
Casino, Fran, Hurley-Smith, Darren, Hernandez-Castro, Julio and Patsakis, Constantinos
(2025) Not on my watch: ransomware detection through classification of high-entropy
file segments. Journal of Cybersecurity, 11 (1). tyaf009. ISSN 2057-2085.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/112636/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1093/cybsec/tyaf009

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/112636/
https://doi.org/10.1093/cybsec/tyaf009
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Journal of Cybersecurity , 2025, tyaf009
https://doi.org/10.1093/cybsec/tyaf009

Research Paper

Not on my watch: ransomware detection

through classification of high-entropy file

segments

Fran Casino

1 , 2 , Darren Hurley-Smith

3 , Julio Hernandez-Castro

4 ,
Constantinos Patsakis

2 , 5 , *

1 Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Avinguda dels Països Catalans,
26, 43007, Tarragona, Spain
2 Information Management Systems Institute, Athena Research Centre, Artemidos 6, Marousi 15125, Greece
3 University of Kent, Giles Ln, Canterbury CT2 7NZ, United Kingdom

4 Universidad Politécnica de Madrid, Alan Turing, s/n, 28031 Madrid, Spain
5 Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou str., 18534 Piraeus, Greece

∗Corresponding author. Information Management Systems Institute, Athena Research Centre, Artemidos 6, Marousi 15125,
Greece. E-mail: kpatsak@athenarc.gr

Received 20 March 2024; revised 31 December 2024; accepted 27 February 2025

Abstract

The double-edged sword of continuous digitization of services and systems opens the door to a myriad of beneficial
opportunities, as well as challenging threats. Currently, ransomware is catalogued as the first threat in cybersecurity
due to its impact on organizations, critical infrastructure, industry, and society as a whole. Thus, devoting efforts to-
ward developing methodologies to effectively prevent and mitigate ransomware is crucial. In this article, we present
an accurate method to identify encrypted bit streams by differentiating them from other high-entropy streams (e.g.
compressed files), which is a critical task to detect potentially malicious file write events on the file system in current
operating systems. After extensive evaluation, our findings demonstrate that the proposed solution outperforms the
current state of the art in both adaptability and accuracy, enabling it to be integrated into current Endpoint Detection
and Response systems.

Keywords: ransomware; high-entropy sources; endpoint detection and response systems; randomness; encryption

I

R

t

(

b

c

a

p

s

c

v

i

l

c

e

v

t

v

t

v

a

d

p

o

o

p

©
A
w
j

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
ntroduction

ansomware has become a serious concern for modern organiza-
ions, resulting in direct costs of hundreds of thousands of dollars
USD) and severe service disruptions. Additionally, reputations may
e harmed, and down-chain costs caused by the cessation of services
an reach millions. In 2023, the average recovery cost was slightly
bove $2 million according to a report surveying over 3000 com-
anies across 14 countries [1]. Even more alarmingly, by 2031, ran-
omware is estimated to cause damages of $265 billion [2]. In most
ases, the modus operandi (Fig. 1) is relatively straightforward: an ad-
ersary penetrates the network of an organization, either by exploit-
ng a vulnerability or through phishing emails, and then performs
ateral movement to find as many possible hosts and servers to en-
The Author(s) 2025. Published by Oxford University Press. This is an Open Access article
ttribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by- nc
ork, in any medium, provided the original work is not altered or transformed in any way, a

ournals.permissions@oup.com
rypt with a subset of their files with a random key and a strong
ncryption algorithm [3]. Next, the adversary leaves a notice to the
ictim notifying how the ransom can be paid to receive a decryptor
o recover the file. On specific occasions, e.g. MAZE, CONTI, ad-
ersaries may use a “double extortion” scheme in which, apart from
he extortion to recover the encrypted files, they also threaten the
ictim to disclose files with sensitive information. In other cases, the
ttacker may also threaten to communicate with clients or perform a
enial of service attack to put even more pressure on the victim and
ay the ransom. The above is part of a general crime scheme that
perates under the Malware as a Service model in which criminals
utsource services and products, e.g. malware, hacking tools, to their
eers [4].
1 distributed under the terms of the Creative Commons
- nd/4.0/), which permits non-commercial reproduction and distribution of the

nd that the work is properly cited. For commercial re-use, please contact

https://doi.org/10.1093/cybsec/tyaf009
http://orcid.org/0000-0003-4296-2876
mailto:kpatsak@athenarc.gr
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:journals.permissions@oup.com

2 Casino et al.

Figure 1. R ansomw are modus operandi.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
The primary objective of this work is the early detection and
blocking of the encryption process of ransomware to prevent the
encryption of more files, considering that an adversary has man-
aged to get access to an endpoint and has established a connec-
tion to her C2 server; stage 6 of the cyber kill chain. There are
many options in the literature to achieve this objective, e.g. hook
cryptographic-related API calls, monitor the status of honey files,
and prevent deletion of shadow copies. Nevertheless, common prac-
tice has shown that threat actors bypass these measures. We argue
that the most effective way to achieve this is to monitor file system

changes and determine whether the new created files are encrypted.
To resolve this, one must be able to efficiently distinguish encrypted
files from those that are not. Clearly, due to their contents, such
files look more random and essentially have high entropy. The core
idea is that if one monitors file system changes and investigates the
write events, one could identify ransomware attacks, as the encrypted
files would write more files with content looking “random” than
others.

However, such an approach is inefficient, prone to high false pos-
itives, and introduces significant performance overhead. Clearly, pro-
cessing each file that is modified in a system, and each time this
happens, is a huge computational overhead that may render a com-
puter unresponsive. Sampling methods may alleviate this problem by
analysing fragments of the modified files and basing their assessment
on the extracted sample. Nevertheless, while entropy is a good indi-
cation that something looks random, using it alone is not an accurate
measure to determine that a file is encrypted. The reason is that high-
entropy files are not only encrypted files but also compressed files.
Note that the term compressed files does not refer only to traditional
compressed files, e.g. ZIP, GZ, and RAR. Many audio and video file
formats, as well as MS Office, JAR, and other proprietary formats,
use compression to shrink the file size. As a result, additional metrics
and tests must be performed on the extracted sample to prevent false
alerts when processing such files.

In this work, we first analyse the accuracy and performance of
several randomness tests in distinguishing encrypted from nonen-
crypted files, to distil a set of them to be used as features to train ma-
chine learning models. By properly selecting these tests, we may accu-
rately and timely classify encrypted and nonencrypted data streams
in real time. In addition, we provide a dataset with an equally dis-
tributed number of file types, which can be used as a benchmark by
researchers to assess the utility of our proposal and facilitate com-
parisons with the state of the art and research in the field.

The rest of this article is organized as follows. The next sec-
tion provides the reader with the relevant background on ran-
somware detection and existing approaches. Section Proposed ap-
proach describes our method, the dataset creation, and the feature
extraction methodology. Section Experiments is devoted to the ex-
perimental setup and the tests performed to evaluate our method.
Beyond merely theoretically testing our approach, we test and vali-
date our proof of concept approach using recent malware samples.
Section Discussion analyses the outcomes and findings. Finally, sec-
tion Conclusion summarises the contributions and identifies poten-
tial directions for future research.

Background

In this section, we describe the most widely used randomness eval-
uation methods to determine whether a specific data stream is en-
crypted, with special regard to the tests used in this article.

Entropy

According to Information Theory [5], the measurement of entropy
sets a numeric value on the unpredictability of data of an informa-

R ansomw are detection through classification of high-entropy file segments 3

t

t

t

S

t

C

T

b

h

a

e

a

d

C

c

A

T

T

v

c

J

T

p

t

f

b

w

m

S

T

f

t

r

d

K

G

q

s

A

T

e

[

M

T

s

P

T

s

[

c

A

R

T

d

a

L

T

d

F

T

d

F

o

t

l

u

s

o

B

T

f

p

t

f

b

F

S

r

f

1

P

O

T

s

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
ion source. Entropy tests, however, tend to focus on either the iden-
ical or independent distribution properties of a sequence. Therefore,
he higher the entropy, the more independently (Correlation between
uccessive Entropy Values [6]) or identically (Shannon-entropy) dis-
ributed bits are in the sample.

hi-square test

his test measures the uniformity of the distribution of 1-byte or 1-
it expressed as integers within any Z (A) . This method determines
ow much a dataset conforms to a particular distribution, expressed
s an absolute value alongside a confidence percentage χ% . There
xist three possibilities [7]:

(1) 1% > χ% or χ% > 99% , the stream is not random.
(2) 1% < χ% < 5% or 95% < χ% < 99% , the stream is “sus-

pected” to be random.
(3) 5% < χ% < 10% or 90% < χ% < 95% , the stream is likely

not to be random.

As can be seen, this is a two-tailed test; it is a common error to
ssume that only extremely low-confidence values indicate nonran-
omness. In this manner, unlike Shannon-entropy measurements, the
hi-square test can identify any excessively uniform Z (A) , such as a
ounter (which would report a high Shannon-entropy).

utocorrelation test

his test analyses correlations to discover cyclic or periodic patterns.
he randomness is computed by calculating autocorrelation for the
alues of the data stream at different time lags [8]. Correlation values
lose to zero correspond to a highly random pattern.

arque–Bera test

his test matches the skewness and kurtosis of the data and com-
ares them with the values of a normal distribution. More concretely,
he null hypothesis is a joint hypothesis that assumes zero values
or skewness and excess kurtosis, as expected from a normal distri-
ution. Any deviation from this increases the Jarque–Bera statistic,
hich results in values far from zero if the data do not follow a nor-
al distribution.

hapiro–Wilk test

he Shapiro–Wilk test [9] estimates whether a random sample comes
rom a normal distribution. The null hypothesis of this test assumes
hat the population is normally distributed. Thus, the hypothesis is
ejected when the P -value ≤ .05 (threshold value), denoting that the
ata tested are not normally distributed.

olmogoro v–Smirno v test

iven two empirical cumulative distribution functions, this test
uantifies the maximum absolute difference between them as a mea-
ure of disagreement [10].

nderson–Darling test

his test is closely related to the Kolmogorov–Smirnov test. How-
ver, it performs better when applied to small data streams as seen in
 11].
onobit test

his computes the balance of ones and zeros in a bit stream. Given a
equence of n bits, it tests whether:

er f c
(| # zeroes − # ones |

n
√

2

)
< 0 . 01 .

oker test

his test evaluates the number of repetitive patterns found in a data
tream. First, the input is split into 4-bit segments, which belong to
0,15] when converted into an integer. Let us denote as f (i) the oc-
urrences of each number i . Next, we evaluate:

X =

16
5000

15 ∑

i =0

f (i) 2 − 5000 .

ccording to FIPS-2-140, the test is passed if 2 . 16 < X < 46 . 17 .

uns test

his test analyses consecutive patterns in a bit stream. Each run is
enoted as a set of consecutive bit patterns, which are counted to
ssess the proportion of repeating patterns.

ong runs test

his test determines if there are runs of length above 25, which could
enote nonrandom bit streams.

IPS-2-140 test

his test is a set of four empirical experiments to analyse the ran-
omness of binary data streams. For our experiments, we utilize the
IPS-2-140 cryptographic module test with a minimum block size
f 20 000 bits. This ensures that the tests are independently applied
o each data block. The set comprises the monobit, poker, runs, and
ong runs tests described above.

