
Souza, Cauê P and Fantuzzi, Felipe (2024) Computational strategies for modelling 
excited states in organometallic chemistry.  In: Bakewell, Clare and Costa, Nildo 
and Musgrave, Rebecca and Owen, Gareth, eds. Organometallic Chemistry. 
Specialist Periodical Reports (SPR) - Organometallic Chemistry . Royal Society 
of Chemistry, pp. 271-316. ISBN 978-1-83767-461-9. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/108554/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1039/9781837676200

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/108554/
https://doi.org/10.1039/9781837676200
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Computational strategies for modelling
excited states in organometallic chemistryy

Cauê P. Souza and Felipe Fantuzzi*
DOI: 10.1039/9781837676200-00271

This chapter explores advanced computational methods and strategies to model excited
states in organometallic systems, essential for advancing discovery, design, and com-
prehension in fields such as photocatalysis, artificial photosynthesis, and light-responsive
materials. We initiate with a fundamental discussion on available quantum mechanical ap-
proaches for organometallic compounds, stressing the importance of carefully choosing
theoretical methods that are specifically suited to their unique characteristics. We delineate
the theoretical underpinnings and practical applications of various electronic structure
methods, including density functional theory (DFT) and post-Hartree–Fock approaches, and
detail their adaptability to the unique properties of transition metal complexes. Particular
attention is given tomultireference and perturbativemethods, which are critical for accurately
describing the complex electronic structure typical of organometallic compounds. Through
hierarchical classification, critical evaluation, and carefully curated references, this chapter
serves as both a primer and a deep dive into the computational toolbox available for or-
ganometallic researchers, offering insights into method selection and application challenges.

1 Electronic structure methods

Recent decades have seen the emergence of a plethora of quantum
mechanical methods to simulate and predict the properties and energies
of excited states, with applications extending across a variety of chemical
systems. To the untrained eye, such diversity might give the impression
that any particular problem can be solved equally in many ways. However,
navigating judiciously this complex array of methods requires an under-
standing of the theoretical basis and capabilities of each method in order
to critically assess their suitability for the problem at hand. One must be
able to tell alpacas from llamas, and this is not done by their hums.

In this chapter, we aim to cover the most significant aspects of electronic
structure levels of theory (Section 1) and accompanying excited state
methods (Section 2), offering a hierarchical classification whenever possible.
Applications and current practical achievements in the context of excited
state calculations of organometallic systems are discussed in Section 3.
Careful attention is given to the approximations made and their impact on
accuracy when treating organometallics. In doing so, we avoid diving into
extensive mathematical formalism, but appropriate references are provided
for interested readers. This chapter, therefore, serves as an introductory

School of Chemistry and Forensic Science, University of Kent, Park Wood Rd,
Canterbury CT2 7NH, UK. E-mail: f.fantuzzi@kent.ac.uk
y This chapter is subject to a Creative Commons CC-BY-NC-ND 4.0 International
license. Financial support from the Engineering and Physical Sciences Research
Council (grant no. EP/W52461X/1), the University of Kent, the European Commis-
sion (grant no. GA 872494) and European Cooperation in Science and Technology is
acknowledged.

Organomet. Chem., 2024, 45, 271–316 | 271

�c The Royal Society of Chemistry 2024

D
ow

nloaded from
 http://books.rsc.org/books/edited-volum

e/chapter-pdf/1851664/bk9781837676200-00271.pdf by U
niversity of K

ent user on 28 January 2025



guide or roadmap to these methodologies. The reason we begin by dis-
cussing the various models of electronic structure theory is that all elec-
tronic and chemical properties—including excited states—are based on
them. Therefore, the accuracy and quality of the computed properties are
fundamentally dependent on the chosen models.

1.1 Quantum mechanics and the Schrödinger equation
Quantum mechanics—or more generally, quantum field theory (QFT)—
provides us a way of describing physical systems at the subatomic level, in
principle, in a complete and exact way, provided we neglect gravitational
interactions. This optimistic picture is, however, destroyed in many ways by
mathematical or practical impossibilities. This forces us to approximate our
model in different, and quite clever, ways. Our treatment of the description of
chemical systems here will consider what is currently available as compu-
tational resources implemented in standard software packages, thus limiting
the scope of this text. We will concentrate on a particle-based theory
(i.e. ignoring the quantum field picture) which initially neglects any relativ-
istic effects (we will come back to these in Section 1.8). In other words, we will
use the Schrödinger equation, and assume the accompanying standard col-
lection of postulates as the foundation of our model.1 The electronic spin—
essentially a relativistic property—will be introduced in an ad hocmanner, as
it is indispensable for the correct description of atoms and molecules.

The full (or time-dependent) Schrödinger equation (TDSE) can describe
temporal and spatial phenomena in a quantum system and is general in
the non-relativistic scenario:

H(r;R; t)C(r;R; t)¼ iħ
@C(r;R; t)

@t
(1)

where H(r;R; t)¼T(r;R)þ V (r;R; t) is the Hamiltonian operator composed
of the kinetic (T ) and potential (V ) energies for the system; r and R are the
electronic and nuclear spatial coordinates, respectively. Without loss of
generality, for a time-independent potential (such as the nuclear potential in
atoms and molecules), the wavefunction can be separated into the product
of a time-dependent and a time-independent part by separation of variables:

C(r;R; t)¼ f (t)c(r;R) (2)

leading to the time-independent Schrödinger equation (TISE), and a
time-dependent part f (t):

Hci(r;R)¼ Eici(r;R) (3)

f (t)¼ e�
i
ħEtT (4)

The solution of eqn (3) yields a complete set of electronic state wave-
functions {ci} and their respective energies {Ei}. Each wavefunction con-
tains all possible information about its electronic state and can be used
with suitable operators to obtain the expectation values of any observables.
However, this picture is complicated even for simple atomic systems
containing more than one electron. To understand why, let us consider a
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standard non-relativistic Hamiltonian for a system that contains N elec-
trons and M nuclei, and is devoid of external potential interactions:

H¼ � 1
2

XN
i¼1

ri
2 � 1

2

XM
A¼1

1
MA

rA
2 �

XN
i¼1

XM
A¼1

ZA

riA
þ
XN
i¼1

XN
j4i

1
rij

þ
XM
A¼1

XM
B4A

ZAZB

RAB

(5)

In eqn (5),MA is the mass of nucleus A; ZA is the total charge of nucleus A;
riA, rij, and RAB are the distances between electron i and nucleus A, elec-
trons i and j, and nuclei A and B, respectively. This Hamiltonian is written
in atomic units. The first two terms are the kinetic energy of the electrons
and nuclei, respectively; the last three terms describe the Coulomb
electron–nucleus interaction, the electron–electron interaction, and the
nucleus–nucleus interaction, respectively.

If we consider atomic systems (for which the second and last terms in
eqn (5) are void), the TISE has exact analytic solution only for hydro-
genic atoms. This is because the pairwise electron–electron interaction
is impossible to solve exactly in multi-electronic systems. If we consider
molecular systems, an additional complication arises. Because nuclei
can also move relative to one another, accounting for the dynamic
electron–nucleus interactions becomes complicated. Additionally, an-
other key approximation made in quantum chemical models is the
Born–Oppenheimer (BO) approximation. In simplified terms, the BO
approximation involves neglecting the coupling of electronic and nu-
clear dynamics, effectively treating electrons as if they were influenced
only by a static field of fixed nuclei. With this approximation, the
second term in eqn (5) disappears and the last term is a constant,
which contributes only to the energy of the states, and not to their wave-
functions. One can then write the solution of the TISE in the BO ap-
proximation as:

HelFi(r;R)¼ Vi(R)Fi(r;R) (6)

where Hel is the electronic Hamiltonian and Vi(R) are the energies of the
electronic levels Fi, which depend only parametrically on the nuclear
coordinates R. This dependency is referred to as the potential energy
surface (PES). Since the Hamiltonian is a Hermitian operator, the solu-
tions {Fi} constitute a complete basis set, allowing the total wavefunction
to be expressed as a linear combination of these basis functions:

c(r;R)¼
X
i

Ci (R)Fi (r;R) (7)

The reader interested in a more quantitative and in-depth treatment
of the BO approximation may consult ref. 2–5. In this text, we will reserve
the upper-case psi (C) for the total time-dependent wavefunction,
the lower-case psi (c) for the total time-independent wavefunction, the
upper-case phi (F) for the electronic wavefunctions, and later on, the
lower-case phi (f) for spatial orbitals, or one-electron wavefunctions.
With this definition, we will omit the Hamiltonian subscript as it be-
comes superfluous.
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1.2 The Hartree–Fock method
Up to this point, we have introduced two approximations to our models:
(1) relativistic effects are neglected; (2) the BO approximation is adopted
for molecules. The problem of solving the electronic Schrödinger equa-
tion for multi-electron systems persists. The most popular approach to
this end is the Hartree–Fock (HF) method. It is the basis for a variety of
higher quality methods usually classified as post-Hartree–Fock (post-HF)
methods. At the heart of the HF approach is the introduction of an in-
dependent particle model (IPM), in which the instantaneous interactions
between electrons are neglected. Instead, each particular electron is
subjected to the space- and spin-averaged potential of all other electrons.
Each electron is described by a spin–orbital—a product of a spin function
and the spatial wavefunction of an electron in a hydrogenic system. Spin–
orbitals are typically expressed as a linear combination of atomic basis
set functions. Ideally, a complete basis set would include an infinite
number of these functions; however, in practice, truncated basis sets
must be used. The optimal set of spin–orbitals is obtained through the
variational principle, i.e. the spin–orbitals for the ground state are those
that minimise the energy E0 ¼hF0jHjF0i. This minimisation leads to
eigenvalue equations of the form:

F(i )jw(xi)i¼ Ejw(xi)i (8)

where w(xi)¼fi(ri)a(xi) or w(xi)¼fi(ri)b(xi) is the spin–orbital for electron
i, with a and b being the two possible spin functions, andF(i ) is the Fock
operator given by:

F(i )¼ � 1
2
ri

2 �
XM
A¼1

ZA

riA
þ uHF(i )¼ h(i )þ uHF(i ) (9)

where uHF(i ) is the average potential to which electron i is subjected.
Since this potential depends on all the orbitals which are solution to the
HF equation, it must be solved iteratively using the self-consistent field
(SCF) method. In the SCF method, one starts with an initial guess for the
orbitals and solves the HF equation to obtain a new set of orbitals. These
new orbitals are then utilised to solve the HF equation again. This it-
erative procedure is repeated until the resulting orbitals converge and are
virtually indistinguishable from those of the previous iteration.

The total electronic wavefunction F0 is assembled as a Slater de-
terminant of the optimal electronic spin–orbitals of the system:

F0 x1; x2; . . . ; xNð Þ¼ N!ð Þ12

wi x1ð Þ wj x1ð Þ � � � wk x1ð Þ
wi x2ð Þ wj x2ð Þ � � � wk x2ð Þ

..

. ..
.

& ..
.

wi xNð Þ wj xNð Þ � � � wk xNð Þ

������������

������������
(10)

This approach guarantees that the wavefunction is antisymmetric with
respect to the exchange of any pair of electrons, as required for
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indistinguishable fermions. While this condition is necessary for a cor-
rect description of the wavefunction, it is not sufficient on its own. In fact, a
correct wavefunction must also form a basis for the symmetric group SN
(where N is the number of electrons), thereby reflecting the symmetry of
the Hamiltonian (more on this in Section 1.6).

Since the HF method models the wavefunction as one Slater de-
terminant, the variational principle optimises the energy subjected to this
restriction. Such methods are called single-determinant methods, and the
reader is referred to ref. 6 for a detailed description of the HF method.

1.3 Configuration interaction
As we have seen, HF theory only accounts for electron–electron inter-
actions in an averaged fashion. Because the instantaneous effect of the
correlated motion of electrons does not exist in this theory, we say it lacks
electronic correlation. The electronic correlation energy (Ecorr) of a system
is traditionally defined as the difference between its exact non-relativistic
energy E0ð Þ and its (restricted) HF energy in the limit of a complete basis
set (EHF/CBS):

Ecorr ¼ E0 � EHF=CBS (11)

Such a definition assumes that the only effect separating the exact non-
relativistic energy and the HF energy is electronic correlation effects—an
assumption proven wrong (see Section 1.6). It is also common practice to
partition Ecorr into a static (or non-dynamic) and a dynamic part. Static
correlation is a denomination to the effect of some systems being only
correctly described by a combination of different near-degenerate con-
figurations, which the single-reference HF wavefunction cannot account
for. Dynamic correlation is then the effect of the instantaneous correlated
movement of the electrons. In Section 1.6 we will briefly discuss the
validity of such definitions.

