
Castro-Perez, David, Ferreira, Francisco and Jongmans, Sung-Shik (2025) A
synthetic reconstruction of multiparty session types. In: Proceedings of the
ACM on Programming Languages. POPL '26: Proceedings of the 53rd ACM
SIGPLAN Symposium on Principles of Programming Languages. . Association
for Computing Machinery

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/111985/ The University of Kent's Academic Repository KAR

The version of record is available from
https://conf.researchr.org/home/POPL-2026

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/111985/
https://conf.researchr.org/home/POPL-2026
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3776692
.

.

RESEARCH-ARTICLE

A Synthetic Reconstruction of Multiparty Session Types

DAVID CASTRO-PEREZ, University of Kent, Canterbury, Kent, U.K.
.

FRANCISCO FERREIRA, Royal Holloway, University of London, Egham,
Surrey, U.K.
.

SUNG SHIK T Q JONGMANS, University of Groningen, Groningen,
Groningen, Netherlands
.

.

.

Open Access Support provided by:
.

University of Kent
.

Royal Holloway, University of London
.

University of Groningen
.

PDF Download
3776692.pdf
03 February 2026
Total Citations: 0
Total Downloads: 71
.

.

.

.

Published: 08 January 2026
Accepted: 06 November 2025
Received: 10 July 2025
.

.

Citation in BibTeX format
.

.

Proceedings of the ACM on Programming Languages, Volume 10, Issue POPL (January 2026)
hps://doi.org/10.1145/3776692

EISSN: 2475-1421

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3776692
https://dl.acm.org/doi/10.1145/3776692
https://dl.acm.org/doi/10.1145/contrib-99659506973
https://dl.acm.org/doi/10.1145/institution-60010818
https://dl.acm.org/doi/10.1145/contrib-99659743371
https://dl.acm.org/doi/10.1145/institution-60020595
https://dl.acm.org/doi/10.1145/institution-60020595
https://dl.acm.org/doi/10.1145/contrib-81548042286
https://dl.acm.org/doi/10.1145/institution-60010023
https://dl.acm.org/doi/10.1145/institution-60010023
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60010818
https://dl.acm.org/doi/10.1145/institution-60020595
https://dl.acm.org/doi/10.1145/institution-60010023
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3776692&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3776692&domain=pdf&date_stamp=2026-01-08

A Synthetic Reconstruction of Multiparty Session Types
DAVID CASTRO-PEREZ, University of Kent, United Kingdom

FRANCISCO FERREIRA, Royal Holloway University of London, United Kingdom

SUNG-SHIK JONGMANS, University of Groningen, Netherlands

Multiparty session types (MPST) provide a rigorous foundation for verifying the safety and liveness of

concurrent systems. However, existing approaches often force a difficult trade-off: classical, projection-based

techniques are compositional but limited in expressiveness, while more recent techniques achieve higher

expressiveness by relying on non-compositional, whole-system model checking, which scales poorly.

This paper introduces a new approach to MPST that delivers both expressiveness and compositionality,

called the synthetic approach. Our key innovation is a type system that verifies each process directly against a

global protocol specification, represented as a labelled transition system (LTS) in general, with global types as

a special case. This approach uniquely avoids the need for intermediate local types and projection.

We demonstrate that our approach, while conceptually simpler, supports a benchmark of challenging

protocols that were previously beyond the reach of compositional techniques in the MPST literature. We

generalise our type system, showing that it can validate processes against any specification that constitutes a

“well-behaved” LTS, supporting protocols not expressible with the standard global type syntax. The entire

framework, including all theorems and many examples, has been formalised and mechanised in Agda, and we

have developed a prototype implementation as an extension to VS Code.

CCS Concepts: • Theory of computation→ Type theory; Process calculi.

Additional Key Words and Phrases: Multiparty session typing, behavioural typing, choreographies

ACM Reference Format:
David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans. 2026. A Synthetic Reconstruction of Mul-

tiparty Session Types. Proc. ACM Program. Lang. 10, POPL, Article 50 (January 2026), 29 pages. https:

//doi.org/10.1145/3776692

Acknowledgments
This work is partially supported by the EPSRC grants EP/Y00339X/1 and EP/T014512/1.

1 Introduction
Programming of concurrent systems is hard. One of the challenges is to prove—broadly construed—

that implementations of protocols among message-passing processes are safe and live relative to
specifications. Safety means that “bad” communications never happen: if a communication happens

in the implementation, then it is allowed to happen by the specification. Liveness means that

“good” communications eventually happen. Multiparty session typing (MPST) [17] is a method to

automatically prove the safety and liveness of protocol implementations relative to specifications.

The idea is to write specifications as behavioural types [1, 18] against which implementations are

type-checked. Well-typedness, then, implies safety and liveness.

Authors’ Contact Information: David Castro-Perez, University of Kent, Canterbury, United Kingdom, D.Castro-Perez@kent.

ac.uk; Francisco Ferreira, Royal Holloway University of London, Egham, United Kingdom, francisco.ferreiraruiz@rhul.ac.uk;

Sung-Shik Jongmans, University of Groningen, Groningen, Netherlands, s.s.t.q.jongmans@rug.nl.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART50

https://doi.org/10.1145/3776692

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

https://orcid.org/0000-0002-6939-4189
https://orcid.org/0000-0001-8494-7696
https://orcid.org/0000-0002-4394-8745
https://doi.org/10.1145/3776692
https://doi.org/10.1145/3776692
https://orcid.org/0000-0002-6939-4189
https://orcid.org/0000-0001-8494-7696
https://orcid.org/0000-0002-4394-8745
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776692

50:2 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

𝐺

𝐿1 𝐿2 · · · 𝐿𝑛

𝑃1 𝑃2 · · · 𝑃𝑛

global type

project

local types

type-check

processes

(a) Classical [17]

𝜑

𝐿1 𝐿2 · · · 𝐿𝑛

𝑃1 𝑃2 · · · 𝑃𝑛

consistency

model-check

local types

type-check

processes

(b) “Less Is More” [31]

𝐺

𝑃1 𝑃2 · · · 𝑃𝑛

global type

type-check

processes

(c) Synthetic [this paper]

Fig. 1. MPST approaches

aaa bbb ccc

AppThenGet(5)
AppThenGet(6)

Val(12)

(a) Final number pushed by Carol

aaa bbb ccc

App(5)
App(6)

Get

Val(12)

(b) Final number pulled by Alice

Fig. 2. Example runs of the Ring protocol

In this paper, we present a new approach to MPST, called the synthetic approach. Inspired
by the recent concept of synthetic behavioural typing [21], the synthetic approach to MPST has a
unique way of combining high expressiveness and compositional verification, significantly
beyond the state of the art in the MPST literature. Moreover, we show that the synthetic approach

can be generalised to verify protocol implementations relative to specifications expressed as labelled
transition systems (semantic objects) instead of as behavioural types (syntactic objects). This makes

the synthetic approach very broadly applicable.

In the rest of this section, we explain in more detail the MPST method (Section 1.1), the state-of-

the-art (Section 1.2), and our contributions (Section 1.3).

1.1 Multiparty Session Typing (MPST) – Classical Approach
To explain the MPST method, Figure 1a visualises the idea (while Figure 1b and Figure 1c are

discussed in Section 1.2 and Section 2):

(1) First, a protocol among roles r1, . . . , rn is implemented as a family of processes 𝑃1, . . . , 𝑃𝑛 ,
while it is specified as a global type𝐺 . The global type models the behaviour of all processes

together (e.g., “a number from Alice to Bob, followed by a boolean from Bob to Carol”).

(2) Next, 𝐺 is decomposed into a family of local types 𝐿1, . . . , 𝐿𝑛 by projecting 𝐺 onto each

role. Each local type models the behaviour of one process alone (e.g., for Bob, “a number

from Alice, followed by a boolean to Carol”).

(3) Last, the family of processes is verified by type-checking 𝑃𝑖 against 𝐿𝑖 for each role. The

main result is that well-typedness implies safety and liveness: if each process is statically well-

typed at compile-time, then the parallel composition of the family of processes is dynamically

safe and live at run-time.

Example 1.1. The Ring protocol consists of roles Alice, Bob, and Carol:
• Alice sends initial number 𝑛 to Bob.

• Bob receives 𝑛, applies function 𝑓 (e.g., increment), and sends 𝑓 (𝑛) to Carol.

• Carol receives 𝑓 (𝑛), applies function 𝑔 (e.g., double), and sends 𝑔(𝑓 (𝑛)) to Alice.

• Alice receives final number 𝑔(𝑓 (𝑛)).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:3

Grammatical

Consistent

Projectable

(a) Plain projection

Grammatical

Consistent

Projectable

“Less Is More” benchmark

Exmp. 1.1

(b) Full projection

Fig. 3. (Sub)sets of global types in the classical approach: “Grammatical” indicates the set of all global types;

“Consistent” indicates the subset of global types for which consistent families of local types exist; “Projectable”

indicates the subset of global types for which families of local types can be constructed through projection.

There are two “modes” in which the protocol can run: either Carol pushes the final number to Alice

immediately after applying 𝑔, or Alice pulls the final number from Carol sometime later. The choice

between the modes is Alice’s and communicated along the ring. Figure 2 visualises example runs.

The following global type specifies the protocol:

𝐺Ring = aaa_bbb:

{
AppThenGet(Nat) . bbb_ccc:AppThenGet(Nat) . ccc_aaa:Val(Nat) . end
App(Nat) . bbb_ccc:App(Nat) . aaa_ccc:Get . ccc_aaa:Val(Nat) . end

(push)

(pull)

Global type p_q:{ℓ𝑖 (𝑡𝑖) .𝐺𝑖 }𝑖∈𝐼 specifies the communication of a message labelled ℓ𝑗 , with a payload

of type 𝑡 𝑗 , from role p to role q, followed by𝐺 𝑗 , for some 𝑗 ∈ 𝐼 .1 We omit braces when 𝐼 is a singleton,

and we write “ℓ” instead of “ℓ (Unit)”. The following local types, projected from the global type,
specify Alice and Bob. Let ℓ1 = AppThenGet and ℓ2 = App:

𝐿aaa = bbb⊕
{
ℓ1 (Nat) . ccc&Val(Nat) . end
ℓ2 (Nat) . ccc⊕Get . ccc&Val(Nat) . end

𝐿bbb = aaa&

{
ℓ1 (Nat) . ccc⊕ℓ1 (Nat) . end
ℓ2 (Nat) . ccc⊕ℓ2 (Nat) . end

Local types q⊕{ℓ𝑖 (𝑡𝑖) .𝐿𝑖 }𝑖∈𝐼 and p&{ℓ𝑖 (𝑡𝑖) .𝐿𝑖 }𝑖∈𝐼 specify the send and receive of a message labelled

ℓ𝑗 , with a payload of type 𝑡 𝑗 , from role p to role q, followed by 𝐿 𝑗 , for some 𝑗 ∈ 𝐼 . The following

processes, well-typed by the local types, implement Alice and Bob in Figure 2a:

𝑃Ring

aaa = bbb!ℓ1 (5) . ccc?Val(z) . end 𝑃Ring

bbb = aaa?

{
ℓ1 (x) . ccc!ℓ1 (x+1) . end
ℓ2 (x) . ccc!ℓ2 (x+1) . end

Process q!ℓ (𝑒) .𝑃 implements the send of a message labelled ℓ , with (the value of) expression 𝑒

as the payload, to role q, followed by 𝑃 . Process p?{ℓ𝑖 (𝑥𝑖) .𝑃𝑖 }𝑖∈𝐼 implements the receive of the

payload of a message labelled ℓ𝑗 , from role p, into variable 𝑥 𝑗 , followed by 𝑃 𝑗 , for some 𝑗 ∈ 𝐼 .

Communication is synchronous in this paper: a send blocks the sender until the receiver is ready to

perform a corresponding receive. For instance, if Alice is ready to send a Get message before Carol

has finished her computation, then Alice needs to wait until Carol is ready to receive. □

1.2 State of the Art – “Less Is More” Approach [31]
For well-typedness to imply safety and liveness, a family of local types needs to be consistent.
Intuitively, consistency means that if the local type of Alice specifies a send to Bob, then the local

type of Bob should specify a corresponding receive from Alice. That is, consistency is the multiparty

generalisation of binary duality [15, 16].

1
We adopt the same notation to represent a collection of branches—including the usage of index set 𝐼—as in the original

MPST paper [17]. Similar notation for branching dates back at least as far as Milner’s work on CCS (e.g., [29]) and remains

standard in recent work (e.g., [35]). We stipulate that there is a one-to-one correspondence between 𝐼 and {ℓ𝑖 | 𝑖 ∈ 𝐼 }.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:4 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

In the original paper in the MPST literature [17], projection implies consistency: if a family

of local types is projected from a global type, then that family is consistent. Thus, well-typedness

implies safety and liveness. The trouble with the original paper, though, is that only few global

types can be projected. Formally, projection is a function from global type–role pairs, but its domain

in the original paper is small. Figure 3a visualises the issue. The following example demonstrates

that it affects the Ring protocol in Example 1.1.

Example 1.2. The projections onto Alice and Bob of 𝐺Ring
are defined as 𝐿Ringaaa and 𝐿Ringbbb in

Example 1.1, but the projection onto Carol is undefined. Intuitively, this is because the basic “plain

projection” of the original paper demands that Carol has exactly the same behaviour in each of the

branches (i.e., even though Carol can actually learn which branch is taken based on the label of

the message she receives, the plain projection does not leverage this additional information). As a

result, in the absence of a local type for Carol, the implementation cannot be fully type-checked, so

safety and liveness cannot be proved. Thus, the Ring protocol is not actually supported. □

To address this issue, instead of using the basic “plain projection” of the original paper, a more

advanced “full projection” is used in many later papers in the MPST literature.
2
The key benefit of

using full projection instead of plain projection is that many more global types become projectable.

