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A B S T R A C T

This paper examines optimal targeting of multiple network players from a new perspective,
focusing on classes of players holding similar network positions – and thus fulfilling similar
network roles – as captured by the graph theoretic notion of equitable partition. Unlike
existing centrality measures, we show that analysing the network game with local payoff
complementarities under symmetry brings out new insights about the relative influence of
classes of similarly positioned network players on the Nash equilibrium activity. Our analysis
introduces two novel class-based centrality measures with broad theoretical and empirical
applicability that geometrically characterise the key class whose removal results in the maximal
reduction of aggregate and per-capita network activity, respectively.

. Introduction

A key area of focus in the analysis of social networks concerns developing measures of network centrality to identify which
gents are the most important in the network according to some desired criteria, owing to the ubiquity of social networks and the
entral role they play in influencing agents’ behaviour. Beyond the traditional off-the-shelf centrality measures that derive from the
etwork’s topological properties (such as degree, betweenness, or eigenvector centrality), it is also of interest for the social planner
o consider centrality measures that derive from strategic interactions among network players, especially when targeting the overall
ctivity in the network in a Nash equilibrium. Studying network games with payoff externalities due to strategic complementarities
mong players, Ballester et al. (2006), in their seminal paper, develop the ‘intercentrality’ measure to characterise the key player
hose removal results in the maximum disruption to the aggregate equilibrium activity.1 In addition to targeting a single key player
s in Ballester et al. (2006), it may be of interest for the social planner to identify multiple key players to be eliminated for maximally
educing the overall network activity, such as crime (or, equivalently, to be preserved for optimally increasing the network output,
or example, in R&D or financial networks, through steps like bailouts). However, Ballester et al. (2010), while extending the key-
layer problem to its group analogue, prove that the key-group problem is NP-hard, meaning it cannot be solved by any possible
lgorithm in reasonable (polynomial) time, as stated in their Proposition 5.

In this paper, we propose an alternative strategy to the key group problem, for targeting multiple players in a principled way, by
xploiting network symmetries and focusing on classes of players occupying similar network positions. Indeed, it is well-known in
arious organisational contexts, such as those characterised by hierarchical structures like crime networks or mafia organisations,
hat players’ network positions determine the roles they fulfil within the organisation.2 Consequently, rather than targeting the
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key group of criminals, a sensible alternate policy for the social planner is to identify the key class of criminals – a set of similar
layers in terms of their network positions and ties, and in turn, their roles and contributions within the network – whose removal
ogether results in the maximal reduction in the overall network activity. Targeting players of a particular class may require very
ifferent capabilities than going after a disparate group of network players, and potentially offer economies of scale, which may be
referred by the social planner. Perhaps a possible illustration of this alternative approach can be the recent and significant shift
owards the hugs, not bullets security strategy by the Mexican government in its long-standing war on drugs. Instead of targeting the

figureheads of cartels (the key group in the network), their focus turned to addressing the underlying roots by lifting low-ranking
cartel associates (the key class of peripheral players) out of poverty, aiming to diminish the attractiveness for them to engage in
criminal activities.

In order to develop our key class analysis, we employ a graph-theoretic approach exploiting network (graph) symmetries to
onstruct the network’s class structure, followed by a game-theoretic analysis to identify the key class of players whose removal

maximally reduces the equilibrium network activity. Accounting for the symmetry in players’ network positions in analysing their
equilibrium behaviour is a special case of the more general set-up of symmetric games as considered in Plan (2023). Studying the
relative influence of the symmetry-based classes on the equilibrium network outcome can be informative for several situations. An
mportant area of application, for instance, is for the class of networks called ‘‘overlapping hierarchies’’, as defined in Sadler (2022),

which displays an inherent hierarchical class structure. It includes the ‘hierarchical communities’ considered in Belhaj and Deroïan
(2010) as well as the key network structure of nested-split graphs, which is well-recognised in economics. Indeed, nestedness covers
various empirical applications like in criminal and R&D networks, for which key class identification can be informative, as we
discuss in Section 2 (among other potential applications beyond nestedness). In fact, it is interesting to note that for nested split
graphs, the key class, when made of players with the most links, also turns out to be the key group of players (see Remark 5 in
Section 5). We now describe the graph-theoretic and game-theoretic components of our key class analysis in more detail.

Network classes are modelled via the concept of equitable partition: players are sorted into classes, wherein class refers to cells of
the equitable partition of the network. As defined in Powers and Sulaiman (1982), equitable partition requires that all players in a
class have the same number of links amongst themselves, and with members of other classes. It generalises the well-known feature
f network symmetry, which characterises the structural invariance of networks when certain nodes are interchanged (see Remark 1

in Section 3 for an illustration). Indeed, Xiao et al. (2008) call symmetry a ‘‘universal structural property of complex networks" and
develop the statistical framework for reproducing the symmetry found in real networks, along the lines of the random network
model by Newman et al. (2001).3 Furthermore, players in a class have identical Bonacich centrality, a measure of their network
embeddedness.4 In the context of network games, the Bonacich–Nash linkage obtained in Ballester et al. (2006) assumes importance:
hey prove that players’ Bonacich centrality is proportional to their equilibrium strategic behaviour. Hence, an equitable partitioned
etwork reflects a society divided into classes of players who enjoy the same influence in the society and adopt identical actions in
quilibrium, thus, in a related sense, having similar network roles.

The network game is modelled using linear–quadratic utilities with bilateral externalities, as introduced in Ballester et al. (2006),
such that there exists strategic complementarity of efforts between pairs of linked players.5 Considering the network game under
equitable partitioning, rather than the original network game, brings out new insights about the relative influence of groups formed
by similarly positioned players, which is used to characterise two class-based centrality measures. To do this, we establish and exploit
a relationship between the graph representing the overall network with the graph of its equitable partitioning, the so-called quotient
graph, to show that the aggregate equilibrium activity of classes is related to their position within the network. This result is the
class analogue of the key Bonacich–Nash linkage established in Ballester et al. (2006) and forms the basis for the two class-based
centrality measures proposed in this paper. The first is the class-centrality index, to identify the most important class whose removal
results in maximal disruption in the overall network outcome. At first glance, it may seem intuitive to think that this measure would
select the class with the most players as the key class. However, this is not always the case, since class-centrality reflects two kinds of
effects that removing a class has on the aggregate network outcome. The first is the direct effect due to lesser contributing members
in the resulting network after removing a class. But in addition, there is also the indirect effect due to a change in the network
architecture which alters the peer influences and their intensity, as the links get altered within and across classes. For instance, if
the largest class has few direct links with other classes and most indirect links in the network do not pass through it, then it may not
be the key class, especially if the indirect links in the network are strong (high attenuation factor). Moreover, the index is relevant
if there are more than one class of the largest size.

2 Role similarity in social networks arising from players’ similar positions and interaction patterns is well-established; see, for instance, Wasserman and Faust
(1994) or Jin et al. (2011) for a review.

3 A well-noted source of network symmetry is the presence of tree-like regions common in large real networks, arising from the network growth process via
dentical branches growing from the same vertices (nodes). Such tree-like structures are known to have symmetry with almost absolute certainty, as proven in

Erdős and Rényi (1963), thus, lending a certain degree of symmetry to most real-world networks. Symmetry is, however, not limited to networks with trees
lone, as noted in Xiao et al. (2008).

4 Bonacich centrality counts the total number of paths in the network originating from a node, discounted by their length. One of its most well-known
applications is the ‘‘PageRank’’ algorithm of Google search engine for ranking webpages; see, for instance, the discussion on hub-based Katz centrality (another
ame for Bonacich centrality) in Sargent and Stachurski (2024).

5 Linear–quadratic utilities are used to model various social and economic phenomena. See e.g., Calvó-Armengol et al. (2009) who study effect of peer
influence on education outcomes in friendship network, Liu et al. (2012) for criminal networks, or Goyal and Moraga-Gonzalez (2001) for R & D collaboration
mong Cournot competitors.
2 
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Class size, which is a model primitive for any given class structure within a network, can still be an important factor for
implementing targeting policies. In practice, this is not as restrictive as it may seem: any given network typically displays multiple
lass structures (in addition to the unique ‘coarsest’ equitable partition — see Remark 2 in Section 3.1), so that the planner
as sufficient flexibility in targeting different-sized classes, as we discuss in Section 6.4. Additionally, we also propose a second

measure aimed at reducing the average network activity, as a ‘size-sensitive’ alternative to class-centrality, which selects a class
ypically smaller than the one with the highest class-centrality, for any given class structure. This is the per-capita class-centrality

that characterises the class whose removal reduces the per capita network activity by the most, which can be informative, say in
presence of planner’s resource limitations. A choice of the appropriate class-based centrality measure between the two will ultimately
depend on the planner’s preference.

The rest of the paper is organised as follows. Section 2 further motivates the relevance of targeting a network class, Section 3
describes the network model and its equitable partition, and Section 4 provides the Nash equilibrium analysis for class activity.
ection 5 introduces the class-based centrality measures, which are illustrated through examples and real-world applications in
ections 6 and 7, respectively. Section 8 concludes the paper. All proofs are presented in Appendix A and Appendix B illustrates

how equitable partition relates to role equivalence in networks.

