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A B S T R A C T

Skew normal model suffers from inferential drawbacks, namely singular Fisher information
when it is close to symmetry and diverging of maximum likelihood estimation. This causes
a large variation of the conventional maximum likelihood estimate. To address the above
drawbacks, Azzalini and Arellano-Valle (2013) introduced maximum penalised likelihood
estimation (MPLE) by subtracting a penalty function from the log-likelihood function with
a pre-specified penalty coefficient. Here, we propose a cross-validated MPLE to improve its
performance when the underlying model is close to symmetry. We develop a theory for MPLE,
where an asymptotic rate for the cross-validated penalty coefficient is derived. We further show
that the proposed cross-validated MPLE is asymptotically efficient under certain conditions. In
simulation studies and a real data application, we demonstrate that the proposed estimator can
outperform the conventional MPLE when the model is close to symmetry.

. Introduction

Skewness, which measures the asymmetry of a distribution, is an important data feature to characterise. Change of data skewness
an serve as a basis for detecting an attack upon a sensor network, for providing an early warning for abrupt climate changes, for
stimating aggregates of small domain business, for modelling equity excess returns, for characterising sensitivity of anti-cancer
rugs, among others (Buttyan et al., 2006; He et al., 2013; Colacito et al., 2016; Ferrante and Pacei, 2017; Dhar et al., 1996). For
xample, in cancer research, people are interested in characterising drug sensitivity and development of novel therapeutics. The
ata considered in this study consist of the measurements of median inhibition concentrations, IC50s, of 227 drugs in 111 cancer
ell lines (Iorio et al., 2016). IC50 is a measure of how much drug is needed to inhibit the multiplication of that cell line by 50%.
he log-IC50 informs the drug sensitivity against cancer cells. The location, dispersion and skewness parameters of the log-IC50
an be used to search for a combined drug therapy. For example, histogram plots for log-IC50s of drugs Erlotinib and Paclitaxel in
ig. 1.1 demonstrate that these two drugs have contrasting data features, one has positive drug response and the other has drug
esistance. Erlotinib is an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase pathway while Paclitaxel is a
hemotherapy drug. Cancer stem cells are often enriched after chemotherapy and induce tumor recurrence, which poses a significant
linical challenge. Combining Erlotinib with Paclitaxel can overcome paclitaxel-resistant cervical cancer (Lv et al., 2019).

By introducing a shape parameter 𝛼 in a normal distribution, the skew-normal and more generally, skew symmetry distributions,
an provide a better fit for asymmetric data than does the normal (Azzalini, 1985). Because of their appealing mathematical
roperties and usefulness in practice, skew-normal distributions have received considerable attention in the past two decades.
xtensions have been made in various directions, including multivariate skew-normal, skew 𝑡- and skew elliptical distributions
nd finite mixtures of skew normals (Azzalini and Capitanio, 1999, 2003; Lin, 2009; Azzalini and Capitanio, 2014; Wang et al.,
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Fig. 1.1. Histogram plots and skew normal fits of log-IC50 data for drugs Erlotinib and Paclitaxel, where the solid curves are the fits produced by the proposed
MPLE.

2020 and references therein). Some of these developments, however, suffer from inferential drawbacks, namely singular Fisher
information in the vicinity of symmetry and diverging of maximum likelihood estimator of 𝛼 (Azzalini, 1985; Hallin and Ley, 2012).
To eliminate the singularity, a tentative remedy called centered parametrisation (CP) was put forward by Azzalini (1985), where
𝛼 is reparametrised to Pearson’s skewness index. Unfortunately, the likelihood function under the CP is not explicitly available as
the Jacobian factor of the transformation is unbounded when the underlying model is symmetric. Chiogna (2005) showed that
even using reparameterisation, the resulting maximum likelihood estimator (MLE) of 𝛼 has a rate of 𝑛−1∕6 lower than the usual
rate of root-𝑛 at 𝛼 = 0. The above remedy never really caught upon, partly because the mechanism of skewness is unknown in
practice and the resulting skew-normal family, under the new parametrisation, loses much of its simplicity (Azzalini and Capitanio,
2014). To develop an alternative remedy to handle the above inferential drawbacks, Azzalini and Arellano-Valle (2013) consider
a penalised log-likelihood by subtracting 𝜆𝑄(𝛼) from the log-likelihood, where penalty 𝑄(𝛼) is used to control the magnitude of 𝛼.

y using Firth’s bias-correction technique (Firth, 1993), Azzalini and Capitanio (2014) chose a fixed penalty coefficient 𝜆 ≈ 0.87591
for 𝑄(𝛼) = log(1 + 0.85625𝛼2). However, this choice is against our intuition that when the underlying value of 𝛼 is close to zero, the
penalty coefficient should increase to infinity. In this paper, we aim to develop a data-driven procedure for improving the choice
of the penalty coefficient with a theoretical guarantee.

In literature, there are two approaches for determining the penalty coefficient, one is information criterion and the other is
cross-validation. However, the former, usually working for non-degenerate models, may be invalid for the singular models in which
the penalised likelihood (or posterior) cannot be approximated by any normal distribution. Although in a singular model, the
generalisation error of an inference procedure may not be estimated well by information criteria, it can be estimated by the cross-
validation (Watanabe, 2021). This motivates us to investigate a multifold cross-validation procedure for skew normal estimation.
Our contributions to the research field are two-fold. Firstly, we develop a hyperbolic parametrisation to understand the nature of
𝛼 from a point view of active function. Under the new parametrisation, we show that the cross-validated estimator asymptotically
attains the Cramer–Rao lower bound to estimating error. By simulation studies and a real data application, we demonstrate that the
proposed estimation can outperform the bias-correction approach used in the software 𝐒𝐍 (https://CRAN.R-project.org/package=sn)
in terms of bias and standard error. Secondly, we unveil a super efficiency for the cross-validated estimation at 𝛼 = 0, namely after
an appropriate tuning, the cross-validated estimator can recover the true 𝛼 = 0 exactly with a probability tending to one. This is in
striking contrast to the MLE which has a very slow convergence rate at 𝛼 = 0. By theoretical analysis and simulations, we show that
Firth’s bias-correction technique may under-regularise the estimation at 𝛼 = 0 in the sense that the penalty coefficient 𝜆 = 0.8759 is
too small to reduce the variability of estimation. Furthermore, we demonstrate a filtering effect of penalisation by simulations that
any small skewness will be filtered out by the cross-validated MPLE.

The rest of the article is organised as follows. In Section 2 we develop the cross-validation procedure for skew normal models.
e establish theoretical properties of the proposed procedure in Section 3. We develop a penalised Expectation-Maximisation (EM)

lgorithm in Section 4. We conduct simulation studies and a real data analysis in Section 5. We conclude with a discussion in
Section 6. The proofs are relegated to the Appendix.
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2. Methodology

In this section, we first review the location-scale model for skew normals and reparameterisation. Then after a short discussion
f its inherent inferential issues we develop a multifold cross-validation procedure for the penalised likelihood inference.

2.1. Location-scale model

Let SN(0, 1, 𝛼) denote the standard skew normal distribution with density 𝑓 (𝑥; 𝛼) = 2𝜙(𝑥)𝛷(𝛼 𝑥), 𝑥 ∈ R, where 𝜙(𝑥) and 𝛷(𝑥) are the
tandard normal density and cumulative distribution function respectively, and 𝛼 is the shape parameter to regulate the skewness.
he skew normal distribution family includes the standard normal as a special when 𝛼 = 0. The skew normal random variable 𝑋
an be expressed as a linear combination of two independent variables, a half standard normal 𝑋+ with density 2𝜙(𝑥), 𝑥 ≥ 0 and the
tandard normal 𝑋0, in the form 𝑋 = 𝛿 𝑋++

√

1 − 𝛿2𝑋0, where 𝛿 = 𝛼∕
√

1 + 𝛼2. Consider the location-scale model 𝑌 = 𝜇+𝜎(𝑋−𝛿
√

2∕𝜋)
with location parameter 𝜇 ∈ R, scale parameter 𝜎 ≥ 0 and density 𝑓 (𝑦;𝜇 , 𝜎 , 𝛼) = 𝜎−1𝑓 ((𝑦 − 𝜇)∕𝜎 + 𝛿

√

2∕𝜋; 𝛼). We have 𝐸[𝑌 ] = 𝜇,
ar(𝑌 ) = 𝜎2var(𝑋) = 𝜎2(1 − 2𝛿2∕𝜋), 𝐸[𝑋] = 𝛿

√

2∕𝜋, and var(𝑋) = 1 − 2𝛿2∕𝜋. Note that 𝑌 = 𝜇− 𝜎 𝛿√2∕𝜋 + 𝜎 𝑋 reduces to the standard
kew location-scale normal model. The term 𝛿

√

2∕𝜋 shows the effect of skewness on the location parameter 𝜇. Under the above
location-scale model, Pearson’s skewness index 𝛾1 is related to parameters 𝛼 and 𝛿 via

𝛾1 =
𝐸
[

(𝑌 − 𝜇)3
]

var(𝑌 )3∕2
= 4 − 𝜋

2
𝛿3(2∕𝜋)3∕2

(1 − 2𝛿2∕𝜋)3∕2 ,
|

|

𝛾1|| ≤ 0.9952.

