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SUMMARY

Adaptive systems (ASs) and context-aware systems (CASs) are able to evaluate their own behaviour and to
adapt it when the system fails to accomplish its goals or when better functionality or performance is
possible. Ensuring the reliability of ASs and CASs is demanding because failures might have undesirable
consequences. Testing ASs and CASs effectively is not trivial because of the inherent characteristics of
these systems. The literature lacks a comprehensive review that provides a broad picture of the area; current
reviews are outdated and incomplete. The objectives of this study are characterizing the state of the art in AS
and CAS testing and discussing approaches, challenges, observed trends, and research limitations and
directions. We performed a systematic literature review (SLR) and a thematic analysis of studies, reporting
up-to-date, refined and extended results when compared with existing reviews. Based on 102 selected
studies, we (i) characterized testing approaches by grouping techniques for ASs and CASs; (ii) updated
and refined a characterization of testing challenges for ASs and CASs; and (iii) analysed and discussed
research trends and implications for AS and CAS testing. There are recurring research concerns regarding
AS and CAS testing. Examples are the generation of test cases and built-in tests. Moreover, we also
identified recurring testing challenges such as context monitoring and runtime decisions. Moreover, there
are some trends such as model-based testing and hybrid techniques and some little investigated issues like
uncertainty and prediction of changes. All in all, our results may provide guidance for developers and
researchers with respect to the practice and the future research on AS and CAS testing. © 2021 The Authors.
Software Testing, Verification & Reliability published by John Wiley & Sons Ltd.
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1. INTRODUCTION

This article characterizes the state of the art regarding the testing of adaptive systems (ASs) and
context-aware systems (CASs). It relies on the outcomes of a systematic literature review (SLR)
and reports on, mainly: (i) the identification and description of testing approaches for ASs and
CASs; (ii) the characterization of testing challenges in this context; and (iii) a discussion regarding
current research on testing and its implications for the future. In a prior conference paper [1], we
presented preliminary results regarding (ii) (i.e. testing challenges), which are updated and
reanalysed in this article. To the best of our knowledge, the literature still lacks a comprehensive
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review that provides a broad picture of the area; currently, the reviews that are available in literature
are incomplete and outdated. This article is intended to fill this gap.

We highlight the fact that the evolution of technologies has changed the way of dealing with soft-
ware. Issues such as monitoring the environment and adapting the system according to its context
are current — and major — software demands [2]. These demands can be fulfilled by taking into con-
sideration concepts as well as underlying technologies that are inherent to ASs and CASs [3]. Such
systems have a central characteristic that differentiates them from conventional systems: they are
able to evaluate their own behaviour and to adapt it when the evaluation indicates that the system
is not accomplishing its goals or when better functionality or performance is possible [4]. In partic-
ular, a CAS is able to recognize and react — by modifying its behaviour — to changes that occur to
the system environment [5], whereas an AS is able to modify its behaviour and/or structure in
response to changes that occur to the system, its environment or even its goals [6]. In other words,
an AS is also a CAS.

Adaptive systems and CASs share some characteristics.' Typically, the architecture of ASs and
CASs can be semantically divided into a managed and a managing subsystems [2,7]. The managed
subsystem comprises the application logic that provides the system’s domain functionality [2]. The
managing subsystem, on the other hand, manages the managed subsystem and is composed of the
adaptation logic that deals with concerns regarding the managed subsystem. An AS is able to
modify not only its behaviour but also its own structure to deliver a better functionality or to
optimize its quality of service [4]. In a CAS, changes are usually performed by a middleware that
resembles a managing subsystem of ASs.

Because of the aforementioned characteristics, designing and maintaining these systems are
highly challenging [3]. In particular, ensuring the reliability of ASs and CASs is demanding because
failures might have undesirable consequences [8]. In this context, software testing comes into play.
However, in the context of ASs and CASs, effective testing is not trivial [9] because the inherent
characteristics of these systems and traditional testing approaches are ineffective [8,10,11].

In general, traditional testing approaches deal with inputs and expected outputs as fixed
static values. However, requirements of ASs and CASs, and their environment, may change [10].
A traditional approach should only be applied if the changes that happen are taken into account
[8]. In addition, in traditional systems, failed tests can show that the system violates requirements;
in such cases, developers can implement the corrections (on an isolated instance of the system to
prevent introducing errors into a production environment [10]) and publish a new release. In ASs
and CASs, differently, the system may deal by itself with monitoring to diagnose problems and
self-reconfigure at runtime to achieve the same corrective objectives [10]. Furthermore, as in the
example of a smart home system described by Fredericks et al. [10], tests can occur when a new
element (e.g. a sensor) is added to the system. In a such scenario, tests can be conducted at runtime
upon the live system, often in response to changes in its operational context. Thus, it implies in
dealing at first with unpredictable situations (i.e. new sensors being added at runtime). This
point is also addressed in our previous studies [1,12]. In summary, the two main issues that make
AS and CAS testing a daunting task are (i) the combinatorial explosion of the number of adaptation
alternatives, many of them probably unforeseen at design time, and (ii) the fact that many adapta-
tions are performed at runtime. Even though the running environment can constrain the number
of possible adaptations [13], the number of system configurations can still be too large and imprac-
tical from testing perspective.

Concerning AS and CAS testing, the literature includes a number studies with such a focus. This
article identifies and compiles such research initiatives, based on results of an SLR that we
performed with the aim of (i) identifying and characterizing testing approaches for ASs or CASs
and (ii) characterizing challenges for testing these types of systems. In our previous paper [1], we
addressed goal (i) by analysing studies published until 2014. In this article, we address goal

'Based on the selected primary studies in our SLR, it is evident that researchers of AS and CAS testing share common
concerns. In total, nine from 82 studies present in our final set cited (or were cited by) studies that were classified as AS
related, as well as studies that were classified as CAS related. This is discussed in Section 5.3.
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(1) and revisit goal (ii), so that the results for goal (ii) are largely updated and extended. More
specifically, the contributions of this article are as follows:

® an up-to-date and original grouping, overview and analysis of 74 studies that investigate
(either by proposing or applying) testing approaches for AS or CAS;

® an updated and revised characterization of testing challenges we devised from the analysis of
42 studies (against 25 studies analysed in our prior research [1]); the challenges are further
classified between AS and CAS categories; and

® a discussion of research limitations and directions for AS and CAS testing.

We emphasize that through SLRs, researchers build a body of knowledge to improve the current
methodological support to the state of the art and state of the practice. Researchers may also
synthesize experiences and lessons learned by other researchers with varying levels of competency
of empirical research [14]. In the context of AS and CAS testing, as a way to confirm the need for
an up-to-date secondary study on the topic, we applied to our prior study [1] the framework
originally proposed by Garner ez al. [15] and evaluated in the context of software engineering by
Mendes et al. [16]. The results in our case signalled positively for an updated and extended second-
ary study (details can be checked in Appendix A). Therefore, we believe that our SLR may support
engineers and researchers of ASs and CASs to cope with the testing challenges by means of the
definition of customized testing strategies with focus on recurring and inherent properties of ASs
or CASs. It also brings new findings regarding testing approaches, challenges and research trends.

This section summarized the context, motivation, goals and contributions of this article. Section
2presents basic background regarding ASs and CASs. Section 2 also briefly discusses the relation-
ship between ASs and CASs, describes the traditional Znn.com example and shortly relates testing
with key properties of ASs and CASs. Related work is summarized in Section 3. Section 4 revisits
the goals of this article and presents key elements of the SLR design. Section 5 summarizes the
search results and presents initial data classifications. Section 6 presents an analysis of the selected
studies, with focus on testing approaches and challenges for ASs and CASs; it also brings further
discussions and research implications. Section 7 discusses limitations and threats to the validity
of our study, and conclusions and future work are presented in Section 8. Appendix A justifies
the need for either a new or an updated SLR on the topic we addressed in this paper. Finally,
Appendix B presents the complete SLR protocol.

2. BACKGROUND

This section presents foundations for ASs and CASs, describes an AS example and briefly
comments on software testing in the context of ASs and CASs.

2.1. Context, configuration and environment in adaptive systems and context-aware systems

By dealing with systems that are able to self-adapt, it is usually possible to identify characteristics
and scenarios in which there are context changes that were emanated from monitoring events from
the environment; this may lead to the adaptation of the system by properly choosing a new system
configuration [17]. Abowd et al. [5] defined the term context as any information that can be used to
characterize the situation of an entity, where an entity can be a person, a place, or a physical or com-
putational object. Oreizy et al. [18] used the term configuration to refer to architectures composed
of components and connectors. In this sense, while dealing with ASs and CASs, Oreizy et al. [18]
addressed the need of having dynamic architectures (i.e. sets of the system’s possible configura-
tions). Hurtado et al. [17] used the term environment when there are events generated by monitoring
hardware sensors or any physical device. Xu et al. [19] also addressed ‘environment’ by comparing
internal environment (i.e. state) and external environment.

2.2. Adaptive systems

Adaptive systems are systems that are able to automatically modify themselves in response to
changes in their environment [18,20]. According to Krupitzer et al. [21], the reason for adaptation
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is a change in one or various system’s elements, such as (i) a change in the technical resources, for
example, a software or a hardware fault; (ii) a change in the environment, for example, changes in
the state of a context variable; or (iii) a change regarding the user preferences. To accomplish the
adaptation there are four self-* features that can be considered fundamental. These features are
self-configuration, self-healing, self-optimization and self-protection [20]. In short, such features
can be described as follows: self-configuration: the AS configures itself in order to adapt dynami-
cally to changing environments; self-healing: the AS detects, diagnoses and recovers itself from
problems that threat its correct operation; self-optimization: the AS always seeks ways and seizes
opportunities to improve its operation; and self-protection: the AS anticipates, detects, identifies
and protects itself from internal and external threats.

Adaptive systems are composed by two interrelated subsystems: the managing subsystem and
the managed subsystem [2,7]. To perform an adaptation, the former monitors, analyses, plans
and executes changes on the managed subsystem; in other words, there is a structure that is based
on the MAPE-K reference control model [20,22]. The latter, on the other hand, implements the
application domain. Regarding the constituent parts of MAPE-K, monitors probe the managed
subsystem by means of sensors to obtain the current state of context variables. Analysers correlate
the context values received from monitors with reference values to decide about the need for
adapting the system. Based on business policies, planners define the maintenance activities to
be executed to adapt or evolve the system, and executors implement the set of activities defined
by planners [23]. These components in the managing system communicate between themselves
and with the managed system using a fifth component, the knowledge, to transfer and store
system data [22].

2.3. Context-aware systems

Context-aware systems are systems that are able to automatically collect contextual data (or simply,
the context) in order to know the state of the running system [24]. Based on the context, the systems
may be able to make decisions according to the goals of its users. Each change in a system environ-
ment generates a new context, so that a context variable is an attribute of a system with respect to
the environment [24]. A context instance is an instantiated context variable. Given a timeline ¢, each
context is located in a specific time of ¢. Thus, as long as the environment changes, a new context is
generated with an increment of 7 [8]. A context flow is given by a time series of several context
instances. Context diversity measures the number of context changes inherent in a context flow
[25]. Usually, the context diversity can be computed by applying the total of Hamming distance
[26] in the context flows. Despite the existence of definitions for ‘context’ in the literature, in
software engineering activities (e.g. software testing), Santos ef al. [27] concluded that it is difficult
characterizing and using context data due to issues such as the complexity and uncertainty? related
to these types of systems.

2.4. The relationship between adaptive systems and context-aware systems

It is clear that ASs and CASs share some characteristics, but they also have their particularities.
Usually, an AS is able not only to modify its behaviour but also to modify its own structure in order
to deliver a better functionality or optimize its quality of service [4]. These modifications are per-
formed by the managing system in the managed system. A CAS, on the other hand, is usually char-
acterized as a system focusing on the behavioural changes [29]. These changes are usually
performed by a middleware that resembles a managing system of ASs. Despite these differences,
as mentioned in Section 1, ASs and CASs share the characteristic of being able to evaluate their
own behaviour and adapt it to properly accomplish their goals, possibly with better performance
[4]. We highlight that both types of systems share the feature of data monitoring to represent the
environment in which the system is inserted. In general, we can find out that the term context

“Esfahani and Malek [28] characterized uncertainty in terms of difficulties such as accurately express system’s quality
preferences and sensors employed for monitoring that often have uncontrollable noise. The authors also mentioned the
need to identify the different sources of uncertainty and dealing with them as first-class attributes.
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Figure 1. Znn.com system architecture [31] (¢; are clients, and s; are servers).

awareness from CAS systems can be classified into the hierarchical levels of ASs properties [4].
Indeed, some authors even mention confext awareness as a particular AS property [3]. As we
mentioned in Section 1, a CAS is able to recognize and react to changes that occur to the system
environment [5], whereas an AS is able to react to its environment to modify its behaviour
and/or structure in response to changes that occur to the system, its environment or even its goals
[6]. In this context, in this research, we considered both types of systems due to the interchangeable
way several pieces of work in the literature deal with them. This is particularly noticed when we
find cross-citations among studies from both communities (this is represented in Figure 5 and
discussed in Section 5.3).

2.5. An AS example: Znn.com

Znn.com® [30] is a typical example of an AS used by the SEAMS* community. The system is able
to reproduce the typical infrastructure for a news website. It consists of a three-tier architecture that
has a set of servers providing contents from a back-end database to clients using front-end
presentation interfaces. This system has a web-based client-server architecture that uses a load
balancer to deal with requests across a pool of replicated servers, as shown in Figure 1. The number
of servers can be adapted according to service demand. In addition, alternative levels of fidelity are
provided according to the service demand (e.g. different versions and costs of resources such as
usage of text, images or videos) to support their users having a properly experience. These attributes
(i.e. scalability and levels of fidelity) allow the main goal for Znn.com to be achieved: providing
content to customers within a reasonable response time while keeping the cost of the server within
a range of operating budget. A short description of the scalability and fidelity adaptive properties is
next presented.

2.5.1. Scalability. In case of a particular server be overload, new replicas of this server are able to
be created using scales to increase resources. On the other hand, when a server replica is not
demanded anymore, it can be destroyed. Thus, this attribute also brings elasticity to the system.

2.5.2. Fidelity. When the scalability is not feasible, the level of fidelity can be decreased. As an
example, if the max limit number of replicas is achieved, the servers may start providing images
in place of videos as a way to properly fulfil the service demand. Similar to the elasticity mentioned
for scalability, once identified that the service demand has decreased, the level of fidelity can be
increased.

Regarding characteristics of ASs and CASs, the service of supplying news is related to the Znn.
com managed system. The attributes related to adaptive behaviour (i.e. scalability and fidelity) were
developed as strategies and tactics inside of the Rainbow managing system [32].

*https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-problem-znn-com/— last checked in December
2020.
*https://www.self-adaptive.org/ — last checked in December 2020.
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Cémara et al. [31] performed an evaluation study using Znn.com by focusing on the
Controllercomponent (i.e. the managing system). They demonstrated their concern and need for
considering the system as a whole and that this would inevitably lead to new challenges during test-
ing, such as the necessity to consider the full state of the target system. This issue is also empha-
sized in another study [33] of these authors. In our research, we identified a specific challenge
(viz. SC-4) that is related to this issue (details are presented in Sections 5.2 and 6.2). More specif-
ically, this regards the difficulty to test a system that does not have a clear boundary due to dynamic
configurations and different contexts.