2. Relevance of targeting a network class

A natural question that may arise is why we should target all players in a class rather than, say, targeting the key group in
hich players are not constrained by any underlying class structure. In this Section, we provide more intuition for empirical and

heoretical applications where our class-based centrality measures may be useful.
Note first that there is an obvious implementation advantage of identifying the key class over the key group, whenever the

planner wishes to target multiple network players: the key group problem is classified as NP-hard and thus not computationally
tractable, while key class identification is applicable for any generic network based on identifying its underlying (non-trivial)
equitable partition, which can be found in polynomial-time using well-established algorithms (see Remark 2 in Section 3.1).

Beyond computational aspects, key class identification offers a principled alternative approach for targeting multiple network
players, which can be informative especially since several economic and social networks naturally display class-based structures. As
mentioned previously, an important class of networks in this regard is Sadler (2022)’s ‘overlapping hierarchies’. Note that in terms of
rdinal centralities, the ‘weak centrality’ measure of Sadler (2022) produces a total order of nodes for overlapping hierarchies graphs,
nd it ranks all players in a class the same. But beyond focusing on individual players, given the inherent class structure present
n these networks, a class-based analysis for identifying the key class for optimally influencing the equilibrium network outcome

becomes relevant for the social planner’s targeting policy. In particular, overlapping hierarchies generalise the more familiar class of
ested split graphs, found in several real-world networks like criminal and R&D organisations which display class-based hierarchies.6

A key focus for criminal networks, in fact, has been on identifying the key player to be removed for maximally reducing criminal
ctivity (see, for instance, Lee et al. (2021) or Liu et al. (2012)). Extending this to targeting the key class will, of course, lead to a
arger disruption of the criminal activity. The ensuing disruption is also likely to be more stable, in the sense that replacing a single
layer such as the head of a criminal organisation may be easier than replacing an entire class of players who had well-established
nteraction patterns (and relatedly, roles) within the criminal network. Moreover, going after a homogeneous class of similarly-
ositioned criminals can be relevant for the social planner in that it offers a straightforward and methodical approach for targeting
ultiple criminals in the network, as against eliminating a disparate group of crime figureheads, especially if it is difficult to go after

uch a group. For instance, going after the leaders of a mafia organisation may require very different capabilities than, say, going
fter a class of similarly-connected, homogeneous lower level criminals, in addition to issues in identifying the disparate group of
he organisation’s figureheads arising from algorithmic considerations, as discussed previously. Other than ‘eliminating’ players, key
lass identification is also relevant for targeting the players to be ‘preserved’. For instance, identifying the key class of firms who
re most crucial to their industry – in the sense that a break-up of their well-established connections with other similarly-positioned
irms will cause the maximum disruption in the total activity for the remaining firms – is relevant for deciding policies like bailout
similar to König et al. (2019)’s study on R&D networks).

The notion of equitable partition, however, is general enough to include grouping structures other than nestedness. An interesting
example relates to epidemics diffusion in networks. Most studies for modelling epidemics diffusion use equitable partitioning
for clustering individuals into communities made of homogeneous individuals who are exchangeable or indistinguishable among
themselves, since epidemics typically spread over extremely large contact network of individuals, such that modelling the dynamics
of the disease’s spread at an individual level becomes computationally prohibitive (see, for instance, Bonaccorsi et al. (2015) and
Ottaviano et al. (2018)). In addition to tractability in modelling achieved through a dimensionality reduction, given the sheer size
of the networks over which infectious diseases spread, controlling its spread via targeting the key community of homogeneous and
ensely-connected individuals, instead of a solo individual, has appeal from a practically implementable policy perspective like
solation or lock-down measures. Other than diffusion of epidemics, Banerjee et al. (2013) note that Ballester et al. (2006)’s key

player index analytically informs the choice of ‘initial injection points’ for information diffusion (in their case about microfinance).

6 Nestedness in networks refer to neighbourhoods of players of lower degree to be contained in the neighbourhoods of higher degree players. See König et al.
(2014) for an excellent discussion on nestedness, including its theoretical modelling and empirical evidence in banking and trade networks. Moreover, studying
network formation with strategic complementarities in efforts, like in criminal activity or R&D expenditures, Hiller (2017) shows that Nash equilibrium networks
re nested split graphs.
3 
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Fig. 1. McKay’s Graph.

Additionally accounting for the community structure within a large population to identify the key community for maximally
dvancing the reach of information can be crucial, for instance in settings like studying voter behaviour; Ward (2021) notes the

benefit for studying voting behaviour via symmetry based dimensionality reduction techniques.
Key class identification in equitable partitioned network can be significant for various theoretical applications as well. Examples

nclude Allouch (2017), who considers segregated group membership-based interaction in studying welfare effects of income
redistribution on the private provision of public goods in social networks. Moreover, it can contribute to the planner’s problem
of optimal network formation, similar to Belhaj et al. (2013)’s search for efficient networks, by suggesting which class to target so
as to optimally alter the group-based structure for attaining desired network outcome.

3. The network model and graph theoretic concepts

We consider a network 𝐠 of 𝑛 players. The associated (0, 1)-adjacency matrix is denoted by 𝐆 = [𝑔𝑖𝑗 ], where 𝑔𝑖𝑗 represents
nweighted and undirected connection between players 𝑖 and 𝑗; for 𝑖 ≠ 𝑗, it takes value of 1 if there is a link between the
orresponding two nodes in the network, and 0 otherwise. Further, 𝑔𝑖𝑖 = 0, meaning there are no loops in 𝐠, and multiple links
etween any two nodes are ruled out by construction. Note that 𝐆𝑘 represents the number of paths of length 𝑘 between any two
odes in the network; its elements are denoted by 𝑔[𝑘]𝑖𝑗 .

3.1. Equitable partition

Consider an equitable partition of the network 𝐠 into 𝑚 classes {𝑉1,… , 𝑉𝑚}, 𝑚 ≤ 𝑛: for every 𝑖, 𝑗 ∈ 1,… , 𝑚 there is a non-negative
integer 𝜋𝑖𝑗 such that each node in 𝑉𝑖 has exactly 𝜋𝑖𝑗 neighbours in 𝑉𝑗 . An equitable partition results in a quotient graph 𝝅 and
the corresponding 𝑚-square quotient matrix is represented by 𝜫 = [𝜋𝑖𝑗 ]. Note that unlike 𝐆, the quotient matrix 𝜫 need not be
symmetric. Denote the (𝑛 ×𝑚) indicator matrix by 𝐗 = [𝑋𝑖𝑗 ], such that 𝑋𝑖𝑗 = 1 if vertex 𝑖 is in the class 𝑉𝑗 , and 0 otherwise. Let the
number of members in a class 𝑉𝑖 be denoted by 𝑟𝑖, such that, denoting the (𝑛× 1) vector of ones by 𝟏𝑛, the vector 𝐫 = 𝐗𝑇 .𝟏𝑛 lists the
number of members in each class. The following property holds by definition:

𝐆𝐗 = 𝐗𝜫 (3.1)

Also, the adjacency matrix 𝐆 and the quotient matrix of its equitable partition, 𝜫 , have the same spectral radius.7 That is, if
(𝐀) denotes the largest absolute value of the eigenvalues of square matrix 𝐀, then

𝜌(𝐆) = 𝜌(𝜫) = 𝜌.

Finally, denote 𝜫𝑘 =
[

𝜋[𝑘]
𝑖𝑗

]

where 𝜋[𝑘]
𝑖𝑗 denotes the total paths of length 𝑘 for any node in class 𝑉𝑖 with its neighbours in class 𝑉𝑗 .

Remark 1. A concept closely linked to equitable partition is that of automorphism partition (also called orbit partition), that is used
o model symmetry in networks.8 We illustrate via a simple example that equitable partition is a more flexible concept to specify

the underlying class structure for any (connected) network than orbit partitions: the existence of a non-trivial equitable partition is
less restrictive than the existence of a non-trivial orbit partition, since all orbit partitions are equitable as well, but the converse is
not true in general. To see this consider McKay’s graph shown in Fig. 1(a).

There are 6 orbit partitions (other than the trivial identity partition in which each node is an orbit in itself), 𝜎𝑖, 𝑖 = 1,… , 6,
in the above example: 𝜎1 ∶ (7, 8); 𝜎2 ∶ (1, 7), (2, 8), (3, 6), (4, 5); 𝜎3 ∶ (1, 7, 2, 8), (3, 6), (4, 5); 𝜎4 ∶ (1, 2); 𝜎5 ∶ (1, 2), (7, 8); 𝜎6 ∶
(1, 8), (2, 7), (3, 6), (4, 5).9 These orbit partitions are equitable as well, but the equitable partition shown in Figure Fig. 1(a), which
groups nodes (3, 6) in one class and nodes (1, 2, 4, 5, 7, 8) in another, is not an orbit partition, since no automorphism maps the outer
odes 1, 2, 7, 8 to the inner nodes 4,5 (automorphisms must preserve cycles — see Kudose (2009)). Thus, equitable partition can

capture additional equivalences via preserving the linkage structure within and among classes which is not always captured by

7 See Van Mieghem (2010), page 62, art. 62.
8 Graph automorphism refers to adjacency preserving permutations of network vertices, which creates a network partition, each of whose cells are called

orbits. Orbits contain the equivalent nodes which, if interchanged, preserve the network structure. For formal definitions, see, for instance, Xiao et al. (2008).
9 Using the usual representation for automorphisms, we write the non-identity orbits – cells which contain two or more equivalent nodes – inside a parenthesis.
4 
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orbits, and which also has a direct role interpretation obtained from the sociology literature (see Appendix B for an illustration of
how equitable partition compares with classical notions of role equivalences in networks). This is better visualised in Fig. 1(b): for
instance, considering it a notional supervisory network, nodes (3, 6) have equivalent role, each supervising three candidates, and
each node in the supervisee class of (1, 2, 4, 5, 7, 8) is directly connected to the supervisor and with one other member among the
supervisees. But, in general, our theory applies to all orbit partitions of a network as well.

