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Auto-Sklong: A New AutoML System
for Longitudinal Classification

Simon Provost
University of Kent
Canterbury, United Kingdom
simon.gilbert.provost@ gmail.com

Abstract—Automated Machine Learning (AutoML) addresses
the challenge of selecting the best machine learning algorithm
and its hyperparameter settings for a given dataset. However,
existing AutoML systems typically focus on standard classifica-
tion tasks and cannot directly exploit temporal information e.g.
in longitudinal datasets, which contain multiple measurements of
the same features over time — a common scenario in biomedical
applications. We introduce Auto-Sklong, the first AutoML system
that includes longitudinal classification algorithms in its search
space. Experiments with 20 age-related disease datasets from
the English Longitudinal Study of Ageing demonstrate that
Auto-Sklong significantly outperforms a state-of-the-art AutoML
system (Auto-Sklearn) and two baseline random forest methods
in terms of predictive accuracy.

Index Terms—AutoML, Longitudinal Data, Classification, Su-
pervised Machine Learning, Age-Related Diseases

I. INTRODUCTION

Longitudinal datasets contain information about the same
cohort of individuals over time, with features repeatedly mea-
sured across different time points (also called “waves”) [1],
[2]. Analysing such data on age-related diseases is crucial due
to the increasing proportion of elderly populations worldwide,
which strains healthcare and socioeconomic systems.

Standard supervised machine learning (ML) methods are not
tailored for longitudinal data on patients’ health trajectories
[3], highlighting the need for new ML methods designed for
such data. We focus on the longitudinal classification task,
aiming to predict a class variable (e.g., presence or absence
of an age-related disease) based on longitudinal features.

There are two broad approaches to applying classification
algorithms to longitudinal data: (1) data transformation, where
longitudinal data are converted into standard non-longitudinal
format, allowing the use of standard classification algorithms;
and (2) algorithm adaptation, where classification algorithms
are adapted to directly handle longitudinal data, leveraging
temporal information to improve accuracy [2], [4].

Hence, there are currently several options for applying
classification algorithms to longitudinal data, and an important
open question is: What is the best classification algorithm
and hyperparameter settings for a given input dataset? This
question is central to Automated ML (AutoML), a sub-area of
ML with numerous systems proposed in the literature [5], [6].

AutoML systems search for the best classification pipeline
(including algorithm and preprocessing methods) and their
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best hyperparameter settings by iteratively evaluating candi-
date pipelines’ predictive accuracies. This search often outper-
forms manual algorithm selection. However, existing AutoML
systems generally address standard classification tasks [5] and
cannot directly exploit temporal information in longitudinal
data. Applying them to longitudinal data requires data trans-
formation, which may be suboptimal given the availability of
algorithms that directly handle longitudinal data [4].

To address this gap, we propose Auto-Scikit-Longitudinal
(Auto-Sklong), which, to the best of our knowledge, is the
first AutoML system with a search space that includes lon-
gitudinal classification algorithms. Developing an AutoML
system [or longitudinal classification is more challenging than
for standard classification because it should encompass both
data transformation and algorithm adaptation approaches, to be
more flexible and provide more options for the search method.

Auto-Sklong follows this flexible approach by including in
its search space classification algorithms and feature selection
methods based on both data transformation and algorithm
adaptation. We evaluated Auto-Sklong on 20 real-world lon-
gitudinal datasets from the English Longitudinal Study of
Ageing (ELSA) [7], involving combinations of two types of
biomedical features (Nurse and Core data) and 10 age-related
diseases as binary class variables. We compared Auto-Sklong
with three approaches: (a) Auto-Sklearn [8], a state-of-the-
art AutoML system for standard classification; (b) standard
random forest (RF) [9]; (c) a longitudinal version of RF [10].

The results have shown that the Auto-Sklong achieves in
general significantly better predictive accuracy than Auto-
Sklearn and the two versions of RF used as baselines.

The remainder of the paper is organised as follows. Section
IT describes the background and related work. Section III
introduces our proposed AutoML system. Section IV describes
the experimental setup. Section V reports the computational
results and their discussion. Finally, Section VI summarises
our findings and suggests future work.