The most straightforward way to introduce electronic correlation in
the HF framework is by using configuration interaction (CI) methods.
As discussed above, the ground state HF wavefunction is in the form of
a single Slater determinant. Such a wavefunction consists of a set
of lower energy occupied spin–orbitals and a set of higher energy virtual
(i.e. unoccupied) spin–orbitals. By exchanging occupied and virtual
orbitals in such a determinant, one can construct excited Slater
determinants. Note that “excited” here refers to the form of the de-
terminant, not to excited electronic states of the system. If only one
such exchange is made, we call it a singles (S) determinant. Analogously,
doubles (D), triples (T), quadruples (Q), and so on, determinants can be
constructed depending on whether two, three, four, etc. exchanges are
made, up to the number N of electrons in the system. The size of
the basis set utilised to expand the orbitals determines the number
of virtual orbitals present in the wavefunction, and thus, the number of
possible excited determinants.

The CI method is based on the variational principle. The wave-
function ansatz is expressed as a linear combination of Slater
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determinants derived from excitations of the reference ground state
HF determinant:

FCI ¼ a0FHF þ
X
S

asFS þ
X
D

aDFD þ
X
T

aTFT þ
X
Q

aQFQ þ � � � (12)

The coefficients of this expansion are determined upon the condition
that the energy should be a minimum and the wavefunction be nor-
malised. This leads to the following Lagrange equation:

L¼hFCIjHjFCIi� l hFCIjFCIi� 1ð Þ (13)

We will not attempt to go further in the solutions of this problem, which are
well described in ref. 6 and 7. For an infinite basis set, considering all
possible excited Slater determinants (a complete basis for the wavefunction
expansion) would yield the exact solution of the electronic Schrödinger
equation within the non-relativistic and BO approximation frameworks. The
result of a CI calculation is a series of eigenvalues and eigenfunctions, which
can be viewed as the outcome of diagonalising the CI matrix. The smallest
eigenvalue is the ground state energy, with its corresponding eigenfunction
being the ground state wavefunction. The second lowest eigenvalue and its
associated wavefunction correspond to the first excited state, and so on.

One can easily perceive that a full CI calculation is unfeasible but for
the smallest systems. In fact, given 2K spin–orbitals for a system of

N electrons, there are
2K

N

 !
possible Slater determinants. This notation

represents the number of ways to choose N spin–orbitals out of 2K
without considering the order. Essentially, it calculates how many dif-
ferent ways we can arrange N electrons into 2K available spin–orbitals. As
both N and 2K increase, the number of possible configurations increases
rapidly, in a combinatorial explosion.

A common approximation for chemical purposes is to consider only the
excited determinants arising from valence electrons, known as the frozen
core approximation. The absolute error of introducing such a procedure is
not small. However, since core electrons respond weakly to chemical
changes, this leads to good relative energies due to error cancelation.

In addition to the frozen core approximation, CI calculations are typi-
cally performed using a truncated expansion, which limits the inclusion
of excited determinants based on their order. Including only single ex-
citations (CIS) does not improve the HF wavefunction because integrals
involving singly excited determinants and the HF reference are zero be-
cause of orthogonality. Thus, the smallest improvement can be achieved
by considering doubly excited determinants, either alone (CID) or with
singles (CISD). The latter offers a slight improvement because the overlap
between singles and doubles is non-zero.

Further improvements can be made by including triply (CISDT) and
quadruply (CISDTQ) excited determinants. The latter often approaches
sufficiently close the full CI energy for many systems, but it becomes
extremely costly for large molecules and basis sets. While singly excited
determinants contribute minimally to the electronic energy of a system,
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they are crucial for calculating molecular properties, such as the ones we
will consider in Section 2.

In the CI method described above, the spin–orbitals composing each Fi

Slater determinant are those obtained as solutions to the HF equations.
Further variational freedom can be introduced to the various truncated CI
methods by allowing the coefficients of each orbital expansion in the basis
set to be optimised variationally alongside the CI coefficients. This ap-
proach, known as the multiconfiguration self-consistent-field (MCSCF)
method, is clearly more expensive than standard CI methods, but the
wavefunction converges better and faster to the variational limit.

An MCSCF wavefunction can more accurately describe systems that re-
quire different electronic configurations for a balanced representation, such
as organometallic molecules with heavier metals, where spin–orbit coupling
mixes different spin configurations into the electronic states. In essence,
MCSCF methods are multideterminant, as they do not rely on a single HF
determinant as the reference for excited determinants in the expansion.

One challenge with MCSCF methods is the selection of appropriate
configurations to include in the calculations. A frequently used approach
is the complete active space self-consistent-field (CASSCF) method, which
partitions the molecular orbitals into active and inactive spaces. A full CI
expansion is then performed in the active space, including all configur-
ations in the MCSCF calculation. The active space typically consists of a
few of the highest energy occupied orbitals and lowest energy virtual
orbitals from a HF reference. Further partitioning of the active space into
domains with different excitation schemes is possible, known as the
restricted active space self-consistent-field (RASSCF) method.

These CI methods all consider excitations from a single HF reference
determinant. However, one can also consider excitations from the de-
terminants contained in an MCSCF wavefunction. For example, CISD can
be extended to include all singles and doubles excitations from all de-
terminants contained in an MCSCF wavefunction. Such methods are
termedmultireference configuration interaction (MRCI). Of all the approaches
considered so far, excluding the exact full CI, MRCI offers the highest
quality wavefunction, but it comes at an extremely high computational cost.

One significant problem with any truncated CI method, including the
analogous MCSCF and MRCI approaches, is their lack of size consistency
and extensivity. Size consistency refers to a method’s ability to correctly
describe the energy of a collection of non-interacting particles. A size con-
sistent method should predict that the energy of N non-interacting particles
is exactly N times the energy of a single particle. Size extensivity, on the
other hand, refers to systems of interacting particles and requires that the
method correctly scales the energy in proportion to the number of particles.

Although the full CI is both size consistent and extensive, as an exact
theory should be, this is not the case for any truncated CI or MCSCF
method. Consequently, these methods are not suitable for describing
macroscopic effects, both due to computational cost and size inconsist-
ency, or for large molecular systems, as their accuracy deteriorates with
an increasing number of particles (size extensivity). For a detailed ex-
planation of this, see ref. 6.
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1.4 Coupled-cluster methods
Truncated CI methods offer a conceptually straightforward approach to
correcting the HF wavefunction and can be extended to multireference
descriptions. However, their lack of size consistency and extensivity re-
stricts their utility. This is because it is often desired to compare energies
and properties between chemical systems that differ in number of atoms,
for example, when following a reaction mechanism or the dissociation of
a molecule. Since the full CI equation provides an exact description, it is
desirable to devise approximations that, like the full CI method, do not
suffer from these limitations.

This goal is indeed achieved through coupled-pair theories, with the
gold standard being coupled-cluster (CC) (also known as coupled-pair
many-electron theory). All CC methods are both size consistent and
extensive. However, they are not variational, meaning that CC energies
can sometimes be lower than the exact energy, and there is no definitive
upper or lower bound against which to measure their accuracy.

At the core of such theories is the so-called cluster expansion of the wave-
function. Suppose we want to approximate the full CI expansion of the
wavefunction by considering only doubly excited determinants while still
maintaining size consistency. It can be shown that the formalism of a cluster
expansion naturally arises from an attempt to do so, allowing higher exci-
tation contributions to be included. Specifically, the coefficients for any 2nth-
tuple excited determinants can be expressed in terms of n doubly excited
coefficients. We can then consider adding triply excited determinants and
describe higher excitation contributions in terms of them, and so on. How-
ever interesting this endeavour, it goes beyond the scope of this text and has
already been demonstrated elsewhere.6 To offer but a glimpse on the form of
such an expansion, consider the following excitation operator T:

T¼T1 þT2 þT3 þ � � � þTN (14)

where N is the number of electrons in the system. The effect of the Ti

operator on a given reference wavefunction is to generate all ith excited
determinants. To write the full CI expansion, one needs only to apply
(1þT) to the HF reference and normalise accordingly. In the CC ap-
proach, however, one uses the exponential ansatz, instead:

FCC ¼ eTFHF (15)

Notice that both the CI and CC expansions are exact since they include all
excited determinants, thereby covering the entire Hilbert space generated by
the Hamiltonian. The difference lies in how these approaches group the con-
tributions of each excitation. If one then expands eT in a Taylor series, it yields:

eT ¼ 1þTþ 1
2
T2 þ 1

6
T3 þ � � � ¼

XN
k¼0

1
k!
Tk

¼ 1þT1 þ T2 þ 1
2
T1

2
� �

þ T3 þT2T1 þ 1
6
T1

3
� �

þ T4 þT3T1 þ 1
2
T2

2 þ 1
2
T2T1

2 þ 1
24

T1
4

� �
þ � � �

(16)
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The last equality of the equation can be interpreted as follows: the first
term returns the reference wavefunction, the second term includes all
singly excited determinants, the third term (in parentheses) includes
the doubly excited determinants, the fourth term includes the triply
excited determinants, and so on. Note that at each excitation level,
terms arising from combinations of lower-order excitations are
present.

The major advantage of this approach becomes evident when we
truncate the operator T at a certain excitation level. For instance, if we
consider a CC with only singles and doubles excitations (CCSD), eqn (16)
then becomes:

eT1 þT2 ¼ 1þT1 þ T2 þ 1
2
T1

2
� �

þ T2T1 þ 1
6
T1

3
� �

þ 1
2
T2

2 þ 1
2
T2T1

2 þ 1
24

T1
4

� �
þ � � �

(17)

By projecting the CCSD wavefunction against different singly excited
determinants,6,7 one can obtain the coefficients for the various contri-
butions in the expansion of the wavefunction. Interestingly, contri-
butions from higher than doubly excited determinants appear, even
though the operator T is truncated at the doubles level. For example, the
term T2

2 will generate quadruply excited determinants in the CCSD
wavefunction. This feature ultimately makes CC methods more accurate,
as well as size consistent and extensive. However, it also introduces non-
linearity, leading to the non-variational nature of the method.

Additional pair theory methods, such as the independent electron
pair approximation (IEPA) and the coupled electron pair approximation
(CEPA)—a simplification of the CC approach—also exist but are not
widely applicable. One reason is their relatively crude approximation and
the fact that their energies are not invariant under unitary transforma-
tion of degenerate orbitals. More details on these methods can be found
in ref. 6.

As it happens with the CI methods, one can extend the CC methods to
multireference wavefunctions by using, for example, an MCSCF refer-
ence to construct an MRCC model. However, due to the complex nature
of the CC expansion, this approach is less straightforward than MRCI.
CC methods are considered the most accurate and advanced of the post-
HF approaches, and many other levels of theory, including density
functional theory (DFT) methods, are usually benchmarked against
them.

1.5 Perturbative methods
CI and CC methods essentially rely on different ansätze to expand the
wavefunction and then approximate the exact solution in a systematic
way. The full expansions for both approaches are exact in the non-
relativistic BO approximation framework. However, the approximations
arising from the CC methods, unlike those from CI methods, are size
consistent and extensive, though not variational. Another class of
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methods for introducing correlation corrections to IPM wavefunctions,
which share these same properties with CC methods, is based on many-
body perturbation theory (MBPT). We will briefly cover the basic concept
of this general theory, provide an understanding of the most popular
version currently in use—namely, Møller–Plesset perturbation theory
(MPPT)—, and discuss some of the multi-reference extensions to this
approach. In doing so, we will refrain from entering the rather intricate
mathematical aspects, and again, the interested reader can find these
details in the cited sources.

