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SUMMARY: Model averaging is an important tool for treating uncertainty from model selection process and fusing information

from different models, and has been widely used in various fields. However, the most existing model averaging criteria are proposed

based on the methods of ordinary least squares or maximum likelihood, which possess high sensitivity to outliers or violation of

certain model assumption. For the mean regression, no optimal robust methods are developed. To fill this gap, in our paper, we

propose an outlier-robust model averaging approach by Mallows-type criterion. The idea is that we first construct a generalized

M (GM) estimator for each candidate model, and then build robust weighting schemes by the asymptotic expansion of the final

prediction error based on the GM-type loss function. So we can still achieve a trustworthy result even if the dataset is contaminated

by outliers in response and/or covariates. Asymptotic properties of the proposed robust model averaging estimators are established

under some regularity conditions. The consistency of our weight estimators tending to the theoretically optimal weight vectors

is also derived. We prove that our model averaging estimator is robust in terms of having bounded influence function. Further,

we define the empirical prediction influence function to evaluate the quantitative robustness of the model averaging estimator. A

simulation study and a real data analysis are conducted to demonstrate the finite sample performance of our estimators and compare

them with other commonly used model selection and averaging methods.
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1 Introduction

Model averaging approach, combining the estimators or forecasts from different models, has re-

ceived much attention in past decades. A main advantage of model averaging over model selection

is its full utilization of information from various models, and so model averaging often leads

to more accurate results of estimation or forecast. Model averaging develops in two directions:

Frequentist Model Averaging (FMA) and Bayesian Model Averaging (BMA). In Raftery et al.

(2005), BMA is utilized to calibrate forecast ensembles, with weights determined by the EM

algorithm. This article concentrates on FMA. A key issue with FMA is the choice of weights

assigned to candidate models. Over the past two decades, a number of FMA weight selection

algorithms have been developed, such as weighting by information criterion scores of model

selection (Hjort and Claeskens, 2006), adaptive regression by mixing (Yang, 2001), the Mallows’

criterion (Hansen, 2007), MSE minimization (Liang et al., 2011), cross-validation (CV) (Hansen

and Racine, 2012), leave-subject-out CV (Liao et al., 2019) and minimization of Kullback-Leibler

type measures Zhang et al. (2015). However, the majority of these methods are built on ordinary

least squares or maximum likelihood, which are expected to be sensitive to outliers or violation of

certain model assumption. This means that when the data contains outliers, they could be failed.

On the other hand, outliers are commonly found in almost all fields. They may appear as a result

of improperly including a fraction of a sample from a different population, or by measurement

errors. Especially in the era of big data, the amount of data is huge and intricate, and in this case

outliers are often unavoidable. Outliers in the sample can have significant effects on some common

statistical methods. For example, the ordinary least squares is a nonresistant fitting procedure and

a small proportion of the data can strongly influence the fitted model. If some of these influential

cases are aberrant, the results will be disastrous for the fit. To solve the problem, two kinds of

methods are considered. One is the outlier detection (see, for example, Hawkins (1980)), which

constructs outlier diagnostic statistics to find the influential observations. Then, these outliers are
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modified or deleted directly, and finally the tradition methods for the data analysis are employed

to the processed data. It should be noted that even if the data undergoes outlier detection, there

would still be outliers in the data, as commented by Huber (1973) that outliers are much harder

to spot in the regression than in the simple location case. The other is the robust method (see, for

example, Hampel et al. (1986)), which uses robust loss functions to obtain estimators regardless

of whether there are outliers in the data set. The outstanding merit of this approach is that it can

achieve trustworthy results even if the data is contaminated. In this paper, we focus on the latter

method.

It is also clear that the presence of outliers may have significant effects on model selection. There-

fore, how to eliminate such an influence has increasingly attracted the attention of statisticians. In

fact, outliers robust model selection has been an important research direction of robust statistics,

and many valid methods have been proposed. Most statisticians developed their robust model

selection approaches by adjusting the popular criteria. For instance, Hampel (1983) and Ronchetti

(1985) suggested a robust version of Akaike Information Criterion (AIC) and investigated its prop-

erties. Burman and Nolan (1995) presented a general Akaike-type criterion which is applicable to

a variety of loss functions for model selection. Ronchetti and Staudte (1994) presented a modified

version of Mallows’ Cp (Mallows, 1973) by weighted residual sum of squares. It allows us to

choose a model that fits most of the data in the presence of outliers (see also Sommer and Staudte

(1995)). Ronchetti (1997) reviewed this criterion as well as some other approaches. He stressed that

there remains much work to be done, such as robust model selection in time series and developing

other robust model selection procedures. Müller and Welsh (2005) proposed a new robust model

selection criterion built on combining a robust penalized criterion and a robust conditional expected

prediction loss function which is estimated using a stratified bootstrap. On the other hand, some

approaches based on resampling are developed. For example, Ronchetti et al. (1997) suggested a

robust model selection technique for regression based on cross validation. Wisnowski et al. (2003)
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proposed a variable selection approach for robust regression by combining robust estimation and

resampling variable selection techniques. However, the aforementioned methods are built on the

popular M-estimation procedure, which cannot be resistant to outliers in the covariates, i.e., the

leverage points. To overcome this drawback, the generalized M (GM) estimators are developed in

many literatures such as (He et al., 2000).

Although many robust methods have been developed for model selection, the robust model

averaging criterion has not been well studied when the samples are contaminated by outliers,

except in the case of quantile regression, where Lu and Su (2015) and Wang et al. (2023) proposed

jackknife model averaging methods which select the weights by minimizing a leave-one-out CV

criterion. For the mean regression, Du et al. (2018) developed robust versions of the focused

information criterion and a frequentist model average estimator based on M-estimation, and Guo

and Li (2021) suggested a robust model averaging method based on Sp criterion with the same

penalty as in the Mallows’ criterion of Hansen (2007). However, the weight choice criteria in

these two papers are constructed on the basis of intuitive consideration, and no optimality property

is shown. Further, it is noteworthy that the aforementioned robust model averaging methods are

not resistant to the outliers in covariates. The purpose of this article is to develop an optimal

model averaging approach for the mean regression which is robust to the outliers occurring only

in the response, or only in the covariates, or in both, and can be applicable to a wide variety of

loss functions including quantile function. In order to achieve this goal, we employ a class of

the GM-type loss functions to obtain robust parameter and weight estimators. Unlike the case of

conventional Mallows model averaging where the squared loss function is used, no explicit form

of estimator can be obtained for general robust loss functions, which brings technical challenges to

the derivation of the robust weighting scheme. To overcome this difficulty, it is essential to derive

the asymptotic expression of the difference between the robust parameter estimator (say, Θ̂) and

the pseudo-true parameter (say, Θ∗, which is defined in Section 3.1). In this regard, the technique in
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Pollard (1991), who proved that the difference between the least absolute deviations estimator and

the true parameter has an asymptotic expression, is a useful tool. However, for model averaging,

candidate models are often misspecified, and so Pollard’s approach cannot be used directly here. By

some modifications of the proofs in Pollard (1991), we successfully show that Θ̂−Θ∗ = η+ op(1)

under some regularity conditions, where η has a closed-form expression.