𝛿 =
√

𝜋
2

(2𝛾1∕(4 − 𝜋))1∕3
√

1 + (2𝛾1∕(4 − 𝜋))2∕3
, 𝛼 = 𝛿∕

√

1 − 𝛿2. (2.1)

Here, 𝛼 and 𝛿 can be viewed as activation functions of 𝛾1 with derivatives

𝑑 𝛿
𝑑 𝛾1

=
√

𝜋
2

2
3(4 − 𝜋)

(

2𝛾1
4 − 𝜋

)−2∕3
(

1 +
(

2𝛾1
4 − 𝜋

)2∕3
)−3∕2

,

𝑑 𝛼
𝑑 𝛾1

=
√

𝜋
2

2
3(4 − 𝜋)

(

2𝛾1
4 − 𝜋

)−2∕3
(

1 + (1 − 𝜋∕2)
(

2𝛾1
4 − 𝜋

)2∕3
)−3∕2

which are unbounded at 𝛾1 = 0. This explains why the Fisher information matrix is singular at 𝛼 = 0. Fig. 2.1 demonstrates that
the skewness is introduced into the model via the activation function 𝛿 of the input 𝛾1, where 𝛾1 is restricted to the interval
(−0.9952, 0.9952). By the activation function, the negative (positive) 𝛾1 will be mapped onto strongly negative (positive) 𝛿 while
zero 𝛾1 will be mapped onto zero 𝛿. In the CP, Azzalini (1985) used 𝛾1 to reparametrise 𝛼 and 𝛿 through Eq. (2.1).

2.2. Hyperbolic reparameterisation

To tackle the above issue of unboundedness, we reparametrise 𝛼 by the scaled inverse hyperbolic transformation 𝜃 = arcsinh(𝛼)∕𝑎,
where 𝑎 > 0 is a pre-selected constant. This gives rise to a family of activation functions

𝛼 = sinh(𝑎𝜃) = 1
2
(𝑒𝑎𝜃 − 𝑒−𝑎𝜃), 𝛿 = tanh(𝑎𝜃) = 𝑒2𝑎𝜃 − 1

𝑒2𝑎𝜃 + 1 , 𝛼 = 𝛿
√

1 − 𝛿2
(2.2)

with derivatives
𝑑 𝛼
𝑑 𝜃 = 𝑎cosh(𝑎𝜃) = 𝑎

2
(𝑒𝑎𝜃 + 𝑒−𝑎𝜃), 𝑑 𝛿

𝑑 𝜃 = 𝑎(1 − 𝛿2).

When 𝑎 = 1, 𝜃 reduces to the Fisher transformation of 𝛿. Fig. 2.1 shows that as 𝑎 tends to infinity sinh(𝑎𝜃) is close to the CP.
However, for finite fixed 𝑎’s, these activation functions give bounded derivatives. In the following, we focus on the simple case
𝑎 = 1. To remove the constraint 𝜎 ≥ 0, we reparametrise 𝜎 by 𝜂 = log(𝜎), which has a range of (−∞,∞) and 𝑑 𝜎

𝑑 𝜂 = 𝜎.

2.3. Initial estimation

Given an i.i.d. sample 𝒚 = (𝑦𝑖)1≤𝑖≤𝑛 drawn from the above location-scale model, we use the method of moments to construct initial
stimators as follows. Setting the first three moments of 𝑌 equal to their corresponding sample moments and using the relationships
etween 𝛾1, 𝛿, 𝛼 and 𝜃, we have the initial estimates 𝜇(0), 𝜎(0), 𝜂(0), 𝜃(0), 𝛼(0) and 𝛿(0). Let 𝜇0, 𝜎0, 𝜂0, 𝜃0, 𝛼0 and 𝛿0 be the ground-truth
f the parameters in the model. It follows from the central limit theorem that 𝜇(0) = 𝜇0 + 𝑂𝑝(1∕

√

𝑛) and 𝛾 (0)1 = 𝛾0 + 𝑂𝑝(1∕
√

𝑛).
Using Eq. (2.1), for 𝜃0 = 0, we have 𝛿(0) = 𝑂𝑝(𝑛−1∕6), 𝜃(0) = 𝑂𝑝(𝑛−1∕6), 𝛼(0) = 𝑂𝑝(𝑛−1∕6), and 𝜂(0) = 𝜂0 + 𝑂𝑝(𝑛−1∕3). In contrast, for
0 ≠ 0, we have the following standard root-

√

𝑛 convergence rates, 𝛿(0) = 𝛿0 +𝑂𝑝(1∕
√

𝑛), 𝜃(0) = 𝜃0 +𝑂𝑝(1∕
√

𝑛), 𝛼(0) = 𝛼0 +𝑂𝑝(1∕
√

𝑛),
and 𝜂(0) = 𝜂0 + 𝑂𝑝(1∕

√

𝑛). The above estimation will be used to develop consistent maximum penalised likelihood estimators in
Section 2.3 and as the starting point for the penalised Expectation-Maximisation in Section 2.4 below.
3 
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Fig. 2.1. Activation functions for 𝛼 and 𝛿. The plots in the top row are for 𝛼(𝛾1) and 𝛿(𝛾1) respectively. The plots in the 2nd row are for the derivatives of 𝛼
and 𝛿 (namely, 𝑑 𝑎𝑙 𝑝ℎ𝑎 and 𝑑 𝑑 𝑒𝑙 𝑡𝑎) with respect to 𝛾1 respectively. The plots in the 3rd row are for 𝛼(𝜃) and 𝛿(𝜃) respectively. The plots in the 4th row are for
the derivatives of 𝛼(𝜃) and 𝛿(𝜃) with respect to 𝜃 respectively. The plots in the 5th row are for 𝛼(20𝜃) and 𝛿(20𝜃) respectively. The plots in the bottom row are
for the derivatives of 𝛼(20𝜃) and 𝛿(20𝜃) with respect to 𝜃 respectively.
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2.4. Maximum penalised likelihood estimation

Given an i.i.d. sample 𝒚 of size 𝑛 drawn from a skew normal distribution and letting 𝑧𝑖 = (𝑦𝑖 − 𝜇)∕𝜎, we have the following
log-likelihood

𝑙𝑖𝑛𝑐 = 𝑙𝑖𝑛𝑐 (𝜇 , 𝜂 , 𝜃 ∣ 𝒚) = 𝑛
2
log

(

2
𝜋 𝜎2

)

− 1
2

𝑛
∑

𝑖=1

(

𝑧𝑖 + 𝛿
√

2∕𝜋
)2

+
𝑛
∑

𝑖=1
log𝛷

(

𝛼 ⋅
(

𝑧𝑖 + 𝛿
√

2∕𝜋
))

,

where the dependence of 𝛿 and 𝛼 on 𝜃 and 𝜎 on 𝜂 are suppressed. When |𝜃| tends to infinity, the skew normal distribution reduces to
 half-normal distribution whose support may depend on the parameters. To prevent this, we consider maximum likelihood estimate

of (𝜇 , 𝜂 , 𝜃) defined on a bounded open subset of R3. For (𝜇0, 𝜂0, 𝜃0) in the above bounded subset, it follows from Chiogna (2005) that
the maximum likelihood estimates of 𝜇 , 𝜂 and 𝜃 are of convergence rates 𝑂𝑝(𝑛−1∕2), 𝑂𝑝(𝑛−1∕3) and 𝑂𝑝(𝑛−1∕6) respectively, despite that
the Fisher information matrix is degenerate at 𝜃 = 0. This implies these maximum likelihood estimates are asymptotically in the
restricted parametric space

𝛺𝑛 = {(𝜇 , 𝜂 , 𝜃) ∶∣ 𝜇 − 𝜇(0) ∣≤ 𝑐𝜇0𝑛
−1∕2, ∣ 𝜂 − 𝜂(0) ∣≤ 𝑐𝜂0𝑛

−1∕3, ∣ 𝜃 − 𝜃(0) ∣≤ 𝑐𝜃0𝑛
−1∕6}

for some arbitrary large positive constants 𝑐𝜇0 , 𝑐𝜂0 and 𝑐𝜃0 . We asymptotically have the maximum likelihood estimate (MLE)

(�̂� , ̂𝜂 , �̂�) = ar g max
(𝜇 ,𝜂 ,𝜃)∈𝛺𝑛

𝑙𝑖𝑛𝑐 (𝜇 , 𝜂 , 𝜃 ∣ 𝒚) .