2.6. Software testing and adaptive systems/context-aware systems

Adaptive systems and CASs have been increasingly present in the peoples’ social and professional
lives [34]. Testing has shown to be a very effective way of improving the quality of systems in
general, so it is a natural choice for assessing the quality of ASs and CASs. However, because of
the likelihood of a combinatorial explosion of configurations of these types of systems, many of
those unforeseen at specification and design time, testing ASs and CASs is a very difficult task
for software developers (we address testing challenges in details in Section 6). As a consequence,
traditional testing approaches are ineffective [8,11,32].

In software testing, there is a difference between fault, error and failure. A fault is an incorrect
step, process or data definition. The execution of the fault may produce an inconsistent state
(i.e. an error), which may lead to a failure. A failure occurs when the observed behaviour differs
from the expected one [35]. Piischel ef al. [36] limit this characterization to those that are relevant
to a development-independent tester and modify it to ASs and CASs. So, according to Piischel
et al., the only relevant property concerning faults is their persistence, which may be either perma-
nent or transient. For example, the source of a fault in an AS or in a CAS can be in one of the
managing subsystem’s tasks, which involves monitoring, analysing, planning and executing in
managed subsystems. A cyclic failure propagation can occur, for example, if a failure manifests
in the system’s knowledge model and influences on future decisions such that the failure becomes
a fault in following cycles.

Salehie and Tahvildari [4] mentioned in their survey that ‘testing’ was the least focused phase in
engineering ASs and CASs, with only a few studies addressing this topic. They argued that is
challenging dealing with these types of systems, and they emphasized that such systems lead to
several paths of execution in different scenarios (i.e. when one adds the dynamic decision making,
the system will become even more complex). We highlight that inherent properties of ASs and
CASs that impact on the way such systems should be tested, and the lack of studies in the literature
that provide a landscape in testing ASs and CASs motivated us to perform the SLR that is presented
in this article.

3. RELATED WORK

De Lemos et al. [6] performed a survey named Sofiware Engineering for Self-Adaptive Systems 111
Assurances. The work is the third book of the series on Software Engineering for Self-Adaptive
Systems. This series describes a wide range of approaches with respect to software engineering
and control engineering. Comparing to our work, they aimed to give an overview about software
engineering for self-adaptive systems including a software testing perspective, but not particularly
focused on testing.

Matalonga et al. [37] performed an SLR in the same context of our SLR. Their results were split
in two parts. The first one focused on identifying challenges faced in CAS testing, whereas the
second one focused on mapping testing approaches to the ISO/IEC/IEEE 29119 standard.” Their
studies [37-39] have not been selected as primary studies during our SLR because they were
classified as secondary studies. In spite of that, we used them for snowballing purposes. Even

Note that the study of Matalonga et al. [37] is a complete version of their work. Before the work of Matalonga et al.
[37], the authors published partial results of their research [38,39].
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though one of their research questions (viz. “Which are the existing methods for testing context
aware systems?’) is related to ours, the main difference between both studies regards the inclusion
criteria. They defined 10 criteria from two different categories. The first category focused on studies
related to activities involving software testing. The second category focused on studies that involve
characterizations of context in CASs and hence identifying problems with respect to human
computing interaction and software systems’ usability. With respect to the selection of studies from
the literature, they used both categories to classify and to select the studies.

Santos et al. [27] performed an SLR to investigate test case design techniques for CASs. The
authors addressed research questions involving techniques and challenges with respect to test case
design. Comparing with our work, objectives partially overlap with respect to testing approaches
and testing challenges, given that test case design techniques are one of the characteristics of testing
approaches we retrieved. Focusing on test case design, the authors characterized a set of challenges
that are related to the usage of context data. However, in our work, we deal with a more comprehen-
sive scope of testing challenges and testing approaches. In addition, our search strategy takes into
account not only CASs but also ASs. Note that the study of Santos et al. [27] was also used as seed
in our snowballing search.

We also used the SLR of Matalonga et al. [38] for snowballing. Those authors analysed 12 studies
in the context of CASs and identified two testing challenges. The first one is related to the use of
devices with resource limitation, whereas the second one is related to the testing in a high variation
of context data. However, in our work, we not only characterized a more comprehensive scope of
challenges but also characterized the categories and testing techniques that have been used in the
literature.

In another piece of related work, in a systematic mapping study, Almeida et al. [40] analysed
68 primary studies in order to identify Android testing tools from the literature. In addition, the
authors also characterized which studies addressed the testing of Android CASs. We highlight that
the authors defined research questions regarding both goals (Android testing tools and testing of
Android CASs).

Comparing with our work, our study is more comprehensive with respect to deal with testing of
ASs and CASs. In our characterizations, we do not focus on testing tools, whereas we identify
testing approaches, their underlying techniques, problems and directions. In addition, they also
do not address testing challenges as we do.

With respect to testing challenges, Fredericks ez al. [10] defined a taxonomy of challenges for AS
testing. However, the authors did not perform a broad literature search in order to build such taxon-
omy as we did in our work. In short, they discussed the difficulties software engineers may face
with respect to the components of the MAPE-K model. We addressed different research questions,
as detailed throughout this paper. Note that all testing challenges that were characterized by
Fredericks et al. [10] were used in this work, so that these challenges are listed in Table 7.

Finally, in recent prior research [41], we characterized specific faults for ASs and CASs based on
a subset of 11 studies [19,29,42-50] selected for the SLR we report in this article. As a result, we
concluded that more attention in some characteristics (e.g. adaptation rules and error propagation
in control loops) is necessary when devising fault-based testing approaches for these types of
systems. More precisely, we presented a list of specific faults (26 in total) and fault type categories
(six in total) for ASs and CASs. We noticed that (i) some faults can also clearly occur in common
systems (e.g. missing static construct and component interface fault); (ii) some faults are specific to
ASs and CASs (e.g. fault in data sensing and fault in adaptation rules); (iii) the most commonly
discussed fault types are related to adaptation rules; (iv) the least commonly discussed fault type
is related to environmental completeness; (v) some fault types are strictly related to structural and
syntactic characteristics; and (vi) in general, the faults are more related to behavioural and seman-
tical characteristics.

4. STUDY GOAL AND SETUP

This work aims to characterize the state of the art of AS testing and CAS testing. More specifically,
in this article, we aim to (i) identify and characterize testing approaches for ASs or CASs; (ii)
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Keyword Synonyms Different spelling
Adaptive Systems Adaptive System
of Context aware Context-aware
Adaptive and Autonomic Context-awareness
Context-Aware
Systems Adaptive Software Context awareness

Search string

("testing") AND ("adaptive systems" OR "adaptive system" OR "context aware" OR
"context-aware" OR "context awareness" OR "context-awareness" OR "adaptive software"
OR "autonomic")

Figure 2. Terms that form the search string and the snowballing.

enhance the characterization of challenges for AS testing or CASs testing; and (iii) discuss how
challenges can be addressed with the identified approaches.

The process we followed to conduct the SLR is aligned with the one summarized by Kitchenham
and Charters [51]. It includes three main phases: planning, conducting and reporting. Even though
these phases could be seen as sequential, in general, each phase can be applied in several iterations
[52]. The planning phase should evaluate the need for a new review, specify the research questions
and develop the review protocol. The conducting phase should involve the selection of studies sup-
ported by a set of inclusion and exclusion criteria and deal with the data extraction of the selected
studies. Finally, the reporting phase should involve data synthesis methods that support the summa-
rization of important information to answer the research questions.

4.1. Method and research questions

We designed a study protocol that follows well-established SLR guidelines [51,52]. The full proto-
col can be found in Appendix B. Key points are next presented, starting with the research questions.
® RQI: Which are the testing approaches that are proposed for ASs or CASs? This research
question aims to identify and characterize which testing approaches have been either
proposed for or applied to ASs or CASs.
® RQ2: Which are the testing challenges for ASs or CASs? This research question aims to
identify and characterize which are the challenges faced by researchers and practitioners while
developing and applying tests to ASs or CASs.

Note that in a prior conference paper [1], question RQ2 was answered with the analysis of
primary studies published up to 2014; in this article, we largely increase the set of analysed studies
to provide an up-to-date answer to RQ2.

4.2. Search string

We built the search string considering the three main terms: testing, and ASs or CASs. To define the
search string — which is presented in Figure 2 — and to evaluate the retrieved studies, we used as a
control group the set of studies selected by Ferrari ez al. [12]. Figure 2 presents the variations of the
terms (keywords), using synonyms and different spellings. With our string, we were also able to
identify studies that apply testing on systems that share common properties with ASs and CASs
(e.g. pervasive systems, ubiquitous systems and autonomous systems).

We highlight that there is a lack of standard terminology for these types of systems; consequently,
one may retrieve studies of interest that employ different terms for similar concepts. In general, we
noticed variations in the terminology even for basic concepts of AS or CAS (e.g. self-adaptive system,
self-awareness system, ubiquitous system and pervasive system). However, it is important to mention
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Table 1. Number of retrieved items with automatic search and snowballing.

ID Source Type of source # retrieved # analysed
Rounds 1 and 2 3 1 and 2 3
1 IEEE Xplore Indexed base 162 329 36 221
2 ScienceDirect Indexed base 149 269 8 230
3 SpringerLink Indexed base 738 1081 18 977
4 ACM DL Hybrid 195 887 39 802
5 Web of Science Search engine 933 1712 26 1212
6 Scopus Search engine n/a 1098 n/a 853
Subotal 2177 5376 127 4295
7 Snowballing Citations and references 30 2058 17 1279
Total 2207 7434 144 5574

that the generality and specificity [53,54] involving the definition of a search string could result in a
restrict result from the literature or even retrieving a high number of irrelevant studies. Thus, to
mitigate issue related to the lack of standard terminology, and to expand our search results, we have
used a comprehensive snowballing approach that is next described as phase 5 in Section 4.7.

4.3. Search strategy

It comprised (i) performing automatic search using the search string; (ii) applying backward and
forward snowballing [55]; and (iii) querying recent editions of specific journal issues of conference
proceedings. Note that snowballing was not completely applied (or not applied at all) in the prior
rounds® of this SLR. More specifically, in round 2 [1], we only retrieved 30 references from a small
subset of selected studies, from which 17 were analysed, as shown in line 7 of Table 1. Therefore,
with proper execution of snowballing in the most recent rounds, we extended the search strategy
and fetched a wider set of studies when compared with our previous report [1].

4.4. Repositories”

The string was customized to the search engines of the selected information sources listed in Table 1,
namely, IEEE Xplore,® Elsevier ScienceDirect,” Springer SpringerLink,'® ACM Digital Library,"'
Clarivate Web of Science'? and Elsevier Scopus.'® The last automatic search was run in December
2019 (items 1 to 6 in the table). Note that Scopus was used only in the most recent automatic search
round (round 3) and hence also contributed to fetch a wider set of studies when compared with pre-
vious research. Also note that Table 1 presents the numbers of retrieved and analysed studies for all
rounds, including the ones performed in our previous work, namely, rounds 1 [12] and 2 [1].

4.5. Inclusion criteria

A study was selected if it fulfilled at least one of the three criteria listed in the sequence. Only
studies that are peer reviewed, published in either a conference or a scientific journal, and written
in English were analysed in the light of the inclusion criteria. As mentioned in Section 3, the dataset
produced in this SLR was already used in the analysis of fault types of ASs and CASs [41]; there-
fore, in order to keep the dataset consistent across our publications, we also show criterion (iii)
throughout this paper.

®In this work, we define round as a procedure of performing all phases of a systematic literature review in order to syn-
thesize answers to the research questions.

"Indexed base means a source that indeed stores the study (e.g. IEEE Xplore and Elsevier ScienceDirect). Search engine
means a tool that queries various indexed bases (e.g. Scopus and Web of Science). Hybrid is a combination of indexed
base and search engine (e.g. ACM Digital Library).

Shttps://ieeexplore.icee.org/ — last checked in December 2020.

*https://www.sciencedirect.com/ — last checked in December 2020.

https://link.springer.com/ — last checked in December 2020.

"https://dl.acm.org/ — last checked in December 2020.

https://www.webofknowledge.com/ — last checked in December 2020.

Bhttps://www.scopus.com/ — last checked in December 2020.
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1 It defines or applies testing approaches to ASs or CASs.
2 It characterizes challenges for AS testing or CAS testing.
3 It characterizes types of faults that are specific to ASs or CASs.

4.6. Complementary search — snowballing

Beyond performing snowballing over all selected studies, references from and citations to, second-
ary studies that are related to ours were also analysed. Note that, even though secondary studies
usually do not produce primary evidence, they are important source of primary studies that might
pass in the inclusion criteria.

4.7. Selection of studies

Initially, we reinforce that only peer-reviewed studies (from journal and proceedings) were consid-

ered in our work. This required a revision of the final selection of our second round [1], and two

studies were removed from the final set of selected studies. That said, the selection comprised the

phases next described. Note that the number of items and studies presented for each phase repre-

sents total number considering all rounds of the SLR. Part of the numbers are also shown in Table 1.
A recent update of our dataset is reported as phase 7 in what follows:

® Phase 1 — search string: customizing the base search string to be applied to the search
engines. The search retrieved 7553 items'* (i.e. subtotals 2177 and 5376).

® Phase 2 — removing duplicated items: this phase consisted in removing 3131 duplicated
items retrieved from sources 1 to 6 mentioned earlier. Therefore, 4422 remained to be analysed
(i.e. subtotals 127 and 4295).

e Phase 3 — preselection: preselection of studies based on title, abstract and keywords, to which
the inclusion and exclusion criteria were applied. This resulted in 532 preselected studies.

® Phase 4 — final selection: in this final selection step, studies were fully analysed towards the
final selection decision. Data of interest were extracted and stored in customized forms. This
phase resulted in 78 selected studies. Once again, the inclusion and exclusion criteria were
applied.

® Phase 5 — backward and forward snowballing: application of all iterations of backward and
forward snowballing to the 78 studies selected in the previous phase. This involved retrieving
additional 2088 items (i.e. subtotals 30 and 2058). After removing 779 duplicate items, 1309
studies were analysed following the steps of phase 3. We ended up adding 23 new studies to
our final set; that is, we reached a total of 101 studies.