The definitions for SP800-22 can be found in the official doc-
mentation for NIST SP800-22 [13]. Full equations and test de-
criptions are available in that document. We provide a short-form
verview of the four tests used below:

lock frequency

his test identifies the number of 1’s within an M-bit block. It is ef-
ectively a χ2 test on each M-bit block in a sequence of size N. The
roportion of blocks for which an approximately identical distribu-
ion (0.5) of 1s is identified determines whether this test passes or
ails. A minimum input size of 100 bits is recommended, and M must
e some smaller value by which N can be exactly divided.

requency (Monobits) test

imilar to FIPS-140-2 described above, this test counts the occur-
ences of ones and zeroes throughout the tested sequence, and checks
or an identical distribution (0.5 rate of occurrence for both 0 and
). This test requires a minimum of 100 bits to function, and fails if
 -values resulting from the test fall below .01.

verlapping templates test

his test uses an M-bit sliding window over an N-bit sequence to
earch for specific M-bit patterns. This is effectively a test for the

4 Casino et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
occurrence of specific M-bit strings within a sample. Should the M-
bit pattern not be identified within M, M shifts by one bit position
in the N-bit sequence. Unlike the nonoverlapping template test, it
also slides by only one bit position if the pattern is found. A table of
occurrences of values in the set M is produced, and the frequency of
specific patterns within an N-bit sequence is identified.

Cumulative sum

This is a test of excursion from a normal value (0 at initialization of
the test). If a 0 is detected, the index is incremented by 1, and a new

value of x − 1 is recorded. If a 1 is detected, the index is incremented
by 1 and x + 1 is recorded. This process is repeated for the length of
N in the input sequence. This test is a form of random walk, which
will detect some forms of nonrandomness, where sequences have an
over large, or periodic excursion from the normal.

Related work

It is the ideal of every organization’s information security team to
identify and prevent an attack before it has a chance to execute its in-
tended operations on a target system [14]. However, this is easier said
than done. Signature detection, even when enhanced with semantic
models and machine learning, cannot identify all potential attacks
[15 ,16]. Furthermore, the most sophisticated solutions are restricted
(by cost, required expertise, and resources) to the best-equipped orga-
nizations. Proof of prevention for a piece of malware is not proof of
prevention for the entirety of a ransomware attack. Contemporary
ransomware is a composite affair, with multiple infection vectors,
highly variable malware loaders, and further malware that executes
in parallel with crypto-ransomware binaries [17]. The latter is per-
fectly illustrated in the latest “Ransomware Activity Report” [18]
highlighting that since January 2020, the uploaded malware samples
belong to 130 unique families. Notably, these samples can be grouped
into more than 30 000 different similarity clusters. Sophos has iden-
tified that attacks are increasingly targeted, a trend first observed in
2018 that has become the dominant form of crypto-ransomware ex-
tortion since 2021 [1 ,19]. Such attacks include data theft (for resale)
alongside the ransomware itself. This makes the prevention of mal-
ware on an individual basis a poor guarantor of continued system

integrity.
As a result, in-line monitoring of the file-system state has re-

ceived increasing attention from the security community. The ran-
domness of encrypted files has often been used to detect ransomware
attacks in progress [20–22]. The core idea is that one may detect un-
usual increases in entropy on a local file system to identify whether
mass encryption is underway. Then, accounting for any scheduled
encrypted backups and other mass encryption operations, discern
whether this entropy increase is legitimate or potentially malicious.
Theoretically, this would allow one to identify a crypto-ransomware
attack in progress, potentially stopping it before many files have been
encrypted.

Nevertheless, there are several criticisms of this line of research.
For instance, both McIntosh et al. [23] and Pont et al. [24] discuss
why such approaches are inefficient in practical applications. The
simple fact is that organizations are combating ransomware, hitting
a threshold value of encrypted files. Value, as opposed to a number,
as once business-critical operations are significantly disrupted, the
attacker has the leverage required to demand ransom. This thresh-
old can be understood as a “denial of capability.” Computational
efficiency is low in the proposed statistical approaches: a purely sta-
tistical approach to entropy measurement is prone to false positives
where data compression and encryption are both expected on some
scale. Web services often use compression for media to reduce the
throughput resulting from queries to their servers. Formats such as
WEBP are extremely hard to differentiate from encryption using the
few efficient statistical test batteries (FIPS 140-2, some subtests of
NIST SP800-22) [25]. Even JPEG, RAR, and ZIP files can be com-
plex for purely statistical approaches to differentiate from encrypted
data without further calls for file-specific metadata. These deficiencies
result in a slow, inaccurate classification that may identify encryption
in progress but not in a timely enough manner to prevent a malicious
actor from achieving the aforementioned “denial of capability”: the
point at which an organization must consider whether or not to pay
the ransom to restore services [26].

The open problem addressed by the authors in this article is not
the design of novel tests but the implementation of novel, high-speed
classification of randomness subtypes to differentiate legitimate pro-
cesses from potential ransomware activity. Tools like Paybreak [27]
rely on process hooking to identify interactions in dynamically linked
libraries to detect and attempt to thwart calls to system crypto-
libraries. This does not; however, solve the problem of obfuscated
calls or ransomware, which leverages trusted execution environments
to hide their activities [26]. To prevent file restoration, the bulk of
ransomware deletes the shadow copies in Windows systems. Thus,
Raccine [28] intercepts such calls to vssadmin and kills the invok-
ing process.

Beyond ransomware detection, the level of interest in distinguish-
ing between encrypted and compressed data streams has risen signif-
icantly. This can be partly attributed to the continuous integration
of end-to-end encryption in online communications. Commonly em-
ployed approaches involve measuring Shannon entropy or the chi-
square test on fixed-size data segments (e.g. 1, 2, and 4 KB) to differ-
entiate various data types, including compressed and encrypted data.
However, when there are limited samples, the entropy estimation ap-
proach is ineffective [29–31]. Moreover, high dependence on entropy
measures is not the best option in the presence of other high-entropy
data sources. Typical examples of such sources are compressed files,
MP3, PDF, or even MS Office files. Beyond the accurate classification
of high-entropy files, the time and resource allocation for this opera-
tion in a continuous monitoring setup presents one of the most chal-
lenging aspects of the problem. Clearly, such monitoring at the net-
work and file system level may introduce serious processing bottle-
necks if the necessary computations cannot be performed efficiently
enough.

Beyond ransomware detection, the same issue is also found in
traffic analysis [32]. Existing mechanisms rely on continuous traf-
fic monitoring, information about complete packet transmission, the
beginning (e.g. magic headers) and the end of a connection or a file,
and so on. Evidently, real-time monitoring is inefficient using such
strategies due to the huge volumes of data to be analysed. However,
these strategies demonstrate their usefulness when examining previ-
ous events or focusing solely on specific connections. Therefore, we
harness the most accurate yet fast to extract and process features to
unleash real-time classification when monitoring the payload of ran-
domly selected packet fragments. In the literature, there are a few

approaches in this research line, such as [33–38].

Proposed approach

In the following paragraphs, we define the capabilities and require-
ments of our proposal. First, we present the basic assumptions and
model. On this ground, we discuss efficient methods for implement-

R ansomw are detection through classification of high-entropy file segments 5

i

t

p

B

A

c

D

t

i

p

m

d

t

T

N

j

t

T

b

t

fi

c

t

fi

m

w

w

t

i

t

n

p

fi

T

d

l

t

s

t

S

t

p

s

a

l

t

c

o

s

i

P

p

t

f

t

t

a

f

a

fi

s

c

r

I

r

m

f

s

t

w

k

m

c

B

A

m

w

t

c

t

b

t

t

t

s

b

d

a

a

d

r

s

r

t

o

p

fi

fi

f

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
ng the proposed solution on Windows systems, which is the primary
arget of ransomware attacks. Then, we detail the feature selection
rocedure and the methodology adopted for our study.

asic architecture

s already discussed, our goal is to keep track of the file system
hanges and determine whether a binary is writing encrypted files.
ue to the amount of file system changes in modern operating sys-

ems, this effort is rather high, and not all changes can be monitored
n terms of their whole content. Moreover, some processes are ex-
ected to write encrypted files, e.g. system processes may perform
emory dumps, browsers and other processes may keep sensitive
ata in encrypted files, and so on. Therefore, detecting encrypted con-
ent does not necessarily mean that the process belongs to malware.
he decision must be based on the context of the write operations.
ote, however, that the latter is difficult as malware sometimes in-

ects into legitimate processes, and, in the case of Windows, the Con-
roller Access Folder feature may be tampered with malicious intent.
he basic factors can be stripped down to which process, of which
inary writes an encrypted file, to which folder, and how many times
his has been performed already. Note that for efficiency, we want
le segments. One may argue that since some file formats may lo-
ally contain an encrypted fragment (e.g. a digital signature), more
han one fragment may have to be collected to determine whether a
le is encrypted. However, we argue that, while this is true, such frag-
ents are highly unlikely to span across the length of the segments
e consider in our experiments.

Based on the above, in our model, we assume that a service S ,
hich runs in the background with kernel-level permissions, moni-

ors file system changes. To prevent computational overheads, S mon-
tors only file write events and may also have a whitelist of processes
hat are not monitored, based, of course, on the location of their bi-
aries and or hashes. For each file write event, S keeps track of the
rocess p with process ID pid , the user who initiated this process, its
lename and path, as well as the filename and path of the affected file.
his information is compared against a policy table PT , which will
etermine whether this change has to be further assessed. Then, S col-
ects a sample of size SZ of the affected files and uses a set of methods
o extract the necessary features from the file fragment. These mea-
urements are then fed to a pretrained model to determine whether
he affected file contains encrypted content. Should this be the case,
 raises a counter, which is pid specific. Once the counter exceeds a
hreshold T , S considers that p is a ransomware-related process and
auses p and all the children of pid . Note that using fragments of
ize SZ prevents continuous computations, as changes to small files
nd minor file changes to the file system can be omitted, resulting in
ess resource consumption.

For Windows-based systems, S can be implemented with minifil-
er drivers [39], which have kernel-level access and may efficiently
ollect I/O changes without introducing significant computational
verhead. Due to its access, such a driver not only monitors the file
ystem changes but can also determine which is the process of mak-
ng the change and pausing or even killing it. It should be noted that
T may have fine-grained policies that prevent the usage of specific
rocesses from specific users or apply constraints based on time or
ype of access (e.g. RDP). Similarly, PT may whitelist specific actions
rom users/processes, significantly reducing the number of samples
hat must be collected by S .

The basic flow is illustrated in Fig. 2 . In essence, a file sys-
em watcher monitors I/O changes. Once a change is performed,
n event is triggered, and the watcher collects the user who per-
ormed the action, the process ID of the processes performing the
ction, the name of the process, its path, the path of the affected
le, and the performed filesystem action; that is delete, write, and
o on. This information is compared against a policy table which
ontains a set of rules. For instance, the table contains a list of bina-
ies, which are allowed to perform specific actions in specific folders.
f the process performing these changes does not conform to these
ules, a scanning process is requested. In this scanning, a file seg-
ent is selected and the corresponding features are extracted. The

eatures are then passed on to our trained machine learning to as-
ess whether the file is encrypted. Should the model determine that
he file is encrypted, since the process does not belong to the ones
ith the allowed policies, the process with the corresponding PID is
illed.