The above likelihood is singular at 𝜃 = 0 with a stationary point at 𝜃 = 0 regardless values of the other parameters as the Fisher
information matrix at (𝜇 , 𝜂 , 0),

−𝐸
(

𝜕2 log 𝑙𝑖𝑛𝑐
𝜕(𝜇 , 𝜂 , 𝜃)𝜕(𝜇 , 𝜂 , 𝜃)𝑇

)

|(𝜇 ,𝜂 ,0) = diag
(

𝑛
𝜎2

, 2𝑛, 0
)

is degenerate. This results in a slow convergence rate of �̂� and non-standard asymptotic behavior of the MLE when the underlying
value of 𝜃 is zero or near zero. As noted previously, the MLE of the shape parameter of the skew normal diverges with a probability
that is non-negligible for small and moderate sample sizes. To address these issues, following Azzalini and Arellano-Valle (2013),
we maximise the penalised log-likelihood

𝑙𝑖𝑛𝑐 𝑝(𝜇 , 𝜂 , 𝜃 ∣ 𝒚) = 𝑙𝑖𝑛𝑐 (𝜇 , 𝜂 , 𝜃 ∣ 𝒚) − 𝜆 pen(𝜃),

where a penalty is used to control the size of 𝜃, satisfying the condition

𝐶 1 ∶ pen(𝜃) ≥ 0, pen(0) = pen′(0) = 0, pen′′(0) = 2, lim
|𝜃|→∞

pen(𝜃) → ∞.

For example, hyperbolic penalty pen1(𝜃) = 𝛼2 = (𝑒𝜃 − 𝑒−𝜃)2∕4, ridge penalty pen2(𝜃) = 𝜃2 and log-Cauchy pen3(𝜃) = log(1 + 𝑐2𝛼2) =
log(1 + 𝑐2(𝑒𝜃 − 𝑒−𝜃)2∕4) meet these conditions, where the log-Cauchy was proposed by Azzalini and Capitanio (2014). All these
penalties encourage shrinkage of the skewness parameter towards zero while preventing it from diverging to infinity. Under the
penalisation, the Fisher information matrix of the penalised likelihood is not singular. For each 0 ≤ 𝜆∕𝑛 ≤ 𝜔0, define maximum
penalised likelihood estimate (MPLE) of (𝜇 , 𝜂 , 𝜃) on any bounded subset of R3. Similar to Chiogna (2005), we can show that the
MPLE is asymptotically equal to

(�̂�𝜆, ̂𝜂𝜆, �̂�𝜆) = arg max
(𝜇 ,𝜂 ,𝜃)∈𝛺𝑛

𝑙𝑖𝑛𝑐 𝑝(𝜇 , 𝜂 , 𝜃 ∣ 𝒚).

The larger the penalty coefficient, the greater the accuracy of estimating 𝜃 when the true value of 𝜃 is zero while the larger estimating
bias when the true value of 𝜃 is not zero. Multifold cross-validation below strikes a balance between the accuracy and the bias by
uning the penalty coefficient and therefore achieves a better prediction for new samples.

2.5. Multifold cross validation

Given the sample 𝒚, for a pre-specified positive constant 𝜔0, define the expected out-of-sample generalisation error,

CV(𝜆) = −𝐸[𝑙𝑖𝑛𝑐 (�̂�𝜆, ̂𝜂𝜆, �̂�𝜆|𝒚∗)],
if we were to apply the model based on estimator (�̂�𝜆, ̂𝜂𝜆, �̂�𝜆) to predict a new set of observations 𝒚∗ drawn independently from the
same distribution as that of 𝐲. The above expectation is taken with respect to both 𝒚 and 𝒚∗. The generalisation error CV(𝜆) can be
used as a criterion to compare candidate estimators (�̂�𝜆, ̂𝜂𝜆, �̂�𝜆), 0 ≤ 𝜆∕𝑛 ≤ 𝜔0. We estimate the expected out-of-sample generalisation
error CV(𝜆) by multifold cross-validation as follows.

For a pre-specified integer 𝐾 > 0, divide the data 𝒚 into 𝐾 groups 𝒚𝑗 , 1 ≤ 𝑗 ≤ 𝐾 with corresponding index groups [𝑗], 1 ≤ 𝑗 ≤ 𝐾.
For each 𝜆 and 1 ≤ 𝑗 ≤ 𝐾, we calculate estimates

(

�̂�[−𝑗]𝜆, ̂𝜂[−𝑗]𝜆, �̂�[−𝑗]𝜆
)

, based on the training set 𝒚[−𝑗], by maximising log-likelihood
𝑙𝑖𝑛𝑐 𝑝

(

𝜇 , 𝜂 , 𝜃 ∣ 𝒚[−𝑗]
)

. For each 𝑗, taking 𝒚𝑗 as the validation sample, we can estimate the out-of-sample generalisation error by
−𝑙

(

�̂� , ̂𝜂 , �̂� ∣ 𝒚
)

. Averaging these estimated errors, we have the following average generalisation error
𝑖𝑛𝑐 [−𝑗]𝜆 [−𝑗]𝜆 [−𝑗]𝜆 𝑗

5 
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CV𝑎(𝜆) = − 1
𝐾

𝐾
∑

𝑗=1
𝑙𝑖𝑛𝑐

(

�̂�[−𝑗]𝜆, ̂𝜂[−𝑗]𝜆, �̂�[−𝑗]𝜆 ∣ 𝒚𝑗
)

,

where 𝐾 is a positive integer. The optimal tuning parameter 𝜆𝑜𝑝 = argmin0≤𝜆∕𝑛≤𝜔0
𝐸[CV𝑎(𝜆)] is estimated by

𝜆𝑐 𝑣 = arg min
0≤𝜆∕𝑛≤𝜔0

CV𝑎(𝜆).

3. Asymptotic theory

Similar to Chiogna (2005), we can show the consistency of the penalised MLE defined on any bounded open ball containing the
true values of (𝜇 , 𝜂 , 𝜃). As pointed out before, for simplicity, we focus on the penalised MLE defined on 𝛺𝑛. However, the following
asymptotic theory holds for the above general case. Note that for each 𝜆, the penalised MLE is obtained by solving simultaneous
equations

1
𝑛
𝜕 𝑙𝑖𝑛𝑐 ((�̂� , ̂𝜂 , �̂�) ∣ 𝒚)

𝜕 𝜇 = 0, 1
𝑛
𝜕 𝑙𝑖𝑛𝑐 ((�̂� , ̂𝜂 , �̂�) ∣ 𝒚)

𝜕 𝜂 = 0,

1
𝑛
𝜕 𝑙𝑖𝑛𝑐 ((�̂� , ̂𝜂 , �̂�) ∣ 𝒚)

𝜕 𝜃 − 𝜆
2𝑛

(𝑒2�̂� − 𝑒−2�̂�) = 0, (3.1)

where
1
𝑛
𝜕 𝑙𝑖𝑛𝑐 ((𝜇 , 𝜂 , 𝜃) ∣ 𝒚)

𝜕 𝜇 = 1
𝑛
∑

𝑖=1

(

𝑧𝑖 + 𝛿
√

2∕𝜋
) 1
𝜎
− 1

𝑛

𝑛
∑

𝑖=1

𝜙(𝐴𝑖)
𝛷(𝐴𝑖)

𝛼
𝜎
,

1
𝑛
𝜕 𝑙𝑖𝑛𝑐 ((𝜇 , 𝜂 , 𝜃) ∣ 𝒚)

𝜕 𝜂 = −1 + 1
𝑛
∑

𝑖=1

(

𝑧𝑖 + 𝛿
√

2∕𝜋
)