® Phase 6 — identifying overlappings: after analysing the 101 studies, we identified 19 overlaps
among them. This includes studies (herein called subsumed studies) that are either updated or
improved by their authors, so that new studies are published and subsume the previous ones.
Therefore, the final output was a set of 82 primary studies.

e Phase 7 — updating the search: in this phase, which we refer to as round 4, we updated our
search with focus on particular conference proceedings and journals. The choice for confer-
ences and journals was guided by (i) the ones that were most addressed by authors of selected
papers and (ii) representative venues for research on ASs or CASs testing. Table 2 presents the
conference proceedings from which the studies were mostly selected, considering up to phase
6 described earlier; the most recurring are SEAMS (four studies), ICTSS and SAC (three stud-
ies each). Table 3 shows that up to phase 6, no more than one study was selected from a par-
ticular journal. Both tables were used to support the search for new studies that were published
after June 2019 (i.e. after our last automatic search) and hence should be also analysed. To
complement the set of analysed proceedings and journals, we used the ones that are represen-
tative for the software testing/reliability and for the ASs or CASs communities, as well

“We use the term item instead of study because not all search results are indeed studies. Some are proceedings front mat-
ters, talk abstracts and so forth.
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Table 2. Proceedings in which selected studies were published (partial list, sorted in descending order of

numbers of published studies).

Rank Proceeding Initials Studies
1 International Symposium on Software Engineering for Adaptive and SEAMS 4
Self-Managing Systems
2 International Conference on Testing Software and Systems ICTSS 3
3 Symposium on Applied Computing SAC 3
4 International Aerospace Conference AEROCONF 2
5 Annual International Computer Software and Applications Conference COMPSAC 2
6 International Symposium on Foundations of Software Engineering FSE 2
7 International Conference on Adaptive and Self-Adaptive Systems and ICAS 2
Applications
8 International Conference on Software Engineering ICSE 2
9 International Conference on Software Engineering and Service Science ICSESS 2
10 International Workshop on Mutation Analysis MUTATION 2
11 Workshop on Quality Assurance for Self-Adaptive, Self-Organising Systems ~QA4SASO 2
12 International Conference on Self-Adaptive and Self-Organizing Systems SASO 2
Table 3. Journals in which selected studies were published.
Rank Journal Initials Studies
1 ACM Transactions on Autonomous and Adaptive Systems TAAS 1
2 Software Quality Journal SQJ 1
3 IEEE Transactions on Software Engineering TSE 1
4 International Journal of Business Research and Information IJBRIT 1
Technology
5 International Journal of Software Engineering and Knowledge JSEKE 1
Engineering
6 International Journal Software Informatics JSI 1
7 Software & Systems Modeling JSM 1
8 Journal of Systems and Software JSS 1
9 Open Journal of Web Technologies OJWT 1
10 IEEE Computer IEEE Computer 1
11 IEEE Transactions on Dependable and Secure Computing TDSC 1
12 IEEE Transactions on Reliability TR 1
13 International Journal On Advances in Software JAS 1
14 IT Professional ITP 1
15 Journal of Computers JC 1

software engineering in general, namely, ICST,"> ISSTA,'® ISSRE,'” STVR,'"® SASO,"
TAAS,?® CASM,?' FSE,** ICSE,” TSE,** TOSEM* and SQJ.?® From these proceedings
and journals, we preselected 20 studies, from which only one new study [56] was selected.
After applying the snowballing techniques to it, no more studies were selected. Therefore,
we ended up with a final set of 83 selected primary studies that were analysed and from which
data were extracted, as presented in Tables 5 and 6. Note that the subsumed studies do not

SIEEE International Conference on Software Testing, Verification and Validation.
'ACM SIGSOFT International Symposium on Software Testing and Analysis.
""IEEE International Symposium on Software Reliability Engineering.

'8 Journal of Software Testing, Verification & Reliability.

IEEE International Conference on Self-Adaptive and Self-Organizing Systems.
20ACM Transactions on Autonomous and Adaptive Systems.

2!Journal of Complex Adaptive Systems Modeling.

22ACM Symposium on the Foundations of Software Engineering.

ZIEEE/ACM International Conference on Software Engineering.

>*IEEE Transactions on Software Engineering.

2> ACM Transactions on Software Engineering and Methodology.

26Software Quality Journal.
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Table 4. Examples of author’s text snippets of challenges and difficulties involving testing of ASs and
CASs with respect to specific challenge SC-1.

ID Author Text snippet

1 Truszkowski et al. [58] ‘The number of these combinations is exponential and sometimes factorial to
the number of states. Consequently, the state space is too large to test’.

2 Schumann and Visser [59] ‘The larger size and higher complexity of the valid input space, which can
contain system status, environmental information, intended goals, and
constraints’.

3 Niebuhr and Rausch [60]  ‘Proving the correctness of ASs at runtime in general is not possible. You get a
less valuable proof in case of an incomplete specification’.

4 Welsh and Sawyer [61] ‘It is necessary not only to verify that the AS operates as desired in a given
state, but that the ASs adapts its behaviour appropriately in environment
changes’.

5 Tseetal [62] ‘Combinatory explosion of unforeseeable combinations of intermediate
contexts to trigger subsequent context-sensitive functions’.

6  Micskei et al. [63] ‘The context is complex and there are a large number of possible situations: in

real physical world the number and types of potential context objects,
attributes and interactions that need to be specified can be large’.

7  Vieira et al. [64] ‘There is a wide range of values that can be adapted. As a result, there are
infinite potential test cases. The challenge is to find a mechanism to
abstract context sources and derive test cases based on the most critical
values’.

belong to our final output, given that their results can also be found in other studies in the final
output.

4.8. Analysis and synthesis

To answer RQ1 and RQ2, we applied thematic analysis [57] in the selected studies. It involved
identifying recurring themes in the literature and summarizing the findings based on different
thematic headings. Specifically for RQ1, in Table 8, the classification and subclassification shown
in columns 7echnique and Category, respectively, were constructed during SLR execution. With re-
spect to testing techniques (first column of the table), we have focused on classifying the
approaches as functional, structural, model based and fault based. The studies that have addressed
two or more of these techniques were classified as hybrid, whereas the remaining studies were clas-
sified as other (brief descriptions of the techniques are provided in Sections 6.1.1 to 6.1.6). The cat-
egories identified for the subclassification can be observed in the second column of Table 8.

With respect to RQ2, the analysis of the primary studies helped us characterize thematic head-
ings in the context of testing challenges involving ASs or CASs. We have also defined catego-
ries to support the data extraction and analysis of testing challenges. These categories are
presented in Table 10. An example of the definition of thematic headings is presented in Table 4;
in that table, we can observe the frequent usage of closely related terms: exponential number of
combinations, large size of input space, runtime with an incomplete specification, verify environ-
ment changes and infinite potential test cases. Based on these text snippets and terms, we
established the SC-1 specific challenge (listed in Table 7) as ‘The impossibility to guarantee
the correctness of a changing system with unpredictable and growing number of contexts and
configurations’.

5. SEARCH RESULTS AND INITIAL DATA CLASSIFICATION

The final set of selected studies, respectively for each round, includes 11, 21, 50 and 1 studies (83,
in total). Thus, this work largely increases the number of selected studies with 51 studies added to
the set, particularly when compared with our prior paper that specifically addressed challenges for
AS or CAS testing [1].

© 2021 The Authors. Software Testing, Verification & Reliability Softw. Test. Verif. Reliab. 2021;31:e1772
published by John Wiley & Sons Ltd. DOI: 10.1002/stvr

85U8017 SUOWIIOD BA e8I 3|geotjdde 8y Aq peussnob e sejone VO ‘88N Jo S8|ni 1oy Aiq1T8UlUO AB]1/W UO (SUOIIPUOD-PUe-SLLBYW0D™AB| 1M Ale1q 1 Bu [UO//:SANY) SUONIPUOD Pue Swie 1 8y} 89S *[5Z02/20/0T] Uo ARiqiauljuo /8|1 Juswi|iind 1eloD A Z// T IAS/Z00T 0T/10p/wod"Ae | Areiq1jeuljuo//sdiy woj pepeojumod ‘. ‘TZ0Z ‘689T660T



13 of 46

TESTING OF ASS AND CASS: APPROACHES AND CHALLENGES

Table 5. First part of selected primary studies (in all rounds, sorted by year of publication).

Authors
and ref. number Year R System Database (1) (i) (iii) Overlapping Information source
Kephart 2003 2 AS IEEE Xplore X IEEE Xplore,
and Chess [20] snowballing
Flores et al. [65] 2004 1 CAS IEEE Xplore X IEEE Xplore,
Web of Science
Tse et al. [62] 2004 2 CAS IEEE Xplore X X IEEE Xplore,
snowballing
Truszkowski 2004 3 AS IEEE Xplore X IEEE Xplore,
et al. [58] snowballing
Lu et al. [24] 2006 1 CAS ACMDL X X ACM DL, Scopus,
snowballing
Chan et al. [66] 2006 2 CAS  World X [67] Web of Science,
Scientific Scopus,
snowballing
Merdes et al. [68] 2006 2 CAS ACMDL X Snowballing
Schumann 2006 3 AS IEEE Xplore X Snowballing
and Visser [59]
Niebuhr 2007 1 AS ACM DL X X ACM DL, Scopus,
and Rausch [60] snowballing
Wang et al. [69] 2007 1 CAS IEEE Xplore X X IEEE Xplore,
ACM DL,
Web of Science,
snowballing
King et al. [70] 2007 2 CAS Academy X X Scopus,
Publisher snowballing
Luetal. [71] 2008 1 CAS IEEE Xplore X X IEEE Xplore,
ACM DL,
Scopus,
snowballing
Sama et al. [45] 2008 1 CAS ACMDL X X ACM DL, Scopus
Jaw et al. [11] 2008 2 AS IEEE Xplore X X IEEE Xplore
Niebuhr et al. [72] 2009 1 AS IEEE Xplore X X [73,74] IEEE Xplore,
Web of Science,
Scopus
Ye et al. [75] 2009 2 CAS ACMDL X ACM DL, Scopus
Taranu and 2009 3 CAS ACM DL X ACM DL,
Tiemann [76] Web of Science,
Scopus,
snowballing
Sama et al. [29] 2010 1 CAS IEEE Xplore X X X IEEE Xplore,
Web of Science,
Scopus,
snowballing
Sama et al. [46] 2010 1 CAS ScienceDirect X ScienceDirect,
Web of Science,
ACM DL,
Scopus,
snowballing
Wang et al. [48] 2010 1 CAS IEEE Xplore X X [77] IEEE Xplore,
snowballing
Welsh and 2010 1 AS IEEE Xplore X X IEEE Xplore,
Sawyer [61] Scopus,
snowballing
Vassev et al. [78] 2010 2 AS IEEE Xplore X X IEEE Xplore,
Scopus
Da Costa 2010 3 AS ACM DL X ACM DL, Scopus,
et al. [79] snowballing
(Continues)
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Table 5. (Continued)

14 of 46

Authors
and ref. number Year System Database (i) (i) (iii) Overlapping Information source
King et al. [80] 2011 AS IEEE Xplore X X [9,81-84] IEEE Xplore,
Web of Science,
Scopus
Silva and 2011 AS ACM DL X ACM DL, Scopus
De Lemos [85]
Eze et al. [86] 2011 AS ThinkMind X Snowballing
Bartel et al. [42] 2011 CAS IEEE Xplore X X IEEE Xplore,
snowballing
Wotawa [87] 2012 AS SpringerLink X X SpringerLink,
Web of Science,
Scopus,
snowballing
Micskei et al. [63] 2012 CAS SpringerLink X X SpringerLink,
ACM DL,
Scopus,
snowballing
Piischel et al. [88] 2012 CAS Semantic X X Scopus,
Scholar snowballing
Weyns [89] 2012 AS ACM DL X X ACM DL, Scopus
Bayha et al. [90] 2012 AS ACM DL X ACM DL,
snowballing
Xu et al. [19] 2012 CAS ScienceDirect X X X Snowballing
Fredericks 2013 AS IEEE Xplore X X IEEE Xplore,
et al. [10] Web of Science,
ACM DL,
Scopus,
snowballing
Amalfitano 2013 CAS IEEE Xplore X IEEE Xplore,
et al. [91] Scopus,
snowballing
Garvin et al. [92] 2013 AS SpringerLink X [93] SpringerLink,
Scopus
Horanyi et al. [94] 2013 CAS  Hal.archives- X [95] Snowballing
ouvertes
Nehring and 2013 AS ThinkMind X X Snowballing
Liggesmeyer [96]
Silva and 2013 AS KAR Repository x Snowballing
De Lemos [97]
Xu et al. [98] 2013 CAS  HKUST X X [99] Snowballing
Repository
Akour et al. [100] 2014 AS Academic X [101] Snowballing
OneFile
Eberhardinger 2014 CAS SpringerLink X X SpringerLink,
et al. [102] ACM DL,
Web of Science,
Scopus,
snowballing
Subtotals (41 studies) 36 26 6 13

Tables 5 and 6 list all selected studies. In both tables, the round number is shown in the column
labelled with ‘R’. The tables also show the author(s) and the reference number (column ‘Authors
and ref. number”); year of publication (column ‘Year’); type of system (AS or CAS) as originally
reported by the authors (column ‘System’; more details about this classification are provided along
this paper); the database from which the study was downloaded (column ‘Database’); the number of
the inclusion criteria fulfilled by the study (columns ‘(i)’, ‘(ii)” and ‘(iii)’); the subsumed studies,
that is, studies that were updated by those in the first column (column ‘Overlapping’); and the
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Table 6. Second part of selected primary studies (in all rounds, sorted by year of publication).