As an important measurement of robustness, the influence function of a robust estimator has been

well studied in the past decades. In our paper, we explore the derivation of the influence function in

the model averaging framework. Furthermore, the empirical prediction influence function (EPIF),

which can be calculated by the sample, is proposed to characterize the quantitative robustness of

our proposed model averaging estimator.

The remainder of the article is organized as follows. Section 2 describes the model framework

and estimators. In Sections 3 and 4, we present weight selection criteria with fixed design matrix

and random design matrix, respectively. Section 5 establishes theoretical properties of our proposed

robust model averaging estimators and weighting schemes under some regularity conditions. Sec-

tion 6 investigates the finite sample performance of our proposed method by simulations, and we

apply the proposed method to a real data set in Section 7. Some concluding remarks are contained

in Section 8. The robustness property of the model averaging estimator, the proofs of theorems,

two robust versions of Mallows’ Cp and Mallows model averaging method for comparison, and

additional simulation studies are given in the Supplementary Materials.

2 Model framework and model averaging estimator

Suppose that the random sample {yi} is from the following data generating process

yi = µi + εi = µ(xi) + εi, i = 1, . . . , n,

where µ(xi) is a function of xi = (xi1, ..., xip)
T ; and εi, i = 1, ..., n, are independent errors from

the distribution F which has a continuous density f with respect to Lebesgue measure (The similar

assumption can be found in, say, Coakley and Hettamansperger (1993) and Wang et al. (2013)).
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In our paper, we aim to robustly estimate µ = (µ1, ..., µn)
T by model averaging approach. To

this end, we will present a GM-estimation procedure applicable to a variety of loss functions. For

instance, based on the least absolute deviation or Huber’s function, and some weight functions

depending only on the covariates, we can obtain efficient estimators in the presence of outliers in

the response and/or covariates. To be specific, we consider M candidate linear models, and let the

mth one be

yi = xT
i(m)Θ(m) + εi(m) =

km∑
j=1

θj(m)xij(m) + εi(m), i = 1, ..., n, (1)

where Θ(m) = (θ1(m), . . . , θkm(m))
T , xi(m) = (xi1(m), . . . , xikm(m))

T with xij(m) being a variable

in xi that appears as a regressor in the mth model, and θj(m) being the corresponding coefficient,

j = 1, . . . , km, and km is the number of covariates. The parameter estimator Θ̂(m) under the model

(1) is defined as the solution which minimizes the GM-type objective function

Qn(Θ(m)) =
n∑

i=1

h(xi(m))ρ
(
yi − xT

i(m)Θ(m)

)
, (2)

where ρ is a robust convex loss function which protects against outliers in the response, and h(·)

is a bounded function which downweights the leverage points. Let ε̂i(m) = yi−xT
i(m)Θ̂(m) and w =

(w1, . . . , wM)T be a weight vector in the unit simplex of RM : W =
{
w ∈ [0, 1]M :

∑M
m=1wm = 1

}
.

The model averaging estimator of µi is thus

µ̂i(w) =
M∑

m=1

wmx
T
i(m)Θ̂(m). (3)

To determine the weight w, we will develop a robust Mallows-type weight estimator, denoted

by w = (w1, ..., wM)T . Substituting w for w in (3) results in the following robust Mallows-

type model averaging (RMMA) estimator of µi: µ̂i (w) =
∑M

m=1wmx
T
i(m)Θ̂(m). So the RMMA

estimator of µ is given by µ̂(w) = (µ̂1 (w) , ..., µ̂n (w))T .
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3 Weight selection criterion with fixed design matrix

In this section, we consider the case of fixed design matrix. We will first present the asymptotic

expansion of final prediction error for model averaging estimator, and then develop a robust model

averaging method.

3.1 The asymptotic expansion of final prediction error

We start with some notations. Define the pseudo-true parameter for the mth candidate model as

Θ∗
(m) = argmin

Θ(m)∈Rkm

n∑
i=1

E
{
h(xi(m))ρ

(
yi − xT

i(m)Θ(m)

)}
,

ε∗i(m) = yi − xT
i(m)Θ

∗
(m), ε

∗
i (w) = yi −

M∑
m=1

wmx
T
i(m)Θ

∗
(m), and ε̂i(w) = yi − µ̂i(w). Assume that

the design matrix X =
(
xT
1 , . . . ,x

T
n

)T is fixed. Let {ỹi}ni=1 be a (unknown) sample independent

of but having the same probability structure with yi, i.e., ỹi = µ(xi) + ε̃i with ε̃i being from the

distribution F and independent of εi.

In order to select the dimension of the fitted model, Akaike (1970) suggested estimating the

mth model’s predictive capability, or final prediction error, defined as
n∑

i=1

E
(
ỹi − xT

i(m)Θ̂(m)

)2
.

We follow this method and choose weights of µ̂i(w) by estimating a robust version of the final

prediction error, i.e.,
n∑

i=1

E
[
h(xi(M))ρ {ỹi − µ̂i(w)}

]
, (4)

where ρ is some robust convex loss function, and the M th candidate model is assumed to be the

largest one containing all the candidate models’ covariates. Since the model averaging estimator

is built on the covariates of all candidate models, we consider the weight function depending on

xi(M) in (4). It is worthy to note that our following results remain true as long as xi(M) contains the

covariates of all candidate models, and it does not necessarily correspond to the largest candidate

model. However, it is difficult to directly estimate (4). So to obtain our robust weighting scheme,

we derive the asymptotic expansion of (4) first.

THEOREM 1: Suppose that Assumptions S1-S5 in Section S1 of the Supplementary Materials
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hold, then

n∑
i=1

h(xi(M))Ẽ [ρ {ỹi − µ̂i(w)}]−
n∑

i=1

h(xi(M))ρ{ε̂i(w)} −
M∑

m=1

wmHnm

=
n∑

i=1

h(xi(M))E [ρ {ε∗i (w)}]−
n∑

i=1

h(xi(M))ρ{ε∗i (w)}

−
M∑

m=1

wm

(
A−1

nmVnm
)T n∑

i=1

h(xi(M))E
[
xi(m)ρ1{ε∗i (w)}

]
+ op(1), (5)

where Vnm =
n∑

i=1

h(xi(m))xi(m)ρ1

(
ε∗i(m)

)
, Anm =

n∑
i=1

h(xi(m))R2

(
µi − xT

i(m)Θ
∗
(m)

)
xi(m)x

T
i(m),

Hnm = (A−1
nmVnm)

T
n∑

i=1

h(xi(M))xi(m)ρ1{ε∗i (w)} and Ẽ denotes the expectation with respect to ỹi.