𝑧𝑖 −
𝛼
𝑛

𝑛
∑

𝑖=1

𝜙(𝐴𝑖)
𝛷(𝐴𝑖)

𝑧𝑖,

1
𝑛
𝜕 𝑙𝑖𝑛𝑐 ((𝜇 , 𝜂 , 𝜃) ∣ 𝒚)

𝜕 𝜃 = −1
𝑛
∑

𝑖=1

(

𝑧𝑖 + 𝛿
√

2∕𝜋
)

(1 − 𝛿2)
√

2∕𝜋

+ 1
𝑛

𝑛
∑

𝑖=1

𝜙(𝐴𝑖)
𝛷(𝐴𝑖)

(

(𝑒𝜃 + 𝑒−𝜃)
2

(

𝑧𝑖 + 𝛿
√

2∕𝜋
)

+ 𝛼(1 − 𝛿2)
√

2∕𝜋
)

with 𝐴𝑖 = 𝛼(𝑧𝑖 + 𝛿
√

2∕𝜋). To develop the theory, denote by 𝐂 = (𝑐𝑖𝑗 )3×3 = 𝐂(𝜇 ,𝜂 ,𝜃) = (𝑐𝑖𝑗 (𝜇 , 𝜂 , 𝜃))3×3 the second derivative matrix of
the log-likelihood with respect to (𝜇 , 𝜂 , 𝜃). Applying the Taylor expansion to the functions in (3.1) at the ground-truth (𝜇0, 𝜂0, 𝜃0),

e have

0 = 1
√

𝑛

𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕(𝜇0, 𝜂0, 𝜃0)𝑇

− 𝜆
2
√

𝑛
(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆3

+ (𝐂 − 𝐃)(𝜇∗ ,𝜂∗ ,𝜃∗)
√

𝑛(�̂� − 𝜇0, ̂𝜂 − 𝜂0, �̂� − 𝜃0)𝑇 , (3.2)

where 𝒆3 = (0, 0, 1)𝑇 and (𝜇∗, 𝜂∗, 𝜃∗) = (𝜇0, 𝜂0, 𝜃0) + 𝑡(�̂� − 𝜇0, ̂𝜂 − 𝜂0, �̂� − 𝜃0), 0 ≤ 𝑡 ≤ 1. Denote 𝐃𝜃 𝜆∕𝑛 = diag
(

0, 0, 𝜆𝑛 (𝑒
2𝜃 + 𝑒−2𝜃)

)

and (𝐂 − 𝐃)(𝜇 ,𝜂 ,𝜃) = 𝐂(𝜇 ,𝜂 ,𝜃) − 𝐃𝜃 𝜆∕𝑛. For the simplicity of notation, let 𝐃0𝜆∕𝑛 denote 𝐃𝜃0𝜆∕𝑛 and 𝐂0 denote lim𝑛→∞ 𝐂(𝜇0 ,𝜂0 ,𝜃0). Then
𝐂(𝜇0 ,𝜂0 ,𝜃0) = 𝐂0 + 𝑂𝑝(1∕

√

𝑛), where −𝐂0 is the Fisher information matrix at (𝜇0, 𝜂0, 𝜃0). For a pre-specified positive constant 𝜔0,
consider 0 ≤ 𝜆∕𝑛 ≤ 𝜔0. Taking {𝑐𝑖𝑗 = 𝑐𝑖𝑗 (𝜇 , 𝜂 , 𝜃) ∶ (𝜇 , 𝜂 , 𝜃) ∈ 𝛺1} as empirical processes to which we apply the weak large law, we
have, uniformly for 0 ≤ 𝜆∕𝑛 ≤ 𝜔0 and bounded (𝜇0, 𝜂0, 𝜃0),

∣∣ (𝐂 − 𝐃)(𝜇∗ ,𝜂∗ ,𝜃∗) − (𝐂0 − 𝐃0𝜆∕𝑛) ∣∣= 𝑜𝑝(1)

in terms of the Frobenius norm. We have

Proposition 3.1. Assume that the MPLE of 𝜃 is in 𝛺1 and that the penalty pen(𝜃) satisfies the condition (𝐶 1). Then, when the true
alue 𝜃0 ≠ 0, as 𝜆∕

√

𝑛 → 0, the MPLE (�̂�𝜆, ̂𝜎𝜆, �̂�𝜆) is asymptotically optimal in the sense that it is asymptotically unbiased and attains the
ramer–Rao low bound to estimation error.

As in practice, the true value 𝜃0 is unknown, we have to use a data-driven cross-validation to tune the penalty. In the following
theorem, we show that 𝜆𝑐 𝑣∕

√

𝑛 → 0 and the cross-validated MPLE is asymptotically optimal in terms of mean square error when
he underlying 𝜃0 ≠ 0.

Theorem 1. Assume that the MPLE of 𝜃 is in 𝛺1 and that the penalty pen(𝜃) satisfies the condition (𝐶 1). Then, when the true value 𝜃0 ≠ 0,
e have 𝜆𝑐 𝑣∕

√

𝑛 → 0 in probability and the MPLE (�̂�𝜆𝑐 𝑣 , ̂𝜎𝜆𝑐 𝑣 , �̂�𝜆𝑐 𝑣 ) is asymptotically unbiased and attains the Cramer–Rao low bound to
stimation error.

Let 𝑧𝑖0 = (𝑦𝑖 − 𝜇0)∕𝜎0. In the next proposition, we show that a fixed 𝜆 in the Q penalty may give rise to a biased estimate of 𝛼.

Proposition 3.2. Assume that the MPLE of 𝜃 is in 𝛺1 and that the penalty pen(𝜃) satisfies the condition (𝐶 1). Then, when the true value
0 = 0, we have �̂�𝜆 = 0 for 𝜆 ≥ max

{
∑𝑛

𝑖=1
(

1 − 𝑧2𝑖0
)

∕𝜋 , 0} . And on ∑𝑛
𝑖=1

(

1 − 𝑧2𝑖0
)

> 0, �̂�𝜆𝑐 𝑣 is non-zero for 0 ≤ 𝜆 < ∑𝑛
𝑖=1

(

1 − 𝑧2𝑖0
)

∕𝜋.
6 
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The above proposition implies that when the true value 𝜃0 = 0, we have

(i) As 𝜆∕
√

𝑛 → ∞, we have �̂�𝜆 = 0.
(ii) On 1

√

𝑛

∑𝑛
𝑖=1

(

1 − 𝑧2𝑖0
)

≤ 0, for any 𝜆 ≥ 0, we have �̂�𝜆 = 0.

(iii) On 1
√

𝑛

∑𝑛
𝑖=1

(

1 − 𝑧2𝑖0
)

> 0, there is 𝜆 such that 1
𝑛 𝑙𝑖𝑛𝑐 𝑝(�̂�𝜆, ̂𝜂𝜆, �̂�𝜆|𝒚) attains the maximum at non-zero �̂�𝜆.

Let �̂�𝑗 , ̂𝜂𝑗 be the MLEs of 𝜇 and 𝜂 based on the subsample 𝐲𝑗 when 𝜃 is known to be zero. Let �̂�[−𝑗]𝜆, �̂�[−𝑗]𝜆 and �̂�[−𝑗]𝜆 be the
enalised MLEs based on the remaining observations (𝒚𝑖)𝑖≠𝑗 after removing 𝒚𝑗 from 𝒚. For the simplicity of notation, let 𝐈∗[−𝑗]11𝜆 ,
∗[−𝑗]
12𝜆 , 𝐈∗[−𝑗]21𝜆 and 𝐈∗[−𝑗]22𝜆 respectively denote 𝐈11 ∣(𝜇∗[−𝑗]𝜆 ,𝜂∗[−𝑗]𝜆 ,𝜃∗[−𝑗]𝜆), 𝐈12 ∣(𝜇∗[−𝑗]𝜆 ,𝜂∗[−𝑗]𝜆 ,𝜃∗[−𝑗]𝜆), 𝐈21 ∣(𝜇∗[−𝑗]𝜆 ,𝜂∗[−𝑗]𝜆 ,𝜃∗[−𝑗]𝜆) and 𝐈22 ∣(𝜇∗[−𝑗]𝜆 ,𝜂∗[−𝑗]𝜆 ,𝜃∗[−𝑗]𝜆). Then

11 ∣(𝜇∗[−𝑗]𝜆 ,𝜂∗[−𝑗]𝜆 ,𝜃∗[−𝑗]𝜆)= 𝐈110(1 +𝑜𝑝(1)). Let 𝜆𝑟 = max1≤𝑗≤𝐾 max{
∑

𝑖∈[−𝑗](1 −𝑧2𝑖0)∕𝜋 , 0}. The next theorem shows that if the underlying value
f 𝜃 is zero, then the CV𝑎(𝜆) attains a local minimum when 𝜆 ≥ 𝜆𝑟.