Authors and

ref. number Year R System Database (i) (ii) (i) Overlapping Information source
Fredericks 2014 2 AS ACM DL X ACM DL,
et al. [106] Web of Science,
Scopus, snowballing
Griebe and 2014 2 CAS ACM DL X X ACM DL, Scopus,
Gruhn [107] snowballing
Wang et al. [8] 2014 2 CAS ACM DL X [25] ACM DL,
Web of Science,
Scopus, snowballing
Piischel et al. [108] 2014 3 AS ThinkMind  x x Snowballing
Puschel et al. [109] 2014 3 AS ThinkMind  x x [36] Snowballing
Piischel er al. [44] 2014 3 AS ThinkMind  x x Snowballing
Cémara ef al. [110] 2015 2 AS IEEE Xplore x x [31,33] IEEE Xplore
Vieira et al. [64] 2015 3 CAS ACMDL X ACM DL,
Web of Science,
Scopus
Fredericks and 2015 3 AS IEEE Xplore x IEEE Xplore,
Cheng [111]
ACM DL, Scopus,
snowballing
Hansel et al. [112] 2015 3 AS IEEE Xplore x IEEE Xplore,
Web of Science,
Scopus, snowballing
Lahami et al. [113] 2015 3 AS SpringerLink  x SpringerLink,
Web of Science,
Scopus
Lim et al. [114] 2015 3 AS IEEE Xplore x IEEE Xplore, Scopus
Majchrzak and 2015 3 CAS RonPub X Snowballing
Matthias [115]
Markov and 2015 3 AS IEEE Xplore x IEEE Xplore,
Frohlich [116] Web of Science,
Scopus
Sen et al. [117] 2015 3 AS IEEE Xplore x IEEE Xplore,
Web of Science,
Scopus
Song et al. [118] 2015 3 CAS Semantic X Scopus
Scholar
Tonjes et al. [119] 2015 3 CAS  IEEE Xplore x IEEE Xplore, Scopus
Al-Refai et al. [120] 2016 3 AS IEEE Xplore x IEEE Xplore,
Web of Science,
Scopus, snowballing
Al-Refai et al. [121] 2016 3 AS IEEE Xplore x Snowballing
Eberhardinger 2016 3 AS SpringerLink x x [103] SpringerLink, Scopus,
et al. [43] snowballing
Heck et al. [122] 2016 3 AS IEEE Xplore X Snowballing
Qin et al. [123] 2016 3 CAS ScienceDirect x  x Snowballing
Rodrigues 2016 3 CAS ACM DL X ACM DL, Scopus
et al. [124]
Wotawa [125] 2016 3 AS IEEE Xplore x IEEE Xplore, Scopus
Yu et al. [50] 2016 3 CAS IEEE Xplore x x [49] IEEE Xplore,
Web of Science,
Snowballing
Lindvall et al. [126] 2017 3 AS IEEE Xplore x ACM DL
Luo et al. [127] 2017 3 SSC IEEE Xplore x x Scopus
Matalonga and 2017 3 CAS ACM DL X ACM DL, Scopus,
Travassos [128] snowballing
Mehmood 2017 3 CAS IEEE Xplore x IEEE Xplore, Scopus,
et al. [129] snowballing
(Continues)
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Table 6. (Continued)

Authors and

ref. number Year R System Database (1) (i) (iii)) Overlapping Information source
Usaola et al. [130] 2017 3 CAS IEEE Xplore x IEEE Xplore, Scopus,
snowballing
Eberhardinger 2018 3 AS IEEE Xplore x IEEE Xplore, Scopus,
et al [131] Web of Science,
snowballing
Fredericks [132] 2018 3 AS IEEE Xplore x IEEE Xplore, ACM DL,
Scopus, Snowballing
Ma et al. [104] 2018 3 AS SpringerLink x  x Snowballing
Mehmood 2018 3 CAS IEEE Xplore x x IEEE Xplore,
et al. [105] Scopus, snowballing
Mirza and 2018 3 CAS IEEE Xplore x IEEE Xplore,
Khan [133] snowballing
Reichstaller 2018 3 AS IEEE Xplore x IEEE Xplore,
and Knapp [134] ACM DL,
Scopus, Snowballing
Reichstaller 2018 3 AS SpringerLink X Snowballing
et al. [135]
Reichstaller 2018 3 AS IEEE Xplore x x Snowballing, ACM DL
et al. [136]
Siqueira et al. [47] 2018 3 CAS IEEE Xplore x X ACM DL, Scopus,
snowballing
Ma et al. [137] 2019 3 AS SpringerLink x x snowballing
Arcaini et al. [56] 2020 4 AS IEEE Xplore x IEEE Xplore
Subtotals 38 16 4 6
(42 studies)
Totals (83 studies) 74 42 10 19

information source from which the study was retrieved (column ‘Information source’; it may have
been more than one source).

In the following, we will discuss the approaches and challenges; that is, the discussion regards
inclusion criteria (i) and (ii).

5.1. Testing approaches for adaptive systems or context-aware Systems

In total, 74 studies were selected with the application of criterion (i). Note that although there are
74 studies that apply at least one testing approach, this does not mean they all involve distinct
approaches. As an example, Eberhardinger ez al. [43] applied the same approach in two distinct
studies [43,103]; the approach explores constraints and model-based testing to decrease the number
of test cases to be generated. One of the studies [103] introduced the main concepts and used a
running example, whereas the other [43] proposed a different test model — based on the first one
— and presented results of an exploratory study.

We grouped the 74 studies based on their underlying testing techniques, namely, functional
testing (12, in total), structural testing (6, in total), model-based testing (24, in total) and fault-based
testing (8, in total). Hybrid approaches refer to studies that explored mixed techniques (13, in total),
and 11 studies with general characteristics — for example, that focused on the definition of testing
processes and frameworks — are described as other approaches. Figure 3 presents the number of
studies for each testing technique. It shows the distribution of studies per technique before and since
2014 (note that this gives the reader a view of what has been on focus in the last 6 years). One
observed trend is the application of combined (hybrid) techniques since 2014. Apart from it,
model-based approaches are regularly the most explored technique. Moreover, structural and other
techniques have decreased in ‘popularity’. Finally, the adoption of functional and fault-based testing
has increased slightly. Details of the techniques and associated studies are provided in Section 6.1.
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Figure 4. Number of studies per year.

The study distribution per year is shown in Figure 4. Overall, the number of publications has in-
creased year by year, with slight variations in this trend. Moreover, in the last 2 years (i.e. 2019 and
2020), only two new primary studies were selected. Even though in round 4*” we have not applied
the six phases described in Section 4, we searched for studies in the main proceedings and journals
referring to the area investigated in this work.

5.2. Challenges for adaptive system testing or context-aware system testing

From the 83 primary studies, 42 were selected with the application of criterion (ii). From these, 21
of them came from round 3. We reinforce the fact that we kept in our final set of studies only those
that are peer reviewed, and this holds for subsumed studies as well. As such,we reanalysed the 25
primary studies identified in rounds 1 and 2, and this number decreased to 21 studies present in our
final set.

The challenges listed in Table 7 are herein called specific challenges, because they are described by
the original authors in particular research contexts. In other words, these challenges were mentioned
or described in specific contexts, methodologies, testing approaches and so forth. Furthermore, in our
prior paper [1], likewise in this article, we found out the goal of the selected primary studies was not
consolidating a taxonomy of challenges; instead, in most cases, the authors of the primary studies
employed either different terms for describing the same challenge or the same term for different chal-
lenges. Given that the challenges are scattered on the literature, to have a general view involving
which testing challenges could be faced for these types of systems, characterizing testing challenges
was one of the activities in this SLR, and we ended up with a list of 35 testing challenges for AS or
CAS (Table 7).

Refinements performed in this article, in comparison with our prior paper [1], regard the inclu-
sion of new specific challenges (SCs), the updating of references linked to some SCs and the

?The time frame considered for round 4 was June 2019 to June 2020.
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Table 7. Specific challenges for AS and CAS testing.

SC  Description AS CAS

1 The impossibility to guarantee the correctness of [60] [59] [63] [62] [64]
a changing system with unpredictable and growing [58] [61]
number of contexts and configurations.

2 The issue of limiting (or not) the ability to adapt [10]
during the testing activity.

3 The issue of when it is possible to stop the testing. [87]

4 The dynamicity of ASs, which have no clear boundary, [110] [72] [61] [19]
so that the use of the configuration variants and context
variants is not predictable.

5 The difficulty of defining test oracles. [19]

6 The difficulty to detect and avoid possible resulting incorrect [86] [104] [60] [63]
contexts and configurations of the system at runtime.

7 The difficulty of testing the triggering of adaptations with respect [10]
to the executor component at runtime.

8 The impossibility to prove the correctness of a component [60]
wiring at runtime.

9 The issue related to test a system that has synchronization [103] [43] [122] [29] [62]
between components and ensuring harmony between [20] [80]
the closed control loops.

10 The issue of testing a system built upon a layered architecture [122] [109]
that encapsulates management and usage of context.

11 The issue of testing a system that let the users perform [86] [107] [29]
customization in how the system should adapt itself
according to changes of contexts.

12 The issue of testing a system whose contexts change all the time. [88]

13 The need to handle the state space, which is developing in [43] [137] [102] [123]
an evolutionary fashion at runtime.

14 The issue of identifying reliably important adaptive changes [10] [19]
within the system and its execution environment.

15 The issue of determining the properties of the systems that [10]
should be observed.

16 The challenge of validating design models that contain uncertain [11] [44] [108]
or learning characteristics.

17 The possible changes in context that can affect the application [107] [69]
behaviour at any time during the execution.

18 The issue of testing a system that contain some kind of learning [63]
and reasoning capabilities.

19 The difficulty of testing dynamically systems whose structure [103] [96] [70]
and behaviour may change during its execution.

20 The difficulty to apply data flow tests due to context-aware faults, [104] [24]
environmental interplay and context-aware control flow.

21 The issue of testing how a system avoids inconsistent program [109] [71] [19]
states caused by ‘noisy contexts’.

22 The issue of tracing the complete history of adaptations [122] [134]
starting at a known initial state.

23 The difficulty of promoting non-functional, adaptable properties [10]
into testable, first-class entities of the system.

24 The issue of accurately accessing the impact on test cases [10]
caused by system adaptations.

25 The difficulty to define thresholds or acceptance rates for [10] [63]
the test data.

26 The issue of determining the frequency on which monitoring [10]
data should be gathered.

27 The issue of determining what sensors, or sensor value [90] [10] [127] [105]
aggregations, can measure desired properties.

28 The difficulty to build test systems that capture the size and [20] [134] [127] [63]

complexity of realistic systems and workloads.
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Table 7. (Continued)

SC  Description AS CAS

29 The need to reduce the number of tests that are automatically [78]
generated.

30 The difficulty to automatically generate test cases for [104] [105] [50]
a changing environment.

31 The issues for defining formal models for testing taking [89]
into account system properties related to adaptive behaviour.

32 The difficulty of using mechanisms during the testing [63] [98]
to express and formalize context-aware behaviour.

33 The high risk of an faulty autonomously acting system to [90]
damage the environment or itself during testing.

34 The difficulty to define validation approaches that should [86] [122]
be generic for any adaptation process of adaptive system.

35 The issue of the practicability to keep minimum the [135]

number of test executions in the context of mutation testing.

Notes. Items identified in the third and fourth rounds appear in bold and larger font size. [Correction added on 10 May 2021, after
first online publication: some entries in Table 7 were mistakenly captured as regular font and has been corrected.]

classification of studies between AS or CAS. The new SCs and new studies are highlighted in bold
larger font size in Table 7, likewise the references to studies selected with the search updates. Note
that even though some SCs are not highlighted in bold (e.g. SC-5, SC-10 and SC-30), information
related to them was also updated, particularly considering the study subsumption relationship, as
well as the removal of non-peer-reviewed studies. For example, in this article, SC-30 (The difficulty
to automatically generate test cases for a changing environment) is linked to the studies of Ma et al.
[104], Yu et al. [50] and Mehmood et al. [105]; in our prior paper [1], SC-30°® was linked to the
study of Yu and Gao [49], which was subsumed by the study of Yu et al. [50], as shown in Table 6.

The classification of SCs between AS or CAS is the same classification shown in the column
‘System’ of Tables 5 and 6. This means that some challenges are more related to AS and other
challenges are more related to CAS. Once again, we emphasize that this classification relies on
the original authors’ description of their studies. Many studies clearly describe which type of
system they address. For example, Vieira et al. [64] stated that “This contribution outlines
challenges of testing context-aware mobile applications relating to their context ...”. Another exam-
ple is the study of Welsh and Sawyer [61], which contains excerpts such as (1) ‘this paper focuses
on a class of system that uses runtime models to drive runtime adaptations in changing environmen-
tal conditions’ and (2) ‘the compositional adaptation is achieved by allowing structural elements of
the system to be combined and recombined at runtime’. Both descriptions (1) and (2), which
involve runtime adaptations and recombining structural elements, led us to classify that study as
AS related. The same rationale was applied to all studies in this SLR.

It is very important to note that by classifying a study as AS or CAS related, we do not mean such
a study does not address any issue of the other type of system, specially because both types of
systems share common concepts and properties, as described in the previous sections of this paper.
In other words, a challenge that is classified as CAS related may also be presented in an AS, so it
may be handled with a testing approach for ASs.

We also highlight that some authors use interchangeably both terms ‘adaptive system’ and
‘context aware’, whereas others make no distinction between both terms. As an example, Qin
et al. [123] used the term ‘self-adaptive system’ while referring to CAS-related studies [8,29] as
well as to an AS-related one [106] to conduct their work. Moreover, Qin ef al. [123] used a running
example that is commonly used in CAS-related studies; specifically, the authors used PhoneAdapter
[138], which comes to be a system that was originally proposed by the community of CAS appli-
cations for exemplifying the definition of adaptation rules that depend on the system context [29].

As a last note, we emphasize that SCs are usually described using different terminology, within
different contexts and in a varied level of details. Thus, the analysis not only relied on the short

BCE. ID SC-32 in study [1].
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descriptions of each challenge but also on the understanding of the primary studies after the full
reading and data extraction. Possible relationships between testing approaches and challenges are
discussed in Section 6.3.

5.3. Why considering adaptive systems and context-aware systems in this research?

As we described in Section 2, ASs and CASs may share some characteristics. Salehie and
Tahvildari [4] mentioned that the term context awareness from CASs can be classified into the
hierarchical levels of ASs properties. In this work, we took into account the definition of Salehie
and Tahvildari [4], and we demonstrate that both terms have been used by some authors from the
AS testing literature, likewise by some authors from the CAS testing literature. Given the set of
studies listed in Tables 5 and 6, Figure 5 provides an overview on how studies have addressed ASs
and CAS:s either exclusively or interchangeably. In the figure, studies classified as CAS are coloured
in white (e.g. studies [66], [65] and [62]), while those classified as ASs are coloured in gray
(e.g. studies [106], [10] and [20]). Note that there are also studies coloured in green so that such
studies cited studies from both categories (ASs and CASs). An example of this last case is the study
by Piischel et al. [44], which cited the studies by Kephart and Chess [20] and Nehring and
Liggesmeyer [96] (i.e. AS-related studies), and the study by Wang et al. [69] (i.e. CAS-related study).

As we can note, even though there are two noticeable different groups of studies (i.e. the top and
bottom areas of the figure), and hence evidence of two well-established research communities,
there are some studies — that is, the ones coloured in green — that are correlated with both types
of systems. Ultimately, this led us to decide to consider both types of systems in this research.

Based on the information shown in Figure 5, we are also able to identify that some studies were
more cited than others. For example, the study by Kephart and Chess [20] (i.e. an AS-related study
displayed in the bottom area of the figure) was cited by 18 studies, and the study by Wang et al. [69]
(i.e. a CAS-related study displayed in top area) was cited by 20 studies In addition, there are studies
that were neither cited by nor cited other studies (e.g. Lindvall et al. [126], Wotawa [125] and
Siqueira et al. [117]).

6. ANALYSIS AND DISCUSSION

This section describes studies related to testing approaches and used techniques for ASs or CASs
(Section 6.1). Moreover, this section analyses the challenges that are faced by ASs or CASs testing
(Section 6.2). Finally, it presents discussions involving the findings and trends (Section 6.3).

6.1. Overview of studies that proposed and/or applied testing approaches for adaptive systems or
context-aware systems

The 74 studies presented in this section were selected through criterion (i) (see Section 4 for more
details). The studies are grouped in Sections 6.1.1 to 6.1.6 based on their underlying testing tech-
niques. In Table 8, we list the studies involving such techniques (column 7echnique). For each tech-
nique, the table also groups the studies in categories. For example, for studies that explore
functional testing, we established five categories, namely: fest case generation, definition of test sets
for built-in and runtime, generation of duplicated components, test case prioritization and usage of
metamorphic testing. Note that a study can be in more than one category (e.g. studies by Merdes
et al. [68], Niebuhr and Rausch [60] and Niebuhr ez al. [72]). The process of grouping was similar
to the characterization of challenges for AS or CAS testing (i.e. thematic analysis), which was de-
scribed in Section 4. As an example, in Table 8, the second and third categories for functional test-
ing were used to classify the study by Niebuhr and Rausch [60], in which the authors addressed the
definition of test sets for built-in and runtime and the generation of duplicated components. The
same procedure was performed for the other studies listed in Table 8. In the next subsections, we
provide more information about each study. Note that each study description points to specific test-
ing techniques and specific categories from Table 8. For example, the group of studies that explore
the functional technique with focus on test case prioritization is labelled with /-d.
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Table 8. Classification of studies per testing technique.