The main concept in MBPT is the assumption that the Hamiltonian
for the exact system under description can be partitioned into a main
contribution (H0), for which we know the exact or approximate solution,
and another contribution (H0) which is small compared toH0. The latter
is the perturbation introduced into the unperturbed (or reference)
system. Suppose we know the solution for the unperturbed
Hamiltonian H0:

H0jwii¼ Eijwii; i¼ 0; 1; 2; . . . ; N (18)

Since H0 is Hermitian, the solution above forms a complete set of
eigenfunctions {|wii}. We now consider the total Hamiltonian:

H¼H0 þ lH0 (19)

where we introduce an ordering parameter l (0rlr1) which will later be
set to 1. With this strategy, we essentially build a Hamiltonian which can
be continuously transformed from the unperturbed to the perturbed
scenario by continuously increasing the value of l. This continuity is
reflected in the eigenvalues and eigenfunctions which solve the total
system:

HjFii¼WijFii (20)

We can, therefore, expand these solutions in powers of the parameter
l as:

Wi ¼ l0W (0)
i þ l1W (1)

i þ l2W (2)
i þ l3W (3)

i þ � � � (21)

jFii¼ l0jF(0)
i iþ l1jF(1)

i iþ l2jF(2)
i iþ l3jF(3)

i iþ � � � (22)

Setting l¼ 0 switches off the perturbation so that H¼H0. From
eqn (20)–(22), we see that jFii¼ jF(0)

i i¼ jwii and Wi ¼W (0)
i ¼ Ei. In other

words, the solution is simply the unperturbed one (eqn (20)). The terms
jF(1)

i i, jF(2)
i i, . . . andW 1ð Þ

i ,W 2ð Þ
i , . . . are the first-, second-, and higher-order

corrections to the wavefunctions and energies, respectively.
Let us use intermediate normalisation for the {|Fii}, i.e. ensuring that

hwi|Fii¼ 1 unless they are orthogonal. We can then introduce the ex-
pansion from eqn (22) in the TISE with the Hamiltonian defined in
eqn (19) to obtain:

(H0 þ lH0)(jwiiþ l1jF(1)
i iþ l2jF(2)

i iþ � � � )

¼ (Ei þ l1W (1)
i þ l2W (2)

i þ � � � )(jwiiþ l1jF(1)
i iþ l2jF(2)

i iþ � � � )
(23)
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Since this is valid for any value of l, we can equate the coefficients of the
same power n of l to obtain:

H0jwii¼ Eijwii (24)

H0jF(1)
i iþH0jwii¼ EijF(1)

i iþW (1)
i jwii (25)

H0jF(2)
i iþH0jF(1)

i i¼ EijF(2)
i iþW (1)

i jF(1)
i iþW (2)

i jwii (26)

..

.

and multiplying by hfi| with intermediate normalisation:

Ei ¼hwijH0jwii (27)

W (1)
i ¼hwijH0jwii (28)

W (2)
i ¼hwijH0jF(1)

i i (29)

..

.

To obtain the various corrections to wavefunctions and energies, one
must solve the above system of equations. Since they are integro-differ-
ential equations, we can use the fact the {|wii} forms a complete set and
expand each jF(n)

i i in terms of this set. The solution for the first-order
energy correction is already given by hwijH0jwii, which is the average value
of the perturbation over the unperturbed wavefunctions. The second-
order correction is:

W (2)
i ¼

X
na0

hwijH0jwnihwnjH0jwii
Ei � En

(30)

The details of the derivations, including higher-order corrections, can be
found in ref. 6 and 7. While we do not show the explicit corrections to the
wavefunction, the first-order correction can be calculated using the un-
perturbed wavefunctions and energies, which then yields the second-
order correction for the energy. In summary, although the formulas for
higher-order corrections become increasingly complex, they can all be
expressed in terms of matrix elements of H0 over the unperturbed |wii
and corresponding energies Ei. This form of perturbation theory is called
Rayleigh–Schrödinger perturbation theory (RSPT). It is a general and exact
derivation, provided the initial assumptions are valid, and can be applied
to any system as long as a suitable H0 is devised. In fact, we will use
this theory to treat the interaction of light with matter by approximating
light as a time-dependent perturbation to a static quantum system
(Section 2.3).

For now, our interest lies in using RSPT to introduce correlation to a
reference wavefunction. The first task is to construct an appropriate total
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Hamiltonian for the system, according to eqn (20), as a sum of a refer-
ence part for which we know at least an approximate solution and a small
perturbation that correctly describes the effect we want to introduce as a
correction. There are various ways to achieve this, but the most successful
and widely available method is the Møller–Plesset (MP) approach. In this
case, the unperturbed Hamiltonian is simply a sum of N Fock operators
(eqn (9)) for each of the N electrons in the system:

H0 ¼
XN
i

F(i )¼
XN
i

h(i )þ uHF(i ) (31)

As the summation runs through the N electrons, it counts the average
electron interaction uHF(i ) twice. The perturbed Hamiltonian is then the
exact electron–electron interaction operator minus this double-counted
average contribution from the reference Fock Hamiltonian:

H0 ¼
XN
ioj

1
rij

�
XN
i

uHF(i ) (32)

This choice of partition ensures that the solution is size consistent and ex-
tensive, which may not be the case for other partitioning schemes. However,
such an H0 cannot always be considered small in comparison to H0. If we
look at eqn (20) and (27), we see that the zeroth-order energy is simply the

sum of HF orbital energies W (0) ¼
XN
i

Ei, which accounts for the average

electron–electron interaction twice. We recall that we introduced the sub-

traction of this factor inH0, and that summation of
1
rij

over different pairs of

electrons in the HF determinant is again the same average interaction.
The first-order energy correction in MPPT only corrects the H0 energy,

yielding the HF energy. Therefore, the first correction for correlation
energy occurs on the second-order energy correction of the MPPT theory.
If we designate the MPPT equations restricted to corrections up to order n
by MPn, we have MP2 as the lowest level correction. The second order
correction to the energy can be written in terms of the reference wave-
function and doubly excited determinants thereof.6,7 The first-order
correction to the wave-function also contains only contributions of the
doubly excited determinants. Since knowledge of this correction allows
for the calculation of the third-order energy correction, MP3 is readily
available and is not much more expensive than MP2.

Higher-order corrections to energy require higher than first-order
corrections to the wavefunction. Knowledge of the second-order cor-
rection to the wavefunction allows for MP4 and MP5 energy corrections,
which include contributions of up to quadruply excited determinants.
A similar pattern to CC and CI calculations arises here: more and more
configurations are introduced to increase the accuracy of the model.
While MP4 has a computational cost comparable to CISD, MP5 is already
too costly for large systems.
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Although MPPT methods offer an interesting alternative, their
convergence is highly dependent on the reference wavefunction. If HF
description of the system is not adequate, the convergence of MPPT en-
ergies can be erratic, with MP3 sometimes yielding poorer results than
MP2, for example. A more detailed discussion about these convergence
issues can be found in ref. 7–9.

For organometallic systems, the presence of heavy atoms often ne-
cessitates a multireference wavefunction as a starting point, posing
particular challenges for MPPT methods due to their convergence issues.
As with CI and CC methods, MPPT can be extended to the multireference
scenario by employing an MCSCF wavefunction as the reference. The
implementation of such methods is complicated by the choice of par-
tition for the Hamiltonian. When an MCSCF wavefunction is used as the
reference, one obtains multireference perturbation MRPTn methods,
where n denotes the order of perturbation correction applied. If the ref-
erence is a CASSCF wavefunction, the methods are termed CASPTn. Only
CASPT2 and CASPT3 have been widely implemented so far.

Another approach based on a CASSCF reference is the N-electron
valence state perturbation theory (NEVPTn) class of methods.10–12 These
differ from CASPTn methods in the choice of reference Hamiltonian and
perturbation. A detailed treatment of these methods is beyond the scope
of this text, but a comparison and perspective on these approaches can be
found in ref. 13.

Before we conclude our journey through the methods for correlation
correction to the HF model, it is worth calling attention to explicitly
correlated methods. A wavefunction built from a Slater determinant is
based on one-particle orbitals. However, the correlation effects arise
from the two particle terms in the electronic Hamiltonian. Thus, the
methods discussed above suffer from a fundamental incompatibility
with the electronic correlation phenomena: Slater determinants fail to
model the exact wavefunction at short interelectronic distances.
A solution is to explicitly consider terms dependent on the distances of
electron pairs. Such approaches are motivated by Hylleraas’ solution to
the helium atom,14 and are called R12 or F12 methods. They depend on
the use of Gaussian basis functions for two electrons, known as
Gaussian geminals, and include extremely costly many-electron inte-
grals. This poses a big challenge for the simulation of big systems, but
efforts are being made to improve their scalability. Given the complexity
of these methods and the current scarce use for bigger molecular sys-
tems, we do not enter into the details, but refer the reader to two ex-
cellent reviews on these methods.15,16 R12/F12 approaches are currently
implemented for MP, CI and CC wavefunction ansätze.

1.6 Valence bond methods
All approaches to the electronic problem discussed so far have involved a
molecular orbital (MO) picture of the wavefunction. In fact, the HF
method—the fundamental MO model—has only been improved by ap-
plying more complicated wavefunction expansions through CI and CC
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ansätze and/or by using perturbative methods to include electronic cor-
relation. In the MO model, a molecule is viewed as composed by nuclei
with a particular configuration (within the BO approximation) and mo-
lecular orbitals (and electronic density) delocalised throughout its
entirety.

This picture is markedly different from the language chemists—par-
ticularly organic chemists—typically use to describe molecules and
chemical reactions. Chemists often think about chemical bonds, their
formation and cleavage, and the composition of molecules in terms of
functional units or groups, relying fundamentally on a localised de-
scription of electrons. This perspective is preconised by the century-old
concept of the chemical bond first introduced by Lewis, whereupon a pair
of atoms is connected either covalently by an electron pair shared be-
tween only those atoms, or ionically by the electrostatic interaction
arising from the localisation of the bonding electron pair in one of the
two atomic centres.17–19

Valence bond (VB) methods, slightly older than MO methods, are much
closer to this chemical description of molecular systems and are cur-
rently implemented in many quantum chemistry packages. The reason
MO methods are more popular is that they are easier to implement and
computationally cheaper to apply than VB methods. In the context of
organometallic and transition metal systems, the application of VB
methods is relatively rare. However, some recent studies have demon-
strated their potential use in challenging systems such as metal–methyl
(M–CH3) complexes,20 coinage metal halides,21 gold complexes featuring
interanion coinage bonds,22 and metal–metal bonded systems.23–25

Therefore, it is worth dedicating a few paragraphs to VB methods here,
as they will become more and more approachable with increasing com-
putational capacity and new means to improve the scalability of com-
putations. Our goal is to provide a broad overview of the theoretical
aspects in modern VB theory and the practical differences compared to
MO methods.

When describing the HF model above, we argued that the IPM wave-
function ansatz in the form of a Slater determinant correctly accounts for
the antisymmetric property of fermionic systems, but this alone does not
ensure its correct form. Since the wavefunction is a solution to the
electronic Hamiltonian, it must be a representation for the symmetric
groups to which the Hamiltonian belongs. This includes both point
group symmetry for the nuclear configuration and permutation group
symmetry for the electrons as independent particles. The theory that
explains the necessity of the latter is well-established, but its complexity
meant that it was not a primary concern for many scientists developing
these early electronic structure methods.26–29

The key point here is that a properly constructed VB wavefunction is
superior to a Slater determinant (the core of the HF method), mainly
because it is a representation of the SN permutation group. The second
characteristic that makes VB wavefunctions a better representation is the
departure from the double occupancy of orbitals. Let us examine these
properties in more detail.
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The first application of a VB-type wavefunction was demonstrated by
Heitler and London on the H2 molecule.30 In this model, a covalent bond
between atoms A and B is formed from the respective (hybrid) atomic
orbitals (HAOs) wA and wB by coupling them in a singlet and properly
antisymmetrising by a spin term. The result is the Heitler–London (HL)
wavefunction Fcov of the form:

Fcov ¼ (wAwB þ wBwA)[ab� ba]¼FA�B (33)

where the order of the functions in each product indicates the electron
coordinate. Note that in VB theory, the orbitals are, in principle, mono-
electronic, meaning each electron is described by its own spatial func-
tion, and orbital double occupancy is not enforced. Similarly, ionic
structures can be built for the same pair of atoms as follows:

Fion(1) ¼ wBwB ab� ba½ � ¼FAþB� (34)

Fion(2) ¼ wAwA ab� ba½ � ¼FA�Bþ (35)

In classical VB theory (CVBT), the molecule A–B is described by a linear
combination of these three contributions:

FAB ¼C1Fcov þC2Fion(1) þC3Fion(2) (36)

Such a wavefunction is a general CVBT representation as preconised by
Pauling and Slater. For the H2 molecule, C1 is the largest coefficient,
indicating that the covalent structure dominates. However, the presence
of ionic contributions to the wavefunctions accounts for electronic effects
(often termed “static correlation”) that in the HF theory can only be in-
cluded using CI approaches.7 The same idea can be extended to larger
molecules, though constructing the appropriate products, spin-func-
tions, and antisymmetrisation becomes increasingly complex. Generally,
one first constructs the spin function such that it is an eigenfunction of
the total spin operator and is a representation of the SN symmetric group.
Then, one constructs the spatial wavefunction such that the total wave-
function is antisymmetric with respect to electron permutation. The
details of this procedure and its underlying theory is presented in ref. 27
and 29.