Theorem 2. Assume that the true value 𝜃0 = 0, the MPLE of 𝜃 is in 𝛺1 and that the penalty pen(𝜃) satisfies the condition (𝐶 1). Then, for
≥ 𝜆𝑟, the function CV𝑎(𝜆) is asymptotically flat, that is

CV𝑎(𝜆) = − 1
𝐾

𝐾
∑

𝑗=1
𝑙𝑖𝑛𝑐 (�̂�𝑗 , ̂𝜂𝑗 , 0 ∣ 𝒚𝑗 ) + 1

2𝐾

𝐾
∑

𝑗=1
𝑛𝑗

(

1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖 −

1
𝑛𝑗

∑

𝑖∈[𝑗]
𝒖𝑖

)𝑇

× (−𝐈110)−1
(

1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖 −

1
𝑛𝑗

∑

𝑖∈[𝑗]
𝒖𝑖

)

(1 + 𝑜𝑝(1)).

4. Penalised EM algorithm

We first introduce a positive latent random variable 𝑊 such that (𝑌 , 𝑊 ) has the following easily calculated joint density

𝑔(𝑦, 𝑤) = 2
𝜎
𝜙
(

𝑧 + 𝛿
√

2∕𝜋
)

𝜙
(

𝑤 − 𝛼
(

𝑧 + 𝛿
√

2∕𝜋
))

, 𝑦 ∈ R, 𝑤 ∈ (0,∞)

with marginal density of 𝑌 ,

𝑔(𝑦) = 2
𝜎
𝜙
(

𝑧 + 𝛿
√

2∕𝜋
)

∫

∞

0
𝜙
(

𝑤 − 𝛼
(

𝑧 + 𝛿
√

2∕𝜋
))

𝑑 𝑤 = 𝑓 (𝑦;𝜇 , 𝜎 , 𝛼)

and conditional density of 𝑊 given 𝑌 ,

𝑔(𝑤|𝑦) = 𝜙
(

𝑤 − 𝛼
(

𝑧 + 𝛿
√

2∕𝜋
)) (

𝛷
(

𝛼
(

𝑧 + 𝛿
√

2∕𝜋
)))−1

, (4.1)

where 𝑧 denotes (𝑦 − 𝜇)∕𝜎. Letting 𝑧𝑖 denote (𝑦𝑖 − 𝜇)∕𝜎 as before and augmenting 𝐲 by 𝒘 = (𝑤𝑖)1≤𝑖≤𝑛, we form the complete data
(𝒚,𝒘) = (𝑦𝑖, 𝑤𝑖)1≤𝑖≤𝑛 with the penalised complete-data log-likelihood

𝑙𝑐 𝑜𝑚𝑝(𝜇 , 𝜂 , 𝜃 ∣ 𝒚,𝒘) = − 𝑛
2
log

(

𝜎(𝜂)2𝜋2) − 1
2

𝑛
∑

𝑖=1

(

𝑧𝑖 + 𝛿(𝜃) ⋅
√

2∕𝜋
)2

− 1
2

𝑛
∑

𝑖=1

(

𝑤𝑖 − 𝛼(𝜃) ⋅
(

𝑧𝑖 + 𝛿(𝜃) ⋅
√

2∕𝜋
))2

− 𝜆(𝑒𝜃 − 𝑒−𝜃)2∕4,

where 𝜎(𝜂) = exp(𝜂) and 𝛼(𝜃) and 𝛿(𝜃) are defined by Eq. (2.2). Let 𝑧(𝑣)𝑖 = (𝑦𝑖 − �̂�(𝑣))∕𝜎(�̂�(𝑣)) and 𝑏𝑖 = 𝑧𝑖 + 𝛿(𝜃)
√

2∕𝜋 and
(𝑣)
𝑖 = 𝑧(𝑣)𝑖 + 𝛿(�̂�(𝑣))

√

2∕𝜋. We define E-step and M-step for (𝑣 + 1)-iteration as follows.
E-Step: Given the estimates �̂�(𝑣), �̂�(𝑣) and �̂�(𝑣) obtained in the 𝑣th iteration, use the conditional density in Eq. (4.1) to compute

the conditional expectation of the complete log-likelihood:

𝛹 (𝜇 , 𝜂 , 𝜃 ∣ �̂�(𝑣), ̂𝜂(𝑣), �̂�(𝑣)) = 𝐸𝐰|𝒚, ̂𝜇(𝑣) , ̂𝜂(𝑣) ,�̂�(𝑣)
[

𝑙𝑐 𝑜𝑚(𝜇 , 𝜂 , 𝜃 ∣ 𝒚,𝒘)
]

− 𝜆(𝑒𝜃 − 𝑒−𝜃)2∕4

= −𝑛 log(𝜋) − 𝑛𝜂 − 1
2

𝑛
∑

𝑖=1
𝑏2𝑖

−1
2

𝑛
∑

𝑖=1

⎧

⎪

⎨

⎪

⎩

1 +
(

𝛼(�̂�(𝑣)) ⋅ 𝑏(𝑣)𝑖 − 2𝛼(𝜃) ⋅ 𝑏𝑖
) 𝜙

(

𝛼(�̂�(𝑣)) ⋅ 𝑏(𝑣)𝑖

)

𝛷
(

𝛼(�̂�(𝑣)) ⋅ 𝑏(𝑣)𝑖

)

+
(

𝛼(�̂�(𝑣)) ⋅ 𝑏(𝑣)𝑖 − 𝛼(𝜃) ⋅ 𝑏𝑖
)2

}

− 𝜆(𝑒𝜃 − 𝑒−𝜃)2∕4.
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M-Step: For the simplicity of notation, we denote 𝛹 (𝜇 , 𝜂 , 𝜃 ∣ �̂�(𝑣), ̂𝜂(𝑣), �̂�(𝑣)) by 𝛹 . To maximise the conditional expectation 𝛹 ,
compute partial derivatives of 𝛹 w.r.t. (𝜇 , 𝜂 , 𝜃) and set these derivatives equal to 0. We solve the above partial derivative equations
by alternative iterations as follows.

Firstly, fixing (𝜂 , 𝜃) = (�̂�(𝑣), �̂�(𝑣)), we update 𝜇. It follows from 𝜕 𝛹
𝜕 𝜇 = 0 that given 𝜃 = �̂�(𝑣) and 𝜂 = �̂�(𝑣), the (𝑣 + 1)-th update of 𝜇,

�̂�(𝑣+1) = �̄� + 𝜎(�̂�(𝑣)) ⋅ 𝛿(�̂�(𝑣)) ⋅
√

2
𝜋
−

𝜎(�̂�(𝑣))
𝑛

⋅
𝛼(�̂�(𝑣))

1 + 𝛼(�̂�(𝑣))2

×
𝑛
∑

𝑖=1

⎧

⎪

⎨

⎪

⎩

𝜙
(

𝛼(�̂�(𝑣))𝑏(𝑣)𝑖

)

𝛷
(

𝛼(�̂�(𝑣))𝑏(𝑣)𝑖

) + 𝛼(�̂�(𝑣))𝑏(𝑣)𝑖

⎫

⎪

⎬

⎪

⎭

.

Secondly, fixing (𝜇 , 𝜃) = (�̂�(𝑣+1), �̂�(𝑣)), we update 𝜂. Let 𝒃(𝑣) = (𝑏(𝑣)𝑖 )1≤𝑖≤𝑛. It follows from 𝜕 𝛹
𝜕 𝜂 = 0 that

𝑒2𝜂 − 𝑇 (𝜇 , 𝜃 , 𝒃(𝑣)) ⋅ 𝑒𝜂 − (1 + 𝛼(𝜃)2)𝑒2𝜂

𝑛

𝑛
∑

𝑖=1
𝑧2𝑖 = 0

with

𝑇 (𝜇 , 𝜃 , 𝒃(𝑣)) = (

1 + 𝛼(𝜃)2
)

⋅ 𝛿(𝜃) ⋅
√

2
𝜋
𝑒𝜂 �̄� −

𝛼(𝜃)
𝑛

𝑛
∑

𝑖=1
𝑒𝜂𝑧𝑖

×

⎡

⎢

⎢

⎢

⎣

𝜙
(

𝛼(�̂�(𝑣))𝑏(𝑣)𝑖

)

𝛷
(

𝛼(�̂�(𝑣))𝑏(𝑣)𝑖

) + 𝛼(�̂�(𝑣))𝑏(𝑣)𝑖

⎤

⎥

⎥

⎥

⎦

.