Technique Category #  Studies

1 — Functional
a Test case generation
b Definition of test sets for built-in and runtime

— NN R

¢ Generation of duplicated components [60]*, [72]*
d  Test case prioritization [92], [114]
e Usage of metamorphic testing [62]

2 — Structural
a Context analysis and generation
b Test case generation

3 — Model-based
a Definition of test sets for built-in and runtime 11 [120]*, [121]*, [56]*,
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b Test case generation 11 [56]*, [120]*, [131]*, [107], [94]*, [11],
[129], [63], [29], [45]*, [87]

¢ Usage of formal specification and fault model 7  [56]*, [104], [123], [88], [134], [45]*, [98]
d  Analysis of application tracing 2 [120]*, [121]*
e Usage of model similarities 1 [89]
f Usage of metamorphic testing 1 [126]
g Test minimization 1 61]*

4 — Fault-based

a Usage of mutation analysis and fault seeding 5  [42], [110], [132], [130], [48]*
b Definition of test sets for built-in and runtime 1  [80]
¢ Analysis of context diversity 1 [48]*
d Usage of formal specification and fault model 1  [109]
e Test minimization 1 [136]
5 — Hybrid
a Usage of formal specification and fault model 5  [65], [137], [133], [44], [47]*
b Test case generation 5 [100]*, [47]*, [125], [91], [50]*
¢ Definition of test sets for built-in and runtime 3 [100]*, [70], [108]
d  Analysis of context diversity 2 [47]% [8]*
e Usage of data flow-based testing 2 [47]*, [50]*
f Test selection 2 [113], [8]*
g Usage of context emulators 1 [127]
6 — Other
a  Definition of test sets for built-in and runtime 8  [66]*, [79], [10], [106]*, [96]*, [85],
[97]. [78]*
b Test case generation 5 [66]% [106]*, [119]*, [78]*
¢ Usage of formal specification and fault model 2  [116], [96]*
d Analysis of context diversity 1 [119]*
e Usage of metamorphic testing 1 [66]*

Notes. Studies in category overlapping are marked as ‘[i/]*’, where i is the reference number (e.g. ‘[68]*’.)

6.1.1. Studies that either proposed or applied functional testing approaches. Functional testing
considers the system under test (SUT) as a black box of which only input and output (without
knowledge of the inside) are known. Thus, it relies on the specification of the software to derive
the test cases, disregarding aspects associated with the application code [139]. Some studies re-
trieved in this SLR (e.g. Merdes ef al. and Sen et al. [68,117]) deal with specification and compo-
nent structures to apply black box testing in software units. Those studies are described as follows:

® Test case generation (1-a): Song et al. [118] introduced a method for systematically generat-
ing various execution contexts from permissions of mobile devices. Sen et al. [117] proposed
an approach that explores combinatorial testing. Their approach comprises two testing criteria
based on interactions between components: coverage T-wise and coverage R-wise, in which T’
and R concern, respectively, the number of variables and the number of reconfigurations.
Rodrigues et al. [124] focused on generating test cases by taking into account variations of
context. The process is composed of identifying context variables, identifying thresholds
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and generating test suites. In the same context, Matalonga and Travassos [128] proposed an
approach based on an idea that context should vary freely during test execution as it does in
the production environments. Finally, Mehmood et al. [105] not only addressed a difficulty
involving the generation of test sets for testing contexts using sensors data
(i.e. SC-27) but also proposed a process to generate test sets.

® Test case generation (1-a) and definition of test sets for built-in and runtime (1-b): the
approach of Merdes et al. [68] is based on a functional technique that uses associations
between specification of components to generate test data. They also focused on combining
runtime testing with context-aware features.

Fredericks and Cheng [111] proposed a framework for testing ASs at runtime, supporting
the management and the adaptation of test sets. It comprises two tasks: adaptive test plan,
which is responsible for defining test sets at design time, and testing cycle, which analyses
the execution of the software, possibly finding new configurations.

® Definition of test sets for built-in and runtime (1-b) and generation of duplicated
components (1-c): the approach of Niebuhr and Rausch [60] addresses secure components,
which are typical elements in fault-tolerant systems. The same research group also proposed
an approach to monitor messages between components [72], including a strategy for running
tests that ensure the component that is about to be bound to an AS behaves as expected before
the binding occurs. Regarding built-in tests with respect to component duplication, Neibuhr
et al. [60,72] aimed to duplicate components to test them before their execution.

® Test case prioritization (1-d): regarding prediction and test case prioritization, Garvin et al.
[92] proposed the management of failure history to predict possible failures at runtime. Lim
et al. [114], on the other hand, focused on prioritizing test cases based on their importance
according to the adaptation context, to properly define which tests should be executed.

e Usage of metamorphic testing (1-e): Tse et al. [62] proposed the definition of metamorphic
relations to establish relationships among test cases to define domain-specific restrictions.
More specifically, the main characteristic of this approach is that if a given test case ¢ does
not pass, all interrelated test cases (i.e. test cases in a metamorphic relation that includes 7)
are all seen as failing test cases and should be analysed.

6.1.2. Studies that either proposed or applied structural testing approaches. — Structural testing, also
known as white box (as opposed to black box), is based on the knowledge of the internal structure
(e.g. design structure or source code structure) of the SUT [139]. As examples, some studies [24,71]
addressed structural criteria (e.g. associations between internal nodes of data flows) to apply the
testing by taking into account context variations. These and other studies that explored structural
testing for ASs and CASs are next described.

e Context analysis and generation (2-a): Taranu and Tiemann [76] proposed an approach to
support the generation of contexts and how to use these contexts to develop a test method
(using internal and external interfaces). Majchrzak and Matthias [115] focused on the identifi-
cation of code blocks that may cause context changes; this is performed through the classifi-
cation of different types of context.

e Test case generation (2-b): for automatic test case generation, Lu et al. [24,71] explored data
flow-based criteria based on situations and contexts of the SUT; they use associations between
different flows of data to generate test cases. The same authors [71] proposed another
approach to evaluate inconsistencies, but by focusing on evaluating the exchange of data be-
tween services, components and middleware of a system. Ye et al. [75] used customized
graphs for representing scenarios of a system by analysing its source code. Their approach
involves middleware modelling and test case generation. Wang et al. [69] focused on the
automatic generation of test cases, using possible variations of context in the system
supporting the generation of test cases.

6.1.3. Studies that either proposed or applied model-based testing approaches. Model-based test-
ing leads to test cases being systematically generated from formal test models, thus decreasing
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the ambiguity and supporting the testing automation [140]. As examples, some studies [29,45] use
finite-state machines to apply testing strategies. Once a formal model is created to represent the
system specification, testing criteria can be derived using that specific model.

® Definition of test sets for built-in and runtime (3-a): Eberhardinger [103] and
Eberhardinger et al. [102] addressed the use of oracles for minimizing the number of test cases
to be generated. The first study [103] focused on defining a model of constraints to reduce the
testing scope, while the second study [102] focused on minimizing the test set. Hansel ez al.
[112], also in the runtime perspective, investigated testing approaches for control loops. The
considered approaches use architectural models at runtime. Xu et a/. [19], on the other hand,
used a model-based approach to predict failures at runtime.

® Test case generation (3-b): Griebe and Gruhn [107] explored model transformations to gen-
erate test cases. By using design time models, they addressed test set generation and evaluated
the efficiency of test execution. Their approach comprises a four-tier process that uses (i) con-
text information; (ii) petri net representation; (iii) technology-independent testing model; and
(iv) technology-specific test case generation. Mehmood et al. [129] proposed a model-based
testing approach to model transformations that uses activity diagrams and Petri nets. In gen-
eral, they use an extended UML activity diagram by taking into account different alternatives
when an activity node A is transiting to an activity node B. Their approach suggests the need
of analysing the context data during these transitions. These models and transitions between
nodes are used to generate test cases. Micskei et al. [63] defined a language to represent con-
texts and situations that are used to generate test cases and applying coverage metrics. Sama
et al. [29,45] explored FSMs for simulating the behaviour of systems, supporting the genera-
tion of test cases based on transitions and sequences between states. Wotawa [87] proposed a
model to support the state diagnosis of a system to generate test cases. Also to generate tests,
Jaw et al. [11] captured contexts based on a model that represents layers of the system and test
oracles.

® Definition of test sets for built-in and runtime (3-a) and test case generation (3-b):
Eberhardinger ef al. [131] proposed an approach based on built-in test and runtime models
to generate test data using reflection to retrieve runtime data. In addition, a similar approach
was proposed by Horanyi et al. [94]. However, the latter proposed a model to capture the
context and to generate test data representing stressful contexts.

e Usage of formal specification and fault model (3-c¢): Ma et a/l. [104] addressed testing
executable models by defining how to simulate an AS that deals with failures and uncertain
scenarios at runtime. Thus, their approach is based on a controlled environment that lets the
user include modifications in the SUT. Qin et al. [123] proposed techniques for mocking the
system environment. Their approach is based on the observable behaviour of objects and on
an under-specified formal descriptions. With respect to model definition, Piischel er al. [88]
defined a failure model for applying model-based testing. Reichstaller and Knapp [134]
proposed a framework for prediction-based test design. It is inspired in the Direct Future
Prediction technique and involves a mixture of model-based and model-free testing (the
former requires an interpretable model of the environment; in the latter, the software can
continuously interact with an executable environment interface). Xu et al. [98] evolved the
work of Sama et al. [29] and proposed a model for representing system states that were not
specified in advance, using context variables.

® Definition of test sets for built-in and runtime (3-a), test case generation (3-b) and usage
of formal specification and fault model (3-c¢): in the context of dealing with FSMs, Arcaini
et al. [56] proposed a model-based testing approach to be used at runtime that is composed of
the usage of a language to formally specify the structure of an AS and its behaviour (using
FSMs). The transitions of these FSMs, which are based on MAPE-K, are used to generated
test sets. After that, the test sets are executed to validate the system correctness.

® Definition of test sets for built-in and runtime (3-a), test case generation (3-b) and
analysis of application tracing (3-d): Al-Refai et a/. [120] proposed a model-based approach
for validation at runtime in which models are generated from the original tests and a tracing of
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the adaptation of the system is performed, supporting the generation of test cases. Another
study from the same research group [121] proposed a runtime approach to represent test cases
and changes of a system by using activity diagrams; the approach also counts on the support of
tracing analysis of the system execution.

® Definition of test sets for built-in and runtime (3-a) and test minimization (3-g):Welsh
and Sawyer [61] identified specific system situations at runtime and argued that even partial
testing can increase a degree of assurance, by applying test minimization, and hence can offer
a degree of freedom in terms of system’s autonomy.

® Test case generation (3-b) and usage of formal specification and fault model (3-c):the
approach of Sama et al. [45] relies on formal models of finite-state machines (FSM) for fault
detection using states and transitions involved during the adaptation of the system. These
FSMs are used to support test case generation.

e Usage of model similarities (3-e): Weyns [89] focused on detecting similarities in a
behaviour model when an initial system and an evolved one are compared with each other.

e Usage of metamorphic testing (3-f): Lindvall et al. [126] proposed a model-based approach
using metamorphic principles. The approach is based on environment simulation of a drone,
letting the tester add variations such as obstacles and landing pads.

6.1.4. Studies that either proposed or applied fault-based testing approaches. In fault-based testing,
the test requirements are derived from the most frequent errors made during the software develop-
ment process. As examples, some studies selected in this SLR [48,132] relied on the mutation test-
ing criterion [141] or on its underlying concepts. In short, mutation testing consists of generating
various slightly modified versions of a program (the mutants) and producing test sets that are able
to show the behavioural differences between the program and its mutants.

e Usage of mutation analysis and fault seeding (4-a): Bartel et al. [42] used adaptation
policies to generate mutation operators. Camara ef al. [110], on the other hand, proposed a
set of possible faults related to components of a control loop (e.g. MAPE-K) and explored this
idea in the context of components modified by the set of possible faults.

In the same context, Usaola ef al. [130] defined an environment to simulate Android-based
system executions and proposed a set of mutation operators to reproduce common
context-aware errors reported by mobile applications developers.

Fredericks [132] conducted an empirical study investigating mutation operators and evolu-
tionary algorithms implemented within a runtime testing framework.

e Usage of mutation analysis and fault seeding (4-a) and analysis of context diversity
(4-c): Wang et al. [48] applied the mutation analysis and context diversity to test systems that
have properties of adaptation. The authors presented the relationship between the analysis of
context diversity with respect to test cases and mutation operators.

e Definition of test sets for built-in and runtime (4-b): King et a/. [80] defined two strategies
of validation for self-testing to be applied at runtime. First, RV (replication with validation)
tests adaptive changes using copies of the managed resources. Then, SAV (safe adaptation
with validation) tests adaptive changes in place, directly on the managed resources of the
system.

e Usage of formal specification and fault model (4-d): Piischel et al. [109] focused on
applying a formal fault model, error and failure by using MAPE-K, deriving 10 distinct failure
scenarios that may occur in the process of adaptation.

e Test minimization (4-e): Reichstaller et al. [136] proposed a fault-based approach on test
suite reduction by taking into account effects of communication faults during the reconfigura-
tion process of a system.

6.1.5. Studies that either proposed or applied hybrid techniques. We classified studies as hybrid
technique when such studies explore two or more types of the other techniques we described in
the previous sections (i.e. functional, structural, model based and fault based).
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e Usage of formal specification and fault model (5-a): Flores et al. [65] focused on using the
functional and model-based techniques with the definition of formal abstract models for
representing the context of a SUT.

Mirza and Khan [133] proposed an approach for behaviour modelling of contextual data of
a system by extending the UML activity diagram. Then, by applying functional and
model-based testing, the authors used a formal test model for context-coupled analysis and ex-
ecution of test.

Ma et al. [137] proposed a technique named fragility, based on system behaviour, which
includes formal model-based and fault-based techniques. Each behaviour comprises a set of
test executions, and the authors investigated which sequence of test executions could be re-
lated to uncertainty.

Piischel et al. [44] investigated black box (functional) and model-based testing, exploring
formal models based on a UML class diagram, statecharts and equivalence classes.

® Test case generation (5-b): Wotawa [125] used a test model for applying combinatorial test-
ing and used injection mechanisms to introduce constraints to minimize the test set. In general,
the author showed how fault injection can be seen as a valuable tool for testing ASs.

Amalfitano et al. [91] explored sets of event-patterns. Overall, their approach considers
contexts of the system and its context-related events. The definition of these event-patterns
is used to explore the system’s behaviours and to generate test cases according to them.