In current applications of CVBT, the HAOs are expanded into an
atomic orbital basis set, and the expansion coefficients, as well as the
different configurations (as in eqn (36)) are optimised using an SCF
procedure. This method is termed VBSCF. If the HAO coefficients for
each independent structure in an equation like eqn (36) are allowed to be
independently optimised, a breathing orbital VB (BOVB) method is being
applied. While VBSCF improves the description compared to HF by in-
cluding “static correlation” only, BOVB acts as a multireference method,
thus also including “dynamic correlation”, making it superior to VBSCF.

In the CVBT approach, the HAOs are essentially localised atomic or-
bitals. Another possibility is to use Coulson–Fischer HAOs. In this model,
each HAO is allowed to possess a delocalisation “tail” by mixing a small
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amount of the neighbouring atoms’ HAOs. The wavefunction using these
orbitals is then written as an HL covalent-like structure. This is the
Coulson–Fischer (CF) ansatz. Notice that, by doing this, the orbitals are
not orthogonal, which partially accounts for the high computational cost
of such VB methods. For a molecule A–B, this would be eqn (33). The
HAO coefficients are then optimised using an SCF procedure.

Once again, for larger molecules, constructing the CF wavefunction
requires careful coupling of electrons in the bonds so that the total
wavefunction is an eigenfunction of the total spin operator, a represen-
tation of the SN group, and properly antisymmetric. Depending on
the complexity of the molecule, there are many ways to achieve this.
The number of spin-functions that can be generated for a coupling of
N electrons with total spin S is given by:

f NS ¼ 2Sþ 1ð ÞN!

1
2
Nþ Sþ 1

� �
!

1
2
N� S

� �
!

(37)

For a methane molecule with 14 valence electrons, there are 14 spin-
functions. A linear combination of all spin-coupling schemes, each
multiplied by a proper spatial function and antisymmetrised, constitutes
the spin-coupled VB (SCVB) theory developed by Gerratt et al.31–33

It is generally observed that one or a few of the spin-coupling terms
dominate the SCVB description. Indeed, a few years earlier, Goddard
et al. independently developed a similar approach, called generalized
valence bond (GVB) theory.34–38 Although completely equivalent to SCVB
in its full form, which recently led VB practitioners to unify their names
into a single framework known as spin-coupled generalized valence bond
(SCGVB),39 this wavefunction can be simplified in both its spatial and
spin components.39 An interesting application of SCGVB wavefunctions
is in the development of the interference energy analysis (IEA)
method,40–43 which investigates the nature of the chemical bond as a
manifestation of the quantum mechanical interference effect.

If the spin part is constructed so that covalent bonds are described by
two electrons occupying two orbitals, one in each of the bonding atoms,
coupled in a singlet pair, this spin function is called a perfect pairing
spin function.44 By enforcing strong orthogonality amongst orbitals from
distinct electron pairs (but not those coupled in a bond or lone pair) and
allowing core orbitals to be doubly occupied, we obtain what is called a
perfect pairing GVB (GVB-PP) wavefunction. Although more compu-
tationally tractable than the full SCGVB wavefunction, such an approxi-
mation can lead to significant errors for some systems and must be used
cautiously.

All VB methods can also be improved using CI, leading to methods
such as VBCI, CASVB, and others available in various software packages.
Although the implementation differs, the general idea is similar to that
discussed for HF wavefunctions, allowing correlation corrections to be
systematically added. A VB wavefunction as a starting point, however, is a
much better reference than HF. In fact, the entire discussion about
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“static” and “dynamic” correlation can be viewed as an unfortunate arti-
fact of considering the HF wavefunction as a reference. It can be shown
that SCGVB wavefunctions account for what is defined as static correlation
by respecting the correct permutational symmetry and spin eigenfunction
conditions. Thus, HF lacks this type of correlation because it is simply an
incorrect ansatz. What remains, usually termed dynamic correlation, is the
true correlation effect, not included in the SCGVB approach because it is,
like HF, an IPM for the many-electron system. A better definition than
eqn (11) for the correlation energy is then obtained by replacing the HF
energy EHF/CBS by the corresponding full SCGVB energy ESCGVB/CBS. More on
this interesting discussion can be found in ref. 45–47 and more on VB
methods can be found in ref. 25, 43, 48 and 49.

1.7 Density functional theory
Up to this point, we have discussed wavefunction methods exclusively.
There is, however, a class of methods that is conceptually different but
has proven to be exceptionally effective for many computational tasks at a
fraction of the cost. Instead of solving the Schrödinger equation for the
full wavefunction of a system and its corresponding energies, these
methods exploit the fact that there is a univocal correspondence between
the energy of a quantum system and its one-electron density. This
framework is known as density functional theory (DFT), and its foundation
is based on the Hohenberg–Kohn theorems. An introduction to DFT can
be found in ref. 50. A more detailed treatment is provided in ref. 51 whilst
a more rigorous mathematical treatment can be found in ref. 52.

Given the electronic wavefunction F of an N-electron system (solution
of eqn (6), for example), the one-electron density r(r) is defined as the
integral of the square of the wavefunction over the N spin and N� 1
spatial coordinates of the electrons, multiplied by the number of elec-
trons in the system:

r(r)¼N
ð ð

� � �
ð
F x1; x2; . . . ; xNð Þj j2ds1dx2 � � �dxN (38)

where xi represents the joint spin si and spatial ri coordinates of the
electrons. Thus, r(r) is a function of the spatial coordinates of a single
electron and represents the spatial probability density of any one of the
N electrons with an arbitrary spin, while the remaining electrons have
arbitrary positions and spin. The integral of the density is

Ð
r(r)dr¼N.

The Hohenberg–Kohn theorems form the foundation of DFT. The first
of the two theorems states that the ground-state of a system (and
therefore its energy) is a univocal functional of the density r(r). The
second theorem establishes a variational principle for the ground-state
energy. According to this principle, given any approximate electron
density for a system, the calculated energy through the density functional
will be higher than the exact energy, unless the density is exactly the
ground-state density r0. These theorems can also be extended to excited
states.

Since the electronic density depends only on the three spatial co-
ordinates of a single electron, regardless of the system’s size, DFT offers a
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promising, exact, and remarkably simple and inexpensive alternative
compared to wavefunction methods, which depend on 3N coordinates.
The main issue is that the exact functional connecting the electronic
density to the energy is still unknown. Therefore, only approximate
methods are available within this framework.

The only approximation scheme that provides useful results for mo-
lecular systems is the Kohn–Sham (KS) model for DFT. In this approach,
the orbital picture is reintroduced, forcing us to go back to a 3N co-
ordinate dependency of the energy. Thus, KS is similar to HF theory,
although it is somewhat less costly and much more exact. The main idea
in this model is the consideration that the HF method provides the exact
kinetic energy for a system of non-interacting electrons. That said, the
total kinetic energy can be partitioned in this exact part and a small cor-
rection for the interactions. By defining the one-electron KS operator as:

FKS ¼ � 1
2
r2 þ VS rð Þ (39)

in analogy with the Fock operator, where VS is an effective potential, one
can use the same formalism as the HF (Section 1.2) to obtain a Slater
determinant containing the spin–orbitals (wi) and energies for the non-
interacting system of electrons. This set of spin–orbitals describes exactly
a system of non-interacting electrons, with the exact kinetic energy given

by TS ¼ � 1
2

XN
i

hwijr2jwii. The connection of this fictitious system with

the real one is made by the choice of VS such that the electronic density
calculated from the KS spin–orbitals equals that of the real system. By
computing most (but not all) of the real system’s kinetic energy this way,
the total KS functional F [r(r)] can be partitioned into:

F r(r)½ � ¼TS r(r)½ � þ J r(r)½ � þ EXC r(r)½ � (40)

where J r(r)½ � ¼ 1
2

ð ð
r(r1)r(r2)

r12
dr1dr2 is the classical Coulomb inter-

action, and EXC[r(r)], the exchange–correlation (XC) functional, contains
all the non-classical electrostatic interactions plus the unknown part of
the electronic kinetic energy. If we were to discover the exact form of this
functional, the energy obtained in the KS approach would be the exact
energy. Bear in mind, though, that we would not obtain the wavefunction
for the system.

The XC part of the KS functional holds all the approximations of the
method, including electronic correlation. This is where most of the
current efforts in the development of DFT methods are focused. The task
of the user is to judiciously choose the appropriate DFT functional for the
task at hand. The number of available functionals is bewildering, and
discussing their intricacies in detail is beyond the scope of this chapter.
Instead, we aim to provide a rough classification of these functionals and
some conceptual foundations. We will also discuss some applications in
the context of organometallic systems in Section 3.
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The simplest strategy to devise an XC functional is the local density ap-
proximation (LDA). This model is based on a uniform electron gas—a
model where electrons move in the field of a continuous positive charge
distribution, in a way that the total system is neutral. The number N of
electrons and the volume V of the system are infinite, while the electronic
density N/V remains finite and constant throughout. The XC functional for
such a system can be written as a simple integral of the electronic density
r(r) multiplied by the exchange–correlation energy of the electron gas:

ELDA
XC [r]¼

ð
r(r)E(r(r))dr (41)

The results obtained with such functionals are comparable to or even
better than those obtained by the HF method. An improvement of this
method is the generalised gradient approximation (GGA). In this approach,
the information coming from the electron gas density is supplemented
by the gradient of the density, rr(r). It considers the fact that the elec-
tronic density of a real electronic system, contrary to that of an electron
gas, is not homogenous. This is achieved by recognising that LDA can be
regarded as the first-order term of a Taylor expansion of EXC in terms of
the density. This is the so-called gradient expansion approximation (GEA),
and GGA functionals are obtained from this by certain manipulations to
ensure that exchange–correlation hole properties are respected.51 Such
functionals are not derived entirely from first principles but include a
series of parameters fitted to experimental data, as is the case with the
remaining functionals below. For this reason, certain authors refrain
from labelling many DFT methods as ab initio.

Building on the Taylor expansion mentioned earlier, one can further
improve the GGA approach by including the Laplacian of the density,
r2r(r). Functionals that incorporate this additional term, although not
directly constructed by the simple addition of the Laplacian of the
density, are known as meta-GGA functionals. These functionals typically
perform better than LDA and GGA functionals for molecular systems, and
more details on their implementation can be found in ref. 52.

Another class of functional that generally outperforms GGAs, and often
surpasses meta-GGAs, are the hybrid or hyper-GGA functionals. These
functionals leverage the fact that the exchange part of the XC energy can
be computed exactly for a Slater determinant using the HF approach. One
can thus use this parcel of the energy and only approximate the correl-
ation part in the functional. Although this partition is a fictitious
mathematical construct—the XC term is inherently a single entity—a
careful partitioning scheme can yield effective XC functionals by mixing
the HF exchange energy with LDA, GGA, or even meta-GGA XC energies.
In fact, one of the most popular DFT functionals, B3LYP, is an example of
this approach.

Two of the major inaccuracies of DFT calculations are the self-
interaction error and the absence of long-range correlation effects,
responsible for London’s dispersion forces.53,54 Although the omission of
long-range correlation is an inherent limitation of DFT, it can now be
easily addressed by applying several established dispersion correction
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methods. Prominent among these is Grimme’s D3 method55—which can
be applied using either the initial damping function, D3(0),56 or
the updated Becke–Johnson (BJ) damping function—or its more recent
version D4.57

An even higher level of improvement is achieved with double hybrid
functionals. These functionals not only use information from occupied
orbitals in the form of the HF exchange energy but also incorporate in-
formation from all the KS orbitals. Specifically, they include an MP2
component of the energy, obtained by applying the formalism described
in Section 1.5 to the KS Slater determinant. These methods have a higher
computational cost than the previous ones because of the extra compu-
tations required for the MP2 energy and the convergence difficulties as-
sociated with such a perturbative approach, as discussed in Section 1.5.