Formally, the domain of the function is larger. Against conventional wisdom at the time, though,

projection no longer implies consistency. Thus, well-typedness no longer implies safety and

liveness: whether or not it does, depends on whether or not the family of local types happens to be

consistent, which needs to be proved separately. This surprising discovery was made by Scalas and

Yoshida in an influential paper, colloquially called the “Less Is More” paper [31]. Figure 3b visualises
the issue. The following example demonstrates that it, too, affects the Ring protocol of Example 1.1.

Example 1.3. The following local types, projected from𝐺Ring
in Example 1.1 using full projection

instead of plain projection, specify Alice, Bob, and Carol in the Ring protocol:

𝐿Ringaaa = ... (Example 1.1)

𝐿Ringbbb = ... (Example 1.1)

𝐿Ringccc = bbb&

{
AppThenGet(Nat) . aaa⊕Val(Nat) . end
App(Nat) . aaa&Get . aaa⊕Val(Nat) . end

The following processes, well-typed by the local types, implement Alice, Bob, and Carol in Figure 2a:

𝑃Ring

aaa = ... (Example 1.1)

𝑃Ring

bbb = ... (Example 1.1)

𝑃Ring

ccc = bbb?

{
AppThenGet(y) . aaa!Val(y*2) . end
App(y) . let z=y*2 in aaa?Get(_) . aaa!Val(z) . end

Now, not only the projections onto Alice and Bob are defined (cf. Example 1.2), but also the

projection onto Carol. As a result, in the presence of a local type for each of Alice, Bob, and Carol, the

implementation can be fully type-checked: 𝑃Ring

aaa , 𝑃Ring

bbb , 𝑃Ring

ccc are, in fact, well-typed by 𝐿Ringaaa , 𝐿Ringbbb ,

𝐿Ringccc . However, projection no longer implies consistency,
3
so well-typedness no longer implies

safety and liveness, so safety and liveness cannot be proved. (The parallel composition of the family

of processes is safe and live, though.) Thus, the Ring protocol is still not actually supported. □

Essentially, well-typedness is meaningless until consistency has been proved separately. Scalas

and Yoshida propose a new approach to MPST based on this observation in the “Less Is More” paper,

independent of global types and projection [31]. The idea is to model consistency as a temporal logic

formula 𝜑 such that the family of local types is consistent if, and only if, its operational semantics
in the form of a labelled transition system (LTS) satisfies 𝜑 . Figure 1b visualises the idea:

2
Plain projection is based on plain merge. Full projection is based on full merge. The details do not matter in this paper.

3
Technically, the reason why the family of local types is inconsistent, is that an auxiliary partial function on local types

(roughly: a second-order projection that takes the projection of a local type), which is used to compute consistency, is

undefined for 𝐿Ringaaa and 𝐿Ringccc ; this function, its effect on (in)consistency, and more examples, appear elsewhere [31].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:5

(1) First, a protocol among roles r1, . . . , rn is implemented as a family of processes 𝑃1, . . . , 𝑃𝑛
(like the classical approach), while it is specified as a family of local types 𝐿1, . . . , 𝐿𝑛 , but
without a global type and projection (unlike the classical approach).

(2) Next, the family of local types is verified bymodel checking the operational semantics of

𝐿1, . . . , 𝐿𝑛 for satisfaction of a consistency property 𝜑 .

(3) Last, the family of processes is verified by type-checking 𝑃𝑖 against 𝐿𝑖 for each role. The

main result is that consistency and well-typedness imply safety and liveness.

To demonstrate the effectiveness of the “Less Is More” approach, Scalas and Yoshida introduce a

set of four challenging example protocols: whereas the classical approach cannot be used to prove

the safety and liveness of implementations of these protocols, the “Less Is More” approach can. We

call this set the “Less Is More” benchmark. Figure 3b visualises that three protocols in the benchmark

are projectable (using full projection) but not consistent, while one is not even projectable.

1.3 This Paper: “Less Is More”, Compositionally – Synthetic Approach
The main strength of the “Less Is More” approach is that it supports many more protocols than the

classical approach does: to date, it remains the only approach in the MPST literature that passes

the “Less Is More” benchmark. The main weakness, though, is that the “Less Is More” approach
is non-compositional: as part of the model checking step, multiple “small” LTSs J𝐿1K, . . . , J𝐿𝑛K
(operational semantics of local types 𝐿1, . . . , 𝐿𝑛) need to be composed into a single “large” LTS

J𝐿1K × · · · × J𝐿𝑛K (operational semantics of the family). This is computationally expensive [34]: in

the worst case, the size of the large LTS is exponential in the sizes of the small LTSs. Moreover, it

goes against the compositional nature of concurrent systems programming in general.

For several years now, it has been an open problem to develop an approach that passes the

“Less Is More” benchmark compositionally. This paper presents the first solution to this open
problem: the synthetic approach. It leverages a recent style of behavioural type systems, called

synthetic behavioural typing, in which the operational semantics of behavioural types is used not

only to prove type soundness (as usual), but also to define the typing rules [21]. Concretely, we

make the following novel contributions:

• The special case of the synthetic approach:We present a new MPST-specific type system

to type-check processes against global types, without local types and projection. In this way, a

key innovation of the synthetic approach is that it is, essentially, the opposite of the “Less

Is More” approach (in which processes are type-checked against local types, without global
types and projection).
The main theoretical result is that well-typedness implies safety and liveness, without the
need to prove consistency separately. The main practical result is that the synthetic approach

is the first one to pass the “Less Is More” benchmark compositionally.

• The general case: We present a new generic type system—beyond MPST—to type-check

processes against arbitrary well-behaved LTSs instead of only global types.

The main theoretical results are that: (a) well-behavedness and well-typedness imply safety

and liveness; (b) the LTSs of all global types are well-behaved. The key advantage of the

general case is that it is strictly more expressive than the special case. For instance, beyond

“Less Is More”, protocols are supported in which a sender chooses between different receivers.

Furthermore:

• We formalised all definitions/theorems/examples, and mechanised all proofs, in Agda.

• We developed a prototype language and tooling as an extension to VS Code.

In Section 2, we present a detailed overview of our contributions. In Section 3, we recall some

preliminaries from the MPST literature to set the stage for our theoretical development in later

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:6 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

sections. Then, in Section 4, we discuss the details of typing with global types first (the special

case), while in Section 5, we generalise the session classifiers from global types to LTSs (the general

case). In Section 6 and Section 7, we discuss the mechanisation and implementation of our theory,

respectively. We finish with a discussion of related work and a conclusion in Sections 8 and 9.

Throughout the paper, we continue to use colours to emphasise syntactic categories of objects:

shades of red for data/process expressions, shades of blue for types, and shades of magenta for

objects common to both expressions and types (e.g., role names, message labels). The colours

are just syntax highlighting: they do not have additional meaning. Furthermore, all lemmas and

theorems that have been formalised in Agda are explicitly marked with the Agda logo: . An

archived version of the artifact associated with this paper can be found in [9].

2 Overview of the Contributions
Figure 1c visualises the idea behind the synthetic approach of this paper.

(1) First, a protocol among roles r1, . . . , rn is implemented as a family of processes 𝑃1, . . . , 𝑃𝑛 ,
while it is specified as a global type 𝐺 .

(2) Next, the family of processes is verified by type-checking 𝑃𝑖 against 𝐺 for each role. The

main result is that well-typedness implies safety and liveness.

Thus, the synthetic approach to MPST works without local types and projection (cf. the “Less

Is More” approach) and without the need to prove consistency separately (cf. the classical

approach). In fact, the synthetic approach can be further generalised to work without global
types: processes can be type-checked directly against well-behaved labelled transition systems (LTS),
regardless of any particular syntax to express such LTSs. Global types are just one instantiation

(i.e., type-checking against global types is a special case of type-checking against well-behaved

LTSs). We clarify the special case and the general case in the remaining subsections.

2.1 The Special Case: Type Checking against Global Types
Our technique to type-check processes against global types consists of two parts:

• First, we associate each global type 𝐺 with operational semantics in the form of an LTS. Each

state models a continuation of the protocol specified by 𝐺 , while each transition models a

possible communication.

• Second, we use LTSs to define the typing rules. For instance:

𝛤 ⊢ 𝑒 : 𝑡 𝛤 ⊢ p ⊳ 𝑃 : 𝐺 ′ 𝐺
p_q:ℓ (𝑡)
−−−−−−−→ 𝐺 ′

𝛤 ⊢ p ⊳ q!ℓ (𝑒) .𝑃 : 𝐺

This simplified typing rule—we present the actual one later in this paper—states that, as an

implementation of role p, process q!ℓ (𝑒) .𝑃 is well-typed by global type 𝐺 in environment 𝛤

when: (1) expression 𝑒 is well-typed by payload type 𝑡 ; (2) process 𝑃 is well-typed by global

type 𝐺 ′
; (3) 𝐺 has a transition to 𝐺 ′

. That is, 𝐺 and 𝐺 ′
are treated as states of an LTS.

We note that 𝐺 ′
occurs in the premise of the rule, but not in the conclusion. Thus, from

a bottom-up perspective, 𝐺 ′
is a free meta-variable that needs to be synthesised to apply

the rule. In philosophical logic, rules with free meta-variables in the premises are called

“synthetic” [3, 14]; this is where the name “synthetic approach” comes from.
4

To further clarify our technique, we present a series of examples that revisit the Ring protocol

of Example 1.1. The first example in the series demonstrates an LTS; the remaining examples

demonstrate the typing rules. In each of the latter examples, we construct a typing derivation for

4
Unrelated to “synthetic approaches” in dependent type theory

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:7

Table 1. Principles of the typing rules

Principle Exmp.

Sending P1: Each send implemented needs to be specified 2.2

P2: Not each send specified needs to be implemented (at least one, though) 2.2

Receiving P3: Not each receive implemented needs to be specified 2.4

P4: Each receive specified needs to be implemented 2.3

Skipping P5: Each communication specified needs to be skipped by each “third party” 2.4

𝐺Ring

1
𝐺Ring

4

𝐺Ring

2

𝐺Ring

3

𝐺Ring

5
𝐺Ring

6

aaa_bbb:AppThenGet(Nat) bbb_ccc:AppThenGet(Nat)

ccc_aaa:Val(Nat)
aaa_bbb:

App(Nat)
bbb_ccc:

App(Nat)
aaa_ccc:
Get

Fig. 4. Operational semantics of 𝐺Ring
in Example 1.1. Let 𝐺Ring

1
=𝐺Ring

.

one of the processes in the Ring protocol. Different examples highlight different principles enforced

by the typing rules. Table 1 summarises the principles. The asymmetry between the principles for

sending and receiving is further explained in the examples.

Example 2.1. Figure 4 visualises the operational semantics of 𝐺Ring
in Example 1.1 as an LTS

with six states. Global action p_q:ℓ (𝑡) specifies the communication of a message labelled ℓ , with

a payload of type 𝑡 , from role p to role q. □

Example 2.2. We prove that 𝑃Ring

aaa in Example 1.1 is well-typed by the LTS of 𝐺Ring
in Figure 4.

First, the following derivation states that, as an implementation of Alice, the empty process is

well-typed by “state” 𝐺Ring

4
in type environments where variable z is a number:

𝐺Ring

4
↛

∅, z : Nat;∅ ⊢ aaa ⊳ end : 𝐺Ring

4

(1)

The intuition is that, as𝐺Ring

4
does not have any transitions, it allowsAlice to terminate. Generally,

a global type allows a role to terminate when none of the reachable successor “states” of that global

type—after zero-or-more transitions—has a transition with that role. For instance,𝐺Ring

6
allows Bob

to terminate (because neither 𝐺Ring

3
nor 𝐺Ring

4
has a transition with Bob), but 𝐺Ring

2
does not allow

Alice to terminate (because 𝐺Ring

3
has a transition with Alice).

Next, the following derivation states that, as an implementation of Alice, process ccc?Val(z) .end
is well-typed by “state” 𝐺Ring

3
in empty type environments:{

𝐺Ring

3

ccc_aaa:Val(Nat)
−−−−−−−−−−−→ 𝐺Ring

4
↦→ ∅, z : Nat;∅ ⊢ aaa ⊳ end : 𝐺Ring

4
(1)

}
∅;∅ ⊢ aaa ⊳ ccc?Val(z) .end : 𝐺Ring

3

(2)

The intuition is that, as𝐺Ring

3
has a transition that models a communication from Carol to Alice of a

message labelled Val, with a payload of type Nat, it allows Alice to perform such a receive. As the
payload is received into variable z, the successor process must be well-typed in type environments

that map z to Nat; this was proved by Equation (1).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:8 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

Next, the following derivation states that, as an implementation of Alice, process ccc?Val(z) .end—
the same as in the previous derivation—is well-typed by “state” 𝐺Ring

2
in empty type environments:

𝐺Ring

2
̸
{aaa}
−−→

{
𝐺Ring

2

bbb_ccc:AppThenGet(Nat)
−−−−−−−−−−−−−−−−−→ 𝐺Ring

3
↦→ ∅;∅ ⊢ aaa ⊳ ccc?Val(z) .end : 𝐺Ring

3
(2)

}
∅;∅ ⊢ aaa ⊳ ccc?Val(z) .end : 𝐺Ring

2

(3)

The intuition is that, as 𝐺Ring

2
has one transition, but none with Alice, it allows Alice to skip the

communication modelled by that transition. Skipping communications in this way subsumes

the concept of merging—a key ingredient of projection—in the classical approach to MPST [31].