® Definition of test sets for built-in and runtime (5-c¢): King et al. [70] investigated the
development of built-in tests for simulating versions of systems with/without faults. For this,
they explored functional, structural and fault-based techniques. Part of the results was
subsequently used in a comparative study that applied fault-based testing [80].

Piischel et al. [108] focused on simulating and capturing unspecified parts of the system or
the environment at runtime (referred to as ‘in-the-loop’). The authors explored the
model-based and functional techniques.

e Usage of formal specification and fault model (5-a), test case generation (5-b), analysis
of context diversity (5-d) and usage of data flow-based testing (5-e): Siqueira et al.
[47] proposed a testing strategy based on the combination of different approaches; the ap-
proaches are selected based on addressed testing challenges, testing activities and characteris-
tics of systems. Their study involved functional, structural and model-based testing and used
formal models to generate test sets. The generation of test sets has used analysis of context di-
versity and data flow testing criteria.

® Test selection (5-f): Lahami er al. [113] focused on identifying reusable tests and new test
cases for covering the SUT. The approach is based on specifying behavioural model using ex-
tended FSMs. The new and irrelevant test cases are identified with an analysis of similarities
between the behaviour models. The authors explored model-based and functional techniques.

® Test case generation (5-b) and definition of test sets for built-in and runtime (5-c): Akour
et al. [100] explored functional and structural techniques that use a runtime approach that syn-
chronizes the generation of test data. Their approach is based on the regression testing being
applied at runtime. Thus, they applied a technique of change propagation, analysing the mod-
ifications that impact on the test cases.

e Test case generation (5-b) and usage of data flow-based testing (5-¢): To automatically
generate test cases, Yu et al. [50] explored model-based and structural techniques (using
graphs to define the test model). More specifically, their approach uses structural criteria to
support to analysis of associations between data flow and control flow of programs.

e Analysis of context diversity (5-d) and test selection (5-f): Wang et al. [8] focused on op-
timizing the test case selection based on source-code coverage with information of the context
variables using structural and fault-based techniques. Note that their approach is based on the
analysis of context diversity.

e Usage of context emulators (5-g): Luo et al. [127] proposed an approach to emulate contex-
tual data on either physical devices or emulators, applying functional and structural testing.
Their approach, also available as a tool, lets the developer manage data from the execution
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of a system. These data support the analysis of functional/non-functional properties that the
system can demand.

6.1.6. Studies related to other approaches. Studies that could not be assigned a specific technique
were classified as other approaches. In contrast, we were able to classify them in the categories
listed in Table 8, group ‘6 — other’. Note that for this technique classification, every category has
overlapping with at least one other category.

® Definition of test sets for built-in and runtime (6-a): Fredericks et al. [10] introduced a test-
ing framework named MAPE-T. It is an analogy to MAPE-K model because it includes the
MAPE elements plus a testing (T) component. The approach focuses on built-in test and
runtime. Also regarding testing processes, Da Costa et al. [79] proposed a framework for ap-
plying built-in tests based on MAPE-K (referred to as self-testing). The framework includes a
process for (i) defining tests at design level, (ii) defining tests that will be applied and (iii)
using a test planning based on MAPE-K.

Silva and De Lemos [85] aimed to define test cases for the integration level at runtime,
based on the association with each component, identifying integration order, defining stubs
and detecting new errors at runtime. They also proposed a framework for generating testing
processes based on dynamic adaptation [97].

e Usage of formal specification and fault model (6-c¢): Markov and Frohlich [116] coined the
term ‘test ecosystem’ to refer to an approach that combines roles, formal methods and tools of
different sources and suppliers. In short, the authors presented a platform that provides an end-
to-end testing environment that the developer can instantiate and customize with respect to
business goals, intended uses, interfaces and so forth.

® Definition of test sets for built-in and runtime (6-a) and test case generation (6-b):
Fredericks et al. [106] proposed a runtime approach that monitors the environment for identi-
fying changes, so that the test cases are generated and adapted. Vassev et al. [78] proposed a
runtime approach for generating test cases driven by change impact analysis. They investi-
gated the generation of test cases driven by a tool responsible for extracting policies, analysing
impact of changes, generating test sets and minimizing the test sets. The approach aims to
identify different coverage paths.

® Definition of test sets for built-in and runtime (6-a), test case generation (6-b) and usage
of metamorphic testing (6-e): Chan et al. [66] proposed runtime approach using checkpoints
as the starting and ending points of a test case, and then the validation is performed based on
multiple test cases that are generated by analysing the checkpoints, even when errors occur
during the test execution. Their approach also uses characteristics from the metamorphic
testing.

® Definition of test sets for built-in and runtime (6-a) and usage of formal specification
and fault model (6-¢): Nehring and Liggesmeyer [96] proposed an approach based on a for-
mal test process model that takes into account structural changes of a system. Data of compo-
nent interactions are captured during the reconfiguration of the system. Thus, the approach that
is runtime based considers the order of reconfiguration, state transfer and transaction handling
of the system reconfiguration.

e Test case generation (6-b) and analysis of context diversity (6-d): Tonjes et al. [119] im-
plemented a tool for generating test inputs. In their tool, annotations are used to create specific
test data with a method for decreasing the number of test cases based on analysis of context
diversity.

Table 9 summarizes the recurring concerns regarding testing approaches. Note that despite the
diversity of options to apply testing to ASs or CASs, they overlap in some characteristics. As an
example, RQI-(iii) generation of test cases and RQ1-(v) built-in test are inserted in a large number
of approaches, whereas RQI-(iv) context diversity and RQI-(vi) MAPE-K are less addressed.

Regarding RQ1 (Which are the testing approaches that are proposed for ASs or CASs), we iden-
tified 74 studies that applied/addressed testing for ASs or CASs. We noted different testing tech-
niques (e.g. functional, structural and fault based) are employed in these types of systems, and
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Table 9. Most recurring concerns for research on AS and CAS testing.

ID Description Studies

RQI-(i) Simulation [29,45,94,108,126,127,130,135]

RQ1-(ii) Data capturing [8,11,65,94,96,108,123,132]

RQ1-(iii) Generation of test cases [11,24,29,45,63,68,69,71,75,87,102,105,107,118,120,124]

[43,50,94,100,104,123,126,129,131]
[47,56,66,78,91,106,113,117,119,125,128,133]

RQI-(iv) Context diversity [8,47,77,98,119]
RQI-(v) Built-in test [10,42,56,60,61,68,70,72,79,80,85,97,100,111,131,132]
RQ1-(vi) MAPE-K [10,56,79,88,109,110,112]

researchers have overlapping concerns when applying them, such as (i) simulation as a frequently
adopted strategy, in which the environment is a compound of a set of variations in the context var-
iables; (ii) data capturing, which is performed in the interaction between components and the envi-
ronment at runtime, thus supporting the exploration of the possible test space; (iii) generation of test
cases, especially when dealing with adapting test sets; (vi) context diversity, which underlies the
analysis of variations in context variables and supports test set minimization; (v) built-in tests,
which are used especially in runtime tests; and (vi) MAPE-K, because AS or CAS communities
use it as a reference model.

6.2. Generic challenges for adaptive system or context-aware system testing

Figure 6 presents a list of 13 generic challenges (with a prefix ‘C-’) for AS or CAS testing. The
generic challenges were devised from the analysis and grouping of the specific challenges (SCs)
presented in Table 7.
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Figure 6. Generic and specific challenges (for clarity, we omitted the ‘SC-’ prefix from the specific chal-
lenges that are represented by the circles in this figure).
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We separated the studies that are more related to CASs from the studies more related to ASs. In
Figure 6, the rectangles (i.e. generic challenges) and the circles (i.e. specific challenges) depicted in
white background are more related to CASs than to ASs. The elements in gray background are more
related to ASs. The remaining items (i.e. the ones with green background) are related to both types
of systems. The classifications of the specific and generic challenges are originally presented in this
article. They were defined by taking into account the number of studies related to AS or CAS, as
shown in Table 7. A specific or a generic challenge was classified as related to a specific type of
system when more than two-thirds of the studies associated with the challenge were related to that
type of system.

Regarding our dataset update (i.e. rounds 3 and 4), in Figure 6, we highlight in thick edges those
specific/generic challenges that were updated (i.e. challenges that have new studies associated with
them). Note that 16 specific challenges were not updated (those in thin edges), whereas 19 specific
challenges had some update, being the latter related to 12 over the 13 generic challenges we
characterized.

Once again, we emphasize that our classification relied on the original authors’ description of
their studies, as previously stated in Section 5.2. In what follows, we describe the generic
challenges. With respect to the studies from rounds 3 and 4, that is, the new selected studies, we
highlight them with the * tag.>®

C-1 — How to deal with the exponential growth of system configurations that should be
tested: Tse ef al. [62], Welsh and Sawyer [61] and Micskei et al. [63] mentioned that it is impossible
to guarantee the correct behaviour of a system that changes all the time, whose number of contexts
and configurations can be unpredictable and growing (SC-1). In addition, Fredericks et al. [10]
mentioned that limiting (or not) the system ability to adapt, in order to enhance its testability, is also
a hard decision (SC-2). Both approaches addressed the same problem of settings in exponential
growth, which is challenging for testing of ASs or CASs. Another challenge (SC-3), reported by
Wotawa [87], regards the issue of when it is necessary to stop testing by using a model-based
approach.

* Truszkowski et al. [58], * Schumann and Visser [59] and * Vieira et al. [64] also addressed
challenges related with C-1, specifically regarding SC-1.*° Such studies mentioned the impossibil-
ity to guarantee the correct behaviour of a changing system, whose number of configurations may
be unpredictable and growing.

It is clear that a major difficulty is the task of scoping a test suite in order to execute on a system
due to its number of possibilities for configuration and/or structural changes.

C-2 — How to guarantee the correctness of system configurations that have never been
tested in advance: Niebuhr and Rausch [60], Niebuhr et al. [72], Welsh and Sawyer [61] and
Cémara et al. [110] mentioned the difficulty of testing a system that does not have a clear boundary,
because of the dynamic configurations and contexts that this system can have (SC-4). In addition, *
Xu et al. [19] also highlighted the difficulty of defining a testing oracle (SC-5) and discussed about
the dynamicity of systems, which have no clear boundary, so that the use of the configuration
variants is not predictable (SC-4).

Similarly to C-1, in this scenario, a major difficulty consists in defining test cases to cover
unforeseen configurations. Note that this challenge is also faced when dealing with the test oracle
problem, being a common problem addressed in the software testing area [142,143].

C-3 — How to detect and avoid during the testing activity incorrect system configurations
defined at runtime: Niebuhr and Rausch [60], * Ma et al. [104] and Micskei et al. [63] mentioned
that the dynamicity of systems, whose boundaries are not clear, leads the system to unpredictable
configurations and contexts (SC-6). Niebuhr and Rausch [60] also mentioned a specific challenge
of proving the correctness of runtime component wiring (SC-8). Both challenges (SC-6 and
SC-8) relate to the issue of detecting and avoiding incorrect settings at runtime.

*Note that the terms Context, Configuration and Environment found in the studies and in our characterization of chal-
lenges followed the definitions described in Section 2.1.
3OTable 4 presented the text snippets, using the thematic analysis, from the studies that converge to SC-1.
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With respect to the system boundary that is not clear, * Bayha et a/. [90] also mentioned the high
risk of a fault to damage the environment or the system itself during the testing procedure (SC-33).
In addition, Fredericks et al. [10] mentioned the difficulty of defining adaptable entities to become
testable (SC-7). * Eze et al. [86] mentioned the need to detect and avoid possible incorrect system
configurations at runtime (SC-6).

In this scenario, as well as in C-2, it is not straightforward to dynamically define test cases to
avoid incorrect settings, so that they could guarantee continuous system operation.

C-4 — How to test a system that run in a distributed and heterogeneous environment:
Kephart and Chess [20], Sama ez al. [29] and King et al. [80] mentioned the difficulty of testing
systems that run in heterogeneous and distributed environments (SC-9) (e.g. composed of different
devices and different kinds of software) and the difficulty of anticipating environment changes
when the analysis involves multiple domains or enterprises, for example, in a wide-scale systems
built from multiple vendor components.

Tse et al. [62] highlighted the difficulty of dealing with race conditions in context tuples between
the middleware layer and the application layer. These race conditions mean there are concurrent op-
erations that conflict with one another. In other words, this is related with how the asynchronous
behaviour (i.e. concurrent operations) of systems impacts on the design of test cases (SC-9). Also
note that the authors mention the issue of race conditions by dealing with different layers (viz.
middleware and application layers). Similar characteristics, in this case more specifically heteroge-
neous components and asynchronous behaviour of ASs, were issues also addressed by * Heck et al.
[122]; the authors highlighted the difficulty in identifying the difference between software events
and environment events. In addition, * Piischel ef al. [109] mentioned the issue of dealing with mul-
tilayered architecture, by encapsulating the context management from the context usage into distinct
layers to ease the development of applications (SC-10).

Eberhardinger [103] mentioned the need for synchronizing components to ensure harmony
between the closed control loops (SC-9). The same research group * [43,103] mentioned the
difficulty of testing a system that has asynchronous behaviour. Finally, * Piischel et al. [109]
mentioned the issue of testing a system with a common layer architecture to encapsulate context
management from the usage of contexts (SC-10).

In this scenario, for instance, testers should deal with system properties like dynamism, heteroge-
neity and synchronization in order to define test cases to validate such systems.

C-5 — How to test a system with user interference in the system configuration: Sama et al.
[29] and Griebe and Gruhn [107] mentioned that in scenarios in which users are given the freedom
to customize the system settings, one of the key issues concerns the design of test cases to simulate
such user ‘interference’ in the system adaptation (SC-11). Both groups of researchers mentioned the
difficulty of testing a system that is customized by users. * Eze et al. [86] discussed the issue of
granting users the freedom to perform customized system reconfigurations and changes in the sys-
tem’s contexts (SC-11).

Similarly to C-1 and C-2, in this scenario, the difficulty regards anticipating system configura-
tions that can be customized by users.

C-6 — How and when to anticipate context changes that impact the behaviour of the system
during the testing: Wang et al. [69] argued that possible changes in context can affect the system
behaviour at any time after the system is put in operation (SC-17). Likewise, Fredericks ez al. [10]
presented the need to identify important adaptive changes, within the system execution environ-
ment, in a reliable way (SC-14). In addition, Griebe and Gruhn [107] mentioned the issue of antic-
ipating changes in the context parameters (SC-17). In all these specific challenges, the authors
highlighted the need of anticipating context changes and their impact on the system behaviour.

Regarding uncertain environments or systems with learning characteristics, Jaw et al. [11]
pointed out the difficulty of validating design models (SC-16), and Piischel et al. [88] mentioned
the difficulty of testing a system whose contexts change all the time (SC-12). In this scenario,
Micskei et al. [63] mentioned the issue of dealing with systems that contain some kind of learning
and reasoning capabilities (SC-18). The same challenge is mentioned by King et al. [70], who
highlighted the difficulty of testing a system whose structure and behaviour may change during
its execution (SC-19).
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Regarding the issue of dealing with state space that the system can have, Eberhardinger et al.
[102] mentioned the difficulty of developing a system in an evolutionary manner, such that the
evolution is not all planned at design time (SC-13). Piischel et al. [36], on the other hand, mentioned
the need to handle the behavioural decision space (i.e. the context characterization) that impacts the
system structure and running processes (SC-13). In addition, Fredericks et al. [10] mentioned the
difficulty of selecting context variables that must be observed (SC-15).