Remark 2. There exists a unique coarsest equitable partition for any graph 𝐠, as noted in Section 1.2 in McKay (1981).10 From
implementation perspective, polynomial-time algorithms exist in literature for finding the equitable partition for any network; in
ur examples and illustrative applications, we use Everett and Borgatti (1996)’s exact coloration procedure for finding the coarsest

equitable partition, also known as ‘exact coloration’, for any simple graph (order 𝑛3; see their ‘Excatre’ algorithm in p.326).11 Also, our
heory is relevant for networks with certain symmetry, which is widespread for real-world networks. In particular, finding whether
 network has non-trivial orbit partition is a polynomial-time problem for any finite network (see Luks (1982)), and well-established

open-source software tools like nauty by McKay and Piperno (2014) can be used for finding the orbit partitions of networks, which
are also equitable by definition.

3.2. Bonacich centrality

Here, we provide the definition of Bonacich centrality which is relevant for our analysis. Bonacich (1972)’s eigenvector-based
centrality gives more importance to agents that have ‘important’ neighbours. The vector of Bonacich centralities, with a decay
parameter 𝑎, in 𝐠 is given by:

𝐛(𝐠, 𝑎) = [𝐈𝑛 − 𝑎𝐆]−1.𝟏𝑛 =
+∞
∑

𝑘=0
𝑎𝑘𝐆𝑘.𝟏𝑛 (3.2)

where 𝐈𝑛 denotes an 𝑛-square identity matrix. Note that the above expression is well-defined for small values of 𝑎, specifically, if 𝑎
is less than inverse of the largest absolute eigenvalue of 𝐆. Recall that 𝐆𝑘 represents the number of paths of length 𝑘 between any
wo players in the network. Hence, Bonacich centrality counts the total number of paths emanating from player 𝑖 in the network 𝐠,
eighted down by their length.

4. Network game: Nash equilibrium class activity

We consider the network game with local payoff complementarities as in Belhaj et al. (2013), which is a simplified version of
he linear–quadratic utility function of Ballester et al. (2006). Players {1,… , 𝑛} in a network engage in a non-cooperative game,

where the strategy of each player is to decide the extent of efforts they exert. The utility of player 𝑖 is given by

𝑢𝑖(𝑥1,… , 𝑥𝑛) = 𝑥𝑖 −
1
2
𝑥2𝑖 + 𝜆

𝑛
∑

𝑗=1
𝑔𝑖𝑗𝑥𝑖𝑥𝑗

where 𝑥𝑖 ≥ 0 denotes the effort of player 𝑖, and 𝜆 > 0 measures the intensity of interactions among pairs of players. Hence, the utility
function consists of two components: an idiosyncratic component made up of own efforts and an interaction component reflecting
strategic complementarities among connected players. Further, the linear–quadratic form implies that utility is strictly concave in
one’s own efforts.

In this setting of network game with linear–quadratic utility and payoff complementarities, Ballester et al. (2006) establish the
proportionality between players’ Nash equilibrium outcome and their Bonacich centrality. This is a key result which establishes the
intuitive link between players’ equilibrium behaviour with their positions within the network. Indeed, it can be shown that player
𝑖’s unique Nash equilibrium outcome for the game described above, 𝑥∗𝑖 , equals their Bonacich centrality 𝑏𝑖(𝐠, 𝜆).

We are interested in equilibrium analysis for determining class activity when the network of relative payoff complementarities
as a partition structure as conceptualised by the symmetry-based notion of equitable partition. Recall that each member of a class
as the same value of Bonacich centrality and, hence, adopts identical equilibrium strategy. As such, note that the idea of network
ame under equitable partitioning applies beyond the Ballester et al. (2006) framework and is a special case of a more general
onstruction as considered in Plan (2023). Indeed, consider any non-cooperative game with complete information and a given set

of players, such that payoffs depend on a common vector 𝜃 of parameters (𝜃 = 𝐆 in the Ballester et al. (2006) framework), and
that players can be partitioned so that  = 𝑉1 ∪ 𝑉2 ∪ … ∪ 𝑉𝑚, where 𝑖, 𝑘 ∈ 𝑉𝑗 iff the best-reply functions of players 𝑖 and 𝑘 are
identical for any vector 𝜃 of parameters. Any such game has non-trivial symmetry groups, or classes, where reshuffling players is
allowed within the classes, 𝑉𝑗 , 𝑗 = 1,… , 𝑚, but not across classes (see Plan, 2023).

For equilibrium analysis, we first present the following Lemma. Let 𝐀𝑇 denote the transpose of matrix 𝐀. Note that in what
ollows, in the Lemmas and Definitions that pertain to any general network structure and its equitable partition, we use the symbol
𝑎’ to denote the attenuation factor, which plays the role of ‘𝜆’ for the results obtained in the context of the network game explained
above.

10 The binary relation ‘coarser’, as defined in McKay (1981), specifies a partial order over the set of all equitable partitions, which forms a finite, and hence,
omplete lattice. Therefore, a coarsest equitable partition exists from definition of a complete lattice.
11 A simple graph is a graph without any loops or multiple edges.
5 
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Lemma 1. Let 0 < 𝑎 ≤ 1∕𝜌 so that [𝐈𝑛 − 𝑎𝐆]−1 and [𝐈𝑚 − 𝑎𝜫]−1 are well-defined and nonnegative. Then, [𝐈𝑛 − 𝑎𝐆]−1𝐗 = 𝐗[𝐈𝑚 − 𝑎𝜫]−1.
Lemma 1 relates the overall network structure with its equitable partition. It enables to express the equilibrium activity of classes

n relation to the network’s partition structure. For this purpose, define the following matrix

𝐍(𝝅, 𝜆) = [

𝐈𝑚 − 𝜆𝜫𝑇 ]−1 =
∞
∑

𝑝=0
𝜆𝑝(𝜫𝑝)𝑇 ,

which is well-defined and nonnegative for 𝜆 ≤ 1∕𝜌. Its elements 𝑁𝑖𝑗 (𝝅, 𝜆) =
∑∞

𝑝=0 𝜆
𝑝𝜋[𝑝]

𝑗 𝑖 count the total number of paths of length 𝑝
for any node in class 𝑉𝑗 with the members in 𝑉𝑖, weighted down by 𝜆𝑝. Let 𝐲∗(𝝅) = [

𝑦∗𝑖
]

denote the outcome vector for classes at
equilibrium, where 𝑦∗𝑖 is the sum of equilibrium outcomes of all players of class 𝑉𝑖, 𝑖 = 1,… , 𝑚. Also, for a vector 𝐳 ∈ R𝑝, we denote
the sum of its entries as 𝑧 = 𝑧1 +⋯ + 𝑧𝑝.

Theorem 1. The matrix 𝐍(𝝅, 𝜆) = [

𝐈𝑚 − 𝜆𝜫𝑇 ]−1 is well-defined and nonnegative when 𝜆 ≤ 1∕𝜌. Then, the unique and interior Nash
quilibrium class activity for the network game characterised by 𝑢𝑖, 𝑖 = 1,… , 𝑛, played over the quotient graph 𝝅, is given by

𝐲∗(𝝅) = 𝐍(𝝅, 𝜆).𝐫 ≡ 𝐭(𝝅, 𝜆). (4.1)

In the above, 𝐍(𝝅, 𝜆).𝐫 is the vector of sum of Bonacich centralities of players in each class. That the contribution of a class to the
verall network activity is proportional to the sum of its members’ Bonacich centralities is expected. But more importantly, Eq. (4.1)

links the equilibrium activity of a class with its position in the network of local interactions between players of different classes
through the matrix 𝐍(𝝅, 𝜆). Indeed, since the matrix 𝐍(𝝅, 𝜆) represents the interactions among members of the classes specified by
the equitable partition network structure, Eq. (4.1) shows how the position of the classes in the network influence their equilibrium
behaviour. Hence, Theorem 1 can be considered as the class analogue of the Bonacich–Nash linkage of Ballester et al. (2006).

5. The key class: Two measures

The above analysis shows that the class outcome at equilibrium is related to its position within the network when there exists
ayoff externalities among players. Removing a class alters the network structure of bilinear influences, in addition to reducing the

number of players who contribute to the overall network activity, thus altering the equilibrium network outcome. In this section, we
propose two geometric measures to characterise equilibrium outcome, in aggregate and in per-capita terms, upon removing classes.
This informs simple criteria for targeting the optimal class if the planner wants to optimally alter the aggregate or the per-capita
etwork activity, respectively.