Last, the following derivation states that, as an implementation of Alice, process bbb!AppThenGet(5) .
ccc?Val(z) .end is well-typed by “state” 𝐺Ring

1
in empty type environments (henceforth omitted):

⊢ 5 : Nat ⊢ aaa ⊳ ccc?Val(z) .end : 𝐺Ring

2
(3) 𝐺Ring

1

aaa_bbb:AppThenGet(Nat)
−−−−−−−−−−−−−−−−−→ 𝐺Ring

2

⊢ aaa ⊳ bbb!AppThenGet(5) .ccc?Val(z) .end : 𝐺Ring

1

(4)

The intuition is that, as 𝐺Ring

1
has a transition that models a communication from Alice to Bob of a

message labelled AppThenGet, with a payload of type Nat, it allows Alice to perform such a send.
We note that 𝐺Ring

1
has two transitions, but the well-typed process has only one corresponding

output alternative. This demonstrates principles P1/P2 that each send implemented needs to be
specified, but not each send specified needs to be implemented (at least one, though).

Given the definitions of 𝑃Ring

aaa in Example 1.1 and𝐺Ring
in Figure 4, we conclude from Equation (4):

⊢ 𝑃Ring

aaa : 𝐺Ring □

Example 2.3. We prove that 𝑃Ring

bbb in Example 1.1 is well-typed by the LTS of 𝐺Ring
in Figure 4.

First, using similar derivations as in Example 2.2, we can prove:

∅, x : Nat;∅ ⊢ bbb ⊳ ccc!AppThenGet(x+1) .end : 𝐺Ring

2
(5)

∅, x : Nat;∅ ⊢ bbb ⊳ ccc!App(x+1) .end : 𝐺Ring

5
(6)

Next, the following derivation states that, as an implementation of Bob, his input process 𝑃Ring

bbb in

Example 1.1 is well-typed by “state” 𝐺Ring

1
. Let ℓ1 = AppThenGet and ℓ2 = App:{

𝐺Ring

1

aaa_bbb:AppThenGet(Nat)
−−−−−−−−−−−−−−−−−→ 𝐺Ring

2
↦→ ∅, x : Nat;∅ ⊢ bbb ⊳ ccc!AppThenGet(x+1) .end : 𝐺Ring

2
(5)

𝐺Ring

1

aaa_bbb:App(Nat)
−−−−−−−−−−−→ 𝐺Ring

5
↦→ ∅, x : Nat;∅ ⊢ bbb ⊳ ccc!App(x+1) .end : 𝐺Ring

5
(6)

}
∅;∅ ⊢ bbb ⊳ aaa?{ℓ1 (x) .ccc!ℓ1 (x+1) .end, ℓ2 (x) .ccc!ℓ2 (x+1) .end} : 𝐺Ring

1

(7)

The intuition is that, as 𝐺Ring

1
has transitions that model communications from Alice to Bob of a

message labelled AppThenGet or App, with a payload of type Nat, it allows Bob to perform such
receives. As the payload is received into variable x, the successor process must be well-typed in

type environments that map x to Nat; this was proved by Equations (5) and (6).

We note that 𝐺Ring

1
has two transitions, and the well-typed process has two corresponding

input alternatives. This demonstrates principle P4 that each receive specified needs to be
implemented. Thus, there is asymmetry between typing input processes (e.g., Bob in this example)

and typing output processes (e.g., Alice in Example 2.2): a sender must be able to offer at least one

message label specified in the LTS, while the receiver must be able to accept all of them.

Given the definitions of 𝑃Ring

bbb in Example 1.1 and𝐺Ring
in Figure 4, we conclude from Equation (7):

⊢ 𝑃Ring

bbb : 𝐺Ring □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:9

Example 2.4. We prove that 𝑃Ring

ccc in Example 1.3 is well-typed by the LTS of 𝐺Ring
in Figure 4.

First, using a similar derivation as in Example 2.2, we can prove:

∅, y : Nat;∅ ⊢ ccc ⊳ aaa!Val(y*2) .end : 𝐺Ring

3
(8)

∅, y : Nat;∅ ⊢ ccc ⊳ let z=y*2 in aaa?Get(_) .aaa!Val(z) .end : 𝐺Ring

6
(9)

Next, the following derivations state that, as an implementation of Carol, her input process

𝑃Ring

ccc in Example 1.3 is well-typed by both “state” 𝐺Ring

2
and “state” 𝐺Ring

5
. Let ℓ1 = AppThenGet and

ℓ2 = App. Also, let 𝑃1 = aaa!Val(y*2) .end and 𝑃2 = let z=y*2 in aaa?Get(_) .aaa!Val(z) .end:{
𝐺Ring

2

bbb_ccc:ℓ1 (Nat)−−−−−−−−−−→ 𝐺Ring

3
↦→ ∅, y : Nat;∅ ⊢ ccc ⊳ 𝑃1 : 𝐺

Ring

3
(8)

}
⊢ ccc ⊳ bbb?{ℓ1 (y) .𝑃1, ℓ2 (y) .𝑃2} : 𝐺Ring

2

(10){
𝐺Ring

5

bbb_ccc:ℓ2 (Nat)−−−−−−−−−−→ 𝐺Ring

6
↦→ ∅, y : Nat;∅ ⊢ ccc ⊳ 𝑃2 : 𝐺

Ring

6
(9)

}
⊢ ccc ⊳ bbb?{ℓ1 (y) .𝑃1, ℓ2 (y) .𝑃2} : 𝐺Ring

5

(11)

The intuition is that, as 𝐺Ring

2
(resp. 𝐺Ring

5
) has a transition that models a communication from Bob

to Carol of a message labelled AppThenGet (resp. App), it allows Carol to perform such a receive.
We note that the well-typed process has two input alternatives, but 𝐺Ring

2
(resp.𝐺Ring

5
) has only

one corresponding transition. This demonstrates principle P3 that not each receive implemented
needs to be specified: a receiver may be able to accept more message labels than just those

specified in the LTS. Reminiscent of subtyping in the MPST literature [12], this is fine because the

sender—assuming it is well-typed—is guaranteed to offer only message labels specified in the LTS.

Last, the following derivation states that, as an implementation of Carol, her input process 𝑃Ring

ccc

in Example 1.3 is well-typed by “state” 𝐺Ring

1
:

𝐺Ring

1
̸
{ccc}
−−→

{
𝐺Ring

1

aaa_bbb:ℓ1 (Nat)−−−−−−−−−−→ 𝐺Ring

2
↦→ ⊢ ccc ⊳ bbb?{ℓ1 (y) .𝑃1, ℓ2 (y) .𝑃2} : 𝐺Ring

2
(10)

𝐺Ring

1

aaa_bbb:ℓ2 (Nat)−−−−−−−−−−→ 𝐺Ring

5
↦→ ⊢ ccc ⊳ bbb?{ℓ1 (y) .𝑃1, ℓ2 (y) .𝑃2} : 𝐺Ring

5
(11)

}
⊢ ccc ⊳ bbb?{ℓ1 (y) .𝑃1, ℓ2 (y) .𝑃2} : 𝐺Ring

1

(12)

The intuition is that, as 𝐺Ring

1
has two transitions, but none with Carol, it allows Carol to skip

the communications modelled by those transitions.
We note that𝐺Ring

1
has two successor “states”, and the process is well-typed by each of them. This

demonstrates principle P5 that each communication specified needs to be skipped by each
“third party” that does not participate in that communication: regardless of which communications

happen between whichever senders and receivers, third parties that do not participate in those

communications must be able to behave as specified in any continuation.

Given the definitions of 𝑃Ring

ccc in Example 1.3 and𝐺Ring
in Figure 4, we conclude from Equation (12):

⊢ 𝑃Ring

ccc : 𝐺Ring □

The main theoretical result for the special case of our synthetic approach to MPST is that

well-typedness implies safety and liveness.

Example 2.5. Examples 2.2 to 2.4 demonstrated that 𝑃Ring

aaa , 𝑃Ring

bbb , 𝑃Ring

ccc are well-typed by 𝐺Ring
.

Thus, by Theorems 4.3 and 4.4, we conclude that the parallel composition of this family of processes—

the session—is safe and live. Safety means that each communication that happens in the session is

allowed by the global type. Liveness means that after any number of communications, either the

session has successfully terminated, or another communication can happen. It is the first time in

the MPST literature that this is proved compositionally for Example 1.1. □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:10 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

The main practical result is that the synthetic approach is the first one to pass the “Less Is
More” benchmark compositionally, as we demonstrate fully in Section 4.4.

2.2 The General Case: Type Checking against LTSs
A key observation of the previous examples is that the syntax of global types does not matter
at all in the typing rules; only the operational semantics does. That is, the syntactic structure
of global types is never inspected in the typing rules. Instead, global types are treated as opaque

states of an LTS, whose transitions are the only objects of significance. This observation is pushed

forward in the general case of our synthetic approach to MPST.

The idea of the general case is to define a predicate to judge whether or not an LTS iswell-behaved.
Processes can subsequently be type-checked against well-behaved LTSs, regardless of how those

LTSs are generated, and independent of the syntactic structure of states—if any. Intuitively, an LTS

is well-behaved when it fulfils the following requirements:

• Sender determinacy: If a state has multiple transitions, then these transitions model com-

munications either with different senders and different receivers, or with the same sender but

different receivers, or with the same sender and the same receiver—but never with different

senders and the same receiver.

• Determinism: If a source state has multiple transitions that model the same communication,

then they have the same target state.

• Conditional commutativity and confluence (diamond): Subject to additional conditions

(see Definition 5.3 for details), if a state has multiple transitions that model independent

communications, then those communications commute (i.e., the transitions form a diamond).

The following example demonstrates these requirements.

Example 2.6. We argue that the LTS in Figure 4 is well-behaved. State𝐺Ring

1
is the only state that

has multiple transitions. These transitions have the same sender and the same receiver, so sender

determinacy is fulfilled. Moreover, these transitions do not model the same communication (i.e., the

message labels are different), nor are they independent, so determinism, conditional commutativity,

and confluence are fulfilled, too. The remaining states have only a single transition, so they trivially

fulfil the well-behavedness requirements. □

The main theoretical results for the general case of our synthetic approach are that: (a) well-
behavedness and well-typedness imply safety and liveness; (b) the LTSs of all global
types are well-behaved. Thus, when processes are type-checked against LTSs of global types,

well-behavedness of those LTSs does not need to be proved separately; it is already implied. This

makes type checking against global types really a special case of type checking against LTSs.

The key advantage is that the general case is strictly more expressive than the special case:
more families of processes can be successfully type-checked by well-behaved LTSs than by global

types. In particular, there exist well-behaved LTSs that cannot be expressed as a global type, but

they are inhabited in our type system. An LTS is inhabited when there exists a family of processes

each of which is well-typed by that LTS. The following example demonstrates a protocol that is

not supported in the “Less Is More” paper, nor is it supported by the special case in this paper, but

it is supported by the general case.

Example 2.7. The following well-behaved LTS specifies a protocol in which a Foo message is

communicated from Alice to Bob, and a Bar message from Alice to Carol, in any order:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:11

𝑆Diam
1

𝑆Diam
2

𝑆Diam
3

𝑆Diam
4

aaa_bbb:Foo aaa_ccc:Bar

aaa_ccc:Bar aaa_bbb:Foo

The following processes, well-typed by the LTS, implement Alice, Bob, and Carol:

𝑃Diam

aaa = bbb!Foo . ccc!Bar . end 𝑃Diam

bbb = aaa?Foo(_) . end 𝑃Diam

ccc = aaa?Bar(_) . end □

2.3 Formalisation and Mechanisation in Agda
We formalised all the theorems presented in this paper, as well as many examples, using the Agda

proof assistant. The formalisation follows the definitions given here directly, without requiring any

modifications or simplifications to facilitate the proofs. This reinforces the claim that the synthetic

approach to multiparty session types, as introduced above, is particularly amenable to formalisation

and mechanisation – a point we substantiate further in Section 6.

2.4 Prototype Language and Tooling in VS Code
We developed a prototype language and tooling as an extension of VS Code, including a dedicated

LSP server. The language consists of textual versions of global types and processes, while the tooling
consists of a parser, a syntax highlighter, and a type checker—all running in the LSP server—that

leverage the synthetic approach to MPST of this paper. The prototype shows that there exists an

algorithm to apply our typing rules in practice, opening up the door towards integration of our

type system in mainstream languages. The following example demonstrates the prototype.

Example 2.8. Figure 5 shows three VS Code screenshots of the Ring specification and implemen-

tation, as a global type (lines 1-11) and as processes (lines 13-26), in our prototype language; they

correspond with 𝐺Ring
and 𝑃Ring

aaa , 𝑃Ring

bbb , 𝑃Ring

ccc in Examples 1.1 and 1.3. The processes in Figure 5a

are well-typed, while the process for Alice in Figures 5b and 5c is ill-typed. The error messages

give the programmer actionable feedback about how/why the protocol is violated. □

3 Preliminaries
We first recall the existing syntax and operational semantics of global types and processes. The

definitions in this section are standard in the MPST literature (e.g., [12, 31]). For instance, as

commonly done, we stipulate that each protocol implementation consists of a fixed set of processes

(one for every role) and channels (two between every pair of roles; one in every direction).

3.1 Global Types
Syntax. Regarding the syntax of global types:

• Let R = {aaa,bbb,ccc, . . .} denote the set of roles, ranged over by p, q, r, s.

• Let L = {App, Get, Val, . . .} denote the set of message labels, ranged over by ℓ .

• Let T = {Unit, Bool, . . .} denote the set of payload types, ranged over by 𝑡 .

• Let {X, Y, Z, . . .} denote the set of recursion variables, ranged over by 𝑋,𝑌, 𝑍 .