II. BACKGROUND

A. Longitudinal Classification

Longitudinal classification is a variant of supervised learn-
ing where features are measured at multiple time points
(waves) [2], e.g., cholesterol levels measured over several



waves. It is particularly relevant in biomedical applications,
as patient data are often collected over long time periods.
The goal is to learn a model that predicts the class label (V")
for an instance while accounting for the evolution of feature
values over time, i.e., to learn a classifier function of the form:

Y« f(Xi1,X12,..., X7,

X531, X52,...,X57)

where X; ; is the value of the i-th feature at the j-th wave,
1 =1,...,J, 5 = 1,...,T, with J features and T' waves.
The classifier function f(-) must account for temporal de-
pendencies among feature values. Note that the features are
longitudinal, but the class variable is not; the goal is to predict
the class label at a single wave (usually the most recent wave).
There are two main approaches for handling longitudinal
data [2]. The first is data transformation, where longitu-
dinal data are transformed into standard, “flattened” non-
longitudinal data, allowing the use of standard classification
algorithms. However, this may lead to loss of information
about temporal changes. The second approach is algorithm
adaptation, which involves using classification algorithms
designed to directly handle temporal variations in features.
Both approaches are used in the proposed AutoML system.

B. Automated Machine Learning (AutoML)

AutoML addresses the Combined Algorithm Selection and
Hyperparameter (CASH) optimisation problem [11], which
can be formulated as a bi-level optimisation problem [12].
The upper level selects the best ML algorithm or pipeline
(including data preprocessing methods), and the lower level
optimises hyperparameters for those algorithms/methods, aim-
ing to minimise a predefined loss [unction on a validation set.

Consider an input dataset D), divided into a training set
Dyyqin and a validation set D,,,;. The objective of an AutoML
system is to minimise a predefined loss function, L(.). For
classification tasks, this might be e.g. the Area Under the
Receiver Operating Characteristic curve (AUROC) [13].

The search space of an AutoML system usually consists
of several classification algorithms and data pre-processing
methods (forming a classification pipeline), and an AutoML
system aims at solving the following optimisation equation:

Ay. = argmin L,y (Agi)w*,le),
A e AN eND ' )
s.t. w* = argmin £tmm(AE\Z,)w, Dirain)s
w

where A* is the optimal algorithm with its optimal hyper-
parameter settings A\*, and w* are the parameters of the
model learnt by A* with A\*. The system searches for the
algorithm and hyperparameter settings that minimise L4, the
loss on D,q;, with the algorithm trained to minimise L¢yqin,
the loss on Dyyqin. Each i-th algorithm A® has its own
hyperparameter space A® | and the i-th candidate solution is
denoted Agi)w.

A search method navigates the search space. Bayesian
optimisation (BO) is a popular iterative method for optimising
computationally intensive black-box functions [14], [15]. BO
balances exploration and exploitation using a surrogate model
to approximate the relationship between an ML pipeline’s con-
figuration and its predictive accuracy. It employs an acquisition
function, such as Expected Improvement (EI) [16], to select
the next configuration, iterating until a stopping criterion is
met, and it returns the best solution found, A3.

* .
N

C. Related Work on AutoML for Longitudinal Data

Most existing AutoML systems focus on standard (non-
longitudinal) classification tasks, requiring longitudinal data to
be transformed into standard tabular format before application.
This transformation can be suboptimal due to the loss of
temporal information.

An exception is the work in [17], which proposes a BO
method for data where both the features and the class variables
are longitudinal. This method learns a classifier for each
time point and uses a new acquisition function that considers
classifiers’ accuracies across all time points, increasing the
likelihood of selecting classifiers that perform well overall.

The BO in [17] differs from the AutoML system proposed in
this work (Auto-Sklong, see Section III) in four major ways:
(1) it learns separate “local” classifiers for each time point
by flattening the data, whereas Auto-Sklong learns a “global”
longitudinal classifier from all time points; (2) its search
space lacks longitudinal classification algorithms, while Auto-
Sklong’s search space contains several such algorithms; (3) it
requires both features and class variables to be longitudinal;
whereas Auto-Sklong handles data where only features are
longitudinal and the class variable is available at a single
time point (as in our experiments); (4) it addresses only
hyperparameter optimisation, while Auto-Sklong addresses the
full CASH problem, also including algorithm selection.

There are AutoML systems for multivariate time-series data
[3], such as AutoGluon-TimeSeries [18]. However, there are
some differences between time-series and longitudinal data.
In particular, time-series data typically contain only numerical
variables and many time points; whereas longitudinal data
typically include both numerical and categorical variables
(particularly in biomedical applications) and have few time
points (e.g., 4-8 in our datasets). Thus, some techniques often
used in time-series data, such as sliding windows, are generally
not suitable for longitudinal data. Hence, time-series AutoML
systems are not discussed further in this work.