Consider the game of Section 4 being played over the network 𝐠 with symmetric square adjacency matrix 𝐆 = [𝑔𝑖𝑗 ], where
𝑖𝑗 ∈ {0, 1} for 𝑖 ≠ 𝑗 and 𝑔𝑖𝑖 is set to 0; its corresponding quotient network is 𝝅 with quotient matrix 𝜫 = [𝜋𝑖𝑗 ]. Let a class 𝑗 be
emoved from the network. The corresponding partition matrix is denoted by 𝜫−𝑗 , by setting the 𝑗th row and 𝑗th column of 𝜫
o zero. Also, 𝐫−𝑗 is the class size vector associated with removing class 𝑗 by setting 𝑗th coordinate of 𝐫 to 0. The overall network
ctivity upon removing class 𝑗 is the sum of the activities due to all remaining classes 𝑦∗(𝝅−𝑗 ) = ∑𝑚

𝑖=1, 𝑖≠𝑗 𝑦∗𝑖 (𝝅−𝑗 ).
The derivations of class-based centrality measures make use of the following Lemma, which characterises all path changes in

the quotient network when a class is removed.

Lemma 2. Let 0 ≤ 𝑎 ≤ 1∕𝜌 such that 𝐍(𝝅, 𝑎) = [

𝐈𝑚 − 𝑎𝜫𝑇 ]−1 is well-defined and non-negative. Let 𝐍(𝝅−𝑗 , 𝑎) = [𝐈𝑚 − 𝑎(𝜫−𝑗 )𝑇 ]−1. Then:

𝑁𝑖𝑘(𝝅, 𝑎) −𝑁𝑖𝑘(𝝅−𝑗 , 𝑎) = 𝑁𝑖𝑗 (𝝅, 𝑎).𝑁𝑗 𝑘(𝝅, 𝑎)
𝑁𝑗 𝑗 (𝝅, 𝑎)

. (5.1)

The above result will be crucial for the key class problem, as it indicates the changes in the number of paths between classes if a
lass were removed, as specified by 𝑁𝑖𝑘(𝝅) −𝑁𝑖𝑘(𝝅−𝑗 ), in terms of the intra-class and inter-class paths within the quotient network, 𝝅.

5.1. Class-centrality

Class-centrality is concerned with identifying the class removing which results in an optimal reduction in the aggregate network
outcome. Formally, the planner’s objective is to:

min
{

𝑦∗(𝝅−𝑗 )
}

or max
{

𝑦∗(𝝅) − 𝑦∗(𝝅−𝑗 )
}

, 𝑗 = 1,… , 𝑚. (5.2)

Definition 1. Let there be a quotient network 𝝅 that divides the network 𝐠 into 𝑚 classes, with the associated partition matrix 𝜫
and a decay factor 𝑎 > 0 such that [𝐈𝑚 − 𝑎𝜫]−1 is well-defined and non-negative. The class-centrality measure of class 𝑗 is given by:

𝑒𝑗 (𝝅, 𝑎) =
𝑡𝑗 (𝝅, 𝑎).𝑠𝑗 (𝝅, 𝑎)

𝑁𝑗 𝑗 (𝝅, 𝑎)
, (5.3)

where 𝐍(𝝅, 𝑎) = [

𝐈𝑚 − 𝑎𝜫𝑇 ]−1, 𝐬(𝝅, 𝑎) = 𝟏𝑇𝑚.𝐍(𝝅, 𝑎), and 𝐭(𝝅, 𝑎) = 𝐍(𝝅, 𝑎).𝐫.

The above index informs a simple criterion to characterise the key class 𝑗∗ to optimally reduce (or increase) network outcome,
as presented in the following Theorem.
6 
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Theorem 2. If 𝜆 ≤ 1∕𝜌, the class that solves max
{

𝑦∗(𝝅) − 𝑦∗(𝝅−𝑗 )
}

is the 𝑗∗ for which the class-centrality measure is the highest, that is,
𝑒𝑗∗ (𝝅, 𝜆) ≥ 𝑒𝑗 (𝝅, 𝜆) for all 𝑗 = 1,… , 𝑚.

Note that removing a class has a direct and an indirect effect on network activity. Direct effect is by virtue of a reduction in
he number of players who contribute to network activity. Indirect effect is due to the fact that removing a class alters the network
tructure such that the remaining classes adopt different equilibrium actions, thereby again altering the aggregate network activity.
ence, the class with the most players need not be the key class for reducing the aggregate network activity.

5.2. Per-capita class-centrality

Other than bilinear influences, the size of a class, indeed, plays an important role in determining the key class using the class-
entrality index, which can have implications for targeting policies, say, in presence of the planner’s budget constraints.12 In this

Section, we provide a relatively ‘size-sensitive’ alternative to class-centrality, which selects a class typically smaller than the key
class, for any given class-structure.

The per-capita class centrality provides a geometric measure for identifying the class removing which results in maximum
per-capita reduction in network activity. The planner’s objective is:

min
{

𝑦∗(𝝅−𝑗 )
𝑛 − 𝑟𝑗

}

or max
{

𝑦∗(𝝅)
𝑛

−
𝑦∗(𝝅−𝑗 )
𝑛 − 𝑟𝑗

}

, 𝑗 = 1,… , 𝑚. (5.4)

Definition 2. For the quotient network and decay factor 𝑎 as specified in Definition 1, the per-capita class-centrality measure of
lass 𝑗 is given by:

ℎ𝑗 (𝝅, 𝑎) =
𝑛.
(

𝑡𝑗 (𝝅, 𝑎)∕𝑁𝑗 𝑗 (𝝅, 𝑎)
)

.𝑠𝑗 (𝝅, 𝑎) − 𝑟𝑗 .𝑡(𝝅, 𝑎)
𝑛(𝑛 − 𝑟𝑗 )

, (5.5)

where 𝐍(𝝅, 𝑎) = [

𝐈𝑚 − 𝑎𝜫𝑇 ]−1, 𝐬(𝝅, 𝑎) = 𝟏𝑇𝑚.𝐍(𝝅, 𝑎), 𝐭(𝝅, 𝑎) = 𝐍(𝝅, 𝑎).𝐫, and 𝑡(𝝅, 𝑎) denotes the sum of the coordinates of 𝐭(𝝅, 𝑎).
Per-capita class-centrality ℎ𝑗 (𝝅, 𝑎) characterises the per-capita network activity upon removing class 𝑗, in terms of the position

that its players occupy within the partitioned network. This informs a simple criterion for selecting the key class for optimally
lowering per-capita network activity from the planner’s perspective, as given by the following Theorem.

Theorem 3. If 𝜆 ≤ 1∕𝜌, the class that solves max
{

𝑦∗(𝝅)
𝑛 − 𝑦∗(𝝅−𝑗 )

𝑛−𝑟𝑗

}

is the 𝑗∗ for which the per-capita class-centrality measure is the
highest, that is, ℎ𝑗∗ (𝝅, 𝜆) ≥ ℎ𝑗 (𝝅, 𝜆) for all 𝑗 = 1,… , 𝑚.

Similar to class-centrality, the per-capita measure also reflects the dual effects of lesser contributing members as well as changes
in the network structure of peer-effects, in determining the network activity of the resultant network upon removing a class. This
interplay of the direct and indirect effects is, in fact, at the heart of both the class-based centrality measures: the basic idea is to
remove a class and analyse how the ensuing alterations in network ties and their intensities impact the equilibrium outcome level,
repeating this for all classes, such that the class that can maximally reduce the outcome, in aggregate or per-capita terms, is the key
class.

We provide a general result comparing the class sizes of the per-capita key class and the key class in Proposition 1 below, which
laces an upper bound on the size of the former.

Proposition 1. The per-capita key class is less than or equal to the key class in size.
Since per-capita class centrality typically selects a class smaller in size than the key class, it can be informative as a size-sensitive

lternative to class-centrality.

Remark 3. Since there is a unique coarsest quotient network 𝝅 associated with every network 𝐠, the class-based centrality measures
are generic indices applicable to any generic network structure.

Remark 4. At the extreme case, when the cardinality of each class is 1 and equitable partitioning is trivial, the key-class problem
s equivalent to Ballester et al. (2006)’s key player problem and both yield the same result. But, additionally to their intercentrality

measure for identifying the key player, the class-based centrality measures proposed here capture the relative influence of players
occupying symmetric network positions, to inform choice for targeting multiple players. The choice between the two measures,
however, will depend on the specific application and the planner’s objective.

12 One way to deal with this limitation, as we discuss in Section 6.4, is to identify various equitable partitions of a network with varying class sizes, and
pply the class-centrality index for identifying the key class for all the resulting partitions, choosing the one that best suits the planner’s objectives.
7 
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Fig. 2. Nested split graph: this figure is the network representation of König et al. (2014)’s connected nested split graph illustration (see their Fig. 1 and the
description therein). The nodes of same colour represent cells of the equitable partition, which is also the degree partition of nested split graph. The key class,
as well as the key group of 2 players, consists of nodes 1 and 2 (shown in red), who have the highest degree of 9. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Example network: class-based centrality vs intercentrality.