• Let G denote the set of global types, ranged over by𝐺 . It is induced by the following grammar:

𝐺 ::= p_q:{ℓ𝑖 (𝑡𝑖) .𝐺𝑖 }𝑖∈𝐼
�� µ𝑋 .𝐺

�� 𝑋 �� end
�� 𝐺1 ∥ 𝐺2

Global type p_q:{ℓ𝑖 (𝑡𝑖) .𝐺𝑖 }𝑖∈𝐼 specifies the communication of a message labelled ℓ𝑗 , with a

payload of type 𝑡 𝑗 , from role p to role q, followed by 𝐺 𝑗 , for some 𝑗 ∈ 𝐼 . Each 𝐺𝑖 is called “a

branch”. Global types µ𝑋 .𝐺 and 𝑋 specify recursion. As usual, recursion must be guarded in

the sense of Yoshida and Gheri [37]. Global type end specifies the empty protocol. Global

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:12 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

(a) Well-typed

(b) Ill-typed: Wrong payload type

(c) Ill-typed: Wrong action

Fig. 5. Screenshots of the prototype language and tooling in VS Code

𝑗 ∈ 𝐼

p_q:{ℓ𝑖 (𝑡𝑖) .𝐺𝑖 }𝑖∈𝐼
p_q:ℓ𝑗 (𝑡 𝑗)−−−−−−−−−→ 𝐺 𝑗

[→G-Com1]

{p, q} ∩ {r, s} = ∅ 𝐺𝑖

r_s:ℓ (𝑡)
−−−−−−−→ 𝐺 ′

𝑖 for each 𝑖 ∈ 𝐼

p_q:{ℓ𝑖 (𝑡𝑖) .𝐺𝑖 }𝑖∈𝐼
r_s:ℓ (𝑡)
−−−−−−−→ p_q:{ℓ𝑖 (𝑡𝑖) .𝐺 ′

𝑖
}𝑖∈𝐼

[→G-Com2]

𝐺 [𝑋 :=µ𝑋 .𝐺] 𝛼−→ 𝐺 ′

µ𝑋 .𝐺
𝛼−→ 𝐺 ′

[→G-Rec]

𝐺1

𝛼−→ 𝐺 ′
1

𝐺1 ∥ 𝐺2

𝛼−→ 𝐺 ′
1
∥ 𝐺2

[→G-Par1]

𝐺2

𝛼−→ 𝐺 ′
2

𝐺1 ∥ 𝐺2

𝛼−→ 𝐺1 ∥ 𝐺 ′
2

[→G-Par2]

Fig. 6. Transition rules for global types

type 𝐺1 ∥ 𝐺2 specifies the interleaving of 𝐺1 and 𝐺2. As in the original MPST paper [17], we

stipulate that the roles in 𝐺1 and 𝐺2 are disjoint (straightforward to syntactically check).

• Let A = {p_q:ℓ (𝑡) | p, q ∈ R and ℓ ∈ L and 𝑡 ∈ T} denote the set of global actions, ranged
over by 𝛼 . Global action p_q:ℓ (𝑡) specifies the communication of a message labelled ℓ , with

a payload of type 𝑡 , from role p to role q.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:13

𝑅 ⊆ {p, q} 𝐺
p_q:ℓ (𝑡)
−−−−−−−→ 𝐺 ′

𝐺
𝑅−→ 𝐺 ′

𝑅 ∩ {p, q} = ∅ 𝐺
p_q:ℓ (𝑡)
−−−−−−−→ 𝐺 ′

𝐺
𝑅−→ 𝐺 ′

𝐺 ̸𝑅−→ 𝐺
𝑅−→ 𝐺 ′

𝐺
𝑅
=⇒ 𝐺 ′

Fig. 7. Derived transition rules for global types

Operational semantics. Regarding the operational semantics of global types, let 𝐺
𝛼−→ 𝐺 ′

denote the

transition from global type 𝐺 to global type 𝐺 ′
through global action 𝛼 . It is the smallest relation

induced by the rules in Figure 6:

• Rule [→G-Com1] states that a communication global type can make a transition to any one

of its branches through the corresponding global action.

• Rule [→G-Com2] states that a communication global type can also make a transition when:

each of its branches can make a transition through the same global action (second premise);

this “lexically next” global action is independent of the “lexically first” global action (first

premise). Thus, independent global actions may happen out-of-order. This feature [17] is

needed to ensure that global types are not unnecessarily restrictive. Without allowing out-of-

order execution of independent global actions, for instance, there would exist no global type

for the following processes (trailing end omitted to save space):

𝑃Com2

aaa = b1b1b1!Foo . b2b2b2!Foo 𝑃Com2

b1b1b1,b2b2b2 = aaa?Foo(_) . ccc!Bar 𝑃Com2

ccc = b1b1b1?Bar(_) . b2b2b2?Bar(_)
Using rule [→G-Com2], though, the following global type precisely specifies the protocol:

𝐺Com2 = aaa_b1b1b1:Foo . aaa_b2b2b2:Foo . b1b1b1_ccc:Bar . b2b2b2_ccc:Bar . end

Crucially, the two middle communications can happen out-of-order.

• Rule [→G-Rec] states that a recursive global type can make a transition when its unfolding

can. In this rule, 𝐺 [𝑋 :=µ𝑋 .𝐺] denotes the substitution of 𝑋 by µ𝑋 .𝐺 in 𝐺 .

• Rules [→G-Par1] and [→G-Par2] state that an interleaving global type can make a transition

when one of its operands can.

Furthermore, let 𝐺
𝑅−→ 𝐺 ′

(resp. 𝐺
𝑅−→ 𝐺 ′

) denote the existence of a transition from 𝐺 to 𝐺 ′
in

which each (resp. none) of the roles in 𝑅 participate. Let 𝐺
𝑅
=⇒ 𝐺 ′

denote that: (1) none of the roles

in 𝑅 participate in none of the transitions of 𝐺 ; (2) 𝐺 has a transition to 𝐺 ′
. They are the smallest

relations induced by the rules in Figure 7.

Given a fixed set of roles, for each derived transition relationd ∈ ⋃{{ 𝑅−→,
𝑅−→,

𝑅
=⇒} | 𝑅 ⊆ R}, we

write “𝐺 d” instead of “𝐺 d 𝐺 ′
for some 𝐺 ′

”, we write “𝐺 d̸” instead of “𝐺 d̸ 𝐺 ′
for each 𝐺 ′

”,

and we writed∗
for the reflexive transitive closure.

If 𝐺
{𝑟 }
−−→, then r is enabled. If 𝐺 ̸

{𝑟 }
−−→, then r is disabled. If there exist global actions 𝛼1, . . . , 𝛼𝑛

such that𝐺
𝛼1−−→ · · · 𝛼𝑛−−→

{𝑟 }
−−→, then r is active in𝐺 ; otherwise, r is inactive. Let r ∈ 𝐺 and r ∉ 𝐺 denote

the activeness and inactiveness of r in 𝐺 .

3.2 Processes
Syntax. Regarding the syntax of processes:

• Let X denote the set of variables, ranged over by 𝑥 .

• Let V = {unit, false, true, 0, 1, 2, . . .} denote the set of values, ranged over by 𝑣 .

• Let E = X ∪ V ∪ {2==3, x+1, . . .} denote the set of expressions, ranged over by 𝑒 .

• Let P denote the set of processes, ranged over by 𝑃 . It is induced by the following grammar:

𝑃 ::= q!ℓ (𝑒) .𝑃
��
p?{ℓ𝑖 (𝑥𝑖 :𝑡𝑖) .𝑃𝑖 }𝑖∈𝐼

�� let 𝑥=𝑒 in 𝑃
�� if 𝑒 then 𝑃1 else 𝑃2

�� rec 𝑋 .𝑃
�� 𝑋 �� end

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:14 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

𝑣 ⇓ 𝑣

𝑒1 ⇓ 𝑣 𝑒2 ⇓ 𝑣

𝑒1==𝑒2 ⇓ true

𝑒1 ⇓ 𝑣1 𝑒2 ⇓ 𝑣2 𝑣1 ≠ 𝑣2

𝑒1==𝑒2 ⇓ false
· · ·

Fig. 8. Evaluation rules for expressions (excerpt)

𝑒 ⇓ 𝑣 𝑗 ∈ 𝐼

p ⊳ q!ℓ𝑗 (𝑒) .𝑃 | q ⊳ p?{ℓ𝑖 (𝑥𝑖 :𝑡𝑖) .𝑃𝑖 }𝑖∈𝐼
p_q:ℓ𝑗 (𝑡 𝑗)−−−−−−−−−→ p ⊳ 𝑃 | q ⊳ 𝑃 𝑗 [𝑥 𝑗 := 𝑣]

[→P-Com]

𝑒 ⇓ 𝑣

r ⊳ let 𝑥=𝑒 in 𝑃
τ−→ r ⊳ 𝑃 [𝑥 := 𝑣]

[→P-Let]

𝑒 ⇓ true

r ⊳ if 𝑒 then 𝑃1 else 𝑃2
τ−→ r ⊳ 𝑃1

[→P-If1]

𝑒 ⇓ false

r ⊳ if 𝑒 then 𝑃1 else 𝑃2
τ−→ r ⊳ 𝑃2

[→P-If2]

r ⊳ rec 𝑋 .𝑃
τ−→ r ⊳ 𝑃 [𝑋 := rec 𝑋 .𝑃]

[→P-Rec]

𝐶1

𝛼−→ 𝐶′
1

𝐶1 | 𝐶2

𝛼−→ 𝐶′
1
| 𝐶2

𝐶2 | 𝐶1

𝛼−→ 𝐶′

𝐶1 | 𝐶2

𝛼−→ 𝐶′

(𝐶1 | 𝐶2) | 𝐶3

𝛼−→ 𝐶′

𝐶1 | (𝐶2 | 𝐶3)
𝛼−→ 𝐶′

𝐶1 | (𝐶2 | 𝐶3)
𝛼−→ 𝐶′

(𝐶1 | 𝐶2) | 𝐶3

𝛼−→ 𝐶′

Fig. 9. Transition rules for sessions

Output process q!ℓ (𝑒) .𝑃 implements the send of a message labelled ℓ , with (the value of)

expression 𝑒 as the payload, to role q, followed by 𝑃 . Input process p?{ℓ𝑖 (𝑥𝑖 :𝑡𝑖) .𝑃𝑖 }𝑖∈𝐼 imple-

ments the receive of the payload of a message labelled ℓ𝑗 , from role p, into variable 𝑥 𝑗 of type

𝑡 𝑗 , followed by 𝑃 𝑗 , for some 𝑗 ∈ 𝐼 . Process let 𝑥=𝑒 in 𝑃 implements the binding of variable 𝑥

to the value of expression 𝑒 in 𝑃 . Process if 𝑒 then 𝑃1 else 𝑃2 implements a conditional choice.

Processes rec 𝑋 .𝑃 and 𝑋 implement recursion. As usual, we stipulate that each process is

message-guarded (i.e., recursion variables occur only under sends/receives) and closed (i.e.,

recursion variables are bound); these are simple syntactic checks.

• Let C denote the set of families of processes—“sessions”—ranged over by 𝐶 . It is induced by

the following grammar:

𝐶 ::= r ⊳ 𝑃
�� 𝐶1 | 𝐶2

Session r ⊳ 𝑃 implements role r as process 𝑃 . Session 𝐶1 | 𝐶2 implements the parallel com-

position. As usual, we stipulate that each session implements each role at most once (e.g.,

r ⊳ 𝑃1 | r ⊳ 𝑃2 is ruled out); this is a simple syntactic check. We note that process creation and

session creation are orthogonal to the contributions of this paper and thus we omit them.

Furthermore, let obj(𝑃) denote the object of 𝑃 : it is the receiver if 𝑃 is an output process, the

sender if 𝑃 is an input process, and undefined otherwise. It is induced by the following equations:

obj(q!ℓ (𝑒) .𝑃) = q obj(p?{ℓ𝑖 (𝑥𝑖) .𝑃𝑖 }𝑖∈𝐼) = p

Operational semantics. Regarding the operational semantics of processes:

• Let 𝑒 ⇓ 𝑣 denote the evaluation of expression 𝑒 to value 𝑣 . It is induced by the rules in Figure 8

(excerpt); the rules are standard.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:15

𝛤, 𝑥 : 𝑡 ⊢ 𝑥 : 𝑡 𝛤 ⊢ true : Bool

𝛤 ⊢ 𝑒1 : 𝑡1 𝛤 ⊢ 𝑒2 : 𝑡2
𝛤 ⊢ 𝑒1==𝑒2 : Bool

· · ·

Fig. 10. Typing rules for expressions (excerpt)

• Let 𝐶
𝛼−→ 𝐶′

and 𝐶
τ−→ 𝐶′

denote the transition from session 𝐶 to session 𝐶′
through global

action 𝛼 or internal action τ; we use these transition labels to formally relate the behaviour

of sessions to that of global types when proving safety. It is induced by the rules in Figure 9:

– Rule [→P-Com] states that an output process and a corresponding input process can make

a transition by sending and receiving a message. We note that the communication is

synchronous. In this rule, 𝑃 [𝑥 := 𝑣] denotes the substitution of 𝑥 by 𝑣 in 𝑃 .

– The remaining rules are standard. We note that parallel composition of sessions is explicitly

commutative and associative (bottom three rules), similar to both the original MPST paper

and the “Less Is More” paper [17, 31] (which rely on an auxiliary structural congruence

relation that includes commutativity and associativity axioms to define the transition rules;

we omitted such a relation for simplicity, as we do not need its full power). Equivalently, a

session is a partial function from roles to processes.

4 The Special Case: Typing with Global Types
In this section, we present our results for the special case of our synthetic approach to MPST.

4.1 Type System
Let Γ and ∆ denote the sets of data type environments and session type environments, ranged over

by 𝛤 and 𝛥. They are induced by the following grammar:

𝛤 ::= ∅
�� 𝛤, 𝑥 : 𝑡 𝛥 ::= ∅

�� 𝛥,𝑋 : 𝐺

As usual, we consider type environments up to reordering of entries for different variables (e.g., we

can reorder 𝛤, x : Unit, y : Bool to 𝛤, y : Bool, x : Unit, but we cannot reorder 𝛤, x : Unit, x : Bool).

Let 𝛤 ⊢ 𝐸 : 𝑆 denote well-typedness of expression 𝐸 by payload type 𝑆 in data type environment

𝛤 . It is the smallest relation induced by the rules in Figure 10 (excerpt); the rules are standard.