When treating excited-states via time-dependent DFT (TDDFT) meth-
ods (see Section 2.4), it has been observed that many functionals fail to
accurately describe charge transfer and Rydberg states. This issue arises
partly because DFT tends to artificially favour delocalised systems over
localised ones. Additionally, the long-range behaviour of the electronic
energy is generally misrepresented due to an imbalance between the
density-based Coulomb ( J[r(r)]) and exchange (HF part in hybrid func-
tionals) components and the approximate XC potential. A solution to this
problem is brought by the class of range-separated functionals. In this
strategy, the electron–electron Coulomb operator for the exchange energy
(only) is split into short-range and long-range components, using differ-
ent approaches for each. Typically, a density exchange functional is used
for the short-range part, while the exact HF part is used for the long-range
part. The two domains are interpolated using an o parameter, which can
be tuned for specific systems by applying Koopman’s theorem.58

Fig. 1 presents a schematic hierarchy of DFT functional classes, com-
monly referred to as Jacob’s ladder.59

Fig. 1 The DFT Jacob’s ladder.
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1.8 Relativistic corrections
All of the theoretical treatment above assumed a non-relativistic scen-
ario. This is, of course, an approximation. The fundamental problem
with the non-relativistic treatment of a quantum system is that the
Schrödinger equation is not invariant under a Lorentz transformation
of space-time coordinates—a fundamental requirement of special
relativity. The Dirac equation can be seen as a generalisation of the
Schrödinger equation that does respect this property. It also accounts
for the fact that the mass of a particle increases with increasing velocity.
This implies that an electron orbiting a heavier nucleus will have a
higher velocity, and therefore a higher mass, compared to one orbiting a
lighter nucleus. The outcome is either a contraction or an expansion of
the orbitals.

Another consequence of the Dirac equation is that the total angular
momentum of an electronic system is no longer defined solely by the
orbital angular momentum (L), but by a combination of this with the spin
angular momentum (S), giving rise to a J term. In other words, the L and S
operators do not commute with the Hamiltonian anymore, but J does.
This is the spin–orbit coupling phenomenon. As a result, orbitals
(and the entire system) do not have well-defined spin states, and the pure
s, p, etc. non-relativistic orbitals now mix. In the presence of an external
electromagnetic field, other relativistic effects also arise.

Additionally, the use of a Coulomb potential to describe the electric
interactions is no longer valid in the relativistic realm since such inter-
actions are instantaneous and thus violate the universal speed limit of
light. The correct treatment of electric interactions would have to start
from a quantum electrodynamics perspective, but modifications of the
Coulomb potential can be made through approximation schemes, such
as the inclusion of a Breit operator.

Here, we point out that relativistic corrections become increasingly
important for systems containing heavier atoms. Since many organo-
metallic systems contain metals beyond the fourth row of the periodic
table, it is crucial to consider these effects. The simplest way to account
for relativistic effects is by including relativistic effective core potentials
(ECPs) to the basis set. Examples of such basis sets include the Los
Alamos National Laboratory 2 double zeta (LANL2DZ)60 and the Weigend
and Ahlrichs def2 family of basis sets.61

Another relatively straightforward approach is to approximate a rela-
tivistic Hamiltonian using methods such as the zeroth-order regular ap-
proximation (ZORA) or the first-order regular approximation (FORA).62–64

Both methods include spin–orbit coupling and scalar relativistic effects,
which account for the mass dependency on velocity and the relativistic
movement of electrons, known as the Darwin correction.

Perturbative operators have also been devised to include corrections to
the non-relativistic solution.7 Since this strategy results in complicated
equations, it is sometimes easier to directly solve the Dirac equation.
Using spinors (relativistic spin–orbitals) in a Slater determinant, one can
write a relativistic ansatz like the HF wavefunction for the Dirac equation,
and this is known as the Dirac–Fock (DF) method.
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The so-called two-componentmethods are also available. The reason for
this name is that a relativistic wavefunction has four components, which
can be separated into one pair called the large component, and another
pair called the small component, which depend on one another. Two-
component methods use unitary transformations to separate these
components, making them (quasi-)independent and allowing them to be
solved separately. Examples of this approach include the exact two-com-
ponent (X2C)7 and Douglas–Kroll–Hess (DKH) methods.65,66 A notable
application of these methods for describing the spectroscopic properties
of organometallic systems can be found in the ReSpect (Relativistic
Spectroscopy) program, accessible at https://www.respectprogram.org/.

2 Excited state methods

Having discussed the various levels of theory for solving the static electronic
problem, we are now positioned to address the problem of excited states
and their properties. These methods are sometimes referred to as dynamic
methods because many are derived from the TDSE (eqn (1)). However, this
nomenclature should not be confused with dynamics simulations such as
molecular dynamics or quantum (adiabatic or non-adiabatic) dynamics.

Our focus here will be on methods that allow us to calculate energies
and molecular properties resulting from the interaction of UV and visible
light with matter, thus altering their vibronic (electronic coupled with
vibrational) states. The class of time-dependent methods (and much of
the theory discussed here) however, is much broader. With proper for-
mulation, they can account for many types of time-dependent phenom-
ena arising from magnetic and electric fields interacting with matter.

The case of electronic time-dependent methods is complicated by the
fact that a general theory should consider the relativistic and quantum
nature of both the photons and the molecular systems. Such a treatment
falls within the realm of quantum electrodynamics or, more generally,
QFT. Since routine methods at this level are not easily available, we will use
an approximate, semi-classical theory. For exact electronic methods, we
started from a non-relativistic perspective, although it is possible to correct
for, or approximate many, relativistic effects, as discussed in Section 1.8.
We will continue with this assumption for the electronic wavefunction.

Additionally, we will treat light classically, as oscillations of an elec-
tromagnetic field. Since the magnetic component is much smaller than
the electric component, we will disregard its effect and use the dipole
approximation (see below). As usual, we will be working within the BO
approximation, although these methods can be expanded to account for
non-Born–Oppenheimer effects.

2.1 DSCF methods
Conceptually, the simplest way to consider excited states is by directly
constructing their wavefunctions and proceeding analogously to the
ground state calculations discussed above. If the excited state under con-
sideration has a different (spatial and spin) symmetry than the ground
state, this approach is straightforward. However, if it has the same
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symmetry of the ground state, the SCF or variational procedure will almost
invariably return the ground state, as it is the lowest energy state of that
symmetry. There are special techniques to obtain these excited states
directly, but they are difficult and possess several technical problems.67

It is often the case that excited states cannot be properly described by a
single reference wavefunction, thus necessitating the use of MCSCF
wavefunctions. Correlation can then be included by the various methods
described above. Excitation energies can be calculated by taking the dif-
ference between the excited and ground state energies directly (DSCF ap-
proach). Molecular properties can also be calculated from various energy
derivative techniques directly applied to the appropriate wavefunctions.

HF, MPn and CC type wavefunctions are not well-suited for calculating
excited state wavefunctions in such a way because of their unsuitable
references. We have already seen that CI methods straightforwardly give
excited state wavefunctions as eigenstates of the CI matrix with higher
energy eigenvalues. In fact, in most software packages, when HF is selected
for excited states, what actually happens is that the CIS matrix is diag-
onalised to yield the excited states. However, care must be taken when
choosing the CI level, as many excited states need two or more excited
determinants for proper description. Even low-lying excited states of simple
organic molecules may need at least CISDTQ wavefunctions for accurate
description;7,68 this is even more crucial for organometallic compounds.

Additionally, dynamic correlation can only be included in singly ex-
cited states by considering at least doubly excited determinants or by
including perturbative corrections to the excited state wavefunctions.
Thus, CIS excited states are described with a quality similar to HF ground
states. This demanding level is often prohibitive except for small organic
molecules. The methodology described in the next sections will offer
more robust and cost-effective options for calculating excited state
properties and wavefunctions. Nevertheless, CASPT2 or NEVPT2 models
are deemed as gold standards for benchmarking excited state calcula-
tions whenever possible. It is worth noting that, in general, the higher the
excited states considered, the higher the error.

2.2 TDSE representations
A series of formalisms have been developed for obtaining dynamic
properties of molecular systems from the TDSE. The following methods
will be considered: (1) time-dependent perturbation theory (TDPT), which
will then lead to the most popular excited state method, namely, linear
response theory (LRT), sometimes also called random phase approximation
(RPA); (2) variational methods, to obtain time-dependent wavefunctions
and properties, which form the basis for time-dependent HF (TDHF)
and time-dependent DFT (TDDFT) methods; (3) propagator methods,
which circumvent the need to calculate time-dependent wavefunctions;
(4) equation-of-motion (EOM) methods; and (5) the algebraic diagrammatic
construction (ADC) family of methods.

For each formalism, it becomes evident that certain representations of
the TDSE are more suitable than others, and therefore, we will define
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them here. As usual, we will not dive into the mathematical intricacies of
the methods but focus on the essentials to give a superficial under-
standing of the concepts and critically assess each option.

We have seen (Section 1.1) that the TDSE equation can be solved by
separating the total wavefunction into the product of a time-independent
wavefunction c(x) and a time-dependent factor f (t)¼ e�

i
ħEtt (eqn (2)),

where we denoted the combined spatial (and spin) coordinates by x.
More generally, we can define the operator e�

i
ħHt, where H is the time-

independent Hamiltonian for the system, which maps C(x, t¼ 0) into
C(x, t). This is seen by the exact separation of variables procedure and
integration of the TDSE:ðC(x;t)

C(x;t¼ 0)

dC
C

¼
ðt
0

1
iħ
Hdt0 (42)

ln
C(x; t)
C(x; 0)

¼ � i
ħ
Ht (43)

from which:

C(x; t)¼ e�
i
ħHtC(x; 0) (44)

The operator thus defined is called the evolution operator or propagator
and is sometimes denoted as U(t). Differentiating U(t)¼ e�

i
ħHt, we see that

U(t) satisfies the TDSE:

iħ
dU(t)
dt

¼HU(t) (45)

Eqn (44) is strictly valid for a time-independent Hamiltonian, but
eqn (45) is valid even for a time-dependent one. In the scenario described
above, consider the expectation value of an operator A as a function of
time:

hAit ¼hC(x; t)jAjC(x; t)i¼ e�
i
ħHtC(x; 0)

���A���e� i
ħHtC(x; 0)

D E
(46)

This result is expressed in the Schrödinger picture, where the time de-
pendence of the expectation value is included solely on the state vectors
|Ci, while the operators are stationary. One can define a different
representation where the state vectors are kept constant in time, but
the operators evolve with time. Such a representation is called the
Heisenberg picture. It is accomplished by defining the Heisenberg picture
state vector |CHi in terms of the Schrödinger picture state vector |CSi as:

jCH(x; t)i¼ je i
ħHtCS(x; t)i (47)

From eqn (44), we see that |CH(x, t)i¼ |CS(x,0)i¼ |CH(x,0)i, thus proving
that |CH(x, t)i is stationary in time. The connection between an operator
AS in the Schrödinger picture and its counterpart in the Heisenberg
picture is given by:

AH(t)¼ e
i
ħHtASe�

i
ħHt (48)
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The expectation value of A in any of the pictures is, of course, the same
since they only differ in representation.

A somewhat intermediate representation between the Schrödinger and
Heisenberg representations is the interaction picture. Consider a par-
titioning of the full Hamiltonian as H¼H0 þ V , as we have seen when
discussing perturbative methods, where H0 is a Hamiltonian for which
the time evolutions are known. The interaction picture wavefunction is
defined by:

jCI(x; t)i¼ e
i
ħH0tCS(x; t)

��� E
¼ e

i
ħH0te�

i
ħHtCS(x; 0)

��� E
(49)

If most of the time evolution is due to H0 (i.e. V is considered a per-
turbation) then the forward propagation under H will be counteracted by
the backward propagation due toH0. Thus,CI undergoes much less time
evolution than CS in the same situation.

2.3 Time-dependent perturbation theory
Arguably, the most popular theory for treating time-dependent quantum
phenomena is perturbation theory. We have encountered its principles
when discussing MBPT above (Section 1.5). One can outline a time-
dependent formalism in a remarkably similar way to the static case. We
start by partitioning the total time-dependent Hamiltonian in two parts
according to H¼H0 þ lH1. Here, H0 is a time-independent Hamiltonian
for which we know at least an approximate solution for its time evolution.
H1 is regarded as a perturbation, i.e. the effect of H1 in the evolution of
the system is much smaller than the effect of H0. The parameter l is
introduced as an ordering parameter, similar to its role in MBPT, and will
ultimately be set to unity.