Remark 5.
In the presence of nestedness, which postulates that neighbourhoods of every player is contained in the neighbourhoods of

higher degree players, the degree partition that characterises the nested split graph is the same as its equitable partition. Also,
under nestedness, the key class (which, say has a size of 𝑞) is also the key group of 𝑞 players, whenever the former is made of the
players with the highest number of links, as shown for the nested split graph example of König et al. (2014) in Fig. 2. Noting that
players in a class have the same degree, this equivalence follows from Hiller (2022), who shows that optimal targeting for eliminating
any 𝑞 players in nested split graphs boils down to the simple criteria of ranking players by their number of links and targeting the
first 𝑞 players. However, it is important to note that the key class may not always consist of the highest degree players; for instance,
a different class having more lower-degree players with important direct or indirect links may, instead, turn out to be the key class.
In that case, the key group will be different from the key class. Indeed, our class-based centralities bring out new insights about
the joint behaviour of similarly positioned players with well-defined linkages, unlike the key group of players. Finally, note that
equitable partition is a concept general enough to incorporate other kinds of grouping structures in networks beyond nestedness.

6. Examples and discussion

In this section, we illustrate some important points related to the proposed class-based centrality measures on four example
networks. In the first three examples, we consider the unique coarsest equitable partition of the given networks, and compare our
two proposed class-based centrality measures with other common centrality measures. In a fourth example, we have considered
various underlying class structures of the network (equitable partitions other than the coarsest one) to illustrate how to approach
targeting key classes of varying sizes using our theory.

6.1. Example 1: Class-based centrality vs intercentrality

Fig. 3 considers the 11-player network 𝐠 with three classes, as used in Ballester et al. (2006), and compares the proposed centrality
measures with their intercentrality index, another centrality metric from planner’s optimality concerns to identify the key player
type.
8 



N. Allouch and J. Bhattacharya

f
q
c

h
p
m
o

s

i

European Economic Review 172 (2025) 104950 
Table 1
Class-based centrality vs intercentrality.

Class type 𝑎 = 0.1 𝑎 = 0.2
𝑒𝑖 ℎ𝑖 𝑐𝑖 𝑒𝑖 ℎ𝑖 𝑐𝑖

1 2.92 0.11 2.92 41.67 3.33 41.67 ∗
2 11.09 0.57 ∗ 3.28 ∗ 80.67 6.76 ∗ 40.33
3 12.96 ∗ 0.46 2.79 81.67 ∗ 6.33 32.67

𝑒𝑖 and ℎ𝑖 denote class-centrality and per-capita class-centrality, respectively. 𝑐𝑖 denotes intercentrality
measure of Ballester et al. (2006). The highest values are indicated by ‘∗’.

Fig. 4. Example network: class-based centrality vs Bonacich centrality.

Table 2
Class-based centrality vs Bonacich centrality.

Class type 𝑎 = 0.1 𝑎 = 0.2
𝑒𝑖 ℎ𝑖 𝑏𝑖 𝑒𝑖 ℎ𝑖 𝑏𝑖

1 3.41 0.14 1.39 ∗ 6.50 0.47 2.13 ∗
2 6.13 ∗ 0.24 ∗ 1.26 10.26 ∗ 0.72 ∗ 1.77
3 3.08 0.08 1.25 5.31 0.27 1.71

𝑒𝑖, ℎ𝑖 and 𝑏𝑖 denote class-centrality, per-capita class-centrality and Bonacich centrality, respectively. The
highest values are indicated by ‘∗’.

Table 1 computes centralities for two values of the decay factor 𝑎.13 We find that the largest class (class 3) is also the key class
or reducing overall equilibrium activity, for both values of 𝑎. This is because along with having most members, this class is also
uite well-connected. It has direct links with class 2 (which, by being the link between the other two classes, is the most central
lass — its players have the highest Bonacich centrality), and indirect links with class 1. Hence, removing class 3 alters the network

structure in a way to cause maximal disruption in equilibrium contribution by remaining players. However, in terms of per-capita
network activity, class 2 becomes the most important one since it is smaller than class 3 but has direct links with both classes 1 and
3, removing which causes most damage to the network activity of the altered network, measured in per-capita terms.

We also note that the key class, both for total and per-capita outcome reduction, mostly differs from the player type with the
ighest intercentrality value. This is expected as intercentrality depends on an individual level analysis of peer-effects between
airs of players for characterising their importance, while class-based centrality internalises the group-level dynamics among the
embers within a class as well, in addition to studying the peer-effects across members of different classes. For the class with only

ne member (class 1), there is no such intra-group dynamics per se, and its intercentrality 𝑐𝑖 as well as class-centrality 𝑒𝑖 are the
same, as also noted in Remark 4.

6.2. Example 2: Class-based centrality vs bonacich centrality

In the above example, the class which was topologically most central was also the key class for optimally reducing per-capita
activity. It is, however, not necessary that removing the most central class in terms of position alone, that is, whose players have the
highest Bonacich centrality, will result in an optimal change in the structure of bilinear influences so as to minimise the per-capita
network activity. This is evident in the example considered in Fig. 4, borrowed from Allouch (2017) who considers segregation in
ocial networks.

The class-based centrality values for the three classes, along with the Bonacich centrality for players in those classes is reported
n Table 2, for two different values of 𝑎.14 For this simple network where two of the classes are of same size, the key class for

total and per-capita activity reductions turns out to be the same (class 2). Note that while class 1 is most centrally located, since its
players, who have the highest Bonacich centrality, form a bridge through which the other players are connected, it is not the key

13 Here, the maximum value of 𝑎 in line with our centrality definitions is 0.227.
14 The largest value for 𝑎 compatible with our definitions is 0.427.
9 
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Fig. 5. Example network: analysing class-centrality.

Table 3
Analysing class-centrality.

Class type 𝑎 = 0.1 𝑎 = 0.2
𝑒𝑖 ℎ𝑖 𝑒𝑖 ℎ𝑖

1 4.40 0.21 514.35 39.08
2 8.81 0.45 ∗ 561.62 ∗ 42.79 ∗
3 9.59 0.22 540 39.80
4 12.40 ∗ 0.14 535.71 37.85

class, for either optimally reducing total or per-capita network activity. This is because for network activity, how removing a class
alters the peer-effects within and across classes matter. Taking this into account makes class 2 the key class.

6.3. Example 3: Class-centrality need not be highest for the largest class

In the above two examples, we find that the key class for inducing maximal disruption in total network activity is the one that has
most members. While this was true for the simplistic network structures considered in Figs. 3–4, it will not, in general, be the case.
We consider the example in Fig. 5, from Bonaccorsi et al. (2015)’s study of epidemic outbreaks in networks with equitable partitions.

nlike the previous examples, this network displays more complexity and variations in the indirect links between members of various
lasses (features which are likely to be present in realistic networks). For instance, it can be seen that even though all players in
lass 4 have the same number of links amongst themselves and with class 2, the indirect links for players 8 and 11 are different from
thers in their class: 8 has a direct link with node 3 of class 2, while all its neighbours – 9, 10, 11 – have direct links with node 2,
hereas all other nodes in class 4 (except 11) have one of their neighbours linking with the same node in class 2 as they do, and

he other two neighbours link with the remaining class 2 node. Node 11 also has an analogous linkage pattern.
Table 3 reports the centrality values for the aggregate and per-capita indices, for 𝑎 = 0.1 and 0.2.15 We focus on the class-centrality

𝑒𝑖 which is informative for our purpose. Notice that for the lower value of 𝑎, the largest class (class 4) is also the key class, while
with 𝑎 = 0.2, class 2 (which is much smaller in size than class 4) becomes key for optimally decreasing overall network activity.
This is because, with smaller value of 𝑎, the direct effect due to class size is the dominant factor in determining the key class. But
when the indirect links become stronger, removing class 2, through which most of the indirect links are formed, has the highest
combined direct and indirect effects in determining the aggregate network activity.

6.4. Example 4: Targeting classes of varying sizes

In the above three examples, we considered the coarsest equitable partition, which yielded a key class (or its per-capita analogue)
f a given size, for targeting purposes. While class size is a model primitive (as determined by the underlying class structure for

any given network), there is still some amount of flexibility for the planner in deciding what size of key class to target. The planner
an do so by considering different equitable partitions within the network, other than the coarsest one, each of which will have a

different class structure with varying class sizes. Applying our key class theory to the different class structures will yield a key class
(or its per-capita analogue) for all such partitions, providing the planner with a range of different options for optimal classes with
varying sizes to choose from, depending on their preferences.

To make this idea precise, suppose the planner wants to target a class of size 𝑘 (or a smaller, but more optimal choice, in the
sense that targeting the smaller class leads to a larger disruption of the network activity). The planner must then consider such

15 For this example, the maximum permissible value of 𝑎 to satisfy our centrality definitions is 0.204.
10 
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Fig. 6. Example network: Analysing all class structures.

Table 4
Analysing all class structures.