Proof. See the Supplementary Materials.

Theorem 1 shows that the robust version of the final prediction error of the model averaging

estimator can be written as a main term plus a term of op(1), which is a basis for us to generate our

robust weight selection criterion.

If we let h(·) ≡ 1, then by the definition of Θ∗
(m), we obtain

n∑
i=1

xi(m)E
{
ρ1

(
ε∗i(m)

)}
= 0. Thus,

if we put all the weights on the mth candidate model, then (5) reduces to

n∑
i=1

Ẽ
{
ρ
(
ỹi − xT

i(m)Θ̂(m)

)}
−

n∑
i=1

ρ(ε̂i(m))− V T
nmA

−1
nmVnm

=
n∑

i=1

E
{
ρ(ε∗i(m))

}
−

n∑
i=1

ρ(ε∗i(m)) + op(1), (6)

which is similar to the result derived by Burman and Nolan (1995) for model selection.

3.2 A robust Mallows-type criterion of weight choice

In order to derive a robust Mallows-type criterion for choosing the weights in model averaging

estimator, we make use of Theorem 1 and ignore the term of op(1). Note that from the definition

of Θ∗
(m), we have E (Vnm) = 0. Therefore, by taking expectation on both sides of (5), we obtain

n∑
i=1

h(xi(M))E [ρ {ỹi − µ̂i(w)}] ≈
n∑

i=1

h(xi(M))E [ρ {ε̂i(w)}] + E

(
M∑

m=1

wmHnm

)
. (7)



8 Biometrics, xx xx

Let Ṽnm =
n∑

i=1

h(xi(M))xi(m)ρ1{ε∗i (w)}, and then the second term on the right-hand side of (7)

can be rewritten as the following form:

E

(
M∑

m=1

wmHnm

)

=
M∑

m=1

wm

n∑
i=1

h(xi(M))h(xi(m))Cov
[
ρ1
(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
xT
i(m)A

−1
nmxi(m). (8)

Thus, (7) is equivalent to

n∑
i=1

h(xi(M))E [ρ {ỹi − µ̂i(w)}]

≈
n∑

i=1

h(xi(M))E [ρ{ε̂i(w)}]

+
M∑

m=1

wm

n∑
i=1

h(xi(M))h(xi(m))Cov
[
ρ1
(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
xT
i(m)A

−1
nmxi(m). (9)

Following Burman and Nolan (1995), we approximate h(xi(M))h(xi(m))Cov
[
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
by the average n−1

n∑
i=1

h(xi(M))h(xi(m))Cov
[
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
. Similarly, we can use{

n−1

n∑
i=1

h(xi(m))R2

(
µi − xT

i(m)Θ
∗
(m)

)} n∑
i=1

xi(m)x
T
i(m)

to estimate Anm. Thus, the second term on the right-hand side of (9) can be estimated by

M∑
m=1

wmkm

n∑
i=1

h(xi(M))h(xi(m))Cov
[
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
n∑

i=1

h(xi(m))R2

(
µi − xT

i(m)Θ
∗
(m)

) . (10)

Combining (9) and (10), we see that the final prediction error of model averaging estimator is given

by

n∑
i=1

h(xi(M))E [ρ {ỹi − µ̂i(w)}]

≈
n∑

i=1

h(xi(M))E [ρ{ε̂i(w)}] +
M∑

m=1

wmkm

n∑
i=1

h(xi(M))h(xi(m))Cov
[
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
n∑

i=1

h(xi(m))R2

(
µi − xT

i(m)Θ
∗
(m)

) .

Based on the above expression on the final prediction error, we propose the following robust



RMA approach by Mallows-type criterion 9

Mallows-type criterion for choosing weights

Cn(w) =
n∑

i=1

h(xi(M))ρ {ε̂i(w)}+
M∑

m=1

wmkmCρ(m), (11)

where

Cρ(m) =

n∑
i=1

h(xi(M))h(xi(m))Cov
[
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
n∑

i=1

h(xi(m))R2

(
µi − xT

i(m)Θ
∗
(m)

) . (12)

Since Cov
[
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
and R2

(
µi − xT

i(m)Θ
∗
(m)

)
are unknown, Cρ(m) needs to be

estimated. A natural estimator of Cρ(m) is Ĉρ(m) = ânm/r̂2, where r̂2 =
∑n

i=1 h
(
xi(m)

)
R̂2

(
ε̂i(m)

)
with R̂2 being an estimator of R2 (See, for example, Burman and Nolan (1995)), and ânm =∑n

i=1 h(xi(M))h
(
xi(m)

)
pin(m)gin(w) with pin(m) = ρ1

(
ε̂i(m)

)
−n−1

∑n
i=1 ρ1

(
ε̂i(m)

)
and gin(w) =

ρ1 {ε̂i(w)} − n−1
∑n

i=1 ρ1 {ε̂i(w)}.

We will give the specific forms of R̂2 in our examples. Thus, a feasible robust Mallows-type

criterion of weight choice is given by

Ĉn(w) =
n∑

i=1

h
(
xi(M)

)
ρ {ε̂i(w)}+

M∑
m=1

wmkmĈρ(m). (13)

The robust Mallows-type weight vector ŵ = (ŵ1, . . . , ŵM)T is obtained by choosing w ∈ W

such that ŵ = argminw∈W Ĉn(w). The corresponding RMMA estimator is µ̂(ŵ).

REMARK 1: When h(·) = 1 and one component of the vector w is one and the others are zero,

our proposed criterion (13) reduces to the model selection criterion given in Burman and Nolan

(1995).

REMARK 2: If ρ(t) = t2, our proposed criterion (11) coincides with the Mallows model aver-

aging criterion proposed by Hansen (2007).

3.3 Examples

Absolute loss: When the squared loss function is replaced by the absolute deviation loss function,

we find ρ(t) is no longer differentiable, but it is differentiable almost everywhere. Taking the first
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derivative of ρ(t) at any differentiable point, we have ρ1(t) = 1 when t > 0, otherwise ρ1(t) = −1.

Some elementary calculations yield that R2(t) = 2f(−t). Hence, we can get

R2

(
µi −

M∑
m=1

wmx
T
i(m)Θ

∗
(m)

)
= 2f

(
M∑

m=1

wmx
T
i(m)Θ

∗
(m) − µi

)

Obviously, |ρ1(t)| ⩽ 1 for any t ∈ R. Now let max
1⩽i⩽n

∣∣∣∣ M∑
m=1

wmx
T
i(m)Θ

∗
(m) − µi

∣∣∣∣ be bounded, then

Assumption S2 is readily satisfied.