We proceed by expanding the wavefunction C(x,t) in a power
series in l, substituting the expansion into the TDSE, and equating
like powers of l. This process yields a series of equations for the
different orders of perturbation corrections to the wavefunction. Solv-
ing the equations and performing some algebraic manipulations,
one arrives at various expressions for the corrections to the
wavefunction.5

C(1)(x; t)¼ 1
iħ

ðt
t0

dt0e�
i
ħH0(t� t0)H1 t0ð Þe� i

ħH0(t0 � t0)C 0ð Þ(x; t0) (50)

C(2)(x; t)¼ 1

(iħ)2

ðt
t0

dt0
ðt0
t0

dt00e�
i
ħH0(t� t0)H1(t0)e�

i
ħH0 t0 � t00ð ÞH1(t00)

� e�
i
ħH0(t00 � t0)C(0)(x; t0)

(51)

Further corrections can be derived, although the expressions
become increasingly complex to integrate. Here, we have assumed that
C(x,t0)¼C(0)(x,t0), i.e. the total wavefunction at the initial time is the
unperturbed wavefunction under the effect ofH0 only. If the perturbation
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is finite in time, such as the case of a laser pulse (e.g. pump–probe ex-
periments), we can set t0¼ 0, where the origin of time is set before the
perturbation takes effect. If one is treating a prolonged exposure to an
electric field (e.g. regular UV-Vis spectroscopy), it is better to consider the
perturbation as always-existing or steady-state. In this case, we set
t0!�N.

A different approach to perturbation theory can be taken. Above, we
found a perturbative correction to the wavefunction in the Schrödinger
picture, following a similar approach as the RSPT. Alternatively, one
can also use the interaction picture to search for corrections to the
Schrödinger picture propagator U(t,t0), since in this representation
the perturbation is entirely due to the perturbation operator. For this, we
define the zeroth-order propagator U(0)(t,t0), associated with H0, which
satisfies the TDSE:

iħ
@

@t
U 0ð Þ t; t0ð Þ¼H0U 0ð Þ t; t0ð Þ (52)

We can then define an interaction picture propagator (see the definition
of the interaction picture wavefunction, eqn (49))

UI(t; t0)¼ e
i
ħH0(t� t0)e

i
ħH(t� t0) ¼U (0)y(t; t0)U(t; t0) (53)

which satisfies the following TDSE:

iħ
@

@t
UI(t; t0)¼HIUI(t; t0) (54)

where:
HI(t)¼ e

i
ħH0(t)H1(t)e�

i
ħH0(t) (55)

is the interaction picture Hamiltonian. Eqn (54) can be iteratively solved
exactly to arrive at:

UI(t; t0)¼ 1þ
XN
n¼1

U (n)
I (t; t0) (56)

where:

U (n)
I (t; t0)

¼ 1
(iħ)n

ðt
t0

dtn

ðtn
t0

dtn� 1 � � �
ðt2
t0

dt1H1 tnð ÞH1 tn� 1ð Þ � � �H1(t1)UI(t; t0)
(57)

The causality constraint t4tn4tn�14� � �4t14t0 is applied. By setting
UI(t1,t0)¼ 1, which amounts to H¼H0, and replacing in eqn (56)
and (55), one can use eqn (53) to derive the perturbation expansion for
the Schrödinger picture propagator:

U(t; t0)¼U (0)(t; t0)þ
XN
n¼1

U (n)(t; t0) (58)
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where:

U (n)(t; t0)¼ 1
iħð Þn

ðt
t0

dtn

ðtn
t0

dtn� 1 � � �
ðt2
t0

dt1U (0)(t; tn)

�H1(tn)U 0ð Þ(tn; tn� 1)H1(tn� 1) � � �U (0)(t2; t1)�H1(t1)U (0)(t1; t0)

(59)

If we substitute U (0) t; t0ð Þ ¼ e�
i
ħH0(t� t0) into eqn (58) and (59) and apply the

results to C(0)(t0), we arrive at the same expressions in eqn (50) and (51) for
the time-dependent corrections to the wavefunction. Notice that each of the
approaches just described arrive at the same result, which is a correction to
the total wavefunction in terms of an unperturbed wavefunction C(0). In
practice, we do not have an exact solution of the TDSE for C(0). Therefore,
our corrections will be applied on an imperfect reference. Since the time-
dependentC(0) will always be represented by a time-independent imperfect
reference (such as a HF or CI wavefunction), perturbative methods will
exacerbate the flaws of this reference, demanding care in its application.

By adequately considering different forms of perturbation and using the
basic perturbation formulas outlined above, various spectroscopic techni-
ques can be simulated, and the wavefunction dynamics and other prop-
erties can be obtained. To illustrate, let us consider one-photon absorption
and emission spectroscopies. We will provide a sketch of the theory, and
more details can be found elsewhere.5,68 We assume the BO approximation
and describe our system as composed of two states: the initial state with
HamiltonianHa, which is typically the ground state but not necessarily, and
the final excited state after absorption of a photon with HamiltonianHb. In
the dipolar approximation, the interaction of matter with light is considered
to be independent of position, and the potential due to the light is�l � e(t),
where l is the molecular dipole moment and e(t) is the electric component
of the radiation.

Here, we will consider a continuous wave, such that

E(t)¼ E0 cos(ot)¼ 1
2
E0(eiot þ e�iot). We momentarily disregard the vector-

ial nature of l and e . We can then define, in the perturbation regime,
H¼H0 þH1, such that:

H0 ¼
Ha 0

0 Hb

 !
(60)

H1 ¼
0 � 1

2
mEIe�iot

� 1
2
mESeiot 0

0BB@
1CCA (61)

Here, � 1
2
mESeiot is related to the emission (scattering) process, while

� 1
2
mEIe�iot is related to the absorption of the incident light. If we assume
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that before excitation there is no amplitude in the excited state, we can
write the zeroth-order wavefunction as:

C(0)(x; 0)¼
Ca

0

 !
(62)

Substituting the equations above into our result for the first-order cor-
rection to the wavefunction (eqn (50)) and solving, one arrives at the
following result (omitting a phase factor; see ref. 5 for details):

C(1)(x; t)¼ 1
2iħ

ðt
�N

e�
i
ħHb(t� t0) m � EIe�ioIt0

n o
e�

i
ħEit

0
Ci(x; �N)dt0 (63)

with Ci(x,�N) being an eigenfunction of the ground state Hamiltonian
Ha. Now, the absorption spectrum can be defined as the ratio of the
number of photons absorbed per unit time to the number of incident
photons per unit area per unit time. The number of photons absorbed
per unit time is equal to the rate of change of the excited state popu-
lation, which, in the perturbative limit, is given by the time derivative of
hC(1)(x,t)|C(1)(x,t)i. Using eqn (63) and differentiating this definition with
respect to t, we arrive at the expression for the time derivative of the
upper state population. We than divide the result by the number of in-
cident photons per unit area per unit time, perform rotational averaging
of the light field (remembering its vectorial nature), and obtain the ab-
sorption cross section:

s(oI) ¼ 8pħoI

EI2c
d
dt

hC(1)(x; t)jC(1)(x; t)i

¼ 2poI

3ħc

ðN
�N

hCi x; �Nð Þjme�iHbt=ħ mjCi x; �Nð Þiei ~otdt

(64)

where oI is the frequency of the incident light and we defined

~o¼ Ei

ħ
þoI. If we consider a complete set of excited eigenfunctions,

obtained, for example, as a solution of the unperturbed Hamiltonian, we
can expand our total wavefunction in this set and insert in eqn (64), thus
obtaining the popular energy frame formula for the electronic absorption
(UV-vis) spectrum in the Franck–Condon regime:

s(oI)¼ 4p2oI

3ħc

X
n

hCnjmjCiij j2d ~oI �onð Þ (65)

Before we discuss the significance and interpretation of eqn (65), it is
important to say that eqn (64) and (65) can be obtained from a different
approach, called linear response theory (LRT).5,7 In general, LRT is con-
cerned with finding an approximation for the expectation value of an
operator hCjAjCi in the perturbative regime, if one considers only the
first order in perturbation (thus, linear response). This is attained by
expanding hCjAjCi into a Taylor series in terms of the perturbation H1.
Each term will be related to a different molecular property.
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In the case of molecular absorption, the interaction of light with matter
generates a dipole (polarization). In a general formulation, the polarization
P will be expanded in a power series of the field strength E. To linear ap-
proximation, we can keep the first term P¼ wE only, where w is the
macroscopic susceptibility. In the microscopic level, this is related to the
polarization hCjmjCi. Expanding this in terms of the field perturbation,
one can compare the terms to the expansion of C and arrive at terms
Pnm¼hC(n)|m|C(m)i, called coherences. If we consider the coherence
P01(t)¼hC(0)|m|C(1)i, using the definition of C(1) (eqn (50)), we arrive at:

P01(t)¼ i
ħ

ðN
0
hC(0)jme�iHb t

ħ mjC(0)iE(t� t)dt (66)

The quantity C00(t)¼hC(0)jme�iHbt
ħ mjC(0)i is called the wavepacket correl-

ation function. We see that P01(t) can be written as a convolution of C00(t)
with a contribution of the field. C00(t) is the response function in this
case. By applying a Fourier transform to eqn (66) and using the definition
of the absorption spectrum, one can arrive at eqn (64) and (65).5 With this
formulation, we can thus interpret the absorption spectrum as the
Fourier transform of the wavepacket correlation function.

Eqn (65) is the workhorse of one-photon spectroscopy calculations.
This formulation of the excitation spectrum is sometimes referred to as
the sum-over-states approach, since the summation in the formula runs
through each of the eigenvectors of the reference wavefunction. The
quantity under the summation is the average dynamic polarizability in
the frequency space haio and is sometimes equivalently expressed as:7,69

haio ¼
X
n

hCnjmjCiij j2
~oI �on

(67)

or

ah io ¼
X
n

hCnjmjCiij j2
~oI �on

� hCnjmjCiij j2
~oI þon

� �
(68)

From LRT, one can interpret the perturbative absorption spectrum as
arising from the response of the dynamic polarizability of a system to
the radiation field. The spectrum is obtained by finding the poles of the
polarizability function, i.e. the points where ~oI ¼on, which makes the
value of haio!N. In such points, the photon frequency is in “resonance”
with the energy difference between states, resulting in electronic transi-
tion by absorption of the photon. The probability of each transition is
proportional to the numerator hCnjmjCiij j2—these matrix elements being
the transition dipole moment—, and can be used in different measures
(e.g. oscillator strength, Einstein coefficients, etc.) to calculate the inten-
sity of the absorptions.70 The result of such a calculation is a stick-like
spectrumwith positive amplitudes at each absorption frequency. These are
called vertical or Frank–Condon excitations, and do not consider the vi-
brational levels, which one can include by adding vibrational Hamiltonian
matrix elements in the formulation.68 The vibronic coupling accounts for
most of the band shape in electronic spectra. The temperature and solvent
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polarization are also contributors and can be included through a variety of
approaches, although it is not straightforward.71–85

To apply the polarizability-based approach above, one only needs to
know the set of ground and excited states wavefunctions. We recall once
again that such an approach carries all the usual problems related to the
choice of the reference wavefunction, and a complete set of Cn is un-
attainable, demanding the use of an approximate basis set. LRT (or RPA)
approaches are available in most software packages applied to a variety of
electronic models such as HF, DFT, VB, CI, and CASSCF. LRT applied to
CC methods are possible (e.g. LR-CC2), but the expressions derived in
this section are not suitable for non-variational wavefunctions. The poles
of the polarizability matrix are still a measure of excitation energies in
such cases, but the expression must be formulated in terms of the de-
rivative of the action Lagrangian (shown below). LR-CC formulations
suffer from many problems, including lack of size extensivity and con-
sistency. Notice that this procedure is primarily meant to obtain fre-
quencies and intensities of transitions (properties), rather than attaining
to calculate the wavefunctions and excited state dynamics, although
some qualitative characterisation of the wavefunctions is possible
through the consideration of the transition dipole moments.

2.4 Variational methods
The TDPT formalism above relies on an imperfect reference, in the sense
that no exact solution to the unperturbed wavefunction exists.
A variational theory of the TDSE is, in principle, exact and offers a more
reliable way of approximating the time-dependent wavefunction and
property calculations. Many possible formulations exist depending on
the choice of parameters and approximation schemes. Many variational
approaches are so-called local in time. This means that the wavefunction
at a time t0 ¼ tþDt is variationally optimised taking the wavefunction at t
as a reference. The reference can only be exact when t¼ 0, which is the
ground state stationary wavefunction C(x,0). Variational formulations
that are global in time are possible through numerical methods.