Finally, we define a set of desired properties to be fulfilled by our
ethod that will guide the selection process of the features and ma-

hine learning models:

� Accuracy: the proposed method should be able to accurately dis-
tinguish encrypted from nonencrypted high entropy data seg-
ments.

� Efficiency: the outcomes must be fast and robust to allow real-
time responses.

� Adaptability: the proposed method must be versatile to allow cus-
tomization and fine-tuning of parameters/features, depending on
the size of the samples, to enable lightweight and faster classifi-
cation.

� Reproducibility: ensuring easy deployment and verification, the
proposed methodology should be user-friendly and allow seam-
less integration with existing solutions. To this end, we use state-
of-the-art methods and a set of rigorously defined strategies for
the collection, analysis, and subsequent classification of the bit
streams.

enchmark dataset

s a typical procedure, the creation of a statistically sound bench-
ark is crucial to ensure the robustness of the outcomes [36]. Hence,
e use files collected from reputable and widely used sources, de-

ailed in Table 2 , to create a benchmark dataset. We have carefully
urated our dataset to include an equal number of files for each file
ype (text, image, binary, video, audio, and PDF) to eliminate possi-
le biases. Note that the randomness of compressed files depends on
he original uncompressed file (see Section 6). Moreover, we highlight
hat the selected file types are the most representative according to
he state-of-the-art [34 , 36 , 40 , 41].

Next, since one of the goals is to classify high entropy data
treams, we generate a set of fixed-size compressed and encrypted
it streams that range from 64 up to 1024 KB, including all interme-
iate powers of 2. As several encryption and compression methods
re used in real-life scenarios, we selected a set of widely used ones
nd summarized them in Table 1 . The dataset creation procedure is
escribed in Algorithm 1. In the context of Algorithm 1, both ar-
ays Sizes and Methods employed in line 1 correspond to bit stream
izes ranging from 64 to 1024 KB, and the components of Table 1 ,
espectively. Once we apply Algorithm 1 to the data extracted from
he benchmarks described in Table 2 , the resulting output is an array
f datasets (one for each file size), each storing ∼1.2 GB of com-
ressed and encrypted files. More concretely, for each file type, we
rst generate 100 MB of encrypted files and 100 MB of compressed
les, that will be later split iteratively from 1024 to 64 KB sizes, con-
orming to a total of 6 GB, which is the size of the whole dataset.

6 Casino et al.

Figure 2. Overview of the proposed approach.

Table 1. Selected encryption and compression methods.

Considering the possible combinations, each input generates 10

different new files.

Encryption Compression

AES (128 / 192 / 256) ZIP RAR BZIP2 GZIP
Camelia (128 / 192 / 256)

Table 2. Source datasets used to obtain the randomly selected

files for our benchmark.

File type Benchmark

IMG COCO Dataset [42]
IMG Microsoft RGB-D Dataset 7 Scenes [43]
PDF ArXiv.org e-Print Archive
TXT Project Gutenberg [44]
MP3 Several classical music symphonies
VIDEO Y ouT ube-8M [45]
BIN/EXEC %SystemRoot% \ System32 in Win10 x64

/sbin in Ubuntu 16.04

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
To achieve a balanced representation of files and avoid biases dur-
ing experimentation, we use random selection to form a subset with
an equal number of encrypted and compressed files for our exper-
iments. Therefore, we generate five datasets (i.e., one for each file
size denoted as 64, 128, 256, 512, and 1024), each composed of
exactly the same number of encrypted and compressed files. Note
that, in the case of extremely unbalanced samples, we could ob-
tain a very high overall accuracy, yet it could cover the fact that the
method cannot classify correctly the underrepresented class, which is
a classical problem [46]. Therefore, despite the potential real-world
prevalence of imbalanced datasets, such imbalance can hinder the
robustness of the performance of learning systems [47], and thus,
several balancing strategies can be used [48]. In our case, as we cre-
ated the dataset, we opted for a balanced one, to fulfil the previous

claims in the literature. We made our dataset available in Zenodo
[49] to ease further comparisons and ensure the reproducibility of the
results.

Feature selection

After assessing the randomness tests, only some of them met the re-
quirements to be adopted in our system based on their performance
and computational cost. In particular, the chi-square test proved to
be an efficient mechanism to distinguish true identically distributed
random bit streams from nonrandom ones. Moreover, the chi-square
test achieved better accuracy than other distribution-based methods
such as Kolmogorov–Smirnov and Anderson–Darling. It is; however,
unable to identify correlations between bits in a sequence without
substantial further analysis [50]. FIPS-140-2 tests are efficient and
reliable for ensuring that encrypted bit streams exhibit basic levels
of bit-level independence and identical distribution. However, FIPS-
140-2 is known to be a poor detector of partially structured data:
the poker and run tests cannot differentiate between partially em-
bedded counters and truly ransom sequences [25]. However, they are
extremely fast and can detect egregious divergences from random-
ness, making them an ideal component of our statistical test battery.
Furthermore, the Monobit test can help identify potential bias in a
file or Random Number Generator output, providing a simple and
fast method of checking whether 1 or 0 occurs more frequently. This
does not allow for any detailed characterization of said bias, but is
a good first step and low enough in computational resource costs
that it is worth including as the first stage of more rigorous statistical
testing.

After selecting a set of unique tests (i.e., SP 800-22 and FIPS-
140-2 have overlapping tests), we tested a subset of SP 800-22 tests
according to their accuracy and efficiency in distinguishing between
encrypted and compressed files. The frequency within a block test, the
approximate entropy test, and the cumulative sums test were selected
for inclusion in the classification tool set due to their performance in
preliminary tests.

The average and correlation tests exhibited slightly better accu-
racy and less variability in encrypted streams than in compressed
ones. However, they failed to provide reliable results in the case of
high-entropy small data files. The remaining methods were not se-
lected since either (1) they were unreliable—both encrypted and com-

R ansomw are detection through classification of high-entropy file segments 7

Algorithm 1 Database Generation.

1: function Create Dataset (DataSet D, Array Sizes, Array Methods) � The bit stream sizes and the set of comp. and enc. methods
2:

3: while (FilesToProcess) do
4: f i = SelectTheNextFile(D); � Next source raw file
5: V = CreateFileVariants(f i , Array Methods); � Processes f i to create Encrypted and Compressed variants
6: S = SplitFiles(V , Array Sizes); � Files in V are split into different sizes
7: end while
8: end function

Table 3. Initial set of features used in our approach.

Notation Description

Shannon-Entropy The entropy of the sample
Jarque-Bera The Jarque–Bera statistical test
Shapiro-Wilk The Shapiro–Wilk statistical test
Block_freq NIST SP800-22
Freq_average NIST SP800-22
Cumu_sum NIST SP800-22
Overlapping_template NIST SP800-22
Chi_score The Chi-square statistical test
Monobit Monobit test, as part of the FIPS-140-2

test
Long Run Long run test, as part of the FIPS-140-2

test
Poker Poker test, as part of the FIPS-140-2 test
Run Runs test, as part of the FIPS-140-2 test
Fips_out The final outcome of the FIPS-140-2 test

p

v

s

d

p

t

c

c

a

E

F

I

s

a

i

v

e

s

t

t

b

t

C

v

fi

C

t

h

O

A

d

a

o

h

a

J

v

C

g

t

F

T

b

p

t

f

u

s

v

b

a

d

1

o

c

y

w

a

p

R

w

a

t

l

c

(

c

t

i

o

r

a

s

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
ressed files had indistinguishable results from a statistical point of
iew—or (2) their computational cost is prohibitive. For instance, a
ubset of the Diehard tests (birthday spacing, parking lot, and ran-
om spheres) provide meaningless outcomes since they are usually
assed by both compressed and encrypted files. Additionally, Diehard
ests and many tests in the Crush batteries of TestU01 [51] require
onsiderable computational resources, and, as such, they are not effi-
ient enough to be used for real-time purposes. The selected features
re detailed in Table 3 .

xperiments

eature analysis

n this section, we analyse the values obtained by the features de-
cribed in Section 4.3 for each database. As it can be observed, this
nalysis does not include the battery of FIPS tests, which are analysed
n Section 5.2. Therefore, Figs 3 –5 represent the different features’
alues for all datasets. Since the distribution of values in the case of
ncrypted files was very stable across the different file types, we con-
idered all the encrypted files of each dataset to compute them. Note
hat each dataset was normalized before computing all values; thus,
he values range between 0 and 1.

In the case of the 64 KB dataset (cf. Fig. 3), we observe that the
inary and image compressed files have similar values for all fea-
ures, which are close to 0 for Block_freq , Freq_average , and
umu_sum . The compressed PDF, Video, and TXT files show higher
alues in the aforementioned features. Finally, MP3 compressed
les obtain the highest range of values in the Freq_average , and
umu_sum tests. The 128 KB dataset values are similar to those ob-
ained in the 64 KB dataset. The most noticeable difference is the
igher range of values obtained by Shapiro-Wilk and that the
verlapping_template ’s range is the highest among all features.
ccording to the previous observations and the values of the 256 KB
ataset (cf. Fig. 4), the range of values of Shapiro-Wilk grows
ccording to the file size. Moreover, we can observe that the range
f Entropy and Chi_score values for the 256 KB dataset is also
igher than in previous file sizes. In the 512 KB dataset, we observe
 notable growth in the value range of Entropy , Shapiro-Wilk ,
arque-Bera and Chi_score . Interestingly enough, the range
alues of other features such as Block_freq , Freq_average ,
umu_sum are reduced with respect to smaller file sizes. Finally, the
rowth patterns observed in the 512 KB are extended in the case of
he 1024 KB dataset (cf. Fig. 5).

IPS-140-2 test analysis

he well-known FIPS-140-2 (rng-tools rngtest utility in Linux) is a
attery of four tests. Their efficacy in distinguishing between com-
ressed and encrypted small file size bit streams has been proven in
he past [36]. However, an analysis of the performance of each of the
our FIPS-140-2 tests has not been done previously.

To analyse the accuracy of the FIPS-140-2 battery, we created a
niform factor, namely a γ factor, to relax the threshold values of
uch a test by applying them as a multiplier of each test’s boundary
alues. For instance, given a boundary value a , the new value will
e set as a + a ∗ γ , or a − a ∗ γ in the case of a lower bound. The
im of such γ factor is to find the optimal relationship between the
ifferent file sizes evaluated in this article and the strictness of FIPS-
40-2. Therefore, we applied the FIPS-140-2 test according to a set
f γ values to all datasets and depicted the outcomes in Fig. 6 .