Let 𝛤 ;𝛥 ⊢ 𝐶 : 𝐺 denote well-typedness of session 𝐶 by global type 𝐺 in type environments 𝛤

and 𝛥. We write ⊢ 𝐶 : 𝐺 instead of ∅;∅ ⊢ 𝐶 : 𝐺 . It is the smallest relation induced by the rules

in Figure 11. We first explain how the core, non-standard rules should be read and what they

informally mean. In Section 4.2, we provide a more in-depth discussion.

• Rule [⊢-Send] states that, as an implementation of role p (sender), an output process is well-

typed when: the payload is well-typed (first premise); the successor is well-typed (second

premise); there exists a corresponding transition (third premise). More intuitively, this rule

means that each send implemented needs to be specified, but not each send specified needs

to be implemented.

• Rule [⊢-Recv] states that, as an implementation of role q (receiver), an input process is

well-typed when, for each transition (at least one), a corresponding branch exists (i.e., it has

the specified message label) and is well-typed in an extended type environment (i.e., the

variable has the specified payload type). More intuitively, this rule means that each receive

specified needs to be implemented, but not each receive implemented needs to be specified.

• Rule [⊢-Skip] states that, as an implementation of role r, a process is well-typed when:

(1) For the present 𝐺 , a send or receive by r is not specified.
(2) For the future, a send or receive by r is specified.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:16 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

𝛤 ⊢ 𝑒 : 𝑡 𝛤 ;𝛥 ⊢ p ⊳ 𝑃 : 𝐺 ′ 𝐺
p_q:ℓ (𝑡)
−−−−−−−→ 𝐺 ′

𝛤 ;𝛥 ⊢ p ⊳ q!ℓ (𝑒) .𝑃 : 𝐺
[⊢-Send]

𝐺
p_q:ℓ ′ (𝑡 ′)
−−−−−−−−−→ ∀𝐺

p_q:ℓ (𝑡)
−−−−−−−→ 𝐺 ′ .

[
∃ 𝑗 ∈ 𝐼 .

[
ℓ𝑗 = ℓ ∧ 𝛤, 𝑥 𝑗 : 𝑡 ;𝛥 ⊢ q ⊳ 𝑃 𝑗 : 𝐺

′]]
𝛤 ;𝛥 ⊢ q ⊳ p?{ℓ𝑖 (𝑥𝑖) .𝑃𝑖 }𝑖∈𝐼 : 𝐺

[⊢-Recv]

(1) 𝐺 ̸
{r}
−−→ (2) ∀𝐺

{r}
−−→∗ 𝐺 ′ .

[
∃𝐺 ′′ .

[
𝐺 ′ {r}

===⇒∗ 𝐺 ′′ {r}
−−→

]]
(3) ∀𝐺 =𝐺 ′ {r}

===⇒∗ 𝐺 ′′ {r}
−−→ .

[
𝛤 ;𝛥 ⊢ r ⊳ 𝑃 : 𝐺 ′′]

(4) ∀𝐺
{r}
−−→∗ 𝐺 ′ .

[
𝐺 ′ {r}

−−→ ∨ 𝐺 ′ {r,obj(𝑃) }
−−−−−−−−→∗ {r,obj(𝑃) }

−−−−−−−−→
]

𝛤 ;𝛥 ⊢ r ⊳ 𝑃 : 𝐺
[⊢-Skip]

∀𝐺
{r}
−−→∗ 𝐺 ′ .

[
𝐺 ′ ̸

{r}
−−→

]
𝛤 ;𝛥 ⊢ r ⊳ end : 𝐺

[⊢-End]
𝛤 ⊢ 𝑒 : 𝑡 𝛤 , 𝑥 : 𝑡 ;𝛥 ⊢ r ⊳ 𝑃 : 𝐺

𝛤 ;𝛥 ⊢ r ⊳ let 𝑥=𝑒 in 𝑃 : 𝐺
[⊢-Let]

𝛤 ⊢ 𝑒 : Bool 𝛤 ;𝛥 ⊢ r ⊳ 𝑃1 : 𝐺 𝛤 ;𝛥 ⊢ r ⊳ 𝑃2 : 𝐺
𝛤 ;𝛥 ⊢ r ⊳ if 𝑒 then 𝑃1 else 𝑃2 : 𝐺

[⊢-If]

𝛤 ;𝛥,𝑋 : 𝐺 ⊢ r ⊳ 𝑃 : 𝐺 𝑃 is message-guarded

𝛤 ;𝛥 ⊢ r ⊳ rec 𝑋 .𝑃 : 𝐺
[⊢-Rec]

𝐺
{r}
−−→∗ 𝐺 ′

𝛤 ;𝛥,𝑋 : 𝐺 ⊢ r ⊳ 𝑋 : 𝐺 ′ [⊢-Var]

dom(𝐶1) ∩ dom(𝐶2) = ∅ ⊢ 𝐶1 : 𝐺 ⊢ 𝐶2 : 𝐺

⊢ 𝐶1 | 𝐶2 : 𝐺
[⊢-Comp]

Fig. 11. Typing rules for processes

That is, for each “near future”𝐺 ′
—reachable through zero-or-more transitions without r,

but rmay have been enabled—there exists a “distant future”𝐺 ′′
—reachable through another

zero-or-more transitions without r, and r must have been disabled—for which a send or

receive by r is specified. At least one distant future exists (when 𝐺 =𝐺 ′
).

(3) In each distant future 𝐺 ′′
, the process is well-typed. We note that the “𝐺 =” part in this

premise is technically redundant; we included it so that meta-variables 𝐺 ′
and 𝐺 ′′

are

bound in the same way as in premise (2).

More intuitively, this premisemeans that an implementation of r ignores all communications

in which r does not participate. However, regardless of which other communications other

processes engage in (ignored by r), an implementation of rmust behave in compliance with

any possible future that may arise.

(4) In each near future, either r is enabled, or r and obj(𝑃) (i.e., the next communication partner

of r) cannot communicate with each other until either one of them has communicated with

another process.

More intuitively, this premise means that there needs to be some kind of causality: imple-

mentations of r and obj(𝑃) cannot start communicating with each other spontaneously:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:17

either it must already be possible, or it must happen in response to a communication of

one of them with another process.

We note that rule [⊢-Skip] is not syntax-directed. This is different from existing type systems

in the MPST literature, including in the classical approach and the “Less Is More” approach.

• Rule [⊢-Rec] and rule [⊢-Var] state that, as an implementation of role r, a recursive process

is well-typed when: the body is well-typed (premise of rule [⊢-Rec]); the global types upon
starting and finishing the body,𝐺 and𝐺 ′

, are reachable through transitions without r (premise

of rule [⊢-Var]). The latter is a generalisation of the usual equality condition on 𝐺 and 𝐺 ′
in

typing rules for recursive processes in the MPST literature. Our relaxation enables typing

more recursive processes. The following example demonstrates the usefulness.

Example 4.1. The following global type and its LTS specify a protocol in which a Foomessage

is communicated first from Alice to Bob and next, ad infinitum, from Bob to Carol and Dave:

𝐺Lasso = aaa_bbb:Foo . µX .

bbb_ccc:Foo .

bbb_ddd:Foo .

X

𝐺Lasso

1
𝐺Lasso

2
𝐺Lasso

3

aaa_bbb:Foo

bbb_ccc:Foo

bbb_ddd:Foo

The following derivation (excerpt for simplicity) states that, as an implementation of Dave,

process rec X.bbb?Foo(x) .X is well-typed by 𝐺Lasso

1
:

𝐺Lasso

1

{ddd}
−−→∗ 𝐺Lasso

2

∅, x : Unit;∅, X : 𝐺Lasso

1
⊢ ddd ⊳ X : 𝐺Lasso

2

[⊢-Var] · · ·

∅;∅, X : 𝐺Lasso

1
⊢ ddd ⊳ bbb?Foo(x) .X : 𝐺Lasso

3

[⊢-Recv] · · ·

∅;∅, X : 𝐺Lasso

1
⊢ ddd ⊳ bbb?Foo(x) .X : 𝐺Lasso

1

[⊢-Skip]

⊢ ddd ⊳ rec X.bbb?Foo(x) .X : 𝐺Lasso

1

[⊢-Rec]

This derivation crucially takes advantage of our relaxation: rule [⊢-Var] does not require
equality of the global types on the left-hand side and on the right-hand side of the turnstile,

but the existence of a sequence of transitions between them is sufficient. □

In general, typing recursive processes is a non-trivial problem. We are currently working

on further generalisations of rule [⊢-Var]. For the purpose of this paper (notably: passing
the “Less Is More” benchmark), the current version of rule [⊢-Var] already provides enough

expressive power.

For the top-level session, as a well-formedness requirement, the type system also checks that each

role that occurs in the global type is implemented as a process in the session.

Just as in the classical approach to MPST, it is possible in our approach to write global types that

fundamentally cannot be implemented as well-typed sessions; they are inherently “unrealisable”

as distributed systems. In the classical approach, such global types are ruled out by leaving the

projection onto at least one role undefined; thus, there are not enough local types to check processes

against. In contrast, in our approach, unrealisability manifests through the standard notion of type
inhabitation. In particular, global types that specify protocols that violate the Knowledge of Choice
(KC) principle are uninhabited. Intuitively, KC demands that if the future of a protocol depends

on choices made in the past, then each role needs to be(come) aware of those choices in a timely

fashion. The following example demonstrates an uninhabited global type.

Example 4.2. The Confusion protocol consists of roles Alice, Bob, and Carol. First, a Foo message

or a Bar message is communicated from Alice to Bob. Next, a Confusion message is communicated

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:18 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

from Bob to Carol. Last, a message with the same label as the one that was communicated from Alice

to Bob is communicated from Carol to Alice. While Alice and Bob are aware of the choice between

Foo and Bar, Carol is not: regardless of the choice, she always receives a Confusion message.

The following global type specifies the Confusion protocol:

𝐺Conf = aaa_bbb:

{
Foo . bbb_ccc:Confusion . ccc_aaa:Foo . end
Bar . bbb_ccc:Confusion . ccc_aaa:Bar . end

This global type is uninhabited. The problem is that any well-typed implementation of Carol would

have to start with receiving a Confusion message:

𝑃Conf

ccc = bbb?Confusion(_) . 𝑃 ′

However, 𝑃 ′
must now be well-typed by both ccc_aaa:Foo.end and ccc_aaa:Bar.end, so it has to be both

aaa!Foo.end and aaa!Bar.end, which is a contradiction. □

We note that unrealisability implies unprojectability and uninhabitation, but not the other way

around: projectability and inhabitation are conservative in the sense that they reject more global

types than just the unrealisable ones. For now, the exact relation between projectability and

inhabitation is unknown, but we conjecture that the former is strictly subsumed by the latter.

4.2 In-Depth Discussion of the Design of the Typing Rules
4.2.1 Rule [⊢-Skip]. The most complicated rule of the type system is rule [⊢-Skip]. One apparent
complication is that it looks ahead multiple transitions of the global type instead of only a single

one. The reason why we chose the multi-transition design is that it makes dealing with cycles

significantly easier. The key insight is that, ultimately, we need to reason about the reachable
successors of a global type (“near futures” and “distant futures”), subject to additional conditions

along the way. This can be directly expressed by looking ahead multiple transitions, but only

indirectly—using substantial additional bookkeeping as part of the typing judgment—by looking

ahead a single transition at a time. Essentially, the complexity of dealing with cycles is pushed into

the computation of the transitive closure, for which existing algorithms can be straightforwardly

adapted (as is done in our prototype language and tooling in VS Code).

When quantifying over reachable successors by looking ahead multiple transitions, a subtle point

that needs to be addressed is that the domain is non-empty: at least one reachable successor needs

to exist. This is the purpose of premise 2. It ensures that the universal quantification in premise 3

has a non-empty domain in every possible successor that is reachable after unrelated communications.
This is essential for soundness (i.e., if an empty domain were allowed, then premise 3 would be

vacuously true, which would erroneously mean that 𝑃 could be, or do, anything).

More generally, regarding the efficacy of the four premises of [⊢-Skip], the theorems later on in

this paper establish that they are sufficient (in the technical sense) to prove type soundness (as also

confirmed by our Agda formalisation). We also show that the premises are sufficiently liberal to

pass the “Less Is More” benchmark (i.e., for each example in that benchmark, an inhabited global

type exists). Whether or not the premises are also necessary remains for now an open question.

4.2.2 Rule [⊢-Var] . According to rule [⊢-Var], process variable 𝑋 is typable by global type 𝐺 ′

when 𝐺 ′
is reachable from the global type 𝐺 stored for 𝑋 in the session type environment. As 𝑋

can stand for any process, one might expect that a generalisation for any process is sound as well:

𝛤 ;𝛥 ⊢ r ⊳ 𝑃 : 𝐺 𝐺
{r}
−−→∗ 𝐺 ′

𝛤 ;𝛥 ⊢ r ⊳ 𝑃 : 𝐺 ′ [⊢-Forward]

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:19

Indeed, this rule is admissible: it is a direct consequence of Lemma 5.6, which we present in the next

section. Informally, that lemma states that the well-typedness of a process that implements role r is

preserved by any global type transition that does not invole r. Rule [⊢-Forward] is then established

by a straightforward inductive argument on a sequence of transitions that do not involve r.

4.2.3 Rule [⊢-End]. In the operational semantics of global types, we do not distinguish between

successful and abnormal termination: any global type that has no outgoing transitions is considered

successfully terminated. If all recursion is guarded (as stipulated), then the only global type without

outgoing transitions is end, which specifies succesful termination, so we do not need additional

expressive power to represent abnormal termination. In general, however, it can be useful.