The main working equation of a variational formulation for the TDSE
is a stationary condition to the action integral defined as:

S[C]¼
ðt
t0

C i
@

@t
�H

���� ����C� �
dt0 (69)

Given a wavefunction ansatz, the variation dS of this action is minimised to
obtain the optimised variational wavefunction. By an analogous approach to
the HF method, one can build a time-dependent Fock operator with time-
dependent orbitals and energies as solutions and construct a time-dependent
SCF framework to optimise the (time-dependent) orbital coefficients in a fi-
nite atomic basis set.5,7 Naturally, this approach can be extended to all post-
HF methods as well as to VB methods. A similar approach can be used to
derive time-dependent Kohn–Sham equations in the TDDFT approach.7,86 In
general, for absorption spectroscopy, LRT will be applied for the calculation of
excitation energies and properties, arriving at the usual eqn (64) and (65).
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2.5 Propagators and equation-of-motion methods
We have come across the definition of an evolution operator or prop-
agator above, as an operator which maps C(x,t¼ 0)!C(x,t). After de-
fining our perturbed Hamiltonian for light–matter interaction, we arrived
at an expression which maps a wavefunction Ci (x,�N) into the first
order correction to the wavefunction C(1)(x,t) (eqn (63)). The quantity
multiplying Ci (x,�N) is, therefore, a propagator. When discussing LRT,
we have seen that this quantity leads to the correlation function, whose
Fourier transform can be interpreted as the absorption spectrum. Fur-
thermore, we have seen that this is equivalent to the response of the
average polarizability in the frequency domain haio plus constants. From
this, we can see that there is a close connection between the properties of
a propagator and time-dependent molecular properties such as the po-
larizability, which leads to excitation energies. Writing the TDSE in the
Heisenberg picture, one can in fact work directly with propagators,
without any need to consider expansions of the time-dependent wave-
function. If we Taylor-expand the expectation value of the dipole moment
operator hC|m|Ci in terms of the perturbation H1 as defined in eqn (61),
we arrive at a propagator-based expansion. It can be shown that the first
order term is the frequency dependent polarizability which we are already
familiar with. Propagators can be used in a broader way for a variety of
time-dependent formulations, going beyond perturbation theory or
variational approximations and even considering QFT formulations. For
this, one considers the calculation of the general propagators as solution
to their equation-of-motion (e.g. eqn (54)), thus avoiding the costly cal-
culation of corrections to the wavefunction. In this context it is common
to call the propagators Green’s functions, since they are essentially the
solutions to differential equations involving a linear differential oper-
ator.87 Such a treatment is beyond the scope of this text, but ref. 5, 7 and
69 discuss some propagator approaches in more detail.

A different approach to the calculation of excited states is what is
conventionally called equation-of-motion (EOM) methods. In this ap-
proach, one starts from the assumption that an excited state wavefunc-
tion Cn is produced from the ground-state wavefunction C0 by an
excitation operator Oy

n (with a corresponding de-excitation operator On).
Defining a Hamiltonian superoperator bH, or Liouvillian, as an object
that, when operating on an operator A, generates the commutator with
the Hamiltonian: bHA¼ H;A½ � (70)

one can see that, for exact state eigenfunctions, we have:

bHOy
njC0i¼HOy

njC0i�Oy
nHjC0i¼ (En � E0)O

y
njC0i (71)

Thus, when acting on the exact ground state wavefunction, bHOy
n returns

the excitation energy. Therefore, Oy
n is an eigenoperator of bH with

eigenvalue equal to the exact excitation energy. By seeking (approximate)
solutions to the eigenvalue equation above, e.g. by using an operator
basis to expand Oy

n, one can formulate a general theory based on these
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quantities and calculate excitation energies without the need to bother
about approximations to the time-dependent wavefunction. Although no
explicit mention of the equation-of-motion was made, the commutation
relations arising from such formulations resemble those found when
applying the equation-of-motion to operators in the Heisenberg picture,
as discussed in the paragraph above.69

Recall that, when discussing DSCF methods, we argued that CC wa-
vefunctions are not suitable due to their HF reference. The EOM tech-
nique can be applied to CC wavefunctions with a suitable expansion of
the excitation operators Oy

n for a given cluster exponential operator. This
is generally done by a similarity transform of the Hamiltonian such that
it commutes with the approximate Oy

n operator. To perform this, a CIS
matrix is used as an initial guess for the singles and doubles space
Hamiltonian. Currently, EOM-CCSD is the highest level of this approach
since reliable implementations for EOM-CCSD(T) or EOM-CCSDT have
not been developed.

EOM-CC methods are costly, but an alternative similarity transformed
EOM (STEOM) approach exists.88 In this version, a second similarity
transform to the Hamiltonian further compresses the space to the CIS
space only, thus decreasing the cost. Multireference formulations of this
approach are also available. A word of caution regarding these methods is
that they are not size consistent or extensive.

Except for the CC method discussed above, when applied to other
reference wavefunctions at the usual level of approximation considered
here, EOM, propagator, perturbative and variational methods all lead to
the same working equations for discussing electronic excitations. For
example, with a one-determinant closed-shell reference function and a
single excitation manifold, all methods yield the standard LRT (or RPA)
equations.69

2.6 Algebraic diagrammatic construction methods
The last class of methods to be discussed is the so called algebraic dia-
grammatic construction (ADC) methods, amongst which the most popular
approach is ADC(2).89 These methods can effectively include correlation
to the excited states through perturbative methods at a considerably
lower cost than the CI or CC approaches discussed above. The origin of
ADC methods lies in the propagators or Green’s function approach
briefly discussed above, but current developments rely on the Liouvillian
formalism similar to EOM methods.

Originally, for electronic transitions, the ADC method involved ex-
panding the polarizability propagator in the perturbative regime in terms
of diagrammatic perturbation theory. The MP partitioning of the
Hamiltonian (Section 1.5) is used to construct the wavefunctions, and the
perturbative order n to which this is carried out determines the ADC(n)
level.

Because of this, such methods include correlation, but are not suitable
for multireference systems, of which organometallic systems are an ex-
ample. Only excitation properties and energies are available through this
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formulation, with no excited state wavefunction obtained. However, by
using representations of the propagators (known as intermediate states
representation), akin to what is obtained by the EOM approach, the ADC
matrices can be built and used to calculate approximate wavefunctions.
These representations, from ADC(2) onward, are also correlated refer-
ences. ADC(2) offers good quality excitation spectra, comparable to the
EOM-CCSD approach, but with a cheaper and easier implementation. For
more details, see ref. 90.

One limitation of ADC lies in its single-reference framework, which
restricts its applicability to systems exhibiting open-shell or multi-
reference characters in their ground or excited electronic states.
A comprehensive multireference ADC (MR-ADC) formulation has been
proposed by Sokolov,91 achieved by integrating the Liouvillian formalism
with MRPT. This formulation extends the conventional ADC theory to
accommodate multiconfigurational reference wavefunctions. MR-ADC
methods are comparable in computational expense to low-order multi-
reference perturbation theories and are capable of calculating various
electronic spectra, including UV-Vis, X-ray absorption, and UV/X-ray
photoelectron spectra. MR-ADC calculations were, however, restricted to
small molecules due to their inefficient spin–orbital implementation.
Recent advancements by de Moura and Sokolov,92 incorporating spin
adaptation, density fitting, and automated code generation, promise to
significantly enhance the efficiency of MR-ADC, potentially enabling
calculations for systems with over 1500 molecular orbitals. A newly re-
ported application of this improved MR-ADC methodology in organo-
metallic chemistry involves the analysis of X-ray photoelectron spectra of
Fe(CO)5 and its photodissociation products (Fe(CO)4, Fe(CO)3) after ex-
citation with 266 nm light (Fig. 2).93 These calculations indicated that
core-hole screening, spin–orbit coupling, and ligand-field splitting are all
crucial factors in accurately reproducing the experimentally observed
chemical shifts in the transient Fe 3p XPS spectra of iron carbonyl
complexes.

3 Some applications in organometallic chemistry

The popularity of TDDFT methods for excited states cannot be overstated.
Their ease of use even by non-experts, wide availability, and capacity of
accounting for a major part of correlation effects at a fractional cost
compared to post-HF methods make for a highly attractive method. This
became clear in a 2010 survey, where, according to the statistics of the
papers published from 2007 to 2010 in the field of excited states, the use
of different methods is distributed as follows: TDDFT: 50%, single-con-
figuration methods: 23%, and multiconfigurational methods: 26%.94,95

Another, slightly more recent, survey shows a similar distribution with a
more refined classification.96 Other important reviews in the field ad-
dress a range of methods and exemplary organometallic systems such as:
(1) interpretation and accuracy of electronic absorption spectra, treat-
ment of long-range charge transfer states and spin–orbit coupling effects,
environmental effects, and dynamical and QM/MM methods;97 (2) binary
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metal carbonyl photodissociation, non-adiabatic relaxation, Jahn–Teller
and pseudo-Jahn–Teller effects, photoisomerization of transition metal
complexes, and coupled cluster response theory for electronic spec-
troscopy;98 (3) excited state dynamics of transition metal complexes, from
the wavefunction to the dynamical level.99

Despite the advantages and the remarkable success of DFT, we have
repeatedly emphasized in this text the many flaws of this method. We
have highlighted the necessity of benchmarking and carefully assessing
the quality of the results obtained against higher quality computational
methods and experiment. This is not a trivial task, and much is yet to be
done, but the following examples demonstrate progress in this area.
Latouche et al.100 benchmark DFT functionals and ECP basis sets against
experimental data for absorption energies of Pt(II) and Ir(III) complexes
(Fig. 3a). Paranthaman et al.101 investigate the performance of DFT and
relativistic ECP for Ru-based organometallic complexes (Fig. 3b). Garino
& Salassa102 review DFT and TDDFT methods for a variety of photo-
chemically active organometallic compounds. Harvey103 critically evalu-
ates the use of DFT to treat transition metal chemistry in general.
Niehaus et al.104 investigate the TDDFT description of charge transfer
excited states, using a series of 17 pseudo-square planar platinum(II) and
pseudo-octahedral iridium(III) complexes (Fig. 3c) that are known to
feature quite different localization characteristics ranging from ligand-
centred (LC) to metal-to-ligand charge transfer (MLCT) transitions.
Maschietto et al.105 call attention to the existence of spurious low-lying
excited states from TDDFT and offer a methodology to address the
problem.

Two recent examples illustrate interesting contrasts between TDDFT
and multiconfiguration methods. In the first, Costa et al.106 compare
TDDFT and CASSCF/MS-CASPT2 applied to the description of excited
states for the complex (CH3)ReO3 (Fig. 3d). Although both methods yield
similar energies, a small difference in the characterisation of the second
transition exists. This is a charge transfer from C and O to Re, but the
participation of C, as described by CASSCF/MS-CASPT2, is much smaller
than described by TDDFT. In their studies, the authors utilised the LB94
functional, which tries to correct for the wrong DFT asymptotic be-
haviour, but is found to be the worst amongst the tested functionals in
describing the excitation energies.106 In the second study, Escudero
et al.107 compared RASPT2/RASSCF to range-separated/hybrid DFT

Fig. 2 Iron carbonyl complexes investigated by Gaba et al.,93 together with their point-
group symmetries. All systems are depicted in their singlet states.
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methods in excited states of the Ru(II) bipyridyl complex trans(Cl)-Ru(bpy)-
Cl2(CO)2 (bpy¼bypyridyl, Fig. 3e). The authors discuss the difficulty in
partitioning the RAS subspaces, and benchmark various types of TDDFT
functionals including implicit solvent models. It is found that none of the
functionals can optimally describe all the excited states simultaneously.
However, the hybrid M06, B3LYP, and PBE0 functionals seem to be the
best compromise to obtain a balanced description of the excited states of
trans(Cl)-Ru(bpy)Cl2(CO)2, when comparing with the experimental
spectrum.107

Below, we will consider further applications and more critical assess-
ment of DFT and multireference methods in different contexts. The in-
tention is to highlight some of the complexities, successes, and
challenges in different fields.