Solving the above quadratic equation, we update 𝜂 (and 𝜎 = 𝑒𝜂) via

�̂�(𝑣+1) = 𝜎(�̂�(𝑣+1)) = 𝑒�̂�
(𝑣+1)

= 1
2
𝑇 (�̂�(𝑣+1), �̂�(𝑣), 𝒃(𝑣))

+

√

√

√

√

1
4
𝑇 (�̂�(𝑣+1), �̂�(𝑣), 𝒃(𝑣))2 + 1 + 𝛼(�̂�(𝑣))2

𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�(𝑣+1))2.

Finally, fixing (𝜇 , 𝜂) = (�̂�(𝑣+1), ̂𝜂(𝑣+1)) and letting 𝑓 (𝜃) = 𝜕 𝛹
𝜕 𝜃 , 𝑓 ′ (𝜃) = 𝜕2𝛹

𝜕 𝜃2 , we obtain 𝜃(𝑣+1) by using the Newton–Raphson iteration to
solve the equation 𝑓 (𝜃) = 0.

In each update, we need to verify whether the incomplete data likelihood is increasing. The PEM algorithm iteration alternates
between E-step and M-step until

|

|

|

|

|

|

𝑙𝑖𝑛𝑐 𝑝(�̂�(𝑣+1), ̂𝜂(𝑣+1), �̂�(𝑣+1) ∣ 𝒚) − 𝑙𝑖𝑛𝑐 𝑝(�̂�(𝑣), ̂𝜂(𝑣), �̂�(𝑣) ∣ 𝒚)
𝑙𝑖𝑛𝑐 𝑝(�̂�(𝑣), ̂𝜂(𝑣), �̂�(𝑣) ∣ 𝒚)

|

|

|

|

|

|

< 𝜀

where 𝜀 is the tolerance with default value of 10−8. We take the moment estimates of (𝜇(0), 𝜂(0), 𝜃(0)) as the initial values in the PEM.
It is easy to prove that the PEM has a non-decreasing property similar to that of the standard EM.

5. Numerical results

In this section, we report the results of simulation studies designed to assess the performance of our cross-validated MPLE and
o compare it to some existing methods (MLE and Q-based MPLE in the R-package SN, https://CRAN.R-project.org/package=sn) in

terms of median bias and standard error of differences between (�̂� , ̂𝜎 , ̂𝛼) and the ground truth (𝜇0, 𝜎0, 𝛼0).

5.1. Behavior of 𝜆𝑐 𝑣

We first examine the asymptotic behavior of 𝜆𝑐 𝑣 by conducting the following simulation study.
Setting 1: Assume that 𝑌 follows a skew normal with unknown parameters (𝜇 , 𝜎 , 𝛼), where the underlying values (𝜇0, 𝜎0) = (0, 1)

and 𝛼0 ∈ {0, 2, 3, 4}. We draw a sample of size 𝑛 for 𝑌 for each combination of (𝛼0, 𝑛), 𝛼0 ∈ {0, 2, 3, 4} and 𝑛 ∈ {50, 100, 200, 300,
400, 500, 600, 1000}. We repeat this sampling process 20 times, obtaining 20 replicates.

We applied the proposed cross-validation procedure to each sample, obtaining the value of (�̂� , ̂𝜎 , ̂𝛼) and the value of 𝜆𝑐 𝑣. The
results are displayed in Figs. 5.1 and 5.2. The results show that when 𝛼0 = 0 (that is, the underlying model is a normal), the sample
means and variances of these 20 simulated 𝜆𝑐 𝑣∕𝑛 tend to a constant (≈ 0.0035) and zero respectively; when 𝛼0 ≠ 0 (that is, the
underlying model is a skew-normal), both the sample means and variances of these 20 simulated 𝜆𝑐 𝑣∕

√

𝑛 tend to zero. It follows
from Chebyshev’s inequality that 𝜆𝑐 𝑣∕𝑛 tends to a positive constant in probability when the underlying 𝛼0 = 0, while 𝜆𝑐 𝑣∕

√

𝑛 tends
to zero in probability when 𝛼 ≠ 0. Therefore, the numerical results support the theory we develop in the previous section.
0
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Fig. 5.1. Trend plots of 𝜆𝑐 𝑣 when the underlying (𝜇0 , 𝜎2
0 , 𝛼0) = (0, 1, 0), 𝑛 = 50, 100, 200,300, 400, 500, 600 and 1000. The box plots on the left, mean–variance chart

on the right for 20 simulated 𝜆𝑐 𝑣∕𝑛.

5.2. Estimation error

The log-likelihood function is non-quadratic at the stationary point 𝛼 = 0, which makes it non-trivial to estimate. Moreover, the
MLE of 𝛼 is diverging with a positive probability. Azzalini and Arellano-Valle (2012) proposed Q-based MPLE by maximising the
penalised likelihood 𝑙𝑝 (𝜇 , 𝜎 , 𝛼) = 𝑙 (𝜇 , 𝜎 , 𝛼)−𝜆 log

(

1 + 𝑐2𝛼2
)

in order to tackle the divergent behavior of estimate �̂�. Using Firth’s bias
correction technique, they fixed 𝜆 and 𝑐2 as constants with 𝜆 ≈ 0.875913 and 𝑐2 ≈ 0.856250. In contrast, we determine the penalty
coefficient 𝜆 by 10−fold cross-validation. Note that when 𝛼 ≠ 0, 𝑙𝑝 (𝜇 , 𝜎 , 𝛼) tends to −∞ as the penalty coefficient 𝜆 tends to +∞.
So, intuitively, when the true value 𝛼0 is approaching 0, the penalty coefficient 𝜆 should be relatively larger compared to the case
where 𝛼0 is away from 0. Cross-validation chooses the penalty coefficient by letting dataset speak for itself. In the next simulation
study, we demonstrate that our cross-validated MPLE can outperform the MLE and Q-based MPLE procedures when the underlying
value 𝛼0 = 0. The result confirms the theory developed in the previous section.

Setting 2: We first generate 𝜇0 ∼ 𝑈 (−2, 2), 𝜎0 ∼ 𝑈 (0.5, 1.5) and choose 𝛼0 ∈ {0, 1, 2, 3, 5}. Then for each combination of (𝛼0, 𝑛),
𝛼0 ∈ {0, 1, 2, 3, 5} and 𝑛 ∈ {50, 100, 200, 400} and given the value of (𝜇0, 𝜎0, 𝛼0), we draw samples of size 𝑛 from a skew normal with
parameters (𝜇0, 𝜎0, 𝛼0). We repeat this sampling process 𝑚 = 20 times, obtaining 𝑚 replicates.

In Fig. 5.3, the boxplots of estimates of (𝜇 , 𝜎 , 𝛼) suggest that both the proposed cross-validated MPLE and the Q-based MPLE
performed substantially better than the MLE in all cases in terms of mean square error. For the sample size ≥ 500, the cross-validated
MPLE does have a strong superiority over the Q-based MPLE, demonstrating that fixing the penalty coefficient to a constant in the
Q-based MPLE can compromise the performance of the MPLE. Figures 5.4 and 5.5 demonstrate that the cross-validated MPLE and
MPLE virtually coincide when the underlying value 𝛼0 is not zero. When 𝛼0 = 1, both the cross-validated MPLE and the Q-based
MPLE tend to shrink to zero, suggesting that weak skewness will be filtered out after the penalisation (see Figs. 5.4 and 5.5).