As it can be observed, the values of γ modify the outcomes ac-
ording to each file size. Overall, strict values (i.e. low values of γ)
ield the best outcomes, except in the case of the Run test (cf. Fig. 6 e),
hich affects the overall outcome of the test (cf. Fig. 6 a). Since we

pplied a fixed set of γ values, the thresholds are modified by multi-
lying the boundaries of each test. Thus, in the specific case of Long
un (cf. Fig. 6 c), the upper threshold value is 26 until γ = 0 . 04 , in
hich case it changes to 27, which explains the sudden reduction in

ccuracy.
The outcome of the analysis is quite straightforward. Even though

he Runs test can be relaxed to obtain a more efficient outcome for
arge files, the truth is that the most accurate test is Monobit. More
oncretely, Monobit achieves better accuracy in its most strict form
i.e., γ = 0 , thus the normal setup) than the rest of the tests in any
onfiguration and file size. Note that we tried negative γ values, but
he accuracy decreased dramatically, and thus, they were not included
n the possible range of values.

Therefore, given the outcome of this experiment, we enhanced
ur approach as follows: (i) we increased the accuracy due to the
eliability of Monobit by discarding the rest of FIPS-140-2 outcomes,
nd (ii) we reduced the number of computations and features of the
ystem, improving the performance of the classification models.

8 Casino et al.

Figure 3. Detail of the features’ values for 64 KB files. x -axis correspond to the normalized values between 0 and 1 for each feature measured in y -axis. The

larger the box, the higher the feature’s variability.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
Classification experiments

To measure the capabilities of our proposed features for binary classi-
fication (i.e. to differentiate between compressed and encrypted sam-
ples), we selected some well-known and widely used machine learn-
ing methods. We used a Support Vector Classifier (SVC), a nonpara-
metric ensemble classifier (Random Forest), and XGBoost, which im-
plements gradient-boosted decision trees.

The selected classification methods are shown to be efficient (i.e.
requiring minimal processing of the input data) and accurate with
both small and large feature sets, being less prone to overfitting than
deep learning methods, especially when working with tabular data
[52].

We tuned the hyperparameters with grid search, using 10-fold
cross-validation over the full dataset in an independent experiment to
maximize classification performance. Table 4 describes the features
that achieved the best performance. In the case of the SVC model,
the best-performing configuration was achieved when using a radial
basis function (RBF) kernel. We used 10-fold cross-validation and
repeated the experiments three times to get an unbiased estimate of
the performance of the predictive models.

For this and the rest of the experiments performed in the article,
we selected the popular platform Google Colab 1 in its free version
(2x 2.3GHz CPU and 12 GB of RAM), while we utilized the imple-
mentations of the scikit-learn 2 library, to ensure the replicabil-
ity of our experiments. Such specifications establish a baseline that
can be easily outperformed by that low-mid performance desktop
1 https:// research.google.com/ colaboratory/
2 https://scikit-learn.org
computers. For the sake of reproducibility of the experiments, the
sources are available on GitHub 3 .

To simplify comparisons, we use standard classification metrics
to evaluate the performance of the trained classifiers. Hence, the out-
comes achieved by each model were computed in terms of precision,
recall, accuracy, and F 1 score, and are summarized in Tables 5 and
6 . As can be observed, the results improve according to the file size,
with Random Forest and XGBoost exhibiting the best performance
compared to the SVC model, which is clearly outperformed in all ex-
periments. The low values of standard deviation obtained by all the
classifiers indicate the robustness of the selected features.

In general, according to individual experiments, the most difficult
file types to capture are Video, Image, and MP3, while the easiest
ones are Binary and TXT. The misclassification errors occur exclu-
sively in the case of compressed files (i.e. the precision in the case of
encrypted files is 100%), which sometimes exhibit values that resem-
ble those of encrypted files. Therefore, the system is able to capture
all encrypted files due to the specific range of their feature’s values,
which is the level of restriction that we aimed for in our system (i.e.
misclassifying an encrypted file would incur further security issues
than misclassifying a compressed file).

Regardless of the file type, the outcomes show minimal errors on
average in 256 KB files (i.e. average F1-score is 0.98, and it is equal
to 1 in TXT files) and close to none in 512 KB files (i.e. average F1-
score is 0.9965). Note that the experiments reported in the All rows
correspond to blind experiments (i.e. training the models with all the
possible file types, thus a more challenging experiment) considering
3 https:// github.com/ francasino/ Ransomware _ analysis

https://research.google.com/colaboratory/
https://scikit-learn.org
https://github.com/francasino/Ransomware_analysis

R ansomw are detection through classification of high-entropy file segments 9

Figure 4. Detail of the features’ values for 256 KB files. x -axis correspond to the normalized values between 0 and 1 for each feature measured in y -axis. The

larger the box, the higher the feature’s variability.

t

a

s

t

r

f

s

r

M

o

w

w

w

t

a

e

t

t

E

b

M

T

w

w

i

w

o

c

o

r

s

t

a

t

p

a

t

i

w

f

w

c

i

t

d

n

h

t

o

q

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
he whole dataset for training and testing, and hence are not a direct
verage computed from the rest of values.

Since each model processes data and features differently, we
elected the Random Forest due to its high interpretability [53 ,54]
o derive the relevance of each feature in the tree decision. The
elevance evaluation of the features in the Random Forest model
or each dataset is depicted in Fig. 7 . As it can be observed, a
pecific subset of features always has the most significant relevance
egardless of the file size. We noticed that Entropy , Chi_score ,
onobit , and Cumu_sum are the most relevant features regardless
f the model used.

Regarding entropy, we observed that encrypted bit streams al-
ays provide the highest possible value of entropy, yet this is not al-
ays the case for compressed bit streams. The challenge arises when
e find compressed bit streams that achieve indistinguishable en-

ropy levels from those of encrypted bit streams. Thus, entropy is
 reliable indicator in most cases but not for a percentage of them,
xplaining why it has a high relevance but a low variation according
o Figs 3 –5 .

Interestingly, we further noticed that the relevance of some fea-
ures varied according to data size. More concretely, the relevance of
ntropy and Chi_score slightly grows according to the file size,
ecoming more relevant than the rest in the 1024 KB dataset.

odel performance and optimizations

o further assess how well the model would perform in contexts
here computing power and memory are scarce (e.g. IoT devices),
e studied the accuracy of the Random Forest model when consider-
ng a small subset of features according to their relevance. Therefore,
e repeated the classification experiments by creating a new subset
f datasets (i.e. considering one, two, three, and all features), only in-
luding the selected features in each case. Table 7 shows the accuracy
btained in each case.

As it can be observed, the more features used, the more accu-
acy, yet by using only one feature, the model already achieves out-
tanding accuracy, especially for large file sizes, aligned with the fea-
ure relevance observed in Fig. 7 . Note that the fact that Entropy
chieves such high accuracy does not diminish the rest of the fea-
ures since, for instance, Chi_score obtains similar values when ap-
lied independently. Due to the high correlation between Entropy
nd Chi_score , the improvement is reduced when using both fea-
ures. When Monobit is added to the feature set, the improvement
s greater, since the model has a richer set of observations to operate
ith. The main result of this experiment is that selecting a subset of

eatures according to each file size enables adaptable configurations
hen considering the trade-off between computational cost and ac-

uracy.
The latter can be used to establish different sets of policies accord-

ng to the system under surveillance and the hardware capabilities,
hus enabling devices with low computing resources (e.g. edge IoT
evices) to perform faster analysis (e.g. using larger sets of data and
ot computing the whole feature set when possible), at the cost of
aving a slightly lower accuracy. Such dynamism enhances the adop-
ion of our solution and provides efficient use of resources regardless
f the device under analysis.

Regarding performance, for instance, the XGBoost model re-
uired less than 20 s to train and 0.1 s to classify all the values for a

10 Casino et al.

Figure 5. Detail of the features’ values for 1024 KB files. x -axis correspond to the normalized values between 0 and 1 for each feature measured in y -axis. The

larger the box, the higher the feature’s variability.

Figure 6. Detail of the FIPS tests’ accuracy for each file size and gamma.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026

R ansomw are detection through classification of high-entropy file segments 11

Table 4. Configuration parameters of each model.

Model Best configuration

Random

Forest
n_estimators = 100, max_depth = 10

XGBoost learning_rate = 0.01, max_depth = 4, subsample
= 0.6

SVC kernel = ‘rbf’

f

c

T

i

t

o

t

d

p

m

t

p

n

I

t

m

a

t

i

o

t

d

e

p

w

e

p

t

E

T

h

o

c

e

a

o

v

p

g

fi

t

fi

o

o

d

t

t

a

a

a

C

I

p

s

fi

p

(

M

T

a

[

a

t

c

o

0

c

t

a

5

b

p

a

t

t

s

d

t

r

fi

c

o

h

c

i

m

g

t

a

f

v

m

t

C

s

b

s

l

h

fi

p

t

c

t

p

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
ull 10-fold cross-validation loop in the case of the 64 KB dataset (i.e.
onsidering a model with all features, thus the worst-case scenario).
herefore, assuming that such a dataset contains 19 200 records, the

ndividual prediction time is far below the order of milliseconds. Note
hat, due to the richness of our dataset, the models need to be trained
nly once at the beginning. Nevertheless, if new file types were added
o the dataset, the model would only require some seconds to be up-
ated. It is relevant to note that the reported times consider that no
arallelization is applied, thus enabling a large margin of improve-
ent, also considering the possibility of reducing the number of fea-

ures of the system according to the file size, as previously discussed.
To further illustrate computational load and efficiency, we com-

uted the feature computation times for the most challenging file size,
amely 64 KB. Figure 8 shows the average times for each feature.
n particular, all features require times on the order of milliseconds
o be computed, with the Cumu_sum test being the one requiring
ore time. Next, we computed the training time for each file size

nd the features selected, as shown in Fig. 9 . As it can be seen, due to
he dataset size as described in Section 4.2, the number of files used
n the dataset increases the training times, paired with the number
f features used. The latter, combined with the feature computation
imes, enables the creation of optimization strategies, as previously
iscussed. Overall, considering that the prediction time of the mod-
ls is far below the order of milliseconds, we observe that our full
ipeline requires from milliseconds to a fraction of a second in the
orst case to compute the features and classify a sample. Note, how-

ver, that we used the a baseline Google Colab CPU instance without
arallelization, and, thus, these measurements could be lower in bet-
er performing CPUs.

xperiments with raw and compound files

o further assess the challenging nature of distinguishing between
igh-entropy files, we performed a test over the raw documents of
ur dataset. We selected the most challenging size, namely 64 KB, and
reated file chunks of the original file types. Next, we computed the
ntropy and the Monobit test, and depicted the outcomes in Figs 10
nd 11 . As shown in Fig. 10 , each file type has a different distribution
f features (e.g. only compressed and encrypted files achieve entropy
alues very close to 8 consistently). Furthermore, only encrypted files
ass the Monobit test (i.e. as seen in Fig. 11) and can thus be distin-
uished with efficacy. The latter showcases that distinguishing raw
les from high-entropy ones is a far less challenging experiment than
he previous ones, where we focus only on compressed and encrypted
les.

As an additional experiment, we wanted to observe the behaviour
f compound files containing different data types. We selected a set
f MS Office files from a known dataset [55] and created a small
atabase with them, following our database creation procedure, ob-
aining files from 64 to 1024 KB. The outcomes of the classifica-
ion can be seen in Table 8 . As it can be observed, the behavior is
gain close to compressed TXT files, as internally these documents
re mostly code and text, even though they could contain some im-
ges and compressed parts.

omparison with the state-of-the-art

n this section, we discuss the most relevant state-of-the-art ap-
roaches and discuss their benefits and drawbacks compared to our
olution.