III. AUTO-SKLONG: A NOVEL AUTOML SYSTEM
TAILORED FOR LONGITUDINAL CLASSIFICATION

This section introduces Auto-Sklong, an AutoML system
specifically designed for longitudinal classification. It is —
to the best of our knowledge — the first AutoML system
whose search space includes both longitudinal and standard
(non-longitudinal) classification algorithms, the latter applied
to longitudinal data via data transformation. Importantly, Auto-
Sklong determines whether traditional or longitudinal methods



are better suited for the input dataset by evaluating their
performance during an iterative search process.

A. Constructing Classification Pipelines based on Auto-
Sklong’s Sequential Search Space

Auto-Sklong iteratively creates and evaluates candidate clas-
sification pipelines based on a search space of ML algo-
rithms and feature selection methods, each with candidate
hyperparameter settings. Each candidate solution is built in
three sequential steps by selecting: (1) a data preparation
approach; (2) a feature selection method (or none); and (3)
a classification algorithm. Each step’s choices depend on
previous steps. We describe the options in each step below. An
overview of Auto-Sklong’s search space is shown in Figure 1.

Step 1 — Data Preparation: Auto-Sklong randomly se-
lects either the data transformation or algorithm adaptation
approach, each with a 50% chance, which determines the
available methods in Steps 2 and 3. The algorithm adaptation
approach, called MerWavTime(+) (“Merge Waves and keep
features’ Time indices”) in [2], preserves temporal information
by maintaining the time indices of all features [19]-[21];
allowing the use of longitudinal methods from our Sklong
library to learn temporal patterns.

The data transformation approach converts longitudinal data
into standard tabular form, limiting Steps 2 and 3 to use non-
longitudinal methods from Scikit-Learn [8]. Auto-Sklong ran-
domly selects one of 10 data-flattening methods, categorised
into three groups, viz.:

(a) Using an aggregation function (mean or median) to
replace all values of a longitudinal feature across waves with
a single value [22], [23], producing a single-wave dataset.

(b) Merging all features from all waves into a single
set, disregarding time indices; different values of a feature
across time points are treated as distinct features [24], [25].
This approach is called MerWavTime(-) (“Merge Waves and
discard features’ Time indices”) in [2].

(c) Treating each wave as a separate dataset, learning a
classifier for each wave, and combining their predictions into
a final label [23]. The combination can be done using various
methods within a voting or stacking strategy. This approach is
called SepWav (“Separate Waves”) in [2].

The aggregation function and MerWavTime(—) approaches
are intuitive and widely utilised in the literature. The SepWav
approach is more elaborated and has been utilised in some
research (e.g., [23]); however, some of the ways for merging
the classifiers’ predicted labels listed above can be considered
a novel contribution of this work.

Step 2 — Feature Selection: Based on Step 1’s result, Auto-
Sklong either selects a feature selection method or proceeds
without it. In the data transformation approach, the system
randomly decides whether to include the standard Correlation-
based Feature Selection (CFS) method [26]. In the algorithm
adaptation approach, it randomly decides whether to include

“Exhaustive CFS per Group” (Exh-CFS-perGr), a longitudinal
variation of CFS [21], [27].

If Exh-CFS-perGr is chosen, its hyperparameter “phase” is
set to either “Phase 1 only” or “Phase 1 and 2” (default).
“Phase 1 only” applies CFS to temporal variations of each
feature to select the best ones, merging them into a single set.
“Phases 1 and 2” performs Phase 1 and then applies standard
CFS to the selected features plus any non-longitudinal features.

Step 3 — Classifier Selection: Auto-Sklong randomly
chooses a classification algorithm (among candidate algo-
rithms resulting from Step 1) and randomly sets its hyper-
parameters.

Table III lists the candidate traditional algorithms and
their hyperparameter settings following the data transformation
approach; Table IV lists the longitudinal algorithms and their
hyperparameters following the algorithm adaptation approach.

Among the 5 longitudinal algorithms, 4 (“Lexico Random
Forest”, “Lexico Decision Tree”, “Lexico Deep Forest”, and
“Lexico Gradient Boosting”) are decision tree-based methods
that use lexicographic optimisation to favour features mea-
sured in recent waves, based on the principle that recent
measurements are more predictive and acceptable to users
(e.g., a recent cholesterol level is more relevant than an older
one). “Lexico Random Forest” and “Lexico Decision Tree”
were described in [10], while “Lexico Deep Forest” and
“Lexico Gradient Boosting” are novel lexicographic versions
of the deep forest [28] and Gradient Boosting [29] algorithms.