If we let the model bias be negligible, i.e., let µi − xT
i(m)Θ

∗
(m) ≈ 0 for m = 1, ...,M , and

F have median 0 (see also Burman and Nolan (1995)), then Cov
[
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
≈

Var{ρ1(εi)} = 1 and R2

(
µi − xT

i(m)Θ
∗
(m)

)
≈ 2f(0).

We can estimate f(0) by f̂M(0), where f̂M is an estimator of f based on the M th candidate

model. So we replace h
(
xi(m)

)
by h

(
xi(M)

)
in Cρ(m). In the simulation studies and real data

analysis, f(0) is estimated based on the Epanechnikov kernel with bandwidth being the semi-

interquartile range of the residuals. Then, our proposed criterion (13) reduces to

Ĉn(w) =
n∑

i=1

h
(
xi(M)

)
|ε̂i(w)|+

n∑
i=1

h2
(
xi(M)

)
2f̂M(0)

n∑
i=1

h
(
xi(M)

) M∑
m=1

wmkm.

We label the above method as MAA.

Huber’s function: The Huber’s function is given by

ρ(t) =


t2 |t| ⩽ c,

2c|t| − c2 |t| > c,

with a constant c, that was proposed by Huber (1964) in robust regression and is smooth yet linear

in the tails. Let I(A) denote the indicator of event A. The first derivative of ρ(t) is ρ1(t) and then

for any t ∈ R, |ρ1(t)| ⩽ 2c. By some tedious calculations, we obtain

R2

(
µi −

M∑
m=1

wmx
T
i(m)Θ

∗
(m)

)
= 2P

(∣∣∣∣∣εi + µi −
M∑

m=1

wmx
T
i(m)Θ

∗
(m)

∣∣∣∣∣ ⩽ c

)
.

Again, it is seen that if we let max
1⩽i⩽n

∣∣∣ M∑
m=1

wmx
T
i(m)Θ

∗
(m) − µi

∣∣∣ be bounded, then Assumption S2 is

readily satisfied.
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As we did in the case of absolute loss, if we let the model bias be negligible, then we obtain

Cov
[
ρ1
(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
≈ Var{ρ1(εi)},

and R2

(
µi − xT

i(m)Θ
∗
(m)

)
≈ R2(0) = 2P (|εi| ⩽ c). Similar to Burman and Nolan (1995), we

require E {εiI(|εi| ⩽ c)} = 0 and F(−c) = 1 − F(c). These conditions are satisfied by any

distribution that is symmetric about the origin. Hence, it follows that

Var{ρ1(εi)} = 4E
{
ε2i I (|εi| ⩽ c)

}
+ 4c2P(|εi| > c).

So
n∑

i=1

h
(
xi(m)

)
R2

(
µi − xT

i(m)Θ
∗
(m)

)
can be estimated by 2n−1

∑n
i=1 h

(
xi(M)

)
I
(
|ε̂i(M)| ⩽ c

)
,

and
n∑

i=1

h
(
xi(M)

)
h
(
xi(m)

)
Cov

[
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
can be estimated by

4n−1

n∑
i=1

h2
(
xi(M)

)
ε̂2i(M)I

(
|ε̂i(M)| ⩽ c

)
+ 4n−1c2

n∑
i=1

h2
(
xi(M)

)
I
(
|ε̂i(M)| > c

)
.

Then, we can estimate Cρ(m) in (12) by

Ĉρ =

2
n∑

i=1

h2
(
xi(M)

){
ε̂2i(M)I(|ε̂i(M)| ⩽ c) + c2I(|ε̂i(M)| > c)

}
n∑

i=1

h
(
xi(M)

)
I(|ε̂i(M)| ⩽ c)

.

Thus, our proposed criterion (13) is given by

Ĉn(w) =
n∑

i=1

h
(
xi(M)

)
ρ {ε̂i(w)}+ Ĉρ

M∑
m=1

wmkm,

where ρ is the Huber’s function. We label this method as MAH .

4 Weight selection criterion with random design matrix

In this section, we present weight selection criterion for the case of random design matrix.

4.1 The asymptotic expansion of final prediction error

Assume that {xi} are random vectors and independent of {εi}. We consider a new sequence of

{ỹi}ni=1 which is independent of and identically distributed with {yi}ni=1 conditional on X, i.e., ỹi =

µ(xi) + ε̃i with ε̃i being independent of and identically distributed with εi. Let Fn = σ

{
n⋃

i=1

xi

}
,

Bi = σ

{
i⋃

k=1

εk

}
and Fn,i = σ {Fn ∪ Bi} for i ⩾ 1. Define B0 = {∅,Ω}. Write EFn(·) and

EFn,i−1
(·) as the conditional expectation operators E (·|Fn) and E (·|Fn,i−1), respectively. Unlike
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the case where the design matrix is fixed, here we may define

Θ∗
(m) = argmin

Θ(m)∈Rkm

n∑
i=1

h
(
xi(m)

)
EFn

{
ρ
(
yi − xT

i(m)Θ(m)

)}
.

Similar to Theorem 1, the following theorem shows that, for the case of random design matrix,

the final prediction error of the model averaging estimator can also be written as a main term plus

a term of op(1).

THEOREM 2: Suppose that Assumptions S6-S10 in Section S1 of the Supplementary Materials

hold, then
n∑

i=1

h
(
xi(M)

)
ẼFn [ρ {ỹi − µ̂i(w)}]−

n∑
i=1

h
(
xi(M)

)
ρ{ε̂i(w)} −

M∑
m=1

wmH
∗
nm

=
n∑

i=1

h
(
xi(M)

)
EFn [ρ{ε∗i (w)}]−

n∑
i=1

h
(
xi(M)

)
ρ{ε∗i (w)}

−
M∑

m=1

wm

(
A∗−1

nm Vnm
)T n∑

i=1

h
(
xi(M)

)
xi(m)EFn [ρ1{ε∗i (w)}] + op(1), (14)

where A∗
nm =

n∑
i=1

h
(
xi(m)

)
R∗

2

(
µi − xT

i(m)Θ
∗
(m)

)
xi(m)x

T
i(m), Vnm is defined in Theorem 1 and

H∗
nm = (A∗−1

nm Vnm)
T

n∑
i=1

h
(
xi(M)

)
xi(m)ρ1{ε∗i (w)}.

Proof. See the Supplementary Materials.

4.2 A robust Mallows-type criterion of weight choice

To get a robust Mallows-type criterion of weight choice for the model averaging estimator, we

ignore the small order term of (14). By the definition of Θ∗
(m), we have EFn [Vnm] = 0. Therefore,

invoking the law of iterated expectations, we obtain
M∑

m=1

wmE

{(
A∗−1

nm Vnm
)T n∑

i=1

h
(
xi(M)

)
xi(m)EFn [ρ1{ε∗i (w)}]

}

=
M∑

m=1

wmE

{
EFn

[
n∑

i=1

h
(
xi(M)

)
xT
i(m)ρ1{ε∗i (w)}

]
A∗−1

nm EFn [Vnm]

}
= 0.

