Hurley-Smith D, Hernandez-Castro J. Certifiably biased: an in-depth
analysis of a Common Criteria EAL4+ certified TRNG. In: Proceedings
of the IEEE Transactions on Information Forensics and Security. Piscat-
away, NJ: IEEE, 2017, 99.

51,

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

L’Ecuyer P, Simard R. TestU01: AC library for empirical testing of ran-
dom number generators. ACM T Math Softw 2007;33:1-40.
Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all you need.
Inform Fusion 2022;81:84-90.

Panigutti C, Hamon R, Hupont L. ez al. The role of explainable Al in the
context of the Al act. In: Proceedings of the 2023 ACM Conference on
Fairness, Accountability, and Transparency. New York, NY: ACM, 2023,
1139-50.

Cabitza F, Campagner A, Malgieri G. et al. Quod erat demonstrandum?
Towards a typology of the concept of explanation for the design of ex-
plainable AL Expert Syst Appl 2023;213:118888.

Koutsokostas V, Lykousas N, Orazi G. et al. Malicious MS Office doc-
uments dataset. Zenodo, 2021.

Afianian A, Niksefat S, Sadeghiyan B. et al. Malware dynamic analysis
evasion techniques: a survey. ACM Comput Surv 2019;52:1-28.

Geng J, Wang], Fang Z. et al. A survey of strategy-driven evasion meth-
ods for pe malware: transformation, concealment, and attack. Comput
Secur 2024;137:103595.

Machin J, Batista E, Martinez-Ballesté A. et al. Privacy and security in
cognitive cities: a systematic review. Appl Sci 2021;11:4471.

Casino F, Pina C, Lépez-Aguilar P. et al. Sok: cross-border criminal in-
vestigations and digital evidence.] Cybersecur 2022;8:tyac014.
Mayuranathan M, Saravanan SK, Muthusenthil B. et al. An effi-
cient optimal security system for intrusion detection in cloud comput-
ing environment using hybrid deep learning technique. Adv Eng Softw
2022;173:103236.

Qasem MH, Hudaib A, Obeid N. et al. Multi-agent systems for dis-
tributed data mining techniques: an overview. In: Big Data Intelligence
for Smart Applications. Cham: Springer, 2022, 57-92.

Javadpour A, Pinto P, Ja’fari F. et al. DMAIDPS: a distributed multi-agent
intrusion detection and prevention system for cloud IoT environments.
Cluster Comput 2023;26:367-84.

Yuill J,
for intrusion detection. In: Proceedings from the Fifth Annual IEEE
SMC Information Assurance Workshop. Piscataway, NJ: IEEE, 2004,
116-22.

Zappe M, Denning D. et al. Honeyfiles: deceptive files

© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work,
in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

920z Aenuer 70 uo 1senb Aq 621601 8/600:8AY/L/1 L/a1one/AlundasIagAo/woo dnoolwapeoe//:sdiy wouy papeojumoq

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/
https://www.gutenberg.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:journals.permissions@oup.com