Class structure 𝑒∗𝑖 ℎ∗
𝑖 Key class Per-capita key class

(7, 8), (1, 2) 2.81 0.08 (1, 2) or (7, 8) 3 or 6
(1, 7), (2, 8), (3, 6), (4, 5) 3.68 0.18 (3, 6) (3, 6)
(1, 8), (2, 7), (3, 6), (4, 5)

(1, 7, 2, 8), (3, 6), (4, 5) 5.63 0.18 (1, 7, 2, 8) (3, 6)

(1, 2, 4, 5, 7, 8), (3, 6) 8.34 0.29 (1, 2, 4, 5, 7, 8) (1, 2, 4, 5, 7, 8)

Each row under ‘Class structure’ indicates a distinct class structure: the nodes inside parenthesis denote a class, all remaining
nodes being identity classes (that is, the respective node is also the ‘class’ in itself). 𝑒∗𝑖 and ℎ∗

𝑖 denote highest class-centrality and
per-capita class-centrality values, respectively, among all classes in the corresponding class structure.

Table 5
Optimal class: Varying size.

Size Key class Per-capita key class

2 (3, 6) (3, 6)
4 (1, 7, 2, 8) –
6 (1, 2, 4, 5, 7, 8) (1, 2, 4, 5, 7, 8)

equitable partitions which are coarsest up to size 𝑘, which we call as the 𝑘-coarsest equitable partitions of the network. Note that
while the coarsest equitable partition of any network is unique, the 𝑘-coarsest equitable partitions need not be so. For instance,
consider McKay’s graph in Fig. 6, whose underlying equitable partitions are listed in Table 4. This network has three 2-coarsest
quitable partitions as shown by the first three class structures in Table 4, while the next two class structures show the 4-coarsest
nd 6-coarsest equitable partition (which is also the coarsest equitable partition for this network), respectively.

Each of the partitions in Table 4 represents a distinct underlying class-structure. Table 4 further reports the corresponding key
class and per capita key class for each of these stratifications, along with the class-based centrality values, 𝑒∗𝑖 and ℎ∗𝑖 (maximum
value of the indices, among all classes in the concerned stratification). Decay factor, 𝑎, for all computations is taken as 0.1. Note
that implementing this algorithmically is straightforward for any connected network, using existing algorithms from literature.16

The above analysis suggests which class should the planner target, based on their capacity for going after different sized classes,
s summarised in Table 5 below.17 Focusing on the key class for causing an optimal disruption to the overall network activity is

insightful. For targeting a class of, say, size 2, the planner must consider the 2-coarsest equitable partitions (the first three class
structures in Table 4). Selecting the largest 𝑒∗𝑖 from among all such class structures yields (3, 6) as the optimal key class of size 2.
The planner can similarly target larger classes as shown in Table 5.

Note that while considering the 𝑘-coarsest equitable partitions, it is not necessary that the key class will be one of size 𝑘, as some
other smaller but well-connected class can turn out to be the key. In this case, since targeting the smaller-sized class should also be
within the planner’s budget and yields a greater reduction in total (or per-capita) output, this class should obviously be targeted.
There is still some restriction though, as the planner will be bound by the underlying class structures present in the network. So,
or example, if the planner wants to target a class of size 3 for the network in Fig. 6, there being no such class, the planner must
o for the next best and target the class of size 2 or 4. A cost–benefit analysis from comparing the gain in 𝑒∗𝑖 from targeting larger
lasses, with the planner’s specific associated costs, can be informative in this regard.

7. Two illustrative applications

In this section, we present two illustrative applications to show the applicability of equitable partition and key class identification
n real-world networks. For both the applications, we find the coarsest equitable partitions for the respective networks using Everett

16 As a simple way to implement this algorithmically, the planner can find all orbit partitions within a network, each of which are also equitable by definition,
n addition to the coarsest equitable partition. Remark 2 mentions some relevant algorithms for finding these partitions. Note that the computational cost for

implementing our theory to all orbit partitions is of the same order as that of finding those partitions, for which highly efficient C language based procedures
exist (for example, the open-source package nauty by McKay and Piperno, 2014).

17 Note that a key class of size 1 is simply the key player, as obtained from applying Ballester et al. (2006)’s intercentrality measure. This comes out to be
node 3 in Fig. 6, which coincides with per-capita key class of size 1 obtained from considering the first class structure in Table 4.
11 
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Fig. 7. Key players in Thurman (1979)’s office communication network.

and Borgatti (1996)’s exact coloration algorithm. Also, the value of the decay factor 𝑎, in computing the centrality measures, is
taken as 0.1, which lies within the permissible range for our centrality definitions.

7.1. Informal office communication network

Social relationships among individuals in informal networks play a crucial role in shaping individuals’ opinions and actions.
Studying this in the context of an office setting, Thurman (1979) conducted a 16 month study of informal communications among
employees in an international organisation, taking a network approach to analyse social relationships in the office and its role in
influencing the office’s internal workings. During this time, a few major disputes broke out in a sub-group of 15 employees. We
revisit Thurman (1979)’s informal office communication network to identify the most important members in the network, who have
the maximal impact on communications (and, in a related sense, disputes) among the employees. As shown in Fig. 7, the network
contains 15 nodes, with 33 undirected links, which represent interactions between individuals. Further, it has 12 classes, which are
highlighted by the different colours in the network.

We compute the class-centralities of all classes to identify the key class in this sample network, and compare our findings with
Ballester et al. (2006)’s intercentrality measure to identify the key player. The key player comes out to be node 5 (highlighted in
black), who is, therefore, central to the communication flow within this network. This corroborates Thurman (1979)’s observation
that node 5 was ‘‘the center of (the) social circle’’. The key class (highlighted in red), however, is made of two different individuals,
nodes 3 and 6 (who are, unsurprisingly, directly linked with the key player). This suggests that both individuals 3 and 6 together
have a greater influence on their peers, rather than node 5 alone (otherwise node 5 would also have been the key class). This can
be informative for setting dispute resolution tactics in the office: the application suggests that both individuals 3 and 6 should be
consulted as they are together likely to play a bigger role than node 5, if the objective is to resolve the office disputes in an optimal
manner.

7.2. PhD network

The application of office communication network, being small in size, allowed a convenient visualisation and interpretation of
the key players problem. But it is of interest to investigate if our equitable partition setting, and consequently the class centrality
measures, are applicable to more complex real-world networks, which is the aim of this illustrative exercise. For the purpose of
this exercise, we consider the large-scale PhD network as analysed in MacArthur et al. (2008) who study the symmetry features of
this network. The network consists of 1025 nodes with 1043 edges, which represent connections among Ph.D. students and their
supervisors in Theoretical Computer Science over several years (see MacArthur et al. (2008) or De Nooy et al. (2018) for details).
The network is displayed in Fig. 8.

The coarsest equitable partition of this network has 511 classes; classes with size 9 or more are highlighted with different colours
in Fig. 8. Note that finding the equitable partition even for large networks is easy; Everett and Borgatti (1996)’s algorithm required
a few seconds to obtain the partition using personal laptop with configuration i7-7500U CPU and 16 GB RAM. Here too, we find
that the key player is different from the members of the key class: the key player is highlighted by the colour black, while the key
class consists of 35 different players highlighted in red. Associations between Ph.D. students and their advisors can be important
for creating and advancing scientific knowledge, and the set of symmetrically-positioned players who play a similar role within the
academic network as specified by the key class can be informative in that regard, with the exact utility depending on the planner’s
specific objective.
12 
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Fig. 8. Computer Science PhD network.
Classes of size 9 or more are shown by different colours. Key player is in black, key class in red. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Thus, while the exact applicability will, of course, depend on the specific setting under investigation, the preceding two
illustrative applications show that detection of classes conceptualised by the idea of equitable partition is not restrictive for
application in complex real world networks, and the subsequent identification of the key class can be informative for the planner’s
purposes.

8. Concluding remarks

This paper approaches the multiple players targeting problem from a new perspective of focusing on network classes made
of players who occupy symmetrical network positions and have well-defined linkage structures in the network, as captured via
the notion of equitable partition. Studying the network game with local payoff complementarities under equitable partitioning, we
bring out new insights about the relative influence of network classes in determining the overall activity in equilibrium. This analysis
informs two novel centrality measures to geometrically characterise the key class for the social planner who wishes to optimally
increase (or decrease) the aggregate or the per-capita network activity.