Taking expectation on both sides of (14) with the small order term ignored, we have
n∑

i=1

E
[
h
(
xi(M)

)
ρ {ỹi − µ̂i(w)}

]
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≈
n∑

i=1

E
[
h
(
xi(M)

)
ρ {ε̂i(w)}

]
+ E

{
M∑

m=1

wm

(
A∗−1

nm Vnm
)T n∑

i=1

h
(
xi(M)

)
xi(m)ρ1 {ε∗i (w)}

}
.

Since E
(
V T
nmA

∗−1
nm Ṽnm

)
= E

[
EFn(V

T
nmA

∗−1
nm Ṽnm)

]
, we can first estimate EFn

(
V T
nmA

∗−1
nm Ṽnm

)
instead of approximating E

(
V T
nmA

∗−1
nm Ṽnm

)
directly. Similar to (8), we find that

EFn

(
V T
nmA

∗−1
nm Ṽnm

)
=

n∑
i=1

h
(
xi(M)

)
h
(
xi(m)

)
CovFn

[
ρ1
(
ε∗i(m)

)
, ρ1{ε∗i (w)}

]
xT
i(m)A

∗−1
nm xi(m).

Now, making use of the similar derivation for (11), with random design matrix, we propose the

following robust Mallows-type criterion for choosing the weights in the model averaging estimator

C̃n(w) =
n∑

i=1

h
(
xi(M)

)
ρ {ε̂i(w)}+

M∑
m=1

wmkmC
∗
ρ(m),

where

C∗
ρ(m) =

n∑
i=1

h
(
xi(M)

)
h
(
xi(m)

)
CovFn

(
ρ1

(
ε∗i(m)

)
, ρ1{ε∗i (w)}

)
n∑

i=1

h
(
xi(m)

)
R∗

2

(
µi − xT

i(m)Θ
∗
(m)

) .

Similar to the treatment of Cρ(m) in Section 3.2, C∗
ρ(m) can be approximate by Ĉ∗

ρ(m) = ânm/r̂
∗
2,

where r̂∗2 =
∑n

i=1 h
(
xi(m)

)
R̂∗

2

(
ε̂i(m)

)
with R̂∗

2 being an estimator of R∗
2. This yields the following

feasible criterion of weight choice

C̃∗
n(w) =

n∑
i=1

h
(
xi(M)

)
ρ {ε̂i(w)}+

M∑
m=1

wmkmĈ
∗
ρ(m). (15)

Accordingly, the optimal weight vector w̃ = (w̃1, . . . , w̃M)T can be obtained by choosing w̃ ∈

W such that w̃ = argminw∈W C̃∗
n(w), and the resultant RMMA estimator is given by µ̂(w̃).

REMARK 3: In our paper, we aim to develop a robust Mallows-type weight selection criterion

which can eliminate the influence caused by the outliers in sample. Unlike the case of conventional

Mallows model averaging where the squared loss function is used, our parameter and weight

estimators are derived under general robust loss functions such as absolute loss and Huber’s func-

tion. Specifically, it is not feasible to derive closed-form expressions for parameter estimators in

this context, which contrasts with situation where the loss function is selected to be the squared
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loss. Therefore, the construction method of Mallows criterion for the model average estimator,

as outlined in Hansen (2007), is no longer applicable in our paper. To address this challenge, we

adopt an approach inspired by Akaike (1970) and Burman and Nolan (1995). The optimal weight

vector should be determined by minimizing the robust version of the final prediction error defined

by (4). Therefore, we formulate the Mallows-type criterion by estimating (4). However, (4) is

not directly estimable. In order to obtain a robust Mallows-type weight selection criterion (i.e.,

objective function), it is imperative to first derive the asymptotic representation of (4), by which

we can establish the criteria (11) and (13).

REMARK 4: Comparing (13) and (15), we see that the two weight choice criteria have similar

forms for fixed and random design matrices. Therefore, we can give similar approximations to

Ĉ∗
ρ(m) for the examples described in Section 3.3.

5 Asymptotic properties of the proposed estimators

In this section, we establish asymptotic optimality of our proposed robust model averaging estima-

tor and consistency of the estimated weight vector for the case of random design matrix. With the

case of fixed design matrix, the similar results can be derived, which are omitted for saving space.

5.1 Asymptotic optimality of model averaging estimator

In this subsection, we devote to establish the asymptotic optimality of the model averaging estima-

tor µ̂(w̃) in the sense of minimizing the following out-of-sample final prediction error:

FPEn(w) =
n∑

i=1

E
[
h
(
xi(M)

)
ρ {ỹi − µ̂i(w)} |Dn

]
,

where Dn = {(yi,xi) : i = 1, ..., n} and ỹi (i = 1, ..., n) are defined in Section 4.1.

THEOREM 3: Under Assumptions S6-S14 in Section S1 of the Supplementary Materials, we

have

FPEn(w̃)

inf
w∈W

FPEn(w)
= 1 + op(1). (16)

Proof. See the Supplementary Materials.
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The optimality statement in Theorem 3 indicates that the model averaging estimator obtained

using our proposed RMMA criterion yields an out-of-sample final prediction error which is asymp-

totically equivalent to that of the infeasible best possible averaging estimator.

5.2 Consistency of the estimated weight vector

In this subsection, we consider the consistency of w̃. Let

F̃PEn(w) =
n∑

i=1

h
(
xi(M)

)
EFn

{
ρ

(
yi −

M∑
m=1

wmx
T
i(m)Θ

∗
(m)

)}
and define the theoretically optimal weight as w0 = argminw∈W F̃PEn(w).

THEOREM 4: Under Assumptions S6-S17 in Section S1 of the Supplementary Materials, if w0

is an interior point of W , then there exists a local minimizer w̃ of C̃∗
n(w) such that

∥w̃ −w0∥ = Op(n
−1/4). (17)

Proof. See the Supplementary Materials.

Theorem 4 demonstrates that the weight estimator w̃ approaches to the theoretically optimal

weight vector w0 at the rate of n−1/4.

In this paper, we also investigate the robustness property of the model averaging estimator. To

be specific, we define the influence function of model averaging estimator, and then prove that the

optimal model averaging estimator is robust in the sense that it has a bounded influence function.

Please refer to Section S2 of the Supplementary Materials.

6 Simulation Studies

The purpose of this section is to evaluate, via simulation studies, the finite sample performance

of our proposed method, and compare it with some other commonly used model selection and

averaging methods. We label the two robust versions of Mallows’ Cp which were introduced in

Ronchetti and Staudte (1994) as HCp and MCp when the weight functions of Huber’s and Mallows’

types are used, respectively. The general Akaike-type model selection methods in Burman and

Nolan (1995) are labeled as MSA and MSH , and the Sp-type robust model averaging methods
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suggested by Guo and Li (2021) are labeled as SMAA and SMAH , when the loss functions are

chosen to be the absolute deviation and Huber’s functions, respectively. We also consider the

conventional model averaging estimators, including MMA (Hansen, 2007), SAIC and SBIC. As in

Ronchetti and Staudte (1994), we let c = 1.345 in our simulation studies and real data analysis.