Adding an explicit notion of successful termination—independent of the presence/absence of

outgoing transitions—is a non-trivial problem to solve, though. In particular, there does not seem

to be an obvious way to define a notion of “global final state” that can be used in rule [⊢-End]. For
instance, reconsider global type 𝐺Lasso

from Example 4.1:

𝐺Lasso =𝐺Lasso

1
= aaa_bbb:Foo .𝐺Lasso

2
𝐺Lasso

2
= µX . bbb_ccc:Foo . bbb_ddd:Foo . X

A well-typed implementation of aaa is bbb!Foo.end. But, after applying rule [⊢-Send], we would need

to type-check end against global type 𝐺Lasso

2
, which cannot be a “global final state”. In other words,

participants may finish their communications in a protocol before the protocol as a whole terminates

(if ever). A possible solution could be to define a separate set of “local final states” for each role, but

doing so might have deep consequences that require careful study in future work.

4.3 Main Theoretical Result: Type Soundness
The main theoretical result of the special case of our synthetic approach to MPST is type soundness:
well-typedness implies safety and liveness. Formally, we prove type soundness in terms of progress
and preservation. Progress means that well-typed sessions eventually either terminate or perform

another communication. In particular, it is impossible for well-typed sessions to diverge into an

infinite sequence of internal transitions, as all recursion variables in well-typed processes must

be message-guarded: at least one send or receive must happen before each recursive call. Thus,

well-typed sessions are live (i.e., progress is exactly strong enough to formally define liveness).

Preservation means that well-typedness is preserved by transitions of sessions, and that these

transitions are allowed by the global types. In particular, if a well-typed session makes a transition

through a communication, then the global type can make a transition with exactly the same

communication. Thus, well-typed sessions are safe (i.e., preservation is exactly strong enough to

formally define safety). We show the proofs of these theorems in Section 5.

Theorem 4.3 (Progress). If ⊢ 𝐶 : 𝐺 , then: (1) not 𝐶
τ−→ τ−→ · · ·; (2) 𝐶 τ−→ · · · τ−→ end | · · · | end, or

𝐶
τ−→ · · · τ−→ 𝛼−→ 𝐶′, for some 𝐶′.

Theorem 4.4 (Preservation). Suppose ⊢ 𝐶 : 𝐺 :

• If 𝐶
𝛼−→ 𝐶′, then ⊢ 𝐶′

: 𝐺 ′ and 𝐺
𝛼−→ 𝐺 ′, for some 𝐺 ′.

• If 𝐶
τ−→ 𝐶′, then ⊢ 𝐶′

: 𝐺 .

We note that our notions of progress and preservation do not prevent starvation: while a non-
terminating session as-a-whole is guaranteed to alway eventually perform another communication,

without fairness, individual processes might get stuck waiting for a message that is never sent.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/Safety.agda#L632-L663
https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/Safety.agda#L182-L210

50:20 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

Roles: Server (sss), Client (ccc), Authorisation Service (aaa)

Protocol: Server tells Client it can continue the session by logging in, or it cancels the session.

In the former case, Client tells Authorisation Service its password, after which Authorisation

Service tells Server whether the login succeeded. In the latter case, Client tells Authorisation

Service to quit.

Global type: sss_ccc:

{
Login . ccc_aaa:Passwd(Str) . aaa_sss:Auth(Bool) . end
Cancel . ccc_aaa:Quit . end

Well-typed session:
sss ⊳ ccc!Cancel . end
| ccc ⊳ sss?{Login(_) . aaa!Passwd("asdf") . end , Cancel(_) . aaa!Quit . end}
| aaa ⊳ ccc?{Passwd(x) . sss!Auth(x=="asdf") . end , Quit(_) . end}

(a) OAuth2 Fragment

Roles: Alice (aaa), Store (sss), Bob (bbb)
Protocol: Alice asks Store for a quote of an item. Store tells Alice the price. Alice asks Bob to

split the price or to cancel the session. In the former case, Bob tells Alice whether or not he is

willing to split. If he is, then Alice tells Store that the purchase goes through, but if not, then she

asks Bob again to split the price or to cancel the session. In the latter case, Alice tells Store that

no purchase will be made.

Global type:

aaa_sss:Query(Str) . aaa_sss:Price(Int) . µX . aaa_bbb:

{
Split(Int) . bbb_aaa:

Cancel . aaa_sss:No . end

{
Yes . aaa_bbb:Buy . end
No . X

Well-typed session:
aaa ⊳ sss!Item("tapl") . sss?Price(x) . bbb!Cancel . sss!No . end
| sss ⊳ aaa?Item(y) . aaa!Price(20) . sss?{Buy(_) . end , No(_) . end}
| bbb ⊳ aaa?{Split(z) . aaa!Yes . end , Cancel(_) . end}

(b) Recursive Two-Buyers

Fig. 12. “Less Is More” benchmark [31, Fig. 4] – spread over two pages

4.4 Main Practical Result: Passing the “Less Is More” Benchmark
The main practical result is that the synthetic approach of this paper passes the “Less Is More”

benchmark of Scalas and Yoshida [31]. This is a set of four challenging example protocols that

demonstrate limitations of the classical approach to MPST (Figure 1a); it served as a motivation

for the “Less Is More” approach (Figure 1b). The type system of this section is the first one to

support the example protocols in a fully compositional manner. This means that processes are all

individually type-checked, without the need for whole-system reconstruction and analysis (e.g.,

the model checking step in the “Less Is More” approach).

Figure 12 (spread over two pages) defines, for each example protocol in the “Less Is More”

benchmark, a global type and a well-typed session. There are two kinds of example protocols:

• OAuth2 Fragment (Figure 12a), Recursive Map/Reduce (Figure 12c), and Independent Multiparty
Workers (Figure 12d) are protocols that can be specified by a projectable global type, but the

resulting family of local types is inconsistent.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:21

Roles:Mapper (mmm), Worker 1 (w1w1w1), Worker 2 (w2w2w2), Reducer (rrr)

Protocol:Mapper tells Worker 1 and Worker 2 to each process a datum. Worker 1 and Worker

2 tell Reducer the results of their processing. Reducer tells Master to enter another iteration of

mapping/reducing or to stop. In the latter case, Mapper tells Worker 1 and Worker 2 to stop, too.

Global type:

µX . mmm_ [w1w1w1,w2w2w2] :Datum(Int) . [w1w1w1,w2w2w2]_rrr:Result(Int) . rrr_mmm:

{
Continue(Int) . X
Stop . mmm_ [w1w1w1,w2w2w2] :Stop . end

We write “p_ [q1, q2] :ℓ (𝑡) .𝐺” and “[p1, p2]_q:ℓ (𝑡) .𝐺” instead of “p_q1 :ℓ (𝑡) .p_q2 :ℓ (𝑡) .𝐺”
and “p1_q:ℓ (𝑡) .p2_q:ℓ (𝑡) .𝐺”.
Well-typed session:

mmm ⊳ rec X . [w1w1w1,w2w2w2] !Datum(123) . rrr?{Continue(z) . X , Stop(_) . [w1w1w1,w2w2w2] !Stop . end}
| w1w1w1 ⊳ 𝑃w1w1w1 | w2w2w2 ⊳ 𝑃w2w2w2 | rrr ⊳ w1w1w1?Result(y1) . w2w2w2?Result(y1) . mmm!Stop . end

where:

𝑃www𝑖 = mmm?

{
Datum(x) . rrr!Result(x) . rec X . mmm?{Datum(x) . rrr!Result(x) . X , Stop(_) . end}
Stop(_) . end

We write “[q1, q2] !ℓ (𝑒) .𝑃” instead of “q1 !ℓ (𝑒) .q2 !ℓ (𝑒) .𝑃”.

(c) Recursive Map/Reduce (𝑛 =2)

Roles: Starter (sss), Workers A1, B1, C1 (wa1wa1wa1, wb1wb1wb1, wc1wc1wc1), Workers A2, B2, C2 (wa2wa2wa2, wb2wb2wb2, wc2wc2wc2)

Protocol: Starter tells Worker A1 and Worker A2 to each process a datum. In parallel:

• Worker A1 tells Worker B1 to process the datum or to stop. In the former case, Worker B1

tells Worker C1 to process the datum, after which Worker C1 tells Worker A1 the result,

after which Worker A1 again tells Worker B1 to process the datum or to stop. In the latter

case, Worker B1 tells Worker C1 to stop, too.

• Workers A2, B2, C2 follow the same sub-protocol as Workers A1, B1, C1, independently.

Global type:
sss_wa1wa1wa1:Datum(Int) . sss_wa2wa2wa2:Datum(Int) . (𝐺1 ∥ 𝐺2)

where:

𝐺𝑖 = µ𝑋 . wawawa𝑖_wbwbwb𝑖 :

{
Datum(Int) . wbwbwb𝑖_wcwcwc𝑖 :Datum(Int) . wcwcwc𝑖_wawawa𝑖 :Result(Int) . X
Stop . wbwbwb𝑖_wcwcwc𝑖 :Stop . end

Well-typed session:
sss ⊳ wa1wa1wa1!Datum(123) . wa2wa2wa2!Datum(456) . end | 𝐶1 | 𝐶2 𝐶𝑖 = wawawa𝑖 ⊳ 𝑃wawawa𝑖 | wbwbwb𝑖 ⊳ 𝑃wbwbwb𝑖 | wcwcwc𝑖 ⊳ 𝑃wcwcwc𝑖

where:

𝑃wawawa𝑖 = sss?Datum(x) . wbwbwb𝑖 !Stop . end

𝑃wbwbwb𝑖 = wawawa𝑖?

{
Datum(x) . wcwcwc𝑖 !Datum(x) . rec X . wawawa𝑖?{Datum(x) . wcwcwc𝑖 !Datum(x) . X , Stop(_) . 𝑃 ′

wbwbwb𝑖 }
Stop(_) . 𝑃 ′

wbwbwb𝑖 𝑃 ′
wbwbwb𝑖 = wcwcwc𝑖 !Stop . end

𝑃wcwcwc𝑖 = wbwbwb𝑖?

{
Datum(x) . wcwcwc𝑖 !Result(x) . rec X . wbwbwb𝑖?{Datum(x) . wcwcwc𝑖 !Result(x) . X , Stop(_) . end}
Stop(_) . end

(d) Independent Multiparty Workers (𝑛 =2)

Fig. 12. “Less Is More” benchmark [31, Fig. 4] – spread over two pages

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:22 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

• Recursive Two-Buyers (Figure 12b) is a protocol that can be specified by a global type, but it is

not projectable (neither using plain projection, nor using full projection). Thus, this is the

first time that the safety and liveness of implementations of Recursive Two-Buyers can be

proved using a global type.

5 The General Case: Typing with LTSs
As demonstrated in Section 2.4, the synthetic approach can be generalised—beyond global types—to

define the typing of sessions even without discussing the syntax of the types themselves. After all,

an important observation from the typing rules of Figure 11 is that no rule relies on the syntactic
structure of global types. This is the essence of our synthetic approach to MPST. Two questions arise

naturally from this observation:

(1) Can we consider that the rules in Figure 11 refer to a generic, semantic notion of behaviour

that does not depend on a particular syntactic structure?

(2) What are the properties that are required so these semantic objects still allow our type system

to guarantee safety and liveness?

Regarding the first question, as shown in the previous sections, we see an LTS as a classifier for

a session. This LTS must model the communications among all processes that participate in the

session. Regarding the second question, Section 5.1 defines a well-behaved multiparty LTS as an
LTS that exhibits the shape and properties required for well-typedness to imply safety and liveness

in our type system.

Naturally, global types from MPST presentations in the literature can be seen as syntactic objects

that support all the requirements of well-behaved multiparty LTSs. Section 5.2 describes how global

types in Section 4 (following [37]) intrinsically constitute well-behaved MLTSs in synthetic MPST.

5.1 Well-Behaved Multiparty LTSs (WB-MLTS)

Well-behaved multiparty LTSs consist of transitions of the form 𝐵
𝛼−→ 𝐵′

that satisfy the set of

properties below. First, we introduce the definition of MLTSs.

Definition 5.1 (Multiparty Labelled Transition System (MLTS)). An MLTS is an LTS (B, 𝐴,−→),
with a set of states 𝐵, . . . ∈ B, and global action labels 𝛼 ∈ 𝐴 of the form p_q:ℓ (𝑡), with p ≠ q.

The typing judgement and typing rules of Figure 11 are then parameterised by MLTSs: � ; � ⊢
r ⊳ 𝑃 : 𝐵. However, simply type-checking against an arbitrary MLTS does not guarantee progress

and preservation. To provide these stronger guarantees, we need to restrict to MLTSs that satisfy a

set of well-behavedness conditions, that specify the criteria that transitions of MLTSs must satisfy.

This relies on the notion of receiver disjointness.

Definition 5.2 (Receiver Disjointness). Two global actions 𝛼1 = p_q:ℓ1 (𝑡1) and 𝛼2 = r_s:ℓ2 (𝑡2)
are receiver-disjoint, 𝛼1 ^ 𝛼2, iff q ∉ {r, s} and s ∉ {p, q}.

Intuitively, if two global actions are receiver-disjoint, then they should be able to be reordered. The

idea is that, in a concurrent system, receivers are by definition independent from each other, so

the order in which a sender sends messages to them does not matter. We are now ready to define

well-behaved multiparty LTSs.

Definition 5.3 (Well-Behaved Multiparty LTS (WB-MLTS)). AWB-MLTS is an MLTS (B, 𝐴,−→)
that satisfies all of the following conditions for any state 𝐵:

(1) Sender determinacy: For all 𝐵
𝛼1−−→ 𝐵1 and 𝐵

𝛼2−−→ 𝐵2, then either 𝛼1 ^ 𝛼2, or there exists p, q,

ℓ1, ℓ2, 𝑡1, and 𝑡2 such that 𝛼1 = p_q:ℓ1 (𝑡1) and 𝛼2 = p_q:ℓ2 (𝑡2).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:23

(2) Determinism: For all 𝐵
𝛼−→ 𝐵1 and 𝐵

𝛼−→ 𝐵2, then 𝐵1 = 𝐵2.