The first approach dealing with high entropy random data traf-
c classification was proposed by Hahn et al. [34]. The authors pro-
osed k -NN and convolutional Neural networks to classify small files
1 KB) with an accuracy of 0.669. Lin [33] proposed a Support Vector

achine (SVM) classifier to classify compressed and encrypted files.
his approach considers several features related to traffic, achieving
n accuracy of 0.798 with variable-sized packets bigger than 1 KB. In
 35], Kozachok and Spirin [35] used file chunks of 600 KB encrypted
nd compressed files generated from a set of meaningful text files (i.e.
hus a less representative set of files than in our approach, noting that
ompressed txt files are easier to classify), and used a large number
f features for classification (∼250 features), to obtain an accuracy of
.97. Moreover, when using fewer features (e.g. 10 features), their ac-
uracy drops to 0.81, a fact that highlights the performance of the fea-
ures selected in our article (i.e. we need nine features to provide 0.99
ccuracy with even smaller file chunks). Considering smaller files (e.g.
0 KB), their accuracy is close to 0.81, while the accuracy obtained
y our approach for 64 KB files is above 0.95. De Gaspari et al. [38]
resented EnCoD [37], a deep neural network classifier that provided
 highly accurate classification of small-size files. In their approach,
he largest file size tested is 8 KB with an accuracy of 0.94, with
he drawback that the dataset contains only txt compressed files, as
een in [35]. Later, in [38], the same authors created a content-type
etector based on a neural network model that uses autoencoders. In
his case, they experimented with a richer and more balanced dataset,
eporting binary classification accuracies between 0.83 and 0.94 for
les between 512 Bytes and 8 KB. Table 9 illustrates a descriptive
omparison with the current state-of-the-art. As it can be observed,
ur method provides a rich and reproducible database and achieves
igher accuracy than the rest of the methods, considering the spe-
ific file sizes tested. Moreover, we performed experiments consider-
ng longer file sizes than the rest of the methods, achieving the maxi-
um possible accuracy and, thus, establishing the required lengths to

uarantee unequivocal classification. Note that, in the case of produc-
ion file systems that use frequent compression and encryption, even
 low percentage of errors could translate into tenths or hundreds of
ailed operations in short periods. Thus, this article is the first to pro-
ide a complete study in this regard, showing the adaptability of our
ethod.

Casino et al. [36] proposed HEDGE, a threshold-based approach
o classify small files up to 64 KB. Their approach considered the
hi-squared statistical test and the FIPS-140-2 test to leverage a clas-

ification, thus enabling a memory-efficient simple system that could
e deployed regardless of hardware constraints. Nevertheless, to ob-
erve the reliability of this method when larger files are processed, we
everaged a comparison in Table 10 . As it can be observed, HEDGE
as been applied with different parameters (i.e. γ variability as de-
ned by the authors) to provide a fair comparison. The method pro-
osed in this article clearly outperforms HEDGE in all cases due to
he difficulty of larger files passing the FIPS-140-2 tests, which in-
reases the number of false negatives (i.e. encrypted files not passing
he test) dramatically. This behavior can be observed in the analysis
erformed in Section 5.2 and in Fig. 6 (a), in which the FIPS-140-2

12 Casino et al.

Table 5. Average outcomes for file sizes between 64 and 256 KB, and their corresponding standard deviation σ . The outcomes of each row

correspond to independent experiments performed according to each dataset, file type, and classification model. The best F 1 − score has

been highlighted in each combination of the dataset and file type experiment.

Precision Recall Accuracy F 1 -score

Dataset (KB) File type Model Average σ Average σ Average σ Average σ

Random Forest 0.9927 0.0680 0.9941 0.0078 0.9934 0.0042 0.9934 0.0042
64 Binary XGBoost 0.9911 0.0084 0.9964 0.0056 0.9937 0.0047 0.9937 0.0047

SVC 0.9742 0.0138 0.9920 0.0059 0.9828 0.0073 0.9830 0.0071
Random Forest 0.8886 0.0222 0.9779 0.0106 0.9273 0.0155 0.9310 0.0140

64 Image XGBoost 0.8827 0.0235 0.9856 0.0691 0.9269 0.0154 0.9311 0.0136
SVC 0.8751 0.0214 0.9916 0.0064 0.9247 0.0144 0.9296 0.0126
Random Forest 0.8864 0.0218 0.9877 0.0093 0.9302 0.0132 0.9341 0.0117

64 MP3 XGBoost 0.8812 0.0229 0.9950 0.0060 0.9301 0.0145 0.9345 0.0128
SVC 0.8762 0.0233 0.8893 0.0197 0.8815 0.0163 0.8825 0.0158
Random Forest 0.9096 0.0178 0.9887 0.0079 0.9451 0.0115 0.9474 0.0105

64 PDF XGBoost 0.9039 0.0189 0.9887 0.0074 0.9416 0.0129 0.9443 0.0119
SVC 0.8675 0.0186 0.9889 0.0072 0.9187 0.0135 0.9241 0.0120
Random Forest 0.9900 0.0077 0.9902 0.0076 0.9901 0.0047 0.9901 0.0048

64 TXT XGBoost 0.9876 0.0090 0.9925 0.0072 0.9900 0.0050 0.9900 0.0049
SVC 0.8293 0.0209 0.9589 0.0188 0.8804 0.0157 0.8892 0.0138
Random Forest 0.8744 0.0162 0.9795 0.0095 0.9192 0.0103 0.9239 0.0092

64 Video XGBoost 0.8657 0.0180 0.9816 0.0118 0.9144 0.0124 0.9199 0.0112
SVC 0.8450 0.0204 0.9893 0.0080 0.9036 0.0151 0.9113 0.0130
Random Forest 0.9190 0.0097 0.9893 0.0038 0.9510 0.0055 0.9528 0.0051

64 All XGBoost 0.9144 0.0100 0.9909 0.0028 0.9490 0.0058 0.9511 0.0053
SVC 0.8577 0.0090 0.9819 0.0039 0.9094 0.0067 0.9156 0.0059
Random Forest 0.9967 0.0064 0.9954 0.0083 0.9960 0.0050 0.9960 0.0050

128 Binary XGBoost 0.9950 0.0076 0.9966 0.0065 0.9958 0.0050 0.9958 0.0050
SVC 0.9746 0.0191 0.9950 0.0070 0.9843 0.0104 0.9846 0.0102
Random Forest 0.9117 0.0276 0.9795 0.0137 0.9418 0.0169 0.9441 0.0154

128 Image XGBoost 0.9097 0.0287 0.9850 0.0124 0.9431 0.0189 0.9456 0.0172
SVC 0.8933 0.0249 0.9912 0.0087 0.9360 0.0170 0.9395 0.0153
Random Forest 0.9136 0.0268 0.9873 0.0146 0.9425 0.0170 0.9446 0.0158

128 MP3 XGBoost 0.9117 0.0278 0.9841 0.0135 0.9439 0.0172 0.9463 0.0159
SVC 0.9071 0.0316 0.9133 0.0270 0.9093 0.0214 0.9098 0.0209
Random Forest 0.9260 0.0284 0.9791 0.0174 0.9500 0.0176 0.9515 0.0166

128 PDF XGBoost 0.9222 0.0286 0.9800 0.0184 0.9481 0.0173 0.9498 0.0162
SVC 0.8893 0.0327 0.9900 0.0115 0.9327 0.0224 0.9366 0.0201
Random Forest 0.9967 0.0077 0.9962 0.0066 0.9964 0.0051 0.9965 0.0050

128 TXT XGBoost 0.9955 0.0087 0.9962 0.0087 0.9958 0.0055 0.9958 0.0055
SVC 0.8558 0.0265 0.9766 0.0181 0.9054 0.0163 0.9118 0.0142
Random Forest 0.9180 0.0252 0.9687 0.0217 0.9408 0.0194 0.9425 0.0187

128 Video XGBoost 0.9144 0.0265 0.9812 0.0182 0.9443 0.0199 0.9464 0.0189
SVC 0.8759 0.0326 0.9929 0.0112 0.9254 0.0222 0.9304 0.0196
Random Forest 0.9410 0.0099 0.9911 0.0045 0.9644 0.0054 0.9653 0.0051

128 All XGBoost 0.9355 0.0102 0.9922 0.0039 0.9618 0.0053 0.9629 0.0049
SVC 0.8799 0.0116 0.9871 0.0051 0.9261 0.0067 0.9304 0.0058
Random Forest 0.9975 0.0074 0.9975 0.0076 0.9975 0.0050 0.9975 0.0050

256 Binary XGBoost 0.9975 0.0075 0.9975 0.0076 0.9975 0.0051 0.9975 0.0051
SVC 0.9951 0.0116 0.9900 0.0155 0.9925 0.0084 0.9924 0.0084
Random Forest 0.9556 0.0270 0.9741 0.0266 0.9641 0.0217 0.9645 0.0214

256 Image XGBoost 0.9531 0.0275 0.9816 0.0206 0.9662 0.0177 0.9668 0.0170
SVC 0.9394 0.0324 0.9900 0.0140 0.9625 0.0196 0.9637 0.0184
Random Forest 0.9784 0.0165 0.9716 0.0224 0.9750 0.0135 0.9748 0.0137

256 MP3 XGBoost 0.9801 0.0162 0.9800 0.0178 0.9800 0.0137 0.9799 0.0138
SVC 0.8994 0.0466 0.9658 0.0231 0.9275 0.0292 0.9307 0.0266
Random Forest 0.9484 0.0299 0.9716 0.0252 0.9587 0.0161 0.9593 0.0155

256 PDF XGBoost 0.9511 0.0242 0.9750 0.0217 0.9620 0.0152 0.9626 0.0149
SVC 0.9033 0.0372 0.9900 0.0155 0.9412 0.0264 0.9443 0.0239
Random Forest 1 0 1 0 1 0 1 0

256 TXT XGBoost 1 0 1 0 1 0 1 0
SVC 0.8932 0.0348 0.9866 0.0204 0.9337 0.0258 0.9373 0.0240
Random Forest 0.9689 0.0242 0.9775 0.0239 0.9729 0.0207 0.9730 0.0206

256 Video XGBoost 0.9717 0.0255 0.9833 0.0211 0.9770 0.0185 0.9772 0.0184
SVC 0.9206 0.0370 0.9950 0.0101 0.9537 0.0225 0.9559 0.0206
Random Forest 0.9716 0.0105 0.9905 0.0063 0.9807 0.0048 0.9809 0.0047

256 All XGBoost 0.9700 0.0109 0.9912 0.0059 0.9802 0.0062 0.9805 0.0060
SVC 0.9209 0.0144 0.9901 0.0058 0.9524 0.0091 0.9542 0.0084

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026

R ansomw are detection through classification of high-entropy file segments 13

Table 6. Average outcomes for 512 and 1024 KB file sizes, and their corresponding standard deviation σ . The outcomes of each row

correspond to independent experiments performed according to each dataset, file type, and classification model. The best F 1 − score has

been highlighted in each combination of the dataset and file type experiment.