We compare totally eleven estimators including MAA, MSA, SMAA, MAH , MSH , SMAH , MCp,

HCp, MMA, SAIC and SBIC. To this end, we consider similar simulation settings to those in

Hansen (2007), and use the following out-of-sample mean absolute error (MAE) across R = 1000

replications to evaluate their performance:

MAE =
1

R

R∑
r=1

AE(r),

where AE(r) = 1
n

∑n
i=1

∣∣∣µ(r)
i − µ̂

(r)
i

∣∣∣ is the error from the rth replication based on a given averag-

ing/selection method with µ(r)
i being calculated using the clean testing dataset {x(r)

i }ni=1 and µ̂(r)
i

being the estimation value.

In our simulation studies and real data example, the weight function has the form of h
(
xi(m)

)
=

ψb(hi(m))/hi(m), where hi(m) is the ith diagonal element of the “hat matrix”H(m) = x(m)(x
T
(m)x(m))

−1xT
(m)

with x(m) = (x1(m), ...,xn(m))
T , and ψb(hi(m)) = hi(m) if |hi(m)| ⩽ b and ψb(hi(m)) = b if

|hi(m)| > b. As in Sommer and Staudte (1995), we let the bending constant b = 1.5km/n, then

xi(m) will be downweighted when hi(m) is larger than 1.5 times of the average leverage.

6.1 Simulation settings

Following the simulation setting in Hansen (2007), we consider

yi =
100∑
j=1

θjxij + εi, i = 1, 2, · · · , n, (18)

where xi1 = 1 is the intercept and the remaining xij (j = 2, ..., 100) are mutually independent,

the parameters θj = c
√
2νj−ν−0.5 (j = 1, ..., 100) with ν = 1 and c being varied so that R2 =

c2/(1 + c2) = 0.1, 0.3, · · · , 0.9, and εi is independent of the covariates. For the random covariates

xij (j = 2, ..., 100) and the error term εi, we consider the following four cases:

Case 1 The random covariates xij (j = 2, ..., 100) and the error term εi follow the standard normal
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distribution N (0, 1);

Case 2 The random covariates xij (j = 2, ..., 100) follow a mixture distribution 0.8N (0, 1) +

0.2t(1), and the error term εi follows the standard normal distribution N (0, 1);

Case 3 The random covariates xij (j = 2, ..., 100) follow the standard normal distribution N (0, 1),

and the error term εi follows a distribution t(1);

Case 4 The random covariates xij (j = 2, ..., 100) follow a mixture normal distribution 0.8N (0, 1)+

0.2t(1), and the error term εi follows a distribution t(1).

Cases 1-4 correspond to the following four situations: there are no outliers in sample, outliers

occur only in the covariates, outliers occur only in the response, and both covariates and response

contain outliers. We consider the nested regression models with variables {xij, j = 2, ...,M} and

each candidate model contains the intercept term, where M = [3n1/3] with n = 50, 150 and 400.

In the implementation of simulation studies, for simplicity, the random covariates in Cases 2 and

4 are generated in the following way: 80% of the random covariates come from N (0, 1) and the

remaining 20% come from t(1).

6.2 Simulation results

Tables 1-4 report the MAEs of various estimators for Cases 1-4 with n = 50, 150 and 400. To

facilitate comparisons, the best is shown in bold.

From Table 1, we see that for Case 1, the MMA estimator is most frequently the estimator

that enjoys the smallest MAEs. The reason is that the MMA estimator is asymptotically optimal

in the sense of minimizing the squared errors in the absence of outliers. When the data is not

contaminated by outliers, in most cases, we find that MAH and MAA are slightly worse than

MMA, but MAH clearly denominates the other robust model selection and averaging methods.

As for MAA, it usually performs better than SMAA, MSA, MCp and HCp. Another interesting

finding is that for the sample sizes of n = 150 and 400, MAA and MAH can often have a better

performance than SBIC.
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[Table 1 about here.]

[Table 2 about here.]

The advantages of MAA and MAH are quite clear in the presence of outliers. For instance, from

the results of Case 2 in Table 2, one can see that when outliers occur only in the covariates, MAH

is the most favored estimator, and MAA is often the second favored estimator. We also find that

the conventional model averaging estimators, including MMA, SAIC and SBIC, have the worst

performance, which shows that it is necessary to develop a robust model averaging method. For

Case 3, where the error term comes from the distribution with heavy tails and the covariates are

absent of outliers, frequently MAA enjoys smaller MAEs than MAH . It is clear from Table 3 that

MAA and MAH often occupy the top two when outliers occur only in the response. Compared to

the results of Case 2, the performance of MSA becomes better than that of MSH , which indicates

that the estimator built on the absolute deviation loss function is more favorable than that based on

the Huber’s function when the outliers occur in the response. The performance of the remaining

estimators is similar to that in Case 2. If the sample is contaminated by outliers in both the

covariates and the response, we can see from the results of Case 4 in Table 4 that when the sample

size n = 50, MAA performs the best and the performance of MAH is not good enough. However,

for the sample sizes of n = 150 and n = 400, MAA and MAH always perform better than the

other model selection and averaging methods. It is found that MSA and MSH have smaller MAEs

than SMAA and SMAH respectively, and HCp and MCp are superior to SMAA and SMAH . Of all

cases considered in Tables 1-4, as the sample size increases, the MAEs of MAA and MAH become

smaller. On the other hand, we find that different sample sizes have little effect on the ranking of

estimators’ performance.

[Table 3 about here.]

[Table 4 about here.]
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In summary, in the absence of outliers, the commonly used MMA method is often superior to

other methods in terms of minimizing MAEs, but it is usually the worst when there are outliers in

data. Moreover, the widely used SAIC and SBIC perform poorly in the presence of outliers. So it is

very meaningful to develop robust model averaging methods which can be resistant to the leverage

points and outliers in the response. It is observed that MAA and MAH perform better than MSA and

MSH , respectively. Further, MCp and HCp are usually inferior to our proposed model averaging

estimators especially in the cases of n = 150 and 400, which highlights the advantages of robust

model averaging in the face of model diversity and outliers. It is worthy to note that when there are

outliers in the sample, our proposed robust Mallows-type model averaging estimators MAA and

MAH are usually superior to SMAA and SMAH .