(3) Conditional commutativity: For all 𝐵
r_s:ℓ1 (𝑡1)−−−−−−−−→ 𝐵1

p_q:ℓ2 (𝑡2)−−−−−−−−−→ 𝐵′
, if there exist ℓ and 𝑡

such that 𝐵
p_q:ℓ (𝑡)
−−−−−−−→ and {p, q} ∩ {r, s} = ∅, then there exists a 𝐵2 such that 𝐵

p_q:ℓ2 (𝑡2)−−−−−−−−−→
𝐵2

r_s:ℓ1 (𝑡1)−−−−−−−−→ 𝐵′
.

(4) Diamond (confluence for reorderable global actions): For all 𝐵
𝛼1−−→ 𝐵1, and 𝐵

𝛼2−−→ 𝐵2, if

𝛼1 ^ 𝛼2, then there exists a 𝐵′
such that 𝐵1

𝛼2−−→ 𝐵′
and 𝐵2

𝛼1−−→ 𝐵′
.

Intuitively, sender determinacy states that, if two global actions are possible in a state, then

these actions cannot have different senders but the same receiver. That is, the sender is fixed.

Conditional commutativity states that an alternative in a choice cannot become available for two

roles p and q after unrelated communications. In other words, for a global action p_q:ℓ2 (𝑡2) to
become available, either p or q must have received a message enabling this choice. This condition

ensures that well-formed MLTSs do not specify “bad” protocols in which actions at one process can

enable actions at another process without any interaction between those two processes. After all, in

the absence of covert communication between them, it is impossible to implement such processes.

Thus, such protocols are ruled out by conditional commutativity.

From WB-MLTS’s well-behavedness criteria, we prove a series of lemmas that are then used

to establish the standard progress and preservation properties. The most important of these

lemmas are: (1) if we have two processes 𝑃p and 𝑃q well-typed with regards to 𝐵 as roles p and

q, and 𝑃p is ready to send ℓ 𝑗 to q, and 𝑃q is ready to receive from p, then the state 𝐵 must accept

global action p_q:ℓ 𝑗 (𝑡 𝑗); (2) the continuations of the output/input processes are still well typed;
and (3) a well-typed process is still well-typed after an unrelated global action.

Lemma 5.4. If ⊢ p ⊳ q!ℓ𝑗 (𝑒) .𝑃 : 𝐵, and ⊢ q ⊳ p?{ℓ𝑖 (𝑥𝑖) .𝑃𝑖 }𝑖∈𝐼 : 𝐵, then there exists a 𝐵′ such that

𝐵
p_q:ℓ 𝑗 (𝑡 𝑗)−−−−−−−−−→ 𝐵′.

Lemma 5.5 (Inversions of [⊢-Send] and [⊢-Recv]). Suppose a state 𝐵 such that 𝐵
p_q:ℓ 𝑗 (𝑡 𝑗)−−−−−−−−−→ 𝐵′:

(1) If ⊢ p ⊳ q!ℓ𝑗 (𝑒) .𝑃 : 𝐵, then ⊢ p ⊳ 𝑃 : 𝐵′

(2) If ⊢ q ⊳ p?{ℓ𝑖 (𝑥𝑖) .𝑃𝑖 }𝑖∈𝐼 : 𝐵, then ∅, 𝑥 𝑗 : 𝑡 𝑗 ;∅ ⊢ q ⊳ 𝑃 𝑗 : 𝐵
′.

Lemma 5.6. Suppose a state 𝐵, a role r, and a global action 𝛼 such that r does not occur in 𝛼 . If
𝐵

𝛼−→ 𝐵′, and 𝛤 ;𝛥 ⊢ r ⊳ 𝑃 : 𝐵, then 𝛤 ;𝛥 ⊢ r ⊳ 𝑃 : 𝐵′

We now state the main theorems.

Theorem 5.7 (Progress). Suppose a state 𝐵 of a WB-MLTS. If ⊢ 𝐶 : 𝐵, then: (1) not 𝐶
τ−→ τ−→ · · ·;

(2) 𝐶
τ−→ · · · τ−→ end | · · · | end, or 𝐶

τ−→ · · · τ−→ 𝛼−→ 𝐶′, for some 𝐶′.

Theorem 5.8 (Preservation). Suppose a state 𝐵 of a WB-MLTS and ; ⊢ 𝐶 : 𝐵:

• If𝐶
𝛼−→ 𝐶′, then ⊢ 𝐶′

: 𝐵′ and 𝐵
𝛼−→ 𝐵′, for some 𝐵′ (i.e., 𝐵′ is also a state of the same WB-MLTS).

• If 𝐶
τ−→ 𝐶′, then ⊢ 𝐶′

: 𝐵.

Finally, we note that as long as the MLTSs have finitely many states, the type system is decidable.

First, all the typing rules in Figure 11 are structural except [⊢-Skip] and, as long as the MLTS

has finitely many states, all of their premises are decidable, and the domain of any universal

quantification is finite. In rule [⊢-Skip], the size of the process in the premises does not grow;

[⊢-Skip]’s premises (1), (2), and (4) are also decidable for any finite-state MLTS; and the universal

quantification of (3) is also finite. Note, also, that [⊢-Skip] cannot be applied twice in a row: premise

(1) becomes false after one use of this rule, after which, one structural rule must be used. Therefore,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/Safety.agda#L98-L110
https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/Safety.agda#L136-L150
https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/Definitions.agda#L194-L224
https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/Safety.agda#L632-L663
https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/Safety.agda#L182-L210

50:24 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

type-checking must terminate, and our VS Code extension is implemented following this approach.

Details about algorithmic and performance aspects are covered in the appendix [8].

5.2 Global Types as Multiparty Behaviours
We prove that the global types of Section 3.1 satisfy all of the conditions of Definition 5.3, as a

consequence of the operational semantics of global types. Corollary 5.10 below is then a consequence

of Theorems 5.7 to 5.9.

Theorem 5.9. Any global type 𝐺 satisfies the well-behavedness conditions of Definition 5.3.

Corollary 5.10 (Progress and Preservation of Well-typed Sessions with Global Types).

A well-typed session with a grammatical global type satisfies progress and preservation.

6 Formalisation of Synthetic MPST in Agda
A big advantage of the synthetic approach to MPST is that it leads to a simpler formalisation in

proof assistants. We justify this claim by presenting a formalisation of the type system in Sections 4

and 5, and a comparison with respect to similar formalisations of MPST in the literature. While our

formalisation was done in Agda, it should be straightforward to port it to other proof assistants.

6.1 An Agda Encoding of the Synthetic Approach
The core part of our formalisation is the encoding of well-behaved MLTSs (Definition 5.3). In Agda,

we encode them in terms of records parameterised by the number of participants in the protocol: (1)

record BTheory encodes MLTSs, and (2) record BT-Prop encodes the well-behavedness properties.

Their encoding in Agda is straightforward, in that it relies on a direct encoding of an LTS as a

relation between two states and an action. The remaining definitions are also encoded as expected,

and they can be encoded in a similar fashion in other proof assistants.

The encoding of the type system is done within a module that is parameterised by well-behaved

MLTSs, i.e., an Agda module that takes as a parameter a record of type B : BTheory, and a record

that proves that it is well-behaved BP : BT-Prop B. The type system itself is defined as a relation

between process names, process terms, and well-behaved MLTSs.

The full proofs of progress and preservation are done for arbitrary well-behaved MLTSs in

about 650 LOC of Agda code. In general, the key lemmas are also a direct encoding of the ones

presented in Section 5. The most difficult proof in our system is showing that any global type has a

well-behaved MLTS (roughly 2000 LOC), and even in this case, the majority of the proof is about

dealing with binders, renaming, etc., which is tedious but not intellectually complicated.

In our experience, with the synthetic approach to MPST, there is no need to massage the defini-

tions to make the proofs simpler/more natural, unlike when mechanising the classical approach to

MPST. We further elaborate this point in the next subsection.

6.2 Comparison with the Mechanisation of Classical MPST
The biggest difficulty in mechanising classical MPST is dealing with the projection operator and

recursion. Specifically, the hardest part is showing that if a (possibly) recursive global type is

projectable, then the corresponding family of local types is indeed safe and live. Once this is proved,
though, it tends to be straightforward to show that type-checking against a safe and live family of

local types entails safety and liveness of the well-typed family of processes.

In contrast, the synthetic approach avoids dealing with projection altogether, but we need to deal

with a more complex typing relation, where the most complex rule is [⊢-Skip]. The question that

we address in this section is: why is it the case that dealing with [⊢-Skip] leads to much simpler

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/Definitions/GlobalTypesWPar.agda#L1911
https://github.com/SyntheticBehaviouralTypes/srmpst-formalisation/blob/f4b15c0074bc496a31a44c913b92863a46a32ee7/FullGT.agda

A Synthetic Reconstruction of Multiparty Session Types 50:25

proofs than showing that projectability leads to safety and liveness of local types? We will review

the most representative mechanisations to illustrate this. There are two main approaches to discuss.

Zooid and related approaches. Zooid [7] relies on a notion of coinductive projection and unrolling
of global/local types to guarantee the correspondence between a global type, and the projection

of all of the roles in the global type. This is similar to other work that subsumes the proofs in

Zooid, e.g., by Tirore et al. [33]. There are several challenges in using a coinductive notion of

projection. Firstly, the use of coinductive relations often results in cumbersome proofs within

proof assistants. Second, deciding a coinductive projection relation is not straightforward. The

most common approach in the literature is to use a more restrictive syntactic projection function,

and then show that this syntactic projection is contained within the coinductive projection. Note,

however, that the more complex syntactic projection is, the harder it is to mechanise.

For example, Castro-Perez et al. [7] only formalise syntactic projection that uses plain merge.
This restriction rules out all of the examples in this paper, as well a the majority of the examples

in our Agda formalisation. Similarly, Tirore et al. [32] mechanise in Rocq a sound and complete
projection, that handles 𝜇-binders correctly, so that their syntactic projection exactly corresponds

to a notion of coinductive projection. However, it uses plain merge as well, as does the authors’
follow-up work [33]. This further illustrates the difficulty of dealing with syntactic projection,

while it also indicates the complexities of supporting the more expressive notion of full merge. To
our knowledge, full merge has never been mechanised yet.

Li et al. [26] showed that a complete projection relation –where every implementable global type is

projectable – can be obtained via automata-theoretic methods, with their notion of implementability

later formalised in Rocq [27]. Their framework separates synthesis from implementability checking,

the latter decided by a set of Coherence Conditions. In essence, their synthesis and implementability

together correspond to (a more expressive form of) the classical projection. Thus, their approach

does not avoid the challenges associated with defining and reasoning about a projection relation.

An interesting open problem is clarifying the precise relationship between Li et al.’s Coherence

Conditions and our notions of Well-Behavedness and type checking: this could lead to a unified

and more expressive projection-less approach.

Multiparty GV. MPGV [20] allows for multiple sessions, and the mechanisation builds on top of a

complex mechanisation of connectivity graphs [19] to deal with session interleaving, and guarantee

that a series of invariants are preserved. Global types in MPGV are restricted to plain merge, and still

rely on a notion of coinductive projection, which causes the same difficulties as the Zooid approach.

MPGV also offers a coinductive, global-type-free (i.e. bottom-up) formulation of consistency,

and the authors prove that projectability implies consistency. It provides a compositional and

mechanised framework supporting multiple interleaved sessions. In contrast, our work develops

a top-down form of compositionality, where processes are type-checked directly against richer

global specifications within a single-session setting.

The synthetic approach completely abstracts away the syntax used to encode recursive protocols,

and avoids completely the need to deal with folding/unfolding, and projection. Instead, MLTSs can

have cycles, but the presence or absence of such cycles does not complicate the formalisation.

One might expect that the ability of [⊢-Skip] to postpone type checking in the synthetic approach

would increase proof complexity. The main reason this increase does not arise lies in the conditions

under which a state is considered “skippable.” First, all conditions of [⊢-Skip] must hold in any “near-

future” state reachable without involving the role currently being type-checked. This guarantees that

[⊢-Skip] can be reapplied in each such state, thereby simplifying the proof of Lemma 5.6. Another

potential source of complexity is the need to reason about permutations of actions; however, this

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:26 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

does not arise in our formalisation. The rule [⊢-Skip] cannot be applied to two processes that are,

respectively, ready to send and to receive from each other. In this sense, its conditions impose a

form of determinism on the application of typing rules, effectively eliminating many potentially

cumbersome proof cases. This simplification is illustrated in the proof of Lemma 5.4.

Thus, with the synthetic approach, the absence of the need to reason about the projectability

of (possibly) recursive global types does make the formalisation significantly simpler, while the
presence of the need to reason about rule [⊢-Skip] does not make it significantly more complex.

7 Prototype Language and Tooling of Synthetic MPST in VS Code
As demonstrated in Section 2.4, we developed a prototype language and tooling of the synthetic

approach to MPST as an extension of VS Code, including a dedicated LSP server.
To develop this prototype, we use the Rascal meta-programming language [23]. Among other

features, Rascal has core support to write context-free grammars (for defining concrete syntax),

algebraic data types (for defining abstract syntax), and advanced pattern matching on grammar

rules and ADT constructors. Together with standard programming abstractions, these features aim

to simplify the implementation of parsers, type checkers, interpreters, and code generators.

Leveraging Rascal, the implementation of the type-checking algorithm is done in about 200 LOC,

and it relies on a graph representation of protocols. The key insight is that, as long as the protocol

can be represented as a finite-state MLTS, then the conditions for our rules are decidable.

8 Additional Related Work
In addition to the related work discussed in Sections 1.2 and 6.2, the following contributions in the

literature are relevant to this paper, too. In particular, starting from the introduction of MPST [17]

there is a substantial lineage of papers that seek to improve the expressiveness of the MPST method.