Precision Recall Accuracy F 1 -score

Dataset (KB) File type Model Average σ Average σ Average σ Average σ

Random Forest 1 0 1 0 1 0 1 0
512 Binary XGBoost 1 0 1 0 1 0 1 0

SVC 1 0 0.9800 0.0385 0.9900 0.0192 0.9895 0.0204
Random Forest 0.9857 0.0221 1 0 0.9924 0.0116 0.9926 0.0113

512 Image XGBoost 0.9888 0.0204 1 0 0.9941 0.0107 0.9943 0.0104
SVC 0.9951 0.0147 0.9800 0.0337 0.9875 0.0182 0.9871 0.0188
Random Forest 0.9856 0.0252 0.9883 0.0215 0.9866 0.0170 0.9867 0.0168

512 MP3 XGBoost 0.9856 0.0251 0.9933 0.0217 0.9891 0.0181 0.9892 0.0182
SVC 0.9349 0.0380 0.9800 0.0249 0.9550 0.0221 0.9563 0.0211
Random Forest 0.9803 0.0380 0.9850 0.0325 0.9816 0.0236 0.9818 0.0232

512 PDF XGBoost 0.9803 0.0381 0.9900 0.0203 0.9841 0.0212 0.9845 0.0201
SVC 0.9675 0.0433 0.9750 0.0286 0.9700 0.0281 0.9705 0.0265
Random Forest 1 0 1 0 1 0 1 0

512 TXT XGBoost 1 0 1 0 1 0 1 0
SVC 0.9760 0.0271 0.9900 0.0203 0.9824 0.0187 0.9827 0.0185
Random Forest 0.9937 0.0200 0.9983 0.0091 0.9958 0.0115 0.9959 0.0111

512 Video XGBoost 0.9906 0.0225 1 0 0.9950 0.0121 0.9951 0.0116
SVC 0.9768 0.0356 0.9900 0.0203 0.9824 0.0198 0.9828 0.0192
Random Forest 0.9950 0.0063 0.9980 0.0035 0.9965 0.0036 0.9965 0.0036

512 All XGBoost 0.9934 0.0072 0.9986 0.0031 0.9959 0.0035 0.9959 0.0035
SVC 0.9617 0.0167 0.9841 0.0124 0.9723 0.0101 0.9727 0.0098
Random Forest 1 0 1 0 1 0 1 0

1024 Binary XGBoost 1 0 1 0 1 0 1 0
SVC 1 0 0.9800 0.0484 0.9900 0.0242 0.9892 0.0262
Random Forest 1 0 1 0 1 0 1 0

1024 Image XGBoost 1 0 1 0 1 0 1 0
SVC 1 0 0.9700 0.0466 0.9850 0.0233 0.9842 0.0245
Random Forest 0.9909 0.0277 1 0 0.9950 0.0152 0.9952 0.0145

1024 MP3 XGBoost 0.9909 0.0277 1 0 0.9950 0.0152 0.9952 0.0145
SVC 0.9812 0.0382 0.9700 0.0466 0.9750 0.0314 0.9747 0.0317
Random Forest 1 0 1 0 1 0 1 0

1024 PDF XGBoost 1 0 1 0 1 0 1 0
SVC 1 0 0.9800 0.0406 0.9900 0.0203 0.9894 0.0214
Random Forest 1 0 1 0 1 0 1 0

1024 TXT XGBoost 1 0 1 0 1 0 1 0
SVC 1 0 0.9900 0.0305 0.9950 0.0152 0.9947 0.0160
Random Forest 1 0 1 0 1 0 1 0

1024 Video XGBoost 1 0 1 0 1 0 1 0
SVC 0.9909 0.0277 0.9800 0.0406 0.9850 0.0233 0.9847 0.0237
Random Forest 1 0 1 0 1 0 1 0

1024 All XGBoost 1 0 1 0 1 0 1 0
SVC 0.9950 0.0098 0.9783 0.0181 0.9866 0.0094 0.9864 0.0096

a

f

P

T

i

c

t

s

a

1

3

4

p

c

t

w

d

l

s

m

p

t

v

i

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
ccuracy (i.e. for γ = 0 , thus the classical test) for large sizes is lower
or smaller sizes.

roof of concept implementation

o validate the efficacy of our approach in a real-world scenario, we
mplemented our proposed solution in Python. To monitor filesystem
hanges, we used watchdog 4 and native Python libraries without fur-
her optimizations, e.g. parallelization, pypy, and so on. Moreover, we
et our timer to 10 ms and the sampling to 64 KB. Then, we created
 virtual machine with Windows 10, 12 GB of RAM, and allocated
2 Cores from the processor, a 13th Gen Intel Core i9-13900K with
2 cores. We made all the necessary updates to the operating system,
 https:// github.com/ gorakhargosh/ watchdog

o

r

opulated the host with several files that would be found in a typi-
al user host, e.g. PDF and MS Office files, and added some history
o the browser to show that this is an actual system. Nevertheless,
e did not try to hide that the system is a virtual machine or intro-
uce additional measures to hide our monitoring activity. The latter
ed some samples, e.g. Akira, not to encrypt the files as they under-
tood that they were monitored and seized their actions, a common
alware behavior to evade their analysis [56 ,57]. Yet, despite the
ossible computational improvements that Virtual Box Guest Addi-
ions could introduce, we opted not to use them to avoid making the
irtual machine fingerprint bigger. Given that the scope of this test-
ng is not to counter the antianalysis mechanisms of ransomware, we
mit these samples from our report. Furthermore, to ensure that the

ansomware will be executed and we will not have interference with

https://github.com/gorakhargosh/watchdog

14 Casino et al.

Figure 7. Details of the feature relevance for each dataset in the Random Forest classifier setup.

Table 7. Outcomes when using a different number of features in

the Random Forest model.

Dataset Feature set 1 Feature set 2 Feature set 3 All features

(Entropy)
(Entropy and

Chi_score)

(Entropy and
Chi_score and

Monobit)

64 0.9192 0.9202 0.9353 0.9528
128 0.9425 0.9441 0.9599 0.9653
256 0.9662 0.9680 0.9753 0.9809
512 0.9925 0.9930 0.9955 0.9965
1024 1 1 1 1

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
other security mechanisms, we have disabled Microsoft Defender and
the firewall. Nevertheless, to avoid further propagation, the virtual
machine was blocked from the network and the Internet by detach-
ing the network card from the virtual machine. Finally, we collected
recent ransomware samples from Malware Bazaar of Abuse.ch 5 to
validate our detection capabilities in a real scenario. In Table 11 , we
report the ransomware family, the average time it took to determine
that a file is encrypted, and the standard deviation in seconds.

Evidently, using a minifilter, a more efficient programming lan-
guage, and parallelization, the reported times would be drastically
lower. Yet, the accurate identification of ransomware encryption on
the scale of a second from our approach in our proof-of-concept im-
plementation showcases the efficacy and validity of our approach in a
real-world scenario. The results illustrate huge discrepancies between
the ransomware families. For instance, there are detections that need
just a couple of milliseconds, while others take around a second.
We attribute these discrepancies to the different ways that each ran-
somware family encrypts the files. The use of parallelization, different
file prioritization for encryption, as well as the cryptographic prim-
itives used from each ransomware family are obvious factors that
variate when each ransomware makes the filesystem changes that we
monitor. In this regard, we expect that when files are processed se-
5 https:// bazaar.abuse.ch/
quentially, we will have a shorter detection time, but when the files
are processed in parallel, a longer delay is expected.

Discussion

As previously seen in the literature [36 ,37], there is a strong corre-
lation between the randomness of the file type and the randomness
of the corresponding generated compressed file. As seen in Tables 5
and 6 , the best outcomes were obtained by the binary and txt files,
which were the ones that exhibited more identifiable patterns accord-
ing to our selected features (and thus, less randomness), as depicted
in Figs 3 –5 . Moreover, as discussed in Section 5.1, such identifiable
patterns expand from small file sizes to larger ones, yet with specific
changes that ease the distinction between compressed and encrypted
bit streams when their length grows. The above can be justified by
the fact that these are the most “structured” files in our dataset. That
is because image files, PDFs, MP3s, and videos already contain in
some forms compressed information. For instance, PDF stores PDF
commands and text and vector objects in ZIP format, JPEG uses
Huffman coding, and PNG format uses Huffman and Lempel-Ziv
77 compression algorithms. As a result, possible structures are lo-
cal, e.g. PDF trailer and cross-reference tables (xref), so most of these
files are more random-looking. Recalling the necessity to minimize
the cost of misclassification, our system is able to detect and flag all
encrypted files without error due to their stability, as seen in Fig. 5 .
Thus, the challenge appears in zip files that resemble encrypted ones.
As stopping a compression process is less critical than letting a ma-
licious encryption one pass, we assume that these misclassifications
are assumable errors, which minimize the compromise of the system

as the opposite would do.
By recalling the design objectives stated in Section 4.1, we can

claim that our proposal fulfilled them remarkably. First, as discussed
in Section 5.6, the accuracy of our system outperforms the current
state of the art, and it does so efficiently, enabling real-time classifi-
cation. Next, our system can be dynamically adapted to different file
sizes and features to reduce the number of computations while ob-
taining outstanding accuracy, as described in Section 5.4. In this re-

https://bazaar.abuse.ch/

R ansomw are detection through classification of high-entropy file segments 15

Figure 8. Average feature computation times for 64 KB file size.

Figure 9. Training time for each file size and number of features in the Random Forest model.

g

t

M

o

[

g

i

t

s

a

t

t

F

i

s

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
ard, a versatile approach to enable efficient intrusion detection sys-
ems in the context of resource-constrained devices is implementing

ulti-Agent Systems (MAS). In MAS, multiple autonomous agents
perate within a network, each possessing specialized capabilities
 58]. They can communicate and collaborate to achieve a common
oal, such as detecting and mitigating ransomware attacks by sharing
nformation to ease the cybercrime fight [59]. In MAS, the flexibility
o adaptively select features based on the nature of data and con-
traints of devices, as demonstrated in our model, becomes a critical
spect. Thus, each agent could be equipped with multiple versions of
he model discussed in this article, having a flexible model that main-
ains performance while being adaptable in its feature set [60 ,61].
urthermore, using MAS allows for decentralized processing, reduc-

ng the load on individual IoT devices [62].
Finally, we publicly shared our dataset and experiments, and de-

cribed the features and parameters we used for the classification

16 Casino et al.

Figure 10. Detail of the entropy values of nonencrypted, compressed, and encrypted files. The second figure represents a zoomed version of the outcomes for

clarity.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
methods in Section 4. While this eases the reproducibility of the ex-
periments and further comparisons, we also allow fellow researchers
to use a significantly richer baseline dataset, fostering the progress of
the state of the art. Note that dependence on small and unrepresenta-
tive datasets carries inherent risks [46]. For instance, this shortcom-
ing may foster biases, distorting the understanding and interpretation
of the actual data, and, as a result, lead to wrong analysis and mis-
leading conclusions.

A further distinctive characteristic of our design is that, contrary
to the current state of the art, it can be used both in traffic analysis and
in the context of file write operations monitoring. The latter, paired
with the adaptable feature selection, results in a versatile solution
toward malware detection, with a particular focus on ransomware.