The class-based centrality measures can be informative for the social planner in several scenarios, like in criminal or R& D
networks. An interesting future work can be to develop such applications for particular scenarios, for instance, for crime reduction in
criminal networks displaying hierarchical interaction patterns, or for devising bail-out policies in R&D networks with well-established
linkage structure among similarly positioned firms, or for containing the spread of epidemics by isolating a community of similarly
positioned and linked individuals in the society. Also, in a recent work, Parise and Ozdaglar (2023) have developed Graphon games,
which can be thought of as the limits of sequences of finite network games, providing a richer statistical framework for targeting over
large scale networks. It may also be worth exploring, in a future work, the key class problem for Graphon games, especially since
some Graphon counterpart concepts of equitable partition have been provided (see, for example, Grebík and Rocha (2019)). Finally,
while class, here, has been defined through the symmetry-based notion of equitable partition, an interesting and challenging future
work would be to expand that idea and consider other general partitioning of networks, for instance, as defined in Van Mieghem
(2010), in order to find the key class for general grouping structure in networks.
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Appendix A. Proof section

Proof of Lemma 1. Both the inverse matrices are well-defined and non-negative for 0 ≤ 𝑎 ≤ 1∕𝜌. Then, since from (3.1) 𝐆𝑘𝐗 = 𝐗𝜫𝑘,
we have

[𝐈𝑛 − 𝑎𝐆]−1𝐗 =

[ ∞
∑

𝑘=0
𝑎𝑘𝐆𝑘

]

𝐗 =
∞
∑

𝑘=0
𝑎𝑘𝐗𝜫𝑘 = 𝐗

[ ∞
∑

𝑘=0
𝑎𝑘𝜫𝑘

]

which proves the Lemma. ■

Proof of Theorem 1. The pure Nash equilibrium strategies 𝐱∗ ∈ R𝑛
+ for the network game in Section 4 solves 𝜕 𝑢𝑖∕𝜕 𝑥𝑖(𝐱∗) = 0, such

that it satisfies the first order conditions:
[

𝐈𝑛 − 𝜆𝐆
]

𝐱∗ = 𝟏𝑛

As shown in Ballester et al. (2006), the Nash equilibrium exists and is unique if the inverse
[

𝐈𝑛 − 𝜆𝐆
]−1 exists, that is, when 𝜆 ≤ 1∕𝜌.

Then, from definition of 𝐛(𝐠, 𝜆) in (3.2),

𝐱∗ = 𝐛(𝐠, 𝜆).
Hence, from Lemma 1, we have

𝐲∗(𝝅) = 𝐗𝑇 .𝐱∗ =
[

𝐈𝑚 − 𝑎𝜫𝑇 ]−1 .𝐗𝑇 .𝟏𝑛

Noting that 𝐗𝑇 .𝟏𝑛 = 𝐫 then proves the Theorem. ■

Proof of Lemma 2. Recall that the elements of 𝜫𝑝, 𝜋[𝑝]
𝑖𝑘 , denotes the total paths of length 𝑝 for any 𝑣 in class 𝑉𝑖 with its neighbours

in 𝑉𝑘. Let 𝜋[𝑝]
𝑖(𝑗0)𝑘

denote the total number of such paths not containing the class 𝑗. Similarly, 𝜋[𝑝]
𝑖(𝑗)𝑘 denotes only such 𝑝-length paths

that contain class 𝑗. Then, denoting the 𝑖𝑘-th element of (𝜫𝑝)𝑇 as 𝜋[𝑝,𝑇 ]
𝑖𝑘 and setting 𝜋[0]

𝑗 𝑗 = 1, for 0 ≤ 𝑎 ≤ 1∕𝜌, we have

𝑁𝑖𝑘(𝝅, 𝑎) −𝑁𝑖𝑘(𝝅−𝑗 , 𝑎) =
∞
∑

𝑝=1
𝑎𝑝(𝜋[𝑝,𝑇 ]

𝑖𝑘 − 𝜋[𝑝,𝑇 ]
𝑖(𝑗0)𝑘

).

Note that

𝜋[𝑝,𝑇 ]
𝑖𝑘 − 𝜋[𝑝,𝑇 ]

𝑖(𝑗0)𝑘
= 𝜋[𝑝,𝑇 ]

𝑖(𝑗)𝑘 = 𝜋[𝑝,𝑇 ]
𝑖(𝑗)𝑘 .𝜋

[0,𝑇 ]
𝑗 𝑗 (since 𝜋[0]

𝑗 𝑗 = 1)
=

∑

𝑟′+𝑠′=𝑝
𝑟′≥1, 𝑠′≥1

𝜋[𝑟′ ,𝑇 ]
𝑖𝑗 .𝜋[𝑠′ ,𝑇 ]

𝑗 𝑘 −
∑

𝑟+𝑠=𝑝
𝑟≥2, 𝑠≥1

𝜋[𝑟,𝑇 ]
𝑖(𝑗)𝑘 .𝜋

[𝑠,𝑇 ]
𝑗 𝑗 .

The above identity specifies that total 𝑝-length paths from class 𝑖 to 𝑘 passing through class 𝑗 (that is, 𝜋[𝑝]
𝑖(𝑗)𝑘) equals the sum of all

paths from class 𝑖 to 𝑗 and from class 𝑗 to 𝑘 of lengths 𝑟′ and 𝑠′(≥ 1), respectively, such that 𝑟′ + 𝑠′ = 𝑝 (that is, ∑ 𝑟′+𝑠′=𝑝
𝑟′≥1, 𝑠′≥1

𝜋[𝑟′]
𝑖𝑗 .𝜋[𝑠′]

𝑗 𝑘 ),

xcluding any double counting due to paths involving class 𝑗 to 𝑗 loops (which is given by ∑

𝑟+𝑠=𝑝
𝑟≥2, 𝑠≥1 𝜋

[𝑟]
𝑖(𝑗)𝑘.𝜋

[𝑠]
𝑗 𝑗 ). To clarify on this

urther, note that paths from class 𝑖 to 𝑘 passing through 𝑗, of any given length 𝑝, can in part pass through two nodes belonging to
lass 𝑗 itself — which we call the 𝑗 to 𝑗 loop part of the overall path. Equating all 𝑝-length paths from 𝑖 to 𝑘 via 𝑗 as sum of paths
rom class 𝑖 to 𝑗 and from 𝑗 to 𝑘 (of total length 𝑝), can result in a double counting of paths with 𝑗 to 𝑗 loops as these loops can either
e counted in the 𝑖 to 𝑗 portion (that is, 𝑖 to 𝑗 to 𝑗; overall 𝑖 to 𝑗) or in the 𝑗 to 𝑘 portion (that is, 𝑗 to 𝑗 to 𝑘; overall 𝑗 to 𝑘). Hence,
e need to subtract one set of such 𝑝-length paths from 𝑖 to 𝑘 via 𝑗 involving 𝑗 to 𝑗 loops, which is given by

(

∑

𝑟+𝑠=𝑝
𝑟≥2, 𝑠≥1 𝜋

[𝑟]
𝑖(𝑗)𝑘.𝜋

[𝑠]
𝑗 𝑗
)

,
o ensure that there is no double counting.

Hence, we have

𝑎𝑝
∑

𝑟+𝑠=𝑝
𝑟≥2, 𝑠≥0

𝜋[𝑟,𝑇 ]
𝑖(𝑗)𝑘 .𝜋

[𝑠,𝑇 ]
𝑗 𝑗 = 𝑎𝑝

∑

𝑟′+𝑠′=𝑝
𝑟′≥1, 𝑠′≥1

𝜋[𝑟′ ,𝑇 ]
𝑖𝑗 .𝜋[𝑠′ ,𝑇 ]

𝑗 𝑘 .

This equates to [𝑁𝑖𝑘(𝝅, 𝑎) −𝑁𝑖𝑘(𝝅−𝑗 , 𝑎)].𝑁𝑗 𝑗 (𝝅, 𝑎) = 𝑁𝑖𝑗 (𝝅, 𝑎).𝑁𝑗 𝑘(𝝅, 𝑎) which proves the Lemma. ■

Proof of Theorem 2. Note that from Theorem 1, 𝑦∗(𝝅) and 𝑦∗(𝝅−𝑗 ) are increasing in 𝑡(𝝅, 𝜆) and 𝑡(𝝅−𝑗 , 𝜆), respectively. Hence, the
planner’s objective function (5.2) can be re-written as follows:

𝑚
∑

𝑖=1, 𝑖≠𝑗
(𝑡𝑖(𝝅, 𝜆) − 𝑡𝑖(𝝅−𝑗 , 𝜆)) + 𝑡𝑗 (𝝅, 𝜆).

In what follows, we drop arguments in function for simplicity of notation wherever convenient, and write 𝑖𝑘-th element of 𝐍(𝝅−𝑗 , 𝜆)
as 𝑁−𝑗 . Since 𝐭(𝝅, 𝜆) = 𝐍(𝝅, 𝜆).𝐫, we re-write the above expression as:
𝑖𝑘
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𝑚
∑

𝑖=1, 𝑖≠𝑗

[ 𝑚
∑

𝑘=1
𝑁𝑖𝑘𝑟𝑘 −

𝑚
∑

𝑘=1, 𝑘≠𝑗
𝑁−𝑗

𝑖𝑘 𝑟𝑘

]

+
𝑚
∑

𝑘=1
𝑁𝑗 𝑘𝑟𝑘

=
𝑚
∑

𝑖=1, 𝑖≠𝑗

[

𝑁𝑖𝑗𝑟𝑗 +
𝑚
∑

𝑘=1, 𝑘≠𝑗

{

(𝑁𝑖𝑘 −𝑁−𝑗
𝑖𝑘 )𝑟𝑘

}

]

+
𝑚
∑

𝑘=1
𝑁𝑗 𝑘𝑟𝑘.