* Xu et al. [19] highlighted the issue of identifying reliably important adaptive changes within
the system and its execution environment (SC-14). * Nehring and Liggesmeyer [96] and
Eberhardinger [103] mentioned the difficulty of testing systems whose structure and behaviour
may change during its execution (SC-19). * Piischel et al. [108] and * Piischel et al. [44] mentioned
the difficulty of validating design models that contain uncertain or learning characteristics (SC-16).
Last but not least, * Qin et al. [123], * Eberhardinger ef al. [43] and * Ma et al. [137] mentioned the
need to handle the state space that is developed in an evolutionary fashion at runtime (SC-13).

Based on this set of interrelated specific challenges, a major issue consists in building a test set
that properly encompasses all relevant context variables with representative values.

C-7 — How to apply structural testing with context-dependent control and data flow in the
system: * Xu et al. [19], * Piischel ef al. [109], Lu ef al. [24] and * Ma et al. [104] highlighted the
difficulty of applying data flow testing criteria in these type of systems (SC-20) due to the interfer-
ence of the environment and due to the context-aware nature of control flow and data flow-related
faults (e.g. faults that are found out by applying structural testing criteria). Moreover, Lu et al. [71]
and Piischel et al. [36] mentioned a specific challenge of avoiding inconsistent states inside of the
system (SC-21). These inconsistent states are caused by ‘noise’ in context.

Regarding this set of overlapping specific challenges, the difficulty is related to the complexity of
designing test models (e.g. control flow graphs with associated data flow information) and defining
test sets to cover properties of those models (e.g. particular paths of the graphs).

C-8 — How to keep test cases updated and precise and how to keep track between them and
system requirements and components in a changing environment: concerning the issue of keep-
ing the traceability between requirements, test cases and components of these systems, Fredericks
et al. [10] mentioned a specific challenge regarding the difficulty of defining the first-class entities
that are non-functional, which typically involves adaptable properties, so that they could become
testable entities (SC-23). They also highlighted the need to assess accurately the impact of system
adaptation on test cases (SC-24). In the same context, * Reichstaller and Knapp [134] mentioned
the issue of tracing the complete history of adaptations and their execution states (SC-22). In
another study, * Heck et al. [122] mentioned the issue of dealing with ASs testing by taking into
account the current state and previous test results. These challenges are related to the continuous
updating (and impact of this updating) on the requirements, test cases and components. In addition,
Fredericks et al. [10] also addressed the difficulty of keeping traceability links among requirements,
components and test cases (SC-24), as well as defining thresholds or acceptance rates for the test
data (SC-25).

In this scenario, it is difficult to keep traceability between requirements, test cases and compo-
nents due to inherent, changing characteristics of these types of systems.

C-9 — How to determine the sensors and the data monitoring frequency, and how to
observe its execution environment during the testing: Fredericks er al. [10], * Bayha et al.
[90], * Luo et al. [127] and * Mehmood et al. [105] mentioned the challenge of determining what
sensors, or aggregations of sensor values, can measure desired properties (SC-27). This issue is
related to the definition of relevant input data. Additionally, Fredericks ez al. [10] mentioned that
it is also necessary to determine the frequency of data monitoring (i.e. sensor data) to be collected
(SC-20).

In the scenario of preparing the environment and the set of test cases, for instance, it is difficult to
determine which sensors must be enabled during the testing. In addition, it is difficult to determine
the frequency at which data will be collected during the system execution.

C-10 — How to simulate realistic system execution environment and workload during the
testing: Kephart and Chess [20], Micskei et al. [63], * Luo et al. [127], and * Reichstaller and
Knapp [134] mentioned the difficulty of building system tests that capture the size and complexity
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of realistic systems and workloads (SC-28). In this context, * Reichstaller e al. [135] mentioned
the issue of the practicability to keep minimum the number of test executions in the context of
mutation testing (SC-35). This issue permeates a challenge to simulate, realistically, execution
environments and workloads that real system executions can have. Particularly for these types
of systems, realistic simulations and workloads are directly impacted by unpredictability and
unclear system boundaries.

C-11 — How to automatically generate test cases for a changing environment: for * Yu et al.
[50], * Mehmood et al. [105] and * Ma et al. [104], it is hard to automatically generate test cases for
these types of systems (SC-30), for which changing (i.e. reconfigurable) structure and executing en-
vironment are inherent properties. In this context, Vassev et al. [78] addressed the issue of reducing
the number of tests that are automatically generated (SC-29), specially due to the two aforemen-
tioned properties of these types of systems.

C-12 — How to define formal models for testing of changing behaviour: Weyns [89] ad-
dressed the challenge of defining formal models to validate by taking into account adaptive proper-
ties of the systems (SC-31). The authors mentioned this challenge in the context of using model
checking in combination with testing techniques.

In the same context, Micskei et al. [63] and * Xu et al. [98] also highlighted the difficulty of
using mechanisms to express and formalize context-aware behaviour (SC-32) to allow for verifica-
tion tasks. Because model verification techniques produce verification sequences that we can use to
build test cases for the final implementation, we can see the difficulty imposed by ASs or CASs to
one technique as a challenge to the other as well.

C-13 — How to define generic testing approaches for any adaptation process: * Eze ef al.
[86] mentioned the difficulty of defining validation approaches that should be generic for any sys-
tem adaptation process (SC-34). The same challenge is addressed by * Heck et al. [122] with re-
spect to how an approach can be generalized to be applicable in the entire domain or, at least, to
a certain subset of applications. This issue is related to a challenge of defining a testing approach
that shall be generic for all subdomains of these types of systems. Even though a specific testing
approach could be defined, the approach could be useless to test another system in a specific
subdomain.

Additional note: Note that challenges C-1 to C-12 were documented in prior research [1,12],
based on the analysis of 25 primary studies (Section 5.2 brings more details about it). In this article,
after the analysis of additional 21 primary studies, we updated the list and extended it with a new
challenge (C-13). Furthermore, the analysis was enhanced with the classification of challenges,
what is reflected by the colour schema that represents a challenge that is related to either ASs, CASs
or both. Last and not least, it is important to mention that the testing challenges — particularly the
generic challenges — are not disjoint. It is possible to note that they, eventually, may be complemen-
tary between themselves (e.g. one can arise from another) or still be the opposite (e.g. one can be the
negation of another). As an example, in C-1, we can deal with the lack of test oracles due to unpre-
dictable inputs and outputs. In this scenario, challenges related to C-2 can emerge, regarding diffi-
culties in guaranteeing the correctness of the system.

In Table 10, we provide a different perspective: we highlight that the challenges share some
characteristics. As an example, RQ2-(v) context monitoring is present in all challenges, whereas

Table 10. Summary of challenges for AS and CAS testing.

Generic challenges (GC)

ID Description 1 23 4 5 6 7 8 9 10 11 12 13
RQ2-(i) Runtime decisions X X X X X X X X X X
RQ2-(ii) Heterogeneous and distributed environment x X X X X X X X
RQ2-(iii) Interference of users X X X X X X X X X X
RQ2-(iv) Updating and traceability X X X X X
RQ2-(v) Context monitoring X X X X X X X X X X X X X
RQ2-(vi) Generation of test cases X X X X X X X
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RQ2-(iv) updating and traceability is related with less than half of the challenges. As we mentioned
in Section 4.8, the categories from Table 10 were defined during the conduction of our SLR, so that
they present an overview of the testing challenges and also support to identify groups of testing
challenges.

Regarding RQ2 (Which are the challenges imposed to ASs or CASs testing), we produced an up-
to-date, complemented and enhanced list of 35 specific challenges for ASs or CASs testing and
characterized them as 13 generic challenges. We noticed that the challenges are mostly related to
(1) runtime decisions, which require the testing team to deal (at design time) with the unpredictabil-
ity of configurations that the system may have; (ii) heterogeneous and distributed environments,
consequently leading the testing team to think beyond the boundary of a single system; (iii) inter-
ference of users, which requires tests that deal with adaptations that are customized by system users;
(iv) updating and traceability between varied software artefacts, which requires the maintenance of
artefacts that include the uncertainty, which is inherent of ASs and CASs; (v) context monitoring,
which has direct impact on the setup of the test environment; and (vi) generation of test cases,
which may be ineffective because of the aforementioned uncertainty.

0.3. Further discussions and research implications

In 2009, the survey of Salehie and Tahvildari [4] established a landscape of the ASs or CASs
research area. Regarding software engineering, the authors found out that ‘testing’ was the least
focused phase in engineering ASs and CASs, with only a few studies addressing this topic. They
argued that the challenging issue is the availability of several alternatives and parameters in the
system. Thus, they emphasized that such systems lead to several paths of execution in different
scenarios (i.e. when one adds the dynamic decision making, the system will become even more
complex). By conducting our SLR, we were able to realize that in the last decade, several testing
approaches have emerged in the literature, involving varied techniques, technologies and domains.
As a result, there are several testing approaches to deal with testing challenges, even though many
of them having only preliminary evaluation. In what follows, we present some general discussions
involving (i) the individual and interchangeable usage of ASs or CASs terms in testing-related
research and (ii) issues of analysing a possible relationship between testing approaches and testing
challenges.

6.3.1. Testing approaches and challenges related to adaptive systems or context-aware Systems.
Even though we classified the studies as being related to ASs or CASs based on the original
authors’ focus (more details in Section 5.2), we may identify testing approaches that could mitigate
challenges in both types of systems. As an example, the approach of Niebuhr et al. [72] focuses on
ASs, but it also handles SC-5 (which is more closely related to CAS, according to Table 7). In
details, the approach establishes the use of a finite number of components and presents how to deal
with combinations of them, thus defining test oracles (e.g. by taking as input a set of components
and producing as output a possibly different set of components). In other words, the definition of
test oracles for dealing with changes at runtime could help to mitigate the challenge in both types
of systems. For ASs, we could define these components and their interconnections as a specific
configuration of the target system obtained from a control loop based on MAPE-K. Thus, the
definition of oracles could involve configuration A as input and configuration B as output. On
the other hand, for CASs, it could be the same idea of ASs but by means of a middleware to
generate contexts of configuration A and a middleware to execute actions to achieve configuration
B. Note that the concepts of defining inputs and output for test cases could be used in both terms.
As another example, Tse et al. [62] focused on CASs, but the underlying approach may handle
SC-4 (which is more widely investigated for AS, according to Table 7). Even though the authors
did not explicitly mention the specific challenge SC-4 (so that the study of Tse et al. [62] is not
listed for SC-4 in Table 7), their approach — which is based on CASs — has as a central characteristic
the use of metamorphic relations to define test sets. Thus, beyond considering changes in the con-
text of CASs, defining test sets to validate structural changes at runtime of an AS is also possible. In
other words, the key element is ‘changes’, whatever the changes are, towards the definitions of the
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metamorphic relations among test cases. Given an example of changing the temperature of an air
conditioning, a system could be able to adjust — or even replace — the device properly, and we could
define test cases to validate if the adjusted — or new — device is working. By defining a metamor-
phic relation for the temperature attribute, alternative test sets could be defined in order to guarantee
some unexpected scenarios (e.g. the new configuration is not able to work over 30°). The difference
between an AS and a CAS, in this scenario, could be how to handle the target attribute; for ASs, the
temperature could be related to the replacement of devices and components, whereas for CASs, the
temperature could be related to changes in the context values.

6.3.2. Testing challenges and studies that propose and/or apply testing approaches. Given the test-
ing challenges and the studies that propose and/or apply testing approaches for ASs or CASs, we
can raise the following question: Which are the challenges that are directly or indirectly addressed
by the testing approaches? From a different viewpoint, would the testing approaches be able to
deal with the challenges for ASs or CASs? To answer these questions, it would be necessary to
conduct empirical studies to obtain evidence, and this is beyond the scope of this work. In spite
of this, we can establish some relationships according to the solutions that have been proposed in
the literature for testing these types of systems. As a concrete example, Lu et al. [24] dealt with
context-dependent data flows (e.g. variables shared for different program executions); thus, the
applied approach could support the development of a testing strategy to deal with the specific
challenges SC-20 and SC-21 (see Table 7 for more details) and hence with the generic challenge
C-7. As another example, Sama er al. [29] explored finite-state machines to simulate system
behaviour. Therefore, their approach may deal with SC-13. It means that even if the context of a
system changes very often, one can predict the main transitions between states. Consequently, such
an approach may also support testers to mitigate other challenges related to the C-6 generic
challenge.

In the end of Sections 6.1 and 6.2, respectively, we summarized the concentration of effort
regarding testing approaches (answer to RQ1) and the main characteristics of the testing challenges
(answer to RQ2). Given those concentration of effort and main characteristics of challenges, we can
point to some research directions. At first, we call the readers’ attention to the fact that this research
area (i.e. ASs or CASs testing), in general, lacks evidence to support strong claims about what
should be performed next. That said, it is clear that some challenges have already been substantially
tackled by the research community. For instance, much work has been performed involving
approaches for generating test cases. More specifically, when we analysed the concentration of
effort, we found out this concern as the most addressed in recent literature (e.g. since 2014, from
the 40 studies addressing testing approaches, 23 of them refer to generating test cases). Therefore,
researchers and practitioners have a large variety of options to deal with that challenge. On the other
hand, regarding the less recurring concerns, a few approaches refer to (i) prediction of changes
[19,92,98,134], which may involve models for representing system states that were not specified
in advance; (ii) checkpoints and isolation [66,69,76,115], which may involve classifying and isolat-
ing source code blocks related to environment data; and (iii) metamorphic testing [47,62,77,126],
which may establish relationships among different test cases. We believe these three topics need
more attention from the community.

In 2012, Weyns et al. [144] analysed the studies from the SEAMS?' community by focusing on
research results from 2006 to 2008. The authors pointed out an increasing concern for this commu-
nity with respect to testing these types of systems. In 2013, Bertolino ef al. [145] concluded that to
analyse and test ASs or CASs, it is necessary to formally model the uncertainty in modern systems
due to their ubiquitous nature. Regarding this, while conducting our study, we also could note that
studies addressing testing under uncertainty share the concern of ‘testers should define and specify
the uncertainties’. The solutions to deal with uncertainty are related to (i) evolutionary algorithms
and prediction models [11,106,123]; (ii) sequences of operation invocations to reveal a fault
[61,104,137]; (iii) software architecture [145]; and (iv) data monitoring from sensors in
environment perspective [10,27,128,132]. These approaches are defined within (and to be applied

*https://www.self-adaptive.org/ — last checked in June 2020.
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to) a restricted scope. Intrinsic characteristics of ASs or CASs such as unforeseen configurations
and uncertainty of the external environment are neglected (or poorly treated). Note that uncertainty
may also be related to testing challenges we characterized in this study (for instance, GC-3 — How
to detect and avoid during the testing activity incorrect system configurations defined at runtime and
GC-6 — How and when to anticipate context changes that impact the behaviour of the system during
the testing). Therefore, we also believe that research effort should concentrate in testing under
uncertainty.