Further, we consider the data generating process (18) with the covariates being generated from a

mixture multidimensional distribution. The corresponding results are provided in Section S9.1 of

the Supplementary Materials. We also adopt the same simulation setting as in Ronchetti (1985) in

Section S9.2 of the Supplementary Materials, which is a non-linear model. In conclusion, for both

dependent data and complex structured data considered here, MAA and MAH still perform well

when the error terms come from the distributions with heavy tails. More details can be found in

the Supplementary Materials.

7 Real data example

As an application of our proposed method, we analyze the human immunodeficiency virus (HIV)

data which are from acquired immunodeficiency syndrome (AIDS) Clinical Trials Group (ACTG)

protocol 175 (Hammer et al., 1996) and can be found in the R package speff2trial. The

ACTG 175 experiment evaluates treatment with either a single nucleoside or two nucleosides in

adults infected with HIV type 1 (HIV-1) whose CD4 cell counts range from 200 to 500 per cubic

millimeter. According to the regimen of treatment they received, the patients were divided into

two arms: the arm with zidovudine, ZDV, monotherapy (ZDV only) and the arm with three newer
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treatments (ZDV + didanosine, ddI, ZDV + zalcitabine, ddC, and ddI only). The two arms totally

have 2139 subjects.

Following the analysis of Han et al. (2019), CD4 cell count at 96±5 weeks post baseline (CD496)

is chosen to be the response variable, and the eight variables including treatment indictor (trt;

0=ZDV only), CD4 cell count at baseline (CD40), age in years at baseline (age), weight in kg at

baseline (weight), race (race; 0=white), gender (gender; 0=female), history of intravenous drug

use (drug; 0=no), indicator of off-treatment before 96 ± 5 weeks (offtrt; 0=no) are chosen to be

the covariates. Wang et al. (2023) took CD4 cell count at 20 ± 5 weeks (CD420) and CD8 cell

count at 20 ± 5 weeks (CD820) as the predictors. Thus, we also add these two variables into the

covariates. After removing the subjects with the response variable CD496 being missing, we still

have n = 1342 sample observations. Figure 1 shows the boxplots of the response CD496 and

the covariates CD40, CD420 and CD820, which indicates that there are outliers in both covariates

and response. Based on the absolute value of correlation between the covariate and the response

variable, the order of the ten covariates (from large to small) is x1 (CD420), x2 (CD40), x3 (offtrt),

x4 (trt), x5 (weight), x6 (CD820), x7 (race), x8 (drug), x9 (age) and x10 (gender). We construct ten

nested candidate models with covariates {1, x1}, {1, x1, x2},..., {1, x1, x2, ..., x10}, respectively.

Some covariates (CD420, CD40, weight, CD820, and age) are standardized to have zero mean and

unit variance.

[Figure 1 about here.]

We randomly divide our sample with size of n into a training sample {xs, ys}n1

s=1 and an eval-

uation sample {xt, yt}n2

t=1. Let µ̂t be the predictive value of the response variable based on a

given averaging/selection method. Then we evaluate different methods by calculating the absolute

prediction error (APE), i.e., APE = 1
n2

∑n2

t=1 |yt − µ̂t| .

We take n1 = 600 and 800, respectively. To demonstrate the benefits of the robust methods,

we consider the case of more outliers in the training sample, where 20% of CD420, CD40, weight
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and CD820 are randomly replaced with a sample from a heavy-tailed distribution t(1). All the

simulation results are reported in Figure 2. It is observed that MAA yields the best result among all

the estimators, and the second favored estimator is MAH . From Figure 2, we also find that MCp can

clearly dominate the other robust model selection methods. Further, it is seen that the performance

differences between our proposed MAA and MAH and other robust model averaging estimators

(SMAA and SMAH) are quite clear. The performance of the traditional model averaging methods

MMA, SAIC and SBIC in this real data analysis is poor, which further shows the necessity of

developing a robust model averaging method. This example indicates that our method can obtain

a trustworthy result when the real data contain outliers.

[Figure 2 about here.]

8 Concluding remarks

A great progress with the model averaging method has been made in past decades. However, the

commonly used methods do not consider the influence of outliers. In fact, most of the existing

model averaging methods are based on the squared loss function, and our numerical results have

indicated that the usual methods are greatly affected by outliers (c.f., Sections 6 and 7). The

purpose of this paper is to solve the problem of how to apply model averaging when the data is

contaminated. We proposed an outlier-robust Mallows-type model averaging approach. The idea is

to use some specific GM-type loss functions, which are robust to outliers in both the covariates and

the response, to obtain robust estimators and build robust weighting schemes. We proved that our

proposed robust model averaging estimator is asymptotically optimal in the sense of minimizing

the out-of-sample final prediction error. The rate of the RMMA-based empirical weight converging

to the theoretically optimal weight is established. The robustness property of our proposed model

averaging approach is also investigated by developing the concept of EPIF. Both simulation studies

and real data analysis show that our proposed method is a useful tool to implement model averaging

in the presence of outliers.
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For the mean regression, the method proposed in this paper is the first optimal model averaging

strategy with robustness for outliers, so there are many problems worthy of further study. Note that

the jackknife model averaging of Hansen and Racine (2012), optimal model averaging of Liang

et al. (2011), Kullback-Leibler model averaging of Zhang et al. (2015) and other weight selection

criteria have been suggested, which may also be affected by outliers. How to correct these criteria in

the case of the data with outliers is an interesting problem. Based on the method of random design

matrix, one may extend our proposed criterion to the autoregressive sequence. In this paper, we

limit the candidate models to linear forms. Exploring methods to remove this restriction presents

an intriguing challenge. Further, both the dimensions and the number of candidate models in this

paper are assumed to be fixed, and how to generalize the proposed new method to the situation of

divergence is also a future research topic.
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Figure 1. Boxplots of the response CD496 and the covariates CD40, CD420 and CD820
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Figure 2. Boxplots for the APEs of estimators based on 1000 random divisions: HIV data
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Table 1
MAEs of estimators for Case 1

n R2 MAA MSA SMAA MAH MSH SMAH MCp HCp MMA SAIC SBIC

50

0.1 0.282 0.334 0.418 0.265 0.315 0.273 0.348 0.353 0.234 0.210 0.194
0.3 0.323 0.387 0.429 0.297 0.354 0.303 0.375 0.374 0.275 0.257 0.252
0.5 0.355 0.429 0.448 0.322 0.381 0.327 0.399 0.398 0.305 0.304 0.311
0.7 0.413 0.494 0.474 0.370 0.427 0.371 0.436 0.436 0.359 0.361 0.386
0.9 0.518 0.583 0.542 0.462 0.500 0.462 0.516 0.513 0.459 0.472 0.513