5.3. IC50 data

In this subsection, we considered an IC50 dataset derived from the experiment in Iorio et al. (2016). We first fit the proposed
skew-normal model to log-IC50 measurements of each anti-cancer drugs over 111 cancer cell lines and then characterise these
drugs by their estimated location, scale and skewness parameters (�̂� , ̂𝜎 , ̂𝛼). The results are displayed in Fig. 5.6. There are 170 out
of 227 anti-cancer drugs with evident skewness |�̂�| > 1. We applied K-means to these estimates, obtaining four clusters with centers
(−1.47, 2.50, 3.95), (2.56, 1.50,−0.43), (2.88, 1.91,−5.03), (2.07, 2.54,−27.8) and of sizes 45, 107, 65, 10 respectively. The distributions in

luster 4 are very negatively skewed, consisting of cancer growth blockers including inhibitors of LCK, BRAF, C-RAF-1, receptor
yrosine kinase and SRC kinase. Cluster 3 is positive log-response group, where the distribution of �̂� is negatively skewed with �̂�
ainly taking positive values. The distributions in Cluster 2 are close to normal while the distributions in Cluster 1 (resistance group)

re positively skewed with log-response mainly taking negative values. Therefore, classification of drugs to four clusters indicate
ifferent patterns of drug response while drugs in the same cluster show a similar mechanism of action.

Here, the numerical result demonstrated the role of the skewness in discriminating functions of drugs. Given empirical
distributions of the skewness of the log-IC50 in each drug group described as in Fig. 5.6. the function role of a new drug can
be tested again the existing group by comparing its estimated skewness parameter to the expected value of the skewness of the
existing group.

6. Discussion and conclusion

We have proposed a novel approach for determining penalty coefficients in the maximum penalised likelihood estimation for
skew normal distribution families by using the multifold cross-validation. The proposed procedure has addressed the problem of
under-regularisation in the Q-based MPLE caused by fixing the penalty coefficient to a constant. We have conducted an asymptotic
9 
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Fig. 5.2. Trend plots of 𝜆𝑐 𝑣 when the underlying (𝜇0 , 𝜎2
0 ) = (0, 1), 𝑛 = 50, 100, 200,300, 400, 500, 600 and 1000. In each row, the box plots on the left, mean–variance

chart on the right for 20 simulated 𝜆𝑐 𝑣∕√𝑛. Row 1 for 𝛼0 = 2. Row 2 for 𝛼0 = 3. Row 3 for 𝛼0 = 4.
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Fig. 5.3. Box plots of �̂�−𝜇0, �̂�−𝜎0 and �̂�−𝛼0 for 20 replicates when 𝛼0 = 0, 𝜇0 ∼ 𝑈 (−2, 2), 𝜎0 ∼ 𝑈 (0.5, 1.5) and 𝑛 = 50, 100, 200, 400, 500 and 1000 respectively. In
each plot, the first three box-plots, the second three box-plots and the last three box-plots are for the cross-validated MPLE, the MPLE and the MLE, respectively.
The plots demonstrate that the cross-validated MPLE outperforms the other two methods in terms of bias and variability, in particular, when the sample size is
increasing. Note that the scale of vertical axis in these plots is decreasing when the sample size is increasing.

analysis on the behavior of the proposed procedure. In particular, under some regularity condition, we have shown that the cross-
validated MPLE can make a sharp improvement over the Q-based approach. This has resulted in the asymptotic efficiency of the
proposed estimators.

We have assessed the performance of the proposed procedure by use of simulated and real data. The simulations have
demonstrated that our new procedure can substantially outperform the Q-based MPLE in terms of bias and standard error in a
range of scenarios. We have applied the proposed procedure to the analysis of an anti-cancer drug sensitivity dataset, identifying
two clusters that have contrasting behavior of drug resistance, one with strong negatively skew drug sensitivity and the other with
strong positively skew drug sensitivity. The result is consistent with the existing finding about the role of drug Erlotinib in reducing
cancer cell lines resistance to drug Paclitaxel.
11 
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Fig. 5.4. Box plots of �̂� − 𝜇0, �̂� − 𝜎0 and �̂� − 𝛼0 for 20 replicates when 𝛼0 = 1 and 2, 𝜇0 ∼ 𝑈 (−2, 2), 𝜎0 ∼ 𝑈 (0.5, 1.5) and 𝑛 = 50, 100, 200, 400 respectively. In
each plot, the first three box-plots, the second three box-plots and the last three box-plots are for the cross-validated MPLE, the Q-based MPLE and the MLE,
respectively. The plots demonstrate that the cross-validated MPLE performs similarly to the other two methods in terms of bias and variability. Note that the
scale of vertical axis in these plots is decreasing when the sample size is increasing.
12 
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Fig. 5.5. Box plots of �̂� − 𝜇0, �̂� − 𝜎0 and �̂� − 𝛼0 for 20 replicates when 𝛼0 = 3 and 5, 𝜇0 ∼ 𝑈 (−2, 2), 𝜎0 ∼ 𝑈 (0.5, 1.5) and 𝑛 = 50, 100, 200, 400 respectively. In
each plot, the first three box-plots, the second three box-plots and the last three box-plots are for the cross-validated MPLE, the Q-based MPLE and the MLE,
respectively. The plots demonstrate that the cross-validated MPLE performs similarly to the other two methods in terms of bias and variability. Note that the
scale of vertical axis in these plots is decreasing when the sample size is increasing.
13 
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Fig. 5.6. (a) Distribution patterns of estimated �̂�, �̂� and �̂� in the clusters 1 and 3. (b) Distribution patterns of estimated �̂�, �̂� and �̂� in the clusters 2 and 4.
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Appendix. Proofs

For the simplicity of notation, in the following let 𝝍 denote (𝜇 , 𝜂 , 𝜃).

Proof of Proposition 3.1. Without loss of generality, assume that pen(𝜃) = pen1(𝜃). Note that when 𝜃0 ≠ 0, 𝐂0 is invertible which
implies invertibility of (𝐂0 − 𝐃0𝜆∕𝑛)−1. We have

√

𝑛(�̂� − 𝝍0)𝑇 = 1
√

𝑛
(−(𝐂0 − 𝐃0𝜆∕𝑛)−1)

𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕𝝍𝑇

0

(1 + 𝑜𝑝(1))

+ 𝜆
2
√

𝑛
(𝑒2𝜃0 − 𝑒−2𝜃0 )(𝐂0 − 𝐃0𝜆∕𝑛)−1𝒆3(1 + 𝑜𝑝(1))

which is asymptotically normal with asymptotic mean

𝐌0𝜆∕𝑛 = (𝐂0 − 𝐃0𝜆∕𝑛)−1
𝜆

2
√

𝑛
(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆3

and asymptotic covariance matrix

𝐕0𝜆∕𝑛 =
(

𝐂0 − 𝐃0𝜆∕𝑛
)−1 (−𝐂0)

(

𝐂0 − 𝐃0𝜆∕𝑛
)−1 .

Let 𝒅0𝜆∕𝑛 =
√

𝜆∕𝑛
√

𝑒2𝜃0 + 𝑒−2𝜃0𝒆3 and

𝐂−1
0 =

⎛

⎜

⎜

⎝

𝑐110 𝑐120 𝑐130
𝑐210 𝑐220 𝑐230
𝑐310 𝑐320 𝑐330

⎞

⎟

⎟

⎠

, 𝒄.30 =
⎛

⎜

⎜

⎝

𝑐130
𝑐230
𝑐330

⎞

⎟

⎟

⎠

, 𝒄3.0 = (𝑐310 𝑐320 𝑐330 ).

Then 𝐃0𝜆∕𝑛 = 𝒅0𝜆∕𝑛𝒅𝑇0𝜆∕𝑛 = (𝜆∕𝑛)(𝑒2𝜃0 + 𝑒−2𝜃0 )𝒆3𝒆𝑇3 and
(

𝐂0 − 𝐃0𝜆∕𝑛
)−1 =

(

𝐂0 − 𝒅0𝜆∕𝑛𝑑𝑇0𝜆∕𝑛
)−1

= 𝐂−1
0 +

𝐂−1
0 𝒅0𝜆∕𝑛𝒅

𝑇
0𝜆∕𝑛𝐂

−1
0

1 + 𝒅𝑇0𝜆∕𝑛𝐂−1
0 𝒅0𝜆∕𝑛

.

This together with the definitions of 𝐌0𝜆∕𝑛 and 𝐕0𝜆∕𝑛 yields

𝐕0𝜆∕𝑛 = −
(

𝐂−1
0 +

𝜆
𝑛 (𝑒

2𝜃0 + 𝑒−2𝜃0 )

1 + 𝜆
𝑛 (𝑒

2𝜃0 + 𝑒−2𝜃0 )𝑐330
𝒄.30 𝒄

3.
0

)

𝐂0

×

(

𝐂−1
0 +

𝜆
𝑛 (𝑒

2𝜃0 + 𝑒−2𝜃0 )

1 + 𝜆
𝑛 (𝑒

2𝜃0 + 𝑒−2𝜃0 )𝑐330
𝒄.30 𝒄

3.
0

)

𝐌0𝜆∕𝑛 =

(

𝐂−1
0 +

𝜆
𝑛 (𝑒

2𝜃0 + 𝑒−2𝜃0 )
𝜆 33

𝑐.30 𝑐
3.
0

)

𝜆
√

(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆3.