Auto-Sklong’s search space also includes Nested Trees [30],
a longitudinal algorithm where each node of an outer decision
tree is an inner decision tree built from temporal variations of
the same longitudinal feature.

A limitation of Auto-Sklong’s current search space is the
absence of deep neural network methods for temporal data
[31]. We focus on decision tree ensembles because they are
the state-of-the-art for tabular data, often outperforming deep
learning [32], [33], and are generally much faster — an
important factor in AutoML. In any case, the current search
space has already yielded good results — see Section V.

B. Search Strategy and Implementation Details

Auto-Sklong (Scikit-Learn API compliant [8]) supports 4
search methods: BO, Evolutionary Algorithms, Successive
Halving, and Random Search [5]; the latter 3 were imple-
mented via the General Automated Machine Learning Assis-
tant (GAMA) [34]. In this work, we used Auto-Sklong with
its default BO method with Expected Improvement as the
acquisition function [5]. BO was implemented within GAMA,
enhanced with SMAC3 [35].

Auto-Sklong can output classification pipelines containing
both longitudinal and non-longitudinal methods. It achieves
this by utilising our Longitudinal ML toolkit, Sklong (short
for “Scikit-Longitudinal”), for longitudinal methods, and the
Scikit-Learn library [8] for non-longitudinal methods.

Both Auto-Sklong and Sklong are open-source and available
on GitHub: Auto-Sklong and Sklong.



Step-1

Data Preparation Step-2 Feature Selection Step-3 Classifier Selection
MerWavTime(-) Decision Tree
q F
Aggregation Funct G Random Forest
Mean & Median Extra Trees
Sklong
Separate Waves
Voting Stacking
Majority Decision Tree Deep Forest
Decay Linearly Random Forest
Decay Exponentially Logisitic Regression . .
Cross-Validation Perf. Gradient Boosting

Fig. 1: Auto-Sklong’s Sequential Search Space: The 3 steps to construct a classification pipeline. Gold-yellow (lighter
shade) and blue-navy (darker shade) colours indicate longitudinal and non-longitudinal methods, respectively. The ML library
used in each step is noted at the bottom of each box.

IV. EXPERIMENTAL SETUP

A. Datasets Used in the Experiments

We used 20 longitudinal datasets from [36], based on the
ELSA database [7], which tracks United Kingdom participants
aged 50 or older through repeated interviews. The ELSA-
Nurse datasets consist of biomedical data collected every four
years by health professionals, while the ELSA-Core datasets
come from core interviews conducted every two years. Each
dataset combines either Nurse or Core features with one of
10 age-related diseases as the binary class variable from wave
8. The ELSA-Nurse datasets contain 7,096 instances and 140
features from waves 2, 4, 6, and 8. The ELSA-Core datasets
have 8,405 instances and 171 features from waves 1-7 (plus
age from wave 8). Details of dataset creation are in [36].

In the diabetes dataset with Nurse data, we removed the lon-
gitudinal feature “HbAlc” because it is directly used clinically
to diagnose diabetes, making its use for prediction “unfair”.

Table I presents the class distribution of each dataset,
showing the percentage of positive instances (individuals with
the disease) and the class imbalance ratio — the number of
majority (negative) instances divided by minority (positive)
instances — for both Nurse and Core datasets.

TABLE I: Class distribution in each dataset

Posit. Posit. Class Class
Disease class % | class % imbalance imbalance
(Nurse) (Core) ratio (Nurse) | ratio (Core)
Arthritis 42.57% 39.65% 1.35 1.52
Hbp 40.21% 38.72% 1.49 1.58
Cataract 32.72% 29.60% 2.06 2.38
Diabetes 13.33% 12.83% 6.50 6.80
Osteoporosis 9.22% 8.45% 9.85 10.84
Stroke 5.93% 5.45% 15.86 17.35
Heart attack 5.65% 5.25% 16.70 18.06
Angina 3.64% 3.39% 26.51 28.49
Dementia 2.09% 1.92% 46.95 51.20
Parkinsons 0.93% 0.89% 106.53 111.07

B. Evaluating Predictive Accuracy

Predictive accuracy was assessed using the well-known Area
Under the ROC curve (AUROC) [13], which is also the
optimisation measure for Auto-Sklong and Auto-Sklearn.