Below, we focus on two main aspects: first, using the synthetic approach to behavioural typing [21]

to simplify MPST theory by removing projection and merge. And second, enabling the use of more

powerful classifiers (types) for sessions (i.e., WB-MLTSs) to be able to type more protocols.

Using the operational semantics of types is the key ingredient of the synthetic approach. This

was first studied in the context of multiparty compatibility (MC) [10] and extensions [4, 24, 25].

The idea is to interpret local types as communicating finite state machines (CFSM) [5]. Multiparty

compatibility, then, is a predicate on the joint state space of the CFSMs to ensure safety and liveness.

As such, MC is a bottom-up technique (from local view to a global view), whereas the synthetic

approach in this paper is a top-down technique.
A different, but related, technique is the notion of well-behaved local types as studied by Jongmans

and Ferreira [21], of which a rudimentary version (without processes and type checking) was studied

by Jongmans and Yoshida [22]. The key difference between their work and ours is that they rely on

local types against which processes are type-checked. In contrast, in this paper, we type processes

directly against global types. As a result, for the first time in the MPST literature, we obtain a

notion of type inhabitation that is independent of auxiliary concepts such as projectability and/or

well-formedness. In particular, global types that specify unrealisable protocols are uninhabited.
Another version of well-behaved global types was studied by Gheri et al. [11], in the context of

choreography automata [2], but it is limited to projection (no type checking).

Our approach avoids issues with merge by avoiding projection altogether. However, there are

several non-traditional techniques for projection in the MPST literature. Lopez et al. [28] capture

projection in a decidable type equivalence. Castellani et al. [6] and Hamers et al. [13] do not use

projection at all, but type-check families of processes against global types (non-compositional).

Scalas and Yoshida [31], van Glabbeek et al. [36], and Peters and Yoshida [30] presented examples

of safe and live families of processes that are unsupported by the MPST method due to limited

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

A Synthetic Reconstruction of Multiparty Session Types 50:27

expressiveness of global types. Scalas and Yoshida address the issue by developing an MPST theory

without global types (only local types), while van Glabbeek et al. address the issue by developing

improved merging. In contrast, in this paper, we address the issue by proposing an expressive type

system to verify protocol implementations purely against global specifications of behaviour (i.e.,

global types and WB-MLTSs). We believe that having a singular global specification has intrinsic

value as a programming artefact that comprehensively defines protocols from a system-wide

perspective. Finally, Peters and Yoshida study the expressivity of a session calculus typable by a

collection of local types with mixed choice, that we do not address directly in this paper. To support

this, the main challenge is to relax the sender determinacy condition without breaking soundness.

9 Conclusion and Future Work
Summary. We have presented the synthetic approach to MPST. The main theoretical result is that

well-typedness implies safety and liveness. The main practical result is that our type system is

expressive enough to pass the “Less Is More” benchmark compositionally (i.e., we support at least

all the challenging examples of Scalas and Yoshida [31]). This has been an open problem for several

years. Our complete formalisation in Agda, together with examples, demonstrates that the synthetic

approach leads to simpler formalisations in proof assistants. Furthermore, a key practical advantage

of the synthetic approach is its ability to extend the expressiveness of MPST by purely relying

on global protocol specifications: well-behaved multiparty LTSs in general, and global types as

a special case. That is, we showed that a simple form of classical MPST satisfies the necessary

well-behavedness conditions to ensure safety and liveness within the synthetic approach.

Discussion. For simplicity, our approach uses a synchronous communication semantics. The main

complication with asynchronous communication semantics is that multiparty LTSs may no longer

be finite, which may affect decidability. We believe that a careful application of run-time global
types in the Zooid approach [7] might be adapted to a synthetic setting to address this issue.

In principle, a top-down approach like ours inhabits all process systems provable with a bottom-

up approach like “Less Is More”. The compared expressivity is difficult to establish at a theoretical

level, though. For example, “Less Is More” typing contexts and their reduction semantics can be used

as multiparty LTSs. The issue is to determine if well-behavedness together with type inhabitation

is equivalent to consistency property 𝜑 in the “Less Is More” approach. Since well-behavedness is

weaker than the typing context properties in that approach, our intuition is that both approaches

are equally expressive.

Sharing a global view among all processes may not always be acceptable. For instance, in a ring

protocol, it may be desirable to hide the size of the ring from each of the processes. To address

this, we are currently studying ways to avoid exploring unrelated transitions, by relying on strong

confluence. This may allow a form of lightweight projection – only used for type checking – where

we remove irrelevant transitions from the LTS to hide information. The lightweight projection may

also enable potential optimisations to the type checking algorithm.

Future work. These results open the door to several promising extensions. One direction is to

identify the largest class of syntactic protocol descriptions that satisfy our well-behavedness

criteria, potentially removing the need to prove well-behavedness when implementing protocols.

Another is to generalise these criteria further, increasing the expressiveness of our type system (e.g

studying global types with mixed choice in the style of [21] or [30].) Finally, we aim to extend our

multiparty LTSs with verification conditions that allow properties typically established via model

checking to be verified directly through type checking.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

50:28 David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans

References
[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-Malo Deniélou, Simon J.

Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio

Montesi, Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. 2016. Behavioral

Types in Programming Languages. Foundations and Trends in Programming Languages 3, 2-3 (2016), 95–230. doi:10.
1561/2500000031

[2] Franco Barbanera, Ivan Lanese, and Emilio Tuosto. 2020. Choreography Automata. In COORDINATION (LNCS,
Vol. 12134). Springer, 86–106. doi:10.1007/978-3-030-50029-0_6

[3] J. F. A. K. Van Benthem. 1974. Hintikka on Analyticity. Journal of Philosophical Logic 3, 4 (1974), 419–431. doi:10.1007/
bf00257484

[4] Laura Bocchi, Julien Lange, and Nobuko Yoshida. 2015. Meeting Deadlines Together. In CONCUR (LIPIcs, Vol. 42).
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 283–296. doi:10.4230/LIPICS.CONCUR.2015.283

[5] Daniel Brand and Pitro Zafiropulo. 1983. On Communicating Finite-State Machines. J. ACM 30, 2 (1983), 323–342.

doi:10.1145/322374.322380

[6] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2022. Asynchronous Sessions with Input Races.

CoRR abs/2203.12876 (2022). doi:10.4204/EPTCS.356.2

[7] David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. 2021. Zooid: a DSL for certified multiparty

computation: from mechanised metatheory to certified multiparty processes. In PLDI. ACM, 237–251. doi:10.1145/

3453483.3454041

[8] David Castro-Perez, Francisco Ferreira, and Sung-Shik Jongmans. 2025. A Synthetic Reconstruction of Multiparty

Session Types (with Appendix). CoRR abs/2511.22692 (2025). doi:10.48550/ARXIV.2511.22692

[9] David Castro-Perez, Sung-Shik Jongmans, and Francisco Ferreira Ruiz. 2025. A Synthetic Reconstruction of Multiparty
Session Types (Software Artifact). doi:10.5281/zenodo.17741396

[10] Pierre-Malo Deniélou and Nobuko Yoshida. 2013. Multiparty Compatibility in Communicating Automata: Characteri-

sation and Synthesis of Global Session Types. In ICALP (2) (LNCS, Vol. 7966). Springer, 174–186. doi:10.1007/978-3-642-
39212-2_18

[11] Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. 2022. Design-By-Contract for Flexible

Multiparty Session Protocols. In ECOOP (LIPIcs, Vol. 222). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 8:1–8:28.

doi:10.4230/LIPICS.ECOOP.2022.8

[12] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida. 2019. Precise subtyping for

synchronous multiparty sessions. J. Log. Algebraic Methods Program. 104 (2019), 127–173. doi:10.1016/J.JLAMP.2018.12.

002

[13] Ruben Hamers and Sung-Shik Jongmans. 2020. Discourje: Runtime Verification of Communication Protocols in Clojure.

In TACAS (1) (LNCS, Vol. 12078). Springer, 266–284. doi:10.1007/978-3-030-45190-5_15
[14] Jaakko Hintikka. 1973. Logic, Language-Games and Information: Kantian Themes in the Philosophy of Logic. Oxford,

England: Oxford, Clarendon Press.

[15] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (Lecture Notes in Computer Science, Vol. 715). Springer,
509–523. doi:10.1007/3-540-57208-2_35

[16] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In ESOP (Lecture Notes in Computer Science, Vol. 1381). Springer,
122–138. doi:10.1007/BFB0053567

[17] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In POPL. ACM,

273–284. doi:10.1145/1328438.1328472

[18] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous,

Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of

Session Types and Behavioural Contracts. ACM Comput. Surv. 49, 1 (2016), 3:1–3:36. doi:10.1145/2873052
[19] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Connectivity graphs: a method for proving deadlock

freedom based on separation logic. Proc. ACM Program. Lang. 6, POPL (2022), 1–33. doi:10.1145/3498662

[20] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Multiparty GV: functional multiparty session types with

certified deadlock freedom. Proc. ACM Program. Lang. 6, ICFP (2022), 466–495. doi:10.1145/3547638

[21] Sung-Shik Jongmans and Francisco Ferreira. 2023. Synthetic Behavioural Typing: Sound, Regular Multiparty Sessions

via Implicit Local Types. In ECOOP (LIPIcs, Vol. 263). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 42:1–42:30.

doi:10.4230/LIPICS.ECOOP.2023.42

[22] Sung-Shik Jongmans and N. Yoshida. 2020. Exploring Type-Level Bisimilarity towards More Expressive Multiparty

Session Types. In ESOP (LNCS, Vol. 12075). Springer, 251–279. doi:10.1007/978-3-030-44914-8_10
[23] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. 2009. RASCAL: A Domain Specific Language for Source Code

Analysis and Manipulation. In SCAM. IEEE Computer Society, 168–177. doi:10.1109/SCAM.2009.28

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/bf00257484
https://doi.org/10.1007/bf00257484
https://doi.org/10.4230/LIPICS.CONCUR.2015.283
https://doi.org/10.1145/322374.322380
https://doi.org/10.4204/EPTCS.356.2
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.48550/ARXIV.2511.22692
https://doi.org/10.5281/zenodo.17741396
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.4230/LIPICS.ECOOP.2022.8
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2873052
https://doi.org/10.1145/3498662
https://doi.org/10.1145/3547638
https://doi.org/10.4230/LIPICS.ECOOP.2023.42
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1109/SCAM.2009.28

A Synthetic Reconstruction of Multiparty Session Types 50:29

[24] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. 2015. From Communicating Machines to Graphical Choreographies.

In POPL. ACM, 221–232. doi:10.1145/2676726.2676964

[25] Julien Lange and Nobuko Yoshida. 2019. Verifying Asynchronous Interactions via Communicating Session Automata.

In CAV (1) (LNCS, Vol. 11561). Springer, 97–117. doi:10.1007/978-3-030-25540-4_6
[26] Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. 2023. Complete Multiparty Session Type Projection with

Automata. In CAV (3) (Lecture Notes in Computer Science, Vol. 13966). Springer, 350–373. doi:10.1007/978-3-031-37709-
9_17

[27] Elaine Li and Thomas Wies. 2025. Certified Implementability of Global Multiparty Protocols. In ITP (LIPIcs, Vol. 352).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 15:1–15:20. doi:10.4230/LIPICS.ITP.2025.15

[28] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos, Vasco Thudichum Vasconcelos,

and Nobuko Yoshida. 2015. Protocol-based verification of message-passing parallel programs. In OOPSLA. ACM,

280–298. doi:10.1145/2814270.2814302

[29] Robin Milner. 1982. Four Combinators for Concurrency. In PODC. ACM, 104–110. doi:10.1145/800220.806687

[30] Kirstin Peters and Nobuko Yoshida. 2024. Separation and Encodability in Mixed Choice Multiparty Sessions. In LICS.
ACM, 62:1–62:15. doi:10.1145/3661814.3662085

[31] Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types revisited. Proc. ACM Program. Lang.
3, POPL (2019), 30:1–30:29. doi:10.1145/3290343

[32] Dawit Legesse Tirore, Jesper Bengtson, and Marco Carbone. 2023. A Sound and Complete Projection for Global Types.

In ITP (LIPIcs, Vol. 268). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 28:1–28:19. doi:10.4230/LIPICS.ITP.2023.28

[33] Dawit Legesse Tirore, Jesper Bengtson, and Marco Carbone. 2025. Multiparty Asynchronous Session Types: A

Mechanised Proof of Subject Reduction. In ECOOP (LIPIcs, Vol. 333). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

31:1–31:30. doi:10.4230/LIPICS.ECOOP.2025.31

[34] Thien Udomsrirungruang and Nobuko Yoshida. 2025. Top-Down or Bottom-Up? Complexity Analyses of Synchronous

Multiparty Session Types. Proc. ACM Program. Lang. 9, POPL (2025), 1040–1071. doi:10.1145/3704872

[35] Rob van Glabbeek. 2024. Comparing the Expressiveness of the 𝜋-calculus and CCS. ACM Trans. Comput. Log. 25, 1
(2024), 1:1–1:58. doi:10.1145/3611013

[36] Rob van Glabbeek, Peter Höfner, and Ross Horne. 2021. Assuming Just Enough Fairness to make Session Types

Complete for Lock-freedom. In LICS. IEEE, 1–13. doi:10.1109/LICS52264.2021.9470531
[37] Nobuko Yoshida and Lorenzo Gheri. 2020. A Very Gentle Introduction to Multiparty Session Types. In ICDCIT (LNCS,

Vol. 11969). Springer, 73–93. doi:10.1007/978-3-030-36987-3_5

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 50. Publication date: January 2026.

https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.4230/LIPICS.ITP.2025.15
https://doi.org/10.1145/2814270.2814302
https://doi.org/10.1145/800220.806687
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.1145/3290343
https://doi.org/10.4230/LIPICS.ITP.2023.28
https://doi.org/10.4230/LIPICS.ECOOP.2025.31
https://doi.org/10.1145/3704872
https://doi.org/10.1145/3611013
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1007/978-3-030-36987-3_5