3.1 Spin-crossover materials and photodevices
Spin-crossover (SCO) materials108,109 are a fascinating area of research in
organometallic chemistry, particularly in the context of first-row transi-
tion metals, where the electronic spin state can be reversibly switched
between high-spin and low-spin configurations by external stimuli. Ac-
curate prediction and understanding of SCO behaviour is crucial for the
development of novel materials with potential applications in sensors
and displays. Computational methods, in particular TDDFT and CASSCF/
CASPT2, play a central role in these investigations. For example, Phung
et al.110 have shown that a combined CASPT2/CC approach, using high-
quality CASPT2 with extensive correlation-consistent basis sets for va-
lence correlation and low-cost CCSD(T) calculations with minimal basis
sets, is efficient for spin-state energetics of a series of iron complexes

Fig. 3 Metal complexes mentioned in Section 3.
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(Fig. 4a), with errors estimated to be around 2 kcalmol�1 in favour of
the high spin states. Reimann & Kaupp111 used another composite
method, the CASPT2þdMRCI method, to calculate the SCO energy. For a
series of [Fe(He)6]

n1 test complexes, the approach reproduces the full
MRCISDþQ/CBS results with an accuracy of less than 0.04 eV. Cirera,
Via-Nadal, & Ruiz112 presented a systematic study on the performance of
different density functional methods to study SCO on first-row transition
metal complexes (Fig. 4b). Amongst the tested functionals, the hybrid
meta-GGA functional TPSSh with a triple-z basis set containing polar-
ization functions for all atoms gives the best results for different metals
and oxidation states, and its performance in predicting the correct
ground state and energy window for the occurrence of SCO is quite sat-
isfactory. Radoń113 also performed advanced benchmark studies show-
ing, for example, that NEVPT2 performs worse than CASPT2, and that the
double hybrid B2PLYP-D3 is able to provide a balanced description of
spin state energies for the four studied iron complexes simultaneously
(Fig. 4c). Such examples illustrate the continuous refinement of com-
putational methods to better capture the complex phenomena under-
lying SCO processes.

Fig. 4 Metal complexes mentioned in Section 3.1.
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Transitioning from SCO materials to photodevices, computational
studies have provided important insights for the development of
materials with optimal light emission properties. In the field of phos-
phorescent materials, which are central to the next generation of organic
light emitting diodes (OLEDs), understanding the photophysics and
relative position of the lowest energy triplet excitation, T1, is crucial and
has therefore been recently reviewed in various contexts. For example,
Powell114 has reviewed theories of phosphorescence in cyclometallated
complexes, highlighting the crucial role of both scalar relativistic effects
and spin–orbit coupling in accurately modelling the phosphorescent
properties. These effects, incorporated via TDDFT, provide quantitatively
accurate predictions of radiative decay rates, which are crucial for the
development of effective photodevices. Kumar & Escudero,115 in turn,
used domain-based local pair natural orbital CC Theory (DLPNO-CCSD(T))
to calculate the phosphorescence energies of a variety of Pt(II) complexes
(Fig. 4d) with potential application as components in phosphorescent
organic light-emitting diodes (PhOLEDs). This approach, which included
a rigorous test of various relativistic effects and a comparison of several
DFT functionals, revealed that M06HF performed the best. Finally,
Ludowieg et al.116 focused on the calculation of magnetic transition
dipole moments and rotational strengths using the relativistic two-
component TDDFT with ZORA. This approach was applied to evaluate the
phosphorescence dissymmetry factors and lifetimes of iridium com-
plexes based on N-heterocyclic carbenes and platinum helicenes (Fig. 4e),
showing excellent agreement with experimental data.

3.2 Imaging in life sciences
Organometallic compounds have traditionally been celebrated for their
catalytic ability, yet their potential in the realm of chemical biology, in-
cluding for bioimaging applications, is increasingly being recognised.117

Despite initial reservations about their stability and cytotoxicity under
physiological conditions, many compounds are proving to be invaluable
due to their unique physicochemical properties such as robust chemical
stability, structural diversity, and distinct photo- and electrochemical
behaviours.

One of the most noteworthy developments in the bioimaging area is the
use of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophores
(Fig. 5a),118 renowned for their high brightness and exceptional chemical
and photochemical stability. Recent advancements have seen BODIPY
derivatives being engineered to serve as multimodal imaging probes,
theranostic agents, and sensitisers for photodynamic therapy. The adapt-
ability of BODIPY synthesis allows for the creation of metal-based BODIPY
derivatives tailored for medical applications, merging the luminescent
properties of BODIPY with the therapeutic or diagnostic functions of metal
complexes. This synthesis strategy has led to the design of compounds that
not only act as potent cytotoxic agents but also facilitate real-time tracking
of their biodistribution and mechanism of action in vivo, enhancing the
understanding of their biological interactions.
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From a computational standpoint, accurately modelling the intricate
structures of organometallic compounds and their interactions within
biological systems is vital for predicting their performance and refining
their design. Recent studies, such as those by Feldt & Brown,119 have
utilised local CC methods to compute vertical excitation energies for a
benchmark set of seventeen BODIPY/aza-BODIPY molecules, comparing
these computational predictions with experimental results (Fig. 5b). These
studies demonstrated that methods like DLPNO-STEOM-CCSD offer ex-
cellent correlation with experiments, making it one of the most accurate
single-reference methods available. Similarly, Momeni & Brown120 (Fig. 5b)
conducted benchmark studies using TDDFT, revealing that the approach
faces challenges related to handling differential electron correlation and
the impacts of multireference character and double excitations, which
contribute to discrepancies in computational accuracy.

Recently, in collaboration with the groups of Braunschweig & da Silva Jr.,
we have developed a novel method for the late-stage electrochemical
diselenation of BODIPYs (Fig. 5c),121 revealing red-shifted absorption and
tuneable colour emission with substantial Stokes shifts in selenium-
containing derivatives. Photophysical analyses, supported by TDDFT and
DLPNO-STEOM-CCSD computations, showed that DLPNO-STEOM-CCSD
aligns closer with experimental results than TDDFT, although TDDFT
better captures energy differences due to cancellation of errors and
lack of size consistency of the CC approach. The selenium-containing
BODIPYs notably demonstrate selective staining of lipid droplets with dis-
tinct fluorescence, highlighting their potential in bioimaging applications.

Fig. 5 BODIPY and aza-BODIPY core plus derivative molecules mentioned Section 3.2.
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Postils, Ruipérez & Casanova,122 in turn, rationalised the electronic
structure of BODIPYs by combining a variety of quantum chemical
methods and computational tools. They showed that BODIPYs have a
mild open-shell character, which explains the usual failure of TDDFT
methods. By comparing a large number of methods, the authors con-
cluded that the S0!T1 transition energies are significantly improved by
using methods with double excitation effects, including post-HF, and
single-reference correlation methods such as ADC(2). Finally, Berraud-
Pache et al.123 used DLPNO-STEOM-CCSD to calculate the lowest vertical
excitation energies of more than 50 BODIPY molecules (Fig. 5d). The
method worked remarkably well, providing an accuracy of about 0.06 eV
compared to the experimental data. These examples show that the
DLPNO-STEOM-CCSD method is appropriate for studying the photo-
physical properties of medium to large organic compounds. The results
also emphasise the complexity of computational approaches and high-
light the need for continued refinement of these methods to improve
prediction accuracy.

3.3 Nanofabrication
Nanofabrication and metallisation of organic thin films have diverse
applications in fields such as energy harvesting, electronics, and sensing.
Two central experimental techniques in this domain include photo-
assisted chemical vapour deposition (PACVD)124–126 and focused electron
beam induced deposition (FEBID).127 PACVD utilises photoinduced
reactions to initiate the decomposition of organometallic precursors,
offering a viable method for metallising organic films at or near room
temperature. Conversely, FEBID enables the creation of 3D metallic
structures with sub-10 nm dimensions on both planar and nonplanar
surfaces. In this process, metal-containing precursor molecules are
physisorbed on a substrate and degraded by a focused high-energy
electron beam to yield a metallic deposit.

A critical aspect in the effectiveness of these nanofabrication techni-
ques is the selection of suitable organometallic precursors. From a the-
oretical perspective, understanding the photoabsorption spectra and the
dynamics of excited states following ligand dissociation is essential.
Theoretical studies, particularly employing TDDFT, have been instru-
mental in elucidating these aspects. For instance, Walker, McElwee-
White et al.124,125 have extensively studied the photoabsorption spectra of
ruthenium carbonyl complexes featuring either Z4 (Fig. 6a) or Z3 (Fig. 6b)
ligands. Their studies utilised hybrid functionals to characterise excited
states, assigned, e.g. as metal-to-ligand charge transfer or ligand-field
states. Similarly, Zlatar, Allan, & Fedor127 have utilised TDDFT calcula-
tions integrated with ZORA to analyse tetrakis(trifluorophosphine)plat-
inum(0), Pt(PF3)4, a model precursor for FEBID (Fig. 6c). Their studies not
only validated the computed electronically excited states up to 13 eV
through comparison with electron energy loss spectra, but also explored
potential energy curves for these states. They demonstrated that the
lowest excited states are either directly dissociative or proceed via conical
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intersections, facilitating dissociation pathways. Their findings under-
scored the predominance of the neutral dissociation channel over dis-
sociative electron attachment for Pt(PF3)4, a conclusion that may also
extend to other FEBID precursors.

3.4 Artificial photosynthesis
Artificial photosynthesis is a technology that replicates natural photo-
synthesis by using sunlight to split water into oxygen, protons, and
electrons; these electrons can then be used to reduce protons or carbon
dioxide (CO2) into energy-dense fuels like hydrogen or hydrocarbons. It
aims to provide a sustainable energy solution by converting solar energy
into chemical fuels, addressing the rising global energy demand and
costs associated with finite conventional fuels.128,129

The integration of computer-aided design with synthesis and spectro-
scopic characterisation has significantly advanced the development of
artificial photosynthetic systems. The employment of semiconductor
electrodes that are modified through the covalent attachment of mo-
lecular dyes enhances visible light absorption. Computational modelling
has proven indispensable in formulating sensitisers and anchoring
groups robust enough to operate under aqueous and oxidative con-
ditions, facilitating rapid electron transfer at the interfaces. Wavefunc-
tion-based methods, including EOM-CCSD, CASSCF, CASPT2, NEVPT2,
and MRCI, are increasingly being utilized in this field. For instance,

Fig. 6 Ruthenium and platinum precursors mentioned in Section 3.3.
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Head-Gordon et al.130 computationally investigated an iron(II) poly-
pyridine electrocatalyst (Fig. 7a) for the conversion of CO2 to carbon
monoxide, a complex synthesized by Chang, Long et al.131 They specif-
ically used CASSCF/NEVPT2 calculations to obtain static and dynamic
correlations, determining the energy differences between isomers of a
doubly reduced intermediate in the reaction.130 Additionally, List,
Kongsted et al.132 examined the efficacy of various single-reference
methods for assessing pigment–protein complexes, specifically in pre-
dicting the relative site energies and transition moments of the Q bands
in the bacteriochlorophyll a (BChl a) pigments of the Fenna–Matthew–
Olson (FMO) complex, comparing these against a hybrid DFT/MRCI ap-
proach (Fig. 7b).

Naturally, the computational demands of these methods restrict their
use primarily to benchmark smaller molecular models. As a more cost-
effective alternative, TDDFT is extensively utilised in artificial photo-
synthesis and the calculation of absorption spectra of dyes and
nanoclusters. To enhance the accuracy, especially for charge-transfer
excitations, sophisticated functionals such as range-separated hybrid
functionals have been developed, showing considerable promise in im-
proving predictive performance in the field.

4 Final remarks

In this chapter, we have explored a comprehensive array of quantum
mechanical methods for modelling excited states in organometallic
chemistry. The landscape of computational strategies is vast and nu-
anced, requiring a thorough understanding of each method’s theoretical
foundations and practical applications. From fundamental wavefunction
methods like Hartree–Fock, configuration interaction, and coupled-
cluster to the more computationally efficient density functional theory

Fig. 7 Examples of organometallic systems relevant to light-harvesting applications. For
the iron complex, bpyRPY2Me¼6-(1,1-bis(pyridin-2-yl)ethyl)-2,20-bipyridine; NHEt¼
ethylamine. All H atoms pertaining to C–H bonds are omitted for clarity.
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and its time-dependent variants, each approach has its strengths and
limitations. We discussed the intricacies of perturbative methods, mul-
tireference approaches, and the importance of considering relativistic
effects, especially for systems involving heavy atoms. Valence bond
methods, while less common in organometallic contexts, provide an al-
ternative perspective aligned with the chemist’s traditional view of
chemical bonding. The chapter also highlighted the challenges and ad-
vances in excited state calculations, emphasising the need for appropri-
ate method selection to balance computational cost and accuracy.
Techniques such as the DSCF approach, time-dependent perturbation
theory, and the equation-of-motion methods offer robust frameworks for
studying dynamic properties and interactions of molecular systems with
light. Furthermore, we discussed several applications of these theoretical
approaches in the field of organometallic chemistry. Particular focus was
given to the theoretical description of organometallics in various con-
texts, including spin-crossover materials and photodevices, bioimaging,
nanofabrication, and artificial photosynthesis. Overall, we have provided
a detailed roadmap for understanding and applying computational
methods to model excited states in organometallic systems. As compu-
tational resources and algorithms continue to advance, the accuracy and
applicability of these methods will only improve, opening new frontiers
in chemical research and industrial applications.
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