We used nested cross-validation to evaluate each AutoML
system. The dataset was divided into 5 outer folds for the outer
cross-validation. Each outer fold served once as the test set,
with the remaining folds used for training. For each training
set, an inner 5-fold cross-validation measured the AUROC of
candidate solutions evaluated by the BO search. The reported
AUROC results are the mean values over the 5 outer test
sets. The two RF methods were evaluated using standard 5-
fold cross-validation without inner cross-validation, and their
AUROC results are also mean values over the 5 test sets.

C. The AutoML systems’ and Baseline Methods’ Settings

We compared Auto-Sklong against 3 other methods: (a)
Standard Random Forest (RF) from Scikit-learn [8], a non-
longitudinal baseline; (b) Lexicographic RF (implemented in
Sklong), a longitudinal baseline [10]; (c) Auto-Sklearn [37], a
state-of-the-art AutoML system for standard classification.

The first two baseline methods used default hyperparameter
settings, as RF’s defaults generally perform well [38]. Since
Auto-Sklearn and standard RF do not include longitudinal
methods, they were applied after transforming the longitudinal
data into standard tabular format using the MerWavTime(-)
approach (see Subsection III-A). Auto-Sklearn was used with
default settings, including its meta-learning and post-hoc en-
sembling [39], which are not available in Auto-Sklong.

Both AutoML systems were given a runtime budget of
24 hours per run (i.e., per outer fold of the nested cross-
validation) and a maximum evaluation time of 1,000 seconds
per candidate solution during inner cross-validation. Each run
was allocated one Intel Xeon E5520 CPU and 20 GB of RAM.



V. COMPUTATIONAL RESULTS AND DISCUSSION

Table II shows the AUROC results for 4 systems / methods:
the proposed Auto-Sklong, Auto-Sklearn, and two baseline RF
methods (standard and longitudinal). Results are shown across
the 20 datasets described in Subsection IV-A — 10 with Nurse
(N) data and 10 with Core (C) data from the ELSA study. For
each dataset, the best result is highlighted in bold.

Auto-Sklong achieved the highest AUROC in 13 of the 20
datasets, while Auto-Sklearn was superior in the remaining 7
datasets (mainly Diabetes, HBP, and Cataract datasets).

We compared Auto-Sklong to each of the 3 other methods
using a two-tailed Wilcoxon signed-rank statistical test [40] at
the significance level a = 0.05. This non-parametric test does
not require the assumption of normality. The test results in-
dicated that Auto-Sklong’s AUROC values were significantly
better than those of Auto-Sklearn (p = 0.025), standard RF
(p<0.001), and lexicographic RF (p<0.001).

Interestingly, Auto-Sklong outperformed Auto-Sklearn de-
spite  Auto-Sklearn’s advanced meta-learning and post-hoc
ensembling procedures, which are not present in Auto-Sklong.

Meta-learning [39] provides a warm-start set of candidate
solutions based on classifiers that performed well on similar
datasets. However, since Auto-Sklearn’s meta-learning relies
on similarities with standard, non-longitudinal datasets, these
warm-start solutions are not tailored for longitudinal classifi-
cation — consistent with its non-longitudinal search space.

Also, Auto-Sklearn’s post-hoc ensembling combines many
high-performing pipelines found by the BO search, to en-
hance predictive accuracy. Again, this procedure is not de-
signed for longitudinal classification, as it combines non-
longitudinal classifiers. However, when Auto-Sklong returns a
non-longitudinal pipeline as the best solution, Auto-Sklearn’s
use of ensembling should give it an edge over Auto-Sklong.

TABLE II: AUROC values on 20 datasets, for Auto-Sklong,
Auto-Sklearn, and two baseline random forest (RF) methods