1 + 𝑛 (𝑒

2𝜃0 + 𝑒−2𝜃0 )𝑐0 2 𝑛
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So, when 𝜆∕
√

𝑛 → 0, estimate (�̂� , ̂𝜂 , �̂�) is asymptotically unbiased and efficient in the sense that its variance asymptotically achieves
the Cramer–Rao lower bound. The proof is completed.

Proof of Theorem 1. Without loss of generality, assume that 𝑛 is a multiple of 𝐾 and that 𝑛1 = ⋯ = 𝑛𝐾 = 𝑛∕𝐾. Let
−𝑗 = 𝑛 − 𝑛𝑗 = (𝐾 − 1)𝑛∕𝐾. Let 𝐃0𝜆∕𝑛−𝑗 denote (𝜆∕𝑛−𝑗 )(𝑒2𝜃0 + 𝑒−2𝜃0 )𝒆3𝒆𝑇3 . It follows from Eq. (3.2) that

(�̂� [−𝑗]𝜆 − 𝝍0)𝑇 = 1
𝑛−𝑗

(

∑

𝑖∈[𝑛]
−
∑

𝑖∈[𝑗]

)

(−(𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )
−1)

𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕𝝍𝑇

0

(1 + 𝑜𝑝(1))

+ (𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )
−1 𝜆

2𝑛−𝑗
(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆3(1 + 𝑜𝑝(1))

Similarly,

(�̂� [𝑗] − 𝝍0)𝑇 = 1
𝑛𝑗

∑

𝑖∈[𝑗]
(−𝐂−1

0 )
𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕𝝍𝑇

0

(1 + 𝑜𝑝(1)).

Consequently,

(�̂� [−𝑗]𝜆 − �̂� [𝑗])𝑇 = 𝐾
𝐾 − 1 (−(𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )

−1) 1
𝑛
∑

𝑖∈[𝑛]

𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕𝝍𝑇

0

(1 + 𝑜𝑝(1))

+ (𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )
−1 𝜆

2𝑛−𝑗
(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆3(1 + 𝑜𝑝(1))

−
(

−(𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )
−1 1

𝑛−𝑗
− 𝐂−1

0
1
𝑛𝑗

)

∑

𝑖∈[𝑗]

𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕𝝍𝑇

0

(1 + 𝑜𝑝(1))

= 𝐾
𝐾 − 1 (−(𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )

−1) 1
𝑛
∑

𝑖∈[𝑛]

𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕𝝍𝑇

0

(1 + 𝑜𝑝(1))

+ 𝜆
𝑛

𝐾
𝐾 − 1 (𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )

−1 1
2
(𝑒2𝜃0 − 𝑒−2𝜃0 )(1 + 𝑜𝑝(1))

−
(

−(𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )
−1 1

𝐾 − 1 − 𝐂−1
0

) 1
𝑛𝑗

∑

𝑖∈[𝑗]

𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕𝝍𝑇

0

(1 + 𝑜𝑝(1))

Let 𝒗𝑇𝑖 = 𝜕 𝑙𝑖𝑛𝑐 (𝑦𝑖)
𝜕𝝍0

(−𝐂0)−1∕2 and 𝐖0𝜆∕𝑛−𝑗 = (−𝐂0)1∕2(−(𝐂0 − 𝐃0𝜆∕𝑛−𝑗 )
−1)(−𝐂0)1∕2. Then

𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� [𝑗])𝐂0(�̂� [−𝑗]𝜆 − �̂� [𝑗])𝑇

= − 𝐾
(𝐾 − 1)2

(

1
√

𝑛

∑

𝑖∈[𝑛]
𝒗𝑇𝑖

)

𝐖2
0𝜆∕𝑛−𝑗

(

1
√

𝑛

∑

𝑖∈[𝑛]
𝒗𝑖

)

− 2𝐾
(𝐾 − 1)2

𝜆
√

𝑛

(

1
√

𝑛

∑

𝑖∈[𝑛]
𝒗𝑇𝑖

)

𝐖2
0𝜆∕𝑛−𝑗

(−𝐂0)−1∕2
1
2
(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆3

+
2
√

𝐾
𝐾 − 1

(

1
√

𝑛

∑

𝑖∈[𝑛]
𝒗𝑇𝑖

)

(

𝐖2
0𝜆∕𝑛−𝑗

1
𝐾 − 1 +𝐖0𝜆∕𝑛−𝑗

)

(

1
√

𝑛𝑗

∑

𝑖∈[𝑗]
𝒗𝑖

)

−𝜆2

𝑛
𝐾

(𝐾 − 1)2
1
2
(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆𝑇3 (−𝐂0)−1∕2𝐖2

0𝜆∕𝑛−𝑗
(−𝐂0)−1∕2

1
2
(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆3

+
2
√

𝐾
𝐾 − 1

𝜆
√

𝑛
1
2
(𝑒2𝜃0 − 𝑒−2𝜃0 )𝒆𝑇3 (−𝐂0)−1∕2

(

𝐖2
0𝜆∕𝑛

1
𝐾 − 1 +𝐖0𝜆∕𝑛−𝑗

) 1
√

𝑛𝑗

∑

𝑖∈[𝑗]
𝒗𝑖

−

(

1
√

𝑛𝑗

∑

𝑖∈[𝑗]
𝒗𝑇𝑖

)

(

𝐖0𝜆∕𝑛−𝑗
1

𝐾 − 1 + 𝐈
)2

(

1
√

𝑛𝑗

∑

𝑖∈[𝑗]
𝒗𝑖

)

.

Expanding the 𝑗th validated log-likelihood function 𝑙𝑖𝑛𝑐 (�̂� [−𝑗]𝜆 ∣ 𝒚𝑗 ) at the MLE �̂� 𝑗 of 𝑙𝑖𝑛𝑐 (𝝍 ∣ 𝒚𝑗 ), we have

𝑙𝑖𝑛𝑐 (�̂� [−𝑗]𝜆 ∣ 𝒚𝑗 ) = 𝑙𝑖𝑛𝑐 (�̂� 𝑗 ∣ 𝒚𝑗 )

+ 0.5√𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� 𝑗 )
1
𝑛𝑗

𝜕2𝑙𝑖𝑛𝑐 (𝝍 ∣ 𝒚𝑗 )
𝜕𝝍𝜕𝝍𝑇 ∣�̂�∗

[−𝑗]𝜆

√

𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝑇

= 𝑙𝑖𝑛𝑐 (�̂� 𝑗 ∣ 𝒚𝑗 )

+ 0.5√𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� 𝑗 )(1 + 𝑜𝑝(1))𝐂0
√

𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝑇 ,

where

�̂�∗
[−𝑗]𝜆 = �̂� 𝑗 + 𝑡(�̂� [−𝑗]𝜆 − �̂� 𝑗 ), 0 ≤ 𝑡 ≤ 1.

Consequently,
15 
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CV𝑎(𝜆) + 1
𝐾

𝐾
∑

𝑗=1
𝑙𝑖𝑛𝑐 (�̂� 𝑗 ∣ 𝒚𝑗 )

= − 1
𝐾

𝐾
∑

𝑗=1
0.5

√

𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝐂0(1 + 𝑜𝑝(1))
√

𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝑇

= − 1
2𝐾

𝐾
∑

𝑗=1

√

𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝐂0
√

𝑛𝑗 (�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝑇 (1 + 𝑜𝑝(1))

=

(

𝜆2

𝑛
𝑎𝜆∕𝑛 + 2 𝜆

√

𝑛
𝑏𝜆∕𝑛 + 𝑐𝜆∕𝑛

)

(1 + 𝑜𝑝(1))

=
⎛

⎜

⎜

⎝

𝑎𝜆∕𝑛

(

𝜆
√

𝑛
+ 𝑏𝜆∕𝑛∕𝑎𝜆∕𝑛

)2

− 𝑏2𝜆∕𝑛∕𝑎𝜆∕𝑛 + 𝑐𝜆∕𝑛
⎞

⎟

⎟

⎠

(1 + 𝑜𝑝(1))

≥
(

−𝑏2