Due to its minimal computational overhead, the proposed ap-
proach could be integrated into existing Endpoint Detection and Re-
sponse (EDR) solutions and increase their detection capabilities. No-
tably, while many of them use honey files [63] to detect ransomware
infection or prevent the execution of binaries with high entropy,
threat actors have found ways to bypass these measures. On the con-
trary, our solution accurately detects ransomware execution by fo-
cusing on the very nature of the outcomes and the timely detection
of encrypted files. In fact, identifying the running process from the

R ansomw are detection through classification of high-entropy file segments 17

Figure 11. Outcomes of the Monobit test when applied to raw files, compressed, and encrypted ones.

Table 8. Average outcomes for the classification of compressed office files versus encrypted office files dataset and their corresponding

standard deviation σ when using the Random Forest classifier.

Precision Recall Accuracy F1-score

File size Average σ Average σ Average σ Average σ

64 0.9818 0.0370 0.9900 0.0305 0.9850 0.0233 0.9852 0.0230
128 0.9909 0.0277 0.9900 0.0305 0.9900 0.0203 0.9900 0.0204
256 0.9909 0.0277 1 0 0.9950 0.0153 0.9952 0.0145
512 0.9909 0.0277 1 0 0.9950 0.0153 0.9952 0.0145
1024 0.9944 0.0304 1 0 0.9967 0.0183 0.9970 0.0166

Table 9. Descriptive comparison with the state-of-the-art.

References Model Comments

[33] SVM classifier Small file sizes, with accuracies below 0.80
[34] k -NN and convolutional neural networks Classification accuracy of 0.67 with small file sizes (1 KB).
[36] Threshold-based Classification accuracy between 0.69 and 0.95 for files

between 1 and 64 KB. Accuracy decreases with file size
above 64 KB.

[37] Deep neural network Only small file sizes tested (from 512Bytes to 8 KB files)
over a less representative dataset than ours.

[35] Random Forest Accuracies ranging between 0.81 and 0.97 in the case of
600 KB file size, with a less representative dataset and a
much higher number of features.

[38] Deep neural network with autoencoders Only small file sizes tested (from 512Bytes to 8 KB files)
with accuracies between 0.83 and 0.94.

Current
work

Random Forest Accuracies ranging between 0.95 and 1 for files between
64 KB and 1024 KB.

fi

i

f

s

m

c

h

i

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
le system changes can solve another issue that some EDR block-
ng mechanisms face. EDR systems utilize a variety of techniques
or detecting malicious activities. These techniques generally include
ignature-based detection, behavioral analysis, heuristic analysis, and
achine learning. According to the MITRE ATT&CK framework,
ommon techniques observed in malware are often tied to specific be-
avioral patterns, such as process injection, process hollowing, priv-
lege escalation, and lateral movement. EDR solutions rely on these

18 Casino et al.

Table 10. Comparison with HEDGE [36].

Dataset Model F1 Dataset Model F1

HEDGE γ = 0 0.7488 HEDGE γ = 0 0.7211
64 HEDGE γ = 1 0.8762 128 HEDGE γ = 1 0.8598

HEDGE γ = 2 0.9424 HEDGE γ = 2 0.9078
Our approach (RF) 0.9528 Our approach (RF) 0.9653

HEDGE γ = 0 0.7025 HEDGE γ = 0 0.6654
256 HEDGE γ = 1 0.8339 512 HEDGE γ = 1 0.7645

HEDGE γ = 2 0.8818 HEDGE γ = 2 0.7995
Our approach (RF) 0.9809 Our approach (RF) 0.9965

HEDGE γ = 0 0.5983
1024 HEDGE γ = 1 0.6591

HEDGE γ = 2 0.6833
Our approach (RF) 1

Table 11. Statistics from our proof of concept implementation.

Time is reported in seconds.

Ransomware Sample Average SD

Chaos 4dd53a1b9a5bc8e1c327abfa7774e287 1.165 2.613
Conti 71d43bb68ae566de0d8183d223b56e5d 0.081 0.141
Dharma 32e3001eb783b182de6b45e5f729d3ba 0.822 0.588
Fog d72c3508cbb968c478e0bd91e0f11424 0.005 0.005
InterLock f7f679420671b7e18677831d4d276277 0.735 0.461
Mammon ccaa87a7a44fa59ae536138e2313bc3e 0.021 0.041
Phobos 6096dec7644520ba1a4fdc04183bb62f 0.009 0.032
Termite 6b06aae5ec596cdbc1b9d4c457fd5f81 0.931 0.327

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
techniques to detect and respond to malware in real-time. In several
instances, EDRs may detect malicious behavior of a process and kill
the process; however, the process may spawn another instance, so
while the original process is sacrificial and is killed, the actual en-
cryption is performed by the spawned process, which is not moni-
tored any more. In other instances of human-operated ransomware,
the EDR may have initially detected and blocked the malicious binary
that would encrypt the victim’s files, the process is killed, and the bi-
nary is sent for automated scanning. However, suppose the proper
input (e.g. used arguments) is not sent. In that case, the ransomware
performs a graceful exit on the sandbox environment so the EDR

does not consider it a threat and may allow its execution the next
time. On the contrary, by integrating our approach into EDR rules,
file system monitoring could be configured to trigger alerts when-
ever encryption-like patterns are detected (e.g. sudden high-entropy
changes to files). The latter would allow the EDR to react immedi-
ately by issuing alerts, terminating the rogue processes responsible
for encryption, and quarantining the malicious binaries before sig-
nificant damage occurs. Indeed, as illustrated with our proof of con-
cept experiments, our approach can timely identify the ransomware
encryption.

Conclusions

In the context of cyber security, the accurate and efficient identifica-
tion of encrypted bit streams is an open challenge that affects several
areas, such as file system security and network traffic analysis, to
name a few. Thus, leveraging automated systems such as the one
presented in this article is crucial, especially considering the current
threat landscape, in which ransomware seems to be a long-term

menace.
This work performs a thorough evaluation of available random-
ness tests to determine the ones that are efficient and allow their out-
put to be used as features to accurately classify random bit streams
into either encrypted or compressed ones. We created and used a
statistically sound dataset to test our experiments, achieving an ac-
curacy between 0.9528 (64 KB bit streams) and 1. We also ob-
served and analysed the correlation between the different file types
and the randomness of the corresponding compressed files. We con-
cluded that (compressed) binary and text files can be easily iden-
tified by our method with almost no errors, even in 64 KB bit
streams. This is validated with our proof of concept using recent
ransomware samples. Although our method can detect the nature
of high-entropy bit streams, some applications, including compres-
sors, may use encryption at some stages. The latter opens the door
for optimization mechanisms in the form of OS-level policies, such
as setting up whitelisted applications or directories and performing
an overall control of the file system’s entropy to detect an attack as
early as possible. These interesting paths will be explored in future
work.

The efficiency of our method was highlighted, exhibiting better
performance than competing state-of-the-art works while enabling
feature-based adaptability to achieve real-time classification in dif-
ferent contexts. The latter enables it to be used in existing endpoint
security solutions through, e.g. minifilters and the inotify API 6 in
Windows and linux-based hosts, respectively, as illustrated with our
proof of concept implementation testing.

In future works, we plan to (i) refine our method to increase
its accuracy further; especially for short length bit streams, (ii)
study further learning strategies that can be combined with our
method to efficiently detect ransomware-related behaviours in real
time, and (iii) explore other feature generation methods. Another
line of research will explore ad-hoc models to maximize the de-
tection accuracy for file types and sizes used in particular scenar-
ios. We consider incorporating the model optimizations discussed
in this article into a MAS to enable an efficient and potent solu-
tion for ransomware detection in distributed, resource-constrained
environments. Finally, we will explore the possibility of detecting
ransomware in the early stages of the binary execution, e.g. when
the binary is unpacked, and the initial system calls are made before
encryption.

Acknowledgements

The content of this article does not reflect the official opinion of the European
Union. Responsibility for the information and views expressed therein lies en-
tirely with the authors.
6 https:// man7.org/ linux/ man-pages/ man7/ inotify.7.html

https://man7.org/linux/man-pages/man7/inotify.7.html

R ansomw are detection through classification of high-entropy file segments 19

A
F

i

e

J

W

F

d

C

F
T

E

n

T

a

w

P

L

c

t

u

w

“

p

R

1

2

3

4

5

6

7
8

9

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
uthor contributions

ran Casino (Conceptualization, Investigation, Methodology, Project admin-
stration, Software, Validation, Writing – original draft, Writing – review &
diting), Darren Hurley-Smith (Software, Validation, Writing – original draft),
ulio Hernandez-Castro (Conceptualization, Formal analysis, Methodology,

riting – review & editing), and Constantinos Patsakis (Conceptualization,
ormal analysis, Investigation, Methodology, Validation, Writing – original
raft, Writing – review & editing)

onflict of interest : The authors reported no potential conflict of interest.

unding

his work was supported by the European Commission under the Horizon
urope Programme, as part of the projects SAFEHORIZON (grant agreement
umber 101168562) and LAZARUS (grant agreement number 101070303).
his work was also supported by the European Union’s Internal Security Fund
s part of the ALUNA project (grant agreement number 101084929). This
ork was also supported by the COST Action GoodBrother, Network on
rivacy-Aware Audio- and Video-Based Applications for Active and Assisted
iving, (CA 19121). This work was partially supported by Ministerio de Cien-
ia, Innovación y Universidades, Gobierno de España (Agencia Estatal de Inves-
igación, Fondo Europeo de Desarrollo Regional -FEDER-, European Union)
nder the research grant PID2021-127409OB-C33 CONDOR. Fran Casino
as supported by the Spanish Ministry of Science and Innovation under the
Ramón y Cajal” programme (RYC2023-044857-I), and by A GA UR with the
roject ASCLEPIUS (2021SGR-00111).

eferences

. Sophos. Sophos the state of ransomware 2023. https://assets.sophos.co
m/ X24WTUEQ/at/ c949g7693gsnjh9rb9gr8/ sophos- state- of- ransomwa
re- 2023- wp.pdf (4 January 2024, date last accessed).

. Braue D. Global ransomware damage costs predicted to ex-
ceed $265 billion by 2031. Cybersecurity Ventures, 2022.
https:// cybersecurityventures.com/ global- ransomware- damage- costs
- predicted- to- reach- 250- billion- usd- by- 2031 (11 February 2023, date
last accessed).

. Cohen A, Nissim N. Trusted detection of ransomware in a private cloud
using machine learning methods leveraging meta-features from volatile
memory. Expert Syst Appl 2018; 102 :158–78.

. Patsakis C, Arroyo D, Casino F. The Malware as a service ecosystem.
In: Malware: Handbook of Prevention and Detection . Berlin: Springer
Nature, 2024, 371–94.

. Shannon CE. Communication theory of secrecy systems. Bell Syst Tech J
1949; 28 :656–715.

. L’Écuyer P, Compagner A, Cordeau JF. Entropy tests for random number
generators. In: GERAD report G-96-41. Montréal: GERAD, 1996.

. D’Agostino RB. Goodness-of-fit-techniques . London: Routledge, 2017.