Note that even though we can identify several testing approaches that propose in advance a gen-
eral solution, they may work in a very specific situation; consequently, more effort is required for
customizing such a solution to deal with a challenge in particular. An example refers to approaches
related to RQI-(v) built-in test or RQ1-(vi) MAPE-K, which may have been developed using a very
specific domain or technology. For example, in the context of approaches for built-in test and
MAPE-K, Fredericks et al. [10] mentioned that their approach may not achieve similar results in
different system domains. Analogously, King et al. [70] emphasized that their solution was applied
in a prototype that utilized a static structure and predefined test plans. Thus, their validation strategy
might be limited to their prototype characteristics. Finally, in our SLR, we could note that there are
few initiatives that reported on empirical and controlled studies. This lack of experimental studies
regarding the testing of these types of systems can be an impediment for the practical adoption of
the proposed solutions.

7. THREATS TO VALIDITY

In Section 4, we presented the goals of this work and key elements of the SLR design. We also
mentioned the three main phases involving the SLR (i.e. planning, conducting and reporting) and
addressed how these phases were performed in this work. Zhou et al. [146] established a set of
threats involving the validity of secondary studies. These threats supported us to address which
of them are related to our SLR process.

® Planning — lack of standard terminology (which may happen because of studies in the
literature that use different terms for similar concepts; if a specific concept is not well
understood, then the metrics that capture it may be inaccurate or incorrect): in our SLR,
we used a narrowed list of terms that are related to AS or CAS. Nevertheless, we noticed
variations in the terminology used in the selected studies, even for basic concepts of AS or
CAS (e.g. self-adaptive system, self-awareness system, ubiquitous system and pervasive
system). Thus, the inclusion of other terms (e.g. ‘self-*’, ‘autonomous’, ‘adaptable’ and
‘adaptation’) might have fetched other relevant studies for this SLR. To diminish this
limitation, we used a comprehensive snowballing approach (backward and forward), and
as such, we believe we covered a wide spectrum of published research in the investigate
topic.

® Planning — comprehensiveness of the set of venues and/or databases (which may happen when
researchers select an incomplete set of study databases and hence retrieve an incomplete set of
studies): in our SLR, we used a particular set of indexed databases and search engines (viz.
IEEE Xplore, ScienceDirect, SpringerLink, ACM Digital Library, ISI Web of Science, Scopus
and Google Scholar). Querying other databases might also have led to the selection of other
relevant studies for this SLR. Likewise in the previously described threat, snowballing helped
us diminish this limitation.

® Conducting — bias in study selection (which may happen because of missing relevant studies,
inaccuracy of data and incorrect classification of publications): in our SLR, particularly in last
study selection round, to avoid these threats, we (i) combined automatic search with manual
search; (ii) evolved the search string and (iii) searched for additional information sources.
Moreover, we contacted authors to eventually obtain studies that were not publicly available
for download.

® Conducting — subjective interpretation about the extracted data (which may happen because
of the incorrect classification of extracted data): in our SLR, we applied a thematic analysis

© 2021 The Authors. Software Testing, Verification & Reliability Softw. Test. Verif. Reliab. 2021;31:e1772
published by John Wiley & Sons Ltd. DOI: 10.1002/stvr

85U8017 SUOWIIOD BA e8I 3|geotjdde 8y Aq peussnob e sejone VO ‘88N Jo S8|ni 1oy Aiq1T8UlUO AB]1/W UO (SUOIIPUOD-PUe-SLLBYW0D™AB| 1M Ale1q 1 Bu [UO//:SANY) SUONIPUOD Pue Swie 1 8y} 89S *[5Z02/20/0T] Uo ARiqiauljuo /8|1 Juswi|iind 1eloD A Z// T IAS/Z00T 0T/10p/wod"Ae | Areiq1jeuljuo//sdiy woj pepeojumod ‘. ‘TZ0Z ‘689T660T



SIQUEIRA ET AL. 36 of 46

[57] in the studies of the SLR, which involves the identification of recurring themes in the
literature, as well as the summarization of the findings based on different thematic headings.
In addition, at least two authors of this work participated in all phases and steps involving
the interpretation and classification of studies. Thus, the results were naturally double checked
during the process of the SLR.

® Conducting — misclassification of primary studies (which may be related to biased data
extraction): the reader should note that in this study, we did not classify results for several
different application domains (e.g. ubiquitous systems, autonomous (unmanned) vehicles
and mobile applications). Instead, the studies were analysed and discussed taking into
account general properties of ASs or CASs. Therefore, the results provide the reader with
a basis for more in-depth analysis. For instance, one can pay particular attention to a subset
of testing challenges to identify testing approaches with more specific goals.

® Conducting — subjective quality assessment (which may be related to authors’ assessment of
the criteria based on their own judgement): a threat may be the lack of clear criteria and
evaluation, which may lead to bias. In our SLR, we took into account only peer-reviewed,
previously assessed studies. This same approach of selecting only peer-reviewed studies was
adopted in other SLRs [55,147,148].

® Reporting — lack of expert evaluation (regarding the understanding of selected primary studies,
which may lead to erroneous conclusions because of the lack of expertise of the reviewer in
the subject under investigation): regarding this issue, and hence with the reliability of the re-
sults, other research groups could have different keywords involving the application domain
for ASs or CAS:s. Is spite of this, we counted on the expertise of specialists from our research
group, and we used multiple type of sources (cf. Table 1). This led us evaluate different
sources and different keywords for ASs or CASs.

8. CONCLUSIONS, IMPLICATIONS AND FUTURE WORK

The goal of this article was to characterize the state of the art of AS or CAS testing, by identifying
and characterizing testing approaches for AS or CAS and by enhancing the characterization of
challenges for AS or CAS testing currently available in the literature. The method we followed to
achieve these goals was an SLR.

Even though only experimentation provides evidence on the actual effectiveness of the testing
approaches, we believe this kind of study is useful for the research community, as well for practi-
tioners, because it is possible to use our work to cope with the testing challenges by means of the
definition of customized testing strategies with focus on recurring and inherent properties of AS
or CAS. The literature still lacks a comprehensive review that provides a broad picture of the area.
To the best of our knowledge, only in our prior work [1] the reader can find a focused characteri-
zation of challenges for testing these types of systems. Moreover, our prior study is outdated and
incomplete, because the last analysed study dates from 2016, and we did not analyse testing
approaches for ASs or CASs. Therefore, in this article, we provided an up-to-date, refined and
extended analysis of the literature.

Regarding the concentration of effort, the generation of test sets was the most recurring research
concern. Apart from it, observed trends are the application of combined (hybrid) techniques and the
popularity in using model-based approaches.

The characterized challenges and the studies discussed in this paper may help engineers of ASs or
CASs have an overview of the issues they will face while developing their systems. Our results also
provide initial characteristics of testing approaches based on issues present in particular systems. As
an example, while conducting a study (or developing a system) that requires the generation of test
cases for ASs or CASs, the researcher (or practitioner) may use our results to identify related ap-
proaches (e.g. usage of interfaces to generate test cases [76]) and also apply particular techniques
(e.g. usage of data flow criteria to define test sets [24,71]). As another example, by dealing with
a heterogeneous and distributed environment, it is possible to identify in this work (e.g. in Table 10)
the challenges related to it and the studies that addressed such challenge (e.g. Kephart and Chess,
Sama et al., Tse et al. and Piischel et al. [20,29,62,109]).
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The reader should note that the challenges herein described consider general and specific
properties of ASs or CASs that are not necessarily present in all systems. Moreover, in general,
the identified testing approaches are proposed taking into account a complete control of the environ-
ment; that is, the uncertainty element is disregarded. As an example, Sama et al. [29] proposed a
model-based approach in which the tester should define all possible states that the system must
have. However, the system may be prone to the occurrence of unpredictable values, so an unpredict-
able state can be generated. In cases like this, intrinsic characteristics of ASs or CASs such as
unforeseen configurations and uncertainty of the external environment are neglected (or poorly
treated).

Finally, we noted a lack of experimental studies regarding ASs or CASs testing. Despite the
existence of some specific repositories related to these types of systems (e.g. SEAMS’s source code
repository),® we believe this limitation is due to the lack of artefacts for specific approaches,
technologies or domains. This means that the research questions involving these types of systems
are challenging to be evaluated, and consequently, many remain unanswered.

As future work, we intend to contribute for planning experimental studies, promoting an
experimental baseline approaches and artefacts that would consist of sets of techniques and arte-
facts that could be used. Moreover, we could indicate possible results that would be achieved with
our experimental baseline. We also intend to keep this SLR up to date, so that we can keep track of
the progress made by the communities of ASs testing and CASs testing, as well as evolving our
search with the inclusion on new related terms.
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APPENDIX: IS AN UPDATED SECONDARY STUDY NEEDED?

In the application of the framework proposed by Garner et al. [15] and evaluated by Mendes et al. [16],
we used as a baseline our prior SLR report presented in a conference paper [1] and executed the pro-
posed checklist. The checklist and responses are shown in the table below. The table reveals that the
responses for the three questions in step 1 are YES, which enables us to proceed to the next step. At
least one YES response in step 2 enables us to move on to the last step. In the third step, at least
one YES response gives us confirmation to proceed with the study update and extension.

Framework step Response
Step 1.a — Does the published SLR still address a current question? YES
Step 1.b — Has the SLR had good access or use? YES
Step 1.c — Has the SLR used valid methods and was well-conducted? YES
Step 2.a — Are there any new relevant methods? YES
Step 2.b — Are there any new studies, or new information? YES
Step 3.a — Will the adoption of new methods change the findings, conclusions or credibility? YES
Step 3.b — Will the inclusion of new studies/information/data change findings, YES

conclusions or credibility?
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APPENDIX: SYSTEMATIC LITERATURE REVIEW PROTOCOL

Testing of Adaptive Systems and Context-aware Systems

Team: Bento R. Siqueira (Federal University of Sdo Carlos, Sdo Carlos, Brazil); Fabiano C. Ferrari
(Federal University of Sdo Carlos, Sdo Carlos, Brazil); Kathiani E. Souza (Federal University of Sao
Carlos, Sao Carlos, Brazil); Daniel S. M. Santibanez (Federal University of Sao Carlos, Sao Carlos,
Brazil); Valter V. Camargo (Federal University of Sdo Carlos, Sdo Carlos, Brazil); Rogério de Lemos
(University of Kent, Canterbury, UK).

Primary study selection: Bento R. Siqueira; Fabiano C. Ferrari.

Description

This document consists in a protocol to be followed over the course of the conduction of our
systematic literature review. To establish this protocol, we followed the guidelines for conducting
secondary studies proposed by Kitchenham and Charters [51] and Wohlin [55]. The next sections
describe how we followed these guidelines to answer the research questions posed by this study.

Question Formulation

Question focus (objectives). ldentifying testing approaches for adaptive systems (ASs) or
context-aware systems (CASs); characterizing challenges to test these types of systems; and
discussing research directions and recommendations for the area.

Note: Previous initial results have already been reported in our prior studies [1,12,41].

Questions.
® RQI1: Which are the testing approaches that are proposed for ASs or CASs?
® RQ2: Which are the testing challenges for ASs or CASs?

Keywords and synonyms.
e Group 1: ‘testing’;
® Group 2: ‘adaptive system’, ‘adaptive software’, ‘context-aware’ and ‘autonomic’.

Base search string.  (‘testing’) AND (‘adaptive systems’ OR ‘adaptive system’ OR ‘context aware’
OR ‘context-aware’ OR ‘context awareness’ OR ‘context-awareness’ OR ‘adaptive software’ OR
‘autonomic’).

Procedure, Control and Search

Procedure. In our work, we looked for the set of studies that propose or apply testing approaches
to ASs or CASs.

Control and search. In our work, we defined the control group as the set of studies selected in the
very preliminary round (herein named round 1) of this SLR [12]. However, we could have a limited
search scope by using only search strings [55]. Therefore, we also applied the backward and for-
ward snowballing techniques.

Selection of Sources

Criteria for selection of sources. We selected traditional repositories of scientific literature in the
field of computer science. Besides that, the Google Scholar search engine was included to apply
the snowballing techniques.

List of selected sources.
e |EEE Xplore,
e Elsevier ScienceDirect,
® Springer SpringerLink,
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ACM Digital Library,

Clarivate Web of Science,
Elsevier Scopus and

Google Scholar (for snowballing).

Selection of Studies

This section defines the inclusion and exclusion criteria that must be used for study selection.

Inclusion (1) criteria.

I1: Tt defines or applies testing approaches to ASs or CASs.
12: Tt characterizes challenges for AS testing or CAS testing.
I3: It characterizes types of faults that are specific to ASs or CASs.

A study is selected if it passes (/1 OR /12 OR I3).

Exclusion (E) Criteria.
E1: It does not fulfil any inclusion criterion.
E2: It is not written in English.
E3: It is non-peer reviewed.

Studies that fall into at least one of the earlier categories are not selected.

Study selection process. The search strategy comprises performing automatic search using our
base search string with eventual customizations required by the specific search engines. The search
strategy also includes backward and forward snowballing techniques. To identify evidence that en-
ables us to provide answers to the research questions, the search string must be built by taking into
account the two main domains (i.e. testing and (adaptive systems or context-aware systems)).

During study selection, the inclusion and exclusion criteria are applied. Initial filtering of studies
(also known as preselection step) consists in applying the criteria to the title and abstract of the re-
trieved studies. However, it may be the case the selection requires a more thorough analysis of the
studies. During the second step of the search process, one reviewer read the candidate studies in
their entirety. Indecision on whether a paper should be selected or not is resolved by discussion
with, at least, one other reviewer.

Regarding the application of the snowballing techniques, references and citations to secondary
studies that are related to our study must be also be analysed.

General procedures:

® [n any selection step, duplicated entries must be discarded.

e Up-to-date studies must replace prior versions of the same study. Examples are studies that up-
date a technique previously published or studies that extend a prior publication. Studies re-
moved in the replacement process are said to be subsumed by more recent studies.

Synthesis of Results
Extracted data from selected studies must be analysed in two phases:

1 characterization of testing challenges and
2 analysis of testing approaches.
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Phase 1  encompasses the full reading and analysis of the selected primary studies, particularly

the ones that mention difficulties and problems with respect to AS testing or CAS testing
(see inclusion criterion (ii)). It may be the case that different authors describe a same
challenge by using different words, terms, context or level of detail. Thus, the studies
that mention challenges must be organized in groups, thus allowing us to devise more
general categories of challenges for AS testing, CAS testing or both.

Phase 2 consists of investigating the testing approaches and identifying the main characteristics

and techniques applied by the authors.

Additional information

Main data extraction fields.

a summary of the study,

testing techniques (e.g. functional, structural and fault based),

test selection criteria (e.g. equivalence partitioning, all nodes and mutation testing),
types of faults,

challenges for testing ASs or CASs, and

type of studies (e.g. controlled experiment and case study).
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