150

0.1 0.166 0.180 0.234 0.159 0.180 0.163 0.212 0.215 0.149 0.136 0.133
0.3 0.202 0.231 0.249 0.188 0.219 0.191 0.235 0.236 0.181 0.177 0.194
0.5 0.233 0.266 0.266 0.215 0.246 0.217 0.259 0.258 0.210 0.211 0.237
0.7 0.267 0.305 0.288 0.241 0.273 0.243 0.280 0.279 0.237 0.243 0.277
0.9 0.339 0.380 0.345 0.303 0.328 0.303 0.336 0.335 0.300 0.313 0.355

400

0.1 0.115 0.128 0.149 0.108 0.122 0.110 0.145 0.147 0.104 0.100 0.108
0.3 0.146 0.163 0.168 0.132 0.149 0.134 0.165 0.165 0.130 0.130 0.151
0.5 0.165 0.185 0.182 0.149 0.168 0.150 0.178 0.177 0.146 0.150 0.176
0.7 0.192 0.215 0.201 0.170 0.190 0.171 0.197 0.196 0.168 0.175 0.207
0.9 0.239 0.264 0.239 0.213 0.228 0.212 0.233 0.232 0.210 0.220 0.262
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Table 2
MAEs of estimators for Case 2

n R2 MAA MSA SMAA MAH MSH SMAH MCp HCp MMA SAIC SBIC

50

0.1 0.255 0.346 0.357 0.236 0.312 0.282 0.307 0.301 0.362 0.356 0.323
0.3 0.302 0.407 0.413 0.282 0.377 0.351 0.335 0.343 0.740 0.748 0.674
0.5 0.339 0.449 0.446 0.322 0.417 0.444 0.357 0.369 0.829 0.829 0.750
0.7 0.408 0.537 0.545 0.382 0.511 0.507 0.408 0.441 1.474 1.525 1.356
0.9 0.540 0.672 0.677 0.511 0.650 0.785 0.519 0.576 1.929 1.967 1.816

150

0.1 0.137 0.170 0.177 0.123 0.164 0.148 0.165 0.152 0.428 0.427 0.361
0.3 0.162 0.204 0.203 0.149 0.196 0.184 0.182 0.178 0.674 0.677 0.595
0.5 0.185 0.221 0.217 0.169 0.208 0.196 0.199 0.194 0.698 0.718 0.652
0.7 0.216 0.275 0.271 0.203 0.269 0.264 0.226 0.237 1.094 1.121 0.984
0.9 0.292 0.367 0.363 0.279 0.365 0.409 0.295 0.339 1.875 1.928 1.708

400

0.1 0.083 0.090 0.091 0.073 0.083 0.082 0.095 0.080 0.237 0.246 0.212
0.3 0.097 0.104 0.102 0.084 0.095 0.091 0.103 0.090 0.375 0.386 0.365
0.5 0.110 0.121 0.119 0.097 0.112 0.109 0.115 0.106 0.499 0.503 0.471
0.7 0.128 0.141 0.138 0.115 0.133 0.134 0.130 0.126 0.703 0.723 0.663
0.9 0.175 0.198 0.196 0.167 0.195 0.200 0.181 0.190 1.030 1.048 0.964
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Table 3
MAEs of estimators for Case 3

n R2 MAA MSA SMAA MAH MSH SMAH MCp HCp MMA SAIC SBIC

50

0.1 0.377 0.414 0.721 0.502 0.518 0.827 0.488 0.485 5.124 4.642 4.254
0.3 0.396 0.436 0.716 0.506 0.551 0.817 0.500 0.493 5.073 4.566 4.021
0.5 0.459 0.525 0.726 0.553 0.610 0.843 0.564 0.563 4.545 3.941 3.522
0.7 0.548 0.645 0.806 0.628 0.727 0.908 0.662 0.660 5.202 4.508 4.019
0.9 0.717 0.837 0.879 0.761 0.898 1.004 0.816 0.817 5.057 4.559 4.159

150

0.1 0.193 0.201 0.300 0.249 0.276 0.393 0.280 0.278 3.401 2.871 2.549
0.3 0.244 0.268 0.326 0.287 0.339 0.418 0.321 0.320 3.772 3.259 2.920
0.5 0.290 0.326 0.352 0.318 0.380 0.440 0.364 0.363 3.907 3.284 2.992
0.7 0.339 0.382 0.383 0.361 0.438 0.472 0.408 0.407 3.888 3.306 2.980
0.9 0.443 0.492 0.461 0.450 0.545 0.545 0.506 0.505 3.748 3.314 3.051

400

0.1 0.135 0.145 0.174 0.165 0.185 0.253 0.194 0.195 3.065 2.539 2.237
0.3 0.177 0.196 0.197 0.192 0.229 0.268 0.223 0.220 2.898 2.435 2.146
0.5 0.206 0.227 0.220 0.219 0.264 0.290 0.253 0.252 3.146 2.649 2.396
0.7 0.240 0.264 0.243 0.242 0.297 0.308 0.283 0.283 3.210 2.722 2.459
0.9 0.307 0.335 0.297 0.304 0.376 0.363 0.348 0.348 3.469 2.904 2.688
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Table 4
MAEs of estimators for Case 4

n R2 MAA MSA SMAA MAH MSH SMAH MCp HCp MMA SAIC SBIC

50

0.1 0.394 0.624 0.828 0.479 0.712 1.067 0.476 0.457 4.375 4.354 4.036
0.3 0.522 0.759 0.891 0.611 0.848 1.139 0.532 0.523 5.032 4.849 4.515
0.5 0.468 0.722 0.848 0.553 0.808 1.046 0.575 0.575 4.447 4.060 3.883
0.7 0.554 0.991 1.113 0.776 1.076 1.369 0.623 0.647 4.675 4.588 4.375
0.9 0.779 1.117 1.208 0.857 1.233 1.451 0.795 0.844 5.428 5.406 5.084

150

0.1 0.172 0.272 0.338 0.200 0.409 0.458 0.265 0.287 3.393 3.426 3.129
0.3 0.213 0.317 0.354 0.238 0.403 0.438 0.300 0.282 3.288 3.327 3.030
0.5 0.244 0.365 0.386 0.271 0.445 0.480 0.329 0.321 3.221 3.257 2.988
0.7 0.282 0.407 0.419 0.305 0.487 0.519 0.362 0.359 3.538 3.563 3.219
0.9 0.379 0.520 0.525 0.403 0.622 0.679 0.450 0.477 4.658 4.694 4.321

400

0.1 0.107 0.141 0.160 0.113 0.194 0.198 0.158 0.137 2.197 2.214 2.084
0.3 0.131 0.181 0.190 0.137 0.225 0.253 0.182 0.162 2.150 2.178 2.048
0.5 0.149 0.194 0.198 0.153 0.234 0.252 0.197 0.183 2.339 2.363 2.201
0.7 0.169 0.216 0.217 0.174 0.257 0.270 0.212 0.205 2.411 2.439 2.299
0.9 0.225 0.279 0.278 0.230 0.330 0.336 0.268 0.273 3.046 3.110 2.873