. Ghosh BK, Sen PK. Handbook of Sequential Analysis . Boca Raton, FL:
CRC Press, 1991.

. Shapiro SS, Wilk MB. An analysis of variance test for normality (complete
samples). Biometrika 1965; 52 :591–611.

0. Lopes RHC. Kolmogorov–Smirnov test. In: International Encyclopedia
of Statistical Science . Berlin: Springer, 2011, 718–20.

1. Razali NM, Wah YB. Power comparisons of Shapiro–Wilk, Kolmogorov–
Smirnov, Lilliefors and Anderson–Darling tests. J Stat Model Anal
2011; 2 :21–33.

3. Rukhin A, Soto J, Nechvatal J. A statistical test suite for random and
pseudorandom number generators for cryptographic applications. NIST
D TIC Document. NIST D TIC Document NIST SP800-22. Gaithersburg,
MD: National Institute of Standards and Technology, 2010.

4. Casino F, Dasaklis TK, Spathoulas GP. et al. Research trends, challenges,
and emerging topics in digital forensics: a review of reviews. IEEE Access
2022; 10 :25464–93.
5. Yang W, Kong D, Xie T. et al. Malware detection in adversarial set-
tings: exploiting feature evolutions and confusions in android apps. In:
Proceedings of the 33rd Annual Computer Security Applications Confer-
ence . New York, NY: ACM Digital Library, 2017, 288–302.

6. Kara I. Fileless malware threats: recent advances, analysis approach
through memory forensics and research challenges. Expert Syst Appl
2022; 214 :119133.

7. Kara I, Aydos M. The rise of ransomware: forensic analysis for windows
based ransomware attacks. Expert Syst Appl 2022; 190 :116198.

8. VirusTotal. Ransomware activity report. 2021. https://storage.googleap
is.com/vtpublic/vt- ransomware- report- 2021.pdf. (4 January 2024, date
last accessed).

9. Kara I, Aydos M. The rise of ransomware: forensic analysis for windows
based ransomware attacks. Expert Syst Appl 2022; 190 :116198.

0. Jung S, Won Y. Ransomware detection method based on context-aware
entropy analysis. Soft Comput 2018; 22 :6731–40.

1. Cuzzocrea A, Martinelli F, Mercaldo F. A novel structural-entropy-based
classification technique for supporting android ransomware detection and
analysis. In: Proceedings of the 2018 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE) . Piscataway, NJ: IEEE, 2018, 1–7.

2. Lee K, Lee SY, Yim K. Machine learning based file entropy analysis for
ransomware detection in backup systems. IEEE Access 2019; 7 :110205–
15.

3. McIntosh T, Jang-Jaccard J, Watters P. et al. The inadequacy of entropy-
based ransomware detection. In: Proceedings of the International Confer-
ence on Neural Information Processing . Berlin: Springer, 2019, 181–9.

4. Pont J, Arief B, Hernandez-Castro J. Why current statistical approaches
to ransomware detection fail. In: Proceedings of the International Con-
ference on Information Security . Berlin: Springer, 2020, 199–216.

5. Hurley-Smith D, Patsakis C, Hernandez-Castro J. On the unbearable
lightness of FIPS 140-2 randomness tests. In: Proceedings of the IEEE
Transactions on Information Forensics and Security . Piscataway, NJ:
IEEE, 2020, 1–1.

6. Bhudia A, O’Keeffe D, Sgandurra D. et al. RansomClave: ransomware
key management using SGX. In: Proceedings of the 16th International
Conference on Availability, Reliability and Security . New York, NY: ACM
Digital Library, 2021, 1–10.

7. Kolodenker E, Koch W, Stringhini G. et al. Paybreak: defense against
cryptographic ransomware. In: Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security . New York, NY:
ACM, 2017, 599–611.

8. Roth F, Lambert J, Yom-Tov E. et al. Raccine. GitHub, 2021. https:
//github.com/Neo23x0/Raccine . (4 January 2024, date last accessed).

9. Paninski L. Estimation of entropy and mutual information. Neur Comput
2003; 15 :1191–253.

0. Paninski L. Estimating entropy on m bins given fewer than m samples.
IEEE T Inf Theor 2004; 50 :2200–3.

1. Davies SR, Macfarlane R, Buchanan WJ. Comparison of entropy cal-
culation methods for ransomware encrypted file identification. Entropy
2022; 24 :1503.

2. Cunha VC, Zavala AZ, Magoni D. et al. A complete review on the ap-
plication of statistical methods for evaluating internet traffic usage. IEEE
Access 2022; 10 :128433–55.

3. Wang Y, Zhang Z, Guo L. et al. Using entropy to classify traffic more
deeply. In: Proceedings of the 2011 IEEE Sixth International Conference
on Netw or king, Arc hitecture, and Storage . Piscataway, NJ: IEEE, 2011,
45–52.

4. Hahn D, Apthorpe N, Feamster N. Detecting compressed cleartext traffic
from consumer internet of things devices. 2018. arXiv:1805.02722. (4
January 2024, date last accessed).

5. Kozachok AV, Spirin AA. Model of pseudo-random sequences gener-
ated by encryption and compression algorithms. Prog Comput Softw
2021; 47 :249–60.

6. Casino F, Choo KKR, Patsakis C. Hedge: efficient traffic classifica-
tion of encrypted and compressed packets. IEEE T Inf Foren Secur
2019; 14 :2916–26.

7. De Gaspari F, Hitaj D, Pagnotta G. et al. Encod: distinguishing com-
pressed and encrypted file fragments. In: Proceedings of the International

https://assets.sophos.com/X24WTUEQ/at/c949g7693gsnjh9rb9gr8/sophos-state-of-ransomware-2023-wp.pdf
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031
https://storage.googleapis.com/vtpublic/vt-ransomware-report-2021.pdf
https://github.com/Neo23x0/Raccine

20 Casino et al.

116–22.

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/11/1/tyaf009/8109429 by guest on 07 January 2026
Conference on Netw or k and System Security . Berlin: Springer, 2020, 42–
62.

38. De Gaspari F, Hitaj D, Pagnotta G. et al. Reliable detection of compressed
and encrypted data. Neur Comput Appl 2022; 34 :20379–93.

39. Microsoft. Filter manager concepts. Redmond, WA, 2021.
https://docs.microsoft.com/en- us/windows- hardware/drivers/ifs/filte
r -manager -concepts . (4 January 2024, date last accessed).

40. White AM, Krishnan S, Monrose F. Clear and present data: opaque
traffic and its security implications for the future. In: Proceedings of the
NDSS . San Diego, CA: Network and Distributed System Security, 2013.

41. Khakpour AR, Liu AX. An information-theoretical approach to high-
speed flow nature identification. IEEE/ACM Trans Netw 2013; 21 :1076–
89.

42. Lin TY, Maire M, Belongie S,. et al. Microsoft Coco: common objects
in context. In: Proceedings of the European Conference on Computer Vi-
sion . Berlin: Springer, 2014, 740–55.

43. Criminisi A. Rgb-d dataset 7-scenes. Redmond, WA: Microsoft, 2013.
https:// www.microsoft.com/ en-us/ research/project/rgb-d-dataset-7-sce
nes/. (4 January 2024, date last accessed).

44. Hart M. Project Gutenberg. 1971. https:// www.gutenberg.org/ . (17 De-
cember 2023, date last accessed).

45. Abu-El-Haija S, Kothari N, Lee J. et al. Youtube-8m: a large-scale video
classification benchmark. arXiv:1609.08675 . 2016.

46. Casino F, Lykousas N, Homoliak I. et al. Intercepting hail hydra: real-
time detection of algorithmically generated domains. J Netw Comput
Appl 2021; 190 :103135.

47. Karatas G, Demir O, Sahingoz OK. Increasing the performance of ma-
chine learning-based idss on an imbalanced and up-to-date dataset. IEEE
Access 2020; 8 :32150–62.

48. Batista GE, Prati RC, Monard MC. A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD

Explor Newsl 2004; 6 :20–9.
49. Casino F. Distinguishing between high entropy bit streams. GitHub, 2021.
50. Hurley-Smith D, Hernandez-Castro J. Certifiably biased: an in-depth

analysis of a Common Criteria EAL4 + certified TRNG. In: Proceedings
of the IEEE Transactions on Information Forensics and Security . Piscat-
away, NJ: IEEE, 2017, 99.
© The Author(s) 2025. Published by Oxford University Press. This is an Open Access article
Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by- n
in any medium, provided the original work is not altered or transformed in any way, and tha
journals.permissions@oup.com
51. L’Écuyer P, Simard R. TestU01: AC library for empirical testing of ran-
dom number generators. ACM T Math Softw 2007; 33 :1–40.

52. Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all you need.
Inform Fusion 2022; 81 :84–90.

53. Panigutti C, Hamon R, Hupont I. et al. The role of explainable AI in the
context of the AI act. In: Proceedings of the 2023 ACM Conference on
F airness, Accountability, and Transparenc y . New York, NY: ACM, 2023,
1139–50.

54. Cabitza F, Campagner A, Malgieri G. et al. Quod erat demonstrandum?
Towards a typology of the concept of explanation for the design of ex-
plainable AI. Expert Syst Appl 2023; 213 :118888.

55. Koutsokostas V, Lykousas N, Orazi G. et al. Malicious MS Office doc-
uments dataset. Zenodo, 2021.

56. Afianian A, Niksefat S, Sadeghiyan B. et al. Malware dynamic analysis
evasion techniques: a survey. ACM Comput Surv 2019; 52 :1–28.

57. Geng J, Wang J, Fang Z. et al. A survey of strategy-driven evasion meth-
ods for pe malware: transformation, concealment, and attack. Comput
Secur 2024; 137 :103595.

58. Machin J, Batista E, Martínez-Ballesté A. et al. Privacy and security in
cognitive cities: a systematic review. Appl Sci 2021; 11 :4471.

59. Casino F, Pina C, López-Aguilar P. et al. Sok: cross-border criminal in-
vestigations and digital evidence. J Cybersecur 2022; 8 :tyac014.

60. Mayuranathan M, Saravanan SK, Muthusenthil B. et al. An effi-
cient optimal security system for intrusion detection in cloud comput-
ing environment using hybrid deep learning technique. Adv Eng Softw

2022; 173 :103236.
61. Qasem MH, Hudaib A, Obeid N. et al. Multi-agent systems for dis-

tributed data mining techniques: an overview. In: Big Data Intelligence
for Smart Applications . Cham: Springer, 2022, 57–92.

62. Javadpour A, Pinto P, Ja’fari F. et al. DMAIDPS: a distributed multi-agent
intrusion detection and prevention system for cloud IoT environments.
Cluster Comput 2023; 26 :367–84.

63. Yuill J, Zappe M, Denning D. et al. Honeyfiles: deceptive files
for intrusion detection. In: Proceedings from the Fifth Annual IEEE
SMC Information Assurance Workshop . Piscataway, NJ: IEEE, 2004,
 distributed under the terms of the Creative Commons
c- nd/4.0/), which permits non-commercial reproduction and distribution of the work,
t the work is properly cited. For commercial re-use, please contact

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/
https://www.gutenberg.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:journals.permissions@oup.com