Dataset Auto-Sklong | Auto-Sklearn RF Lexico-RF
Arthritis (N) 0.6848 0.675 0.6696 0.6726
Diabetes (N) 0.8822 0.8846 0.8702 0.8684
HBP (N) 0.7674 0.7714 0.7616 0.7572
Cataract (N) 0.7318 0.735 0.7198 0.7208
Osteoporosis (N) 0.7452 0.7434 0.7240 0.7226
Angina (N) 0.7638 0.6742 0.7228 0.7142
Dementia (N) 0.8064 0.6756 0.7562 0.7592
Heart Attack (N) 0.793 0.7118 0.7564 0.7534
Parkinsons (N) 0.6454 0.5146 0.5324 0.6044
Stroke (N) 0.7536 0.746 0.7266 0.7308
Arthritis (C) 0.8162 0.8204 0.8100 0.8068
Diabetes (C) 0.809 0.8108 0.7866 0.7850
HBP (C) 0.7164 0.7184 0.7012 0.7064
Cataract (C) 0.7524 0.7654 0.7424 0.7414
Osteoporosis (C) 0.7848 0.773 0.7410 0.7478
Angina (C) 0.8124 0.788 0.7532 0.7584
Dementia (C) 0.8966 0.8934 0.8482 0.8468
Heart Attack (C) 0.7886 0.7648 0.7342 0.7254
Parkinsons (C) 0.7988 0.7754 0.6868 0.7062
Stroke (C) 0.7902 0.7878 0.7652 0.7642

Notation: HBP = High Blood Pressure, RF = Random Forest, (N)
and (C) denote the Nurse data and Core data in the ELSA database.

TABLE III: Hyperparameters for traditional classification
algorithms — Data transformation approach

Algorithm Hyperparameter Candidate values Default
criterion gini, entropy gini
max depth 2,3,4,5,6,7,8,9, 10 2
Decision Tree min samples split  [2, 20] 2
min samples leaf  [1,20] 1
criterion gini, entropy gini
min samples split  [2, 20] 2
min samples leaf  [1,20] 1
Random Forest bootstrap True, False True

n estimators 100, 150, 200, 250, 300, 350, 400, 450, 500, 1000 100

criterion gini, entropy gini
n estimators 100, 150, 200, 250, 300, 350, 400, 450, 500, 1000 100
max features [0.0,1.0] 0.5
Extra Trees min samples split  [2, 20] 2
min samples leaf  [1,20] 1
bootstrap True, False False
n neighbors 1,2,3,4,5, 10, 15, 20, 30, 40, 50 1
KNN weights uniform, distance uniform
p 1,2 2
Deep Forest n estimators 2,3 2
max depth 2,3,4,5,6,7,8,9,10 2
learning rate 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 01

Gradient Boosting 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5

100, 150, 200, 250, 300, 350, 400, 450, 500, 1000 100

n estimators

TABLE IV: Hyperparameters for longitudinal classification
algorithms — Algorithm adaptation approach

Algorithm Hyperparameter Candidate values Default
max outer depth 5.6,7,8.9, 10 10
max inner depth 2,3,4,5 5
Nested Tree - Ge size (for both
min node size (for both 3 4 5 6, 7,8,9, 10 2

outer and inner trees)

0.0, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035,

0,004, 0.0045, 0.005, 0.01 0.02

Lexico threshold gain

Decision Tree

max depth 2,3,4,5,6,7,8,9, 10 5
min samples split [2,20] 2
min samples leaf [1,20] 1

0.0, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035,

threshold gain 0.004, 0.0045, 0.005, 0.01

min samples split [2,20] 2
Lexico min samples leaf [1,20] 1
Random Forest bootstrap True, False True

n estimators 100, 150, 200, 250, 300, 350, 400, 450, 500, 1000 100

Lexico classifier type LexicoRFClassifier, LexicoCompleteRFClassifier LexicoRFClassifier
Deep Forest n estimators. 2,3 2

max depth 2,3,4,5,6,7,8,9, 10 2
Lexico Jearning rate 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 01

0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5
100, 150, 200, 250, 300, 350, 400, 450, 500, 1000 100

0.0, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035,
0.004, 0.0045, 0.005, 0.01

Gradient Boosting -
n estimators

threshold gain 0.0

VI. CONCLUSIONS

We proposed Auto-Sklong, a new AutoML system designed
to solve the CASH problem for longitudinal classification.
Auto-Sklong was evaluated on 20 datasets from the ELSA
database, combining two types of features (Nurse and Core
ELSA data) with 10 age-related diseases as class variables.

In these experiments, Auto-Sklong outperformed — with
statistical significance — both a state-of-the-art AutoML system
(Auto-Sklearn) and two versions of RF as baseline methods,
one standard (non-longitudinal) and one longitudinal version.



Future research could extend Auto-Sklong’s search space to
include more longitudinal classification methods; or to include
meta-learning and post-hoc ensembling techniques.
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