Using Lemma 2, this becomes
𝑚
∑

𝑖=1, 𝑖≠𝑗

[

𝑁𝑖𝑗𝑟𝑗 +
𝑚
∑

𝑘=1, 𝑘≠𝑗

{𝑁𝑖𝑗 .𝑁𝑗 𝑘
𝑁𝑗 𝑗

𝑟𝑘

}

]

+
𝑚
∑

𝑘=1
𝑁𝑗 𝑘𝑟𝑘

=
𝑚
∑

𝑖=1, 𝑖≠𝑗

[ 𝑚
∑

𝑘=1

𝑁𝑖𝑗 .𝑁𝑗 𝑘
𝑁𝑗 𝑗

𝑟𝑘

]

+
𝑚
∑

𝑘=1
𝑁𝑗 𝑘𝑟𝑘 =

𝑚
∑

𝑖=1, 𝑖≠𝑗

[𝑁𝑖𝑗

𝑁𝑗 𝑗
𝑡𝑗

]

+ 𝑡𝑗
𝑁𝑗 𝑗
𝑁𝑗 𝑗

=
𝑡𝑗
𝑁𝑗 𝑗

𝑚
∑

𝑖=1
𝑁𝑖𝑗

where the last line uses the equality 𝑡𝑗 =
∑𝑚

𝑘=1 𝑁𝑗 𝑘𝑟𝑘. Noting that ∑𝑚
𝑖=1 𝑁𝑖𝑗 = 𝑠𝑗 proves the Theorem. ■

Proof of Theorem 3. As in proof for Theorem 2, the problem statement translates to:

max

{

∑𝑚
𝑖=1 (𝑡𝑖(𝝅, 𝜆)

𝑛
−

∑𝑚
𝑖=1, 𝑖≠𝑗 𝑡𝑖(𝝅−𝑗 , 𝜆))

𝑛 − 𝑟𝑗
≡ ℎ𝑗 (𝝅, 𝜆)

}

, 𝑗 = 1,… , 𝑚.

Dropping arguments in function for simplicity of notation and denoting the 𝑖𝑘-th element of 𝐍(𝝅−𝑗 , 𝜆) as 𝑁−𝑗
𝑖𝑘 , from 𝐭(𝝅, 𝜆) =

𝐍(𝝅, 𝜆).𝐫 such that 𝑡𝑖 =
∑𝑚

𝑘=1 𝑁𝑖𝑘𝑟𝑘, we have

ℎ𝑗 =
𝑚
∑

𝑖=1, 𝑖≠𝑗

{

(𝑛 − 𝑟𝑗 )
∑𝑚

𝑘=1 𝑁𝑖𝑘𝑟𝑘 − 𝑛
∑𝑚

𝑘=1, 𝑘≠𝑗 𝑁−𝑗
𝑖𝑘 𝑟𝑘

𝑛(𝑛 − 𝑟𝑗 )

}

+
∑𝑚

𝑘=1 𝑁𝑗 𝑘𝑟𝑘
𝑛

=
𝑚
∑

𝑖=1, 𝑖≠𝑗

⎧

⎪

⎨

⎪

⎩

𝑛𝑁𝑖𝑗𝑟𝑗 − 𝑟𝑗
∑𝑚

𝑘=1 𝑁𝑖𝑘𝑟𝑘 + 𝑛
∑𝑚

𝑘=1, 𝑘≠𝑗
(

𝑁𝑖𝑘 −𝑁−𝑗
𝑖𝑘

)

𝑟𝑘
𝑛(𝑛 − 𝑟𝑗 )

⎫

⎪

⎬

⎪

⎭

+
∑𝑚

𝑘=1 𝑁𝑗 𝑘𝑟𝑘
𝑛

Using Lemma 2, this becomes

ℎ𝑗 =
𝑚
∑

𝑖=1, 𝑖≠𝑗

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛𝑁𝑖𝑗𝑟𝑗 − 𝑟𝑗 𝑡𝑖 + 𝑛
∑𝑚

𝑘=1, 𝑘≠𝑗
(

𝑁𝑖𝑗 .𝑁𝑗 𝑘
𝑁𝑗 𝑗

)

𝑟𝑘

𝑛(𝑛 − 𝑟𝑗 )

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+
𝑡𝑗
𝑛

=
𝑚
∑

𝑖=1, 𝑖≠𝑗

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑛𝑁𝑖𝑗𝑟𝑗 − 𝑟𝑗 𝑡𝑖 + 𝑛
{

∑𝑚
𝑘=1

(

𝑁𝑖𝑗 .𝑁𝑗 𝑘
𝑁𝑗 𝑗

)

𝑟𝑘 −𝑁𝑖𝑗𝑟𝑗

}

𝑛(𝑛 − 𝑟𝑗 )

⎫

⎪

⎪

⎬

⎪

⎪

⎭

+
𝑡𝑗
𝑛

=
𝑚
∑

𝑖=1, 𝑖≠𝑗

{ 𝑛(𝑁𝑖𝑗∕𝑁𝑗 𝑗 )𝑡𝑗 − 𝑟𝑗 𝑡𝑖
𝑛(𝑛 − 𝑟𝑗 )

}

+
𝑡𝑗
𝑛

=
𝑚
∑

𝑖=1

{ 𝑛(𝑁𝑖𝑗∕𝑁𝑗 𝑗 )𝑡𝑗 − 𝑟𝑗 𝑡𝑖
𝑛(𝑛 − 𝑟𝑗 )

}

.

Noting that ∑𝑚
𝑖=1 𝑁𝑖𝑗 = 𝑠𝑗 , then, proves the Theorem. ■

Proof of Proposition 1. The proposition is established via proof by contradiction.
Let class 𝑗 and 𝑘 (𝑗 , 𝑘 ∈ 1,… , 𝑚) denote the key class and the per-capita key class, respectively, with corresponding class sizes

𝑟𝑗 and 𝑟𝑘. Since removing class 𝑘 minimises the per-capita network outcome, we have, for any 𝑘 ≠ 𝑗
𝑦∗(𝝅−𝑘)
𝑛 − 𝑟𝑘

<
𝑦∗(𝝅−𝑗 )
𝑛 − 𝑟𝑗

. (A1.1)

Assume the following hypothesis:

𝑟𝑘 > 𝑟𝑗 ; 𝑘 ≠ 𝑗 . (A1.2)

Since 𝑗 is the key class removing which minimises the overall network activity and, given that a non-trivial class-structure exists,
𝑟𝑗 , 𝑟𝑘 < 𝑛, we have, for any 𝑗 ≠ 𝑘:

𝑦∗(𝝅−𝑗 ) < 𝑦∗(𝝅−𝑘) ⟹
𝑦∗(𝝅−𝑗 )
𝑛 − 𝑟𝑗

<
𝑦∗(𝝅−𝑘)
𝑛 − 𝑟𝑗

⟹
𝑦∗(𝝅−𝑗 )
𝑛 − 𝑟𝑗

<
𝑦∗(𝝅−𝑘)
𝑛 − 𝑟𝑘

where the last inequality comes from noting that (𝑛−𝑟𝑘) < (𝑛−𝑟𝑗 ) from hypothesis (A1.2). This contradicts (A1.1), thus, invalidating
the hypothesis and proving the Proposition. ■
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Fig. B.1. Equitable partition vs classical role equivalence notions.

Appendix B. How equitable partition relates to role-equivalence in networks

The intuitive relationship between the structural positions occupied by network players and their network roles is well-established
n the sociology literature; see, for instance, Wasserman and Faust (1994). In this Appendix, we illustrate how equitable partition
elates to the notion of role-equivalence in networks, in comparison with other classical role-equivalence concepts in literature.

Two of the classical notions of role-equivalence in networks are structural and regular equivalences: while formal definitions can
be found in Wasserman and Faust (1994), simply put, structural equivalence stipulates equivalent actors to have identical ties to and
rom identical nodes in the network, and regular equivalence theorises that actors who have the same kind of ties with others are

equivalent in terms of their roles in the network. These notions of equivalences in networks are illustrated in the example below.
Equitable partition strikes a balance between these two ideas of role-equivalence, as we illustrate in this Appendix, via a simple
xample.

Fig. B.1 depicts a notional supervisory network: node 1 denotes an upper-level manager who supervises three mid-level managers
nodes 2,3 and 4), node 2 has five supervisees assigned to her (nodes 5 to 9), while nodes 3 and 4 supervise nodes (10,11) and

(12,13), respectively. As is common practice, equivalence is visualised by ‘coloration’ of nodes in the graph; equivalent nodes have
the same colour. The notion of regular equivalence considers all mid-level managers to be equivalent, even though node 2 supervises
five individuals as against two each for nodes 3 and 4. Structural equivalence, on the other hand, requires agents to be connected
with the same to/from actors in order to be equivalent. As opposed to these, the symmetry-preserving notion of equitable partition
takes into consideration the structural differences among actors occupying the same social position, in determining role-equivalent
classes, while relaxing the strict identical ties condition of structural equivalence: among the middle-level managers, nodes (3,4)
re assumed to play the same role, differently from that of node 2.

Hence, while the structural equivalence clearly presents a severely restrictive definition of equivalence, regular equivalence
suffers from the limitation that it does not distinguish between the structural differences among actors occupying the same social
osition. In comparison, equitable partition presents a reasonable level of compromise free from the limitations of both.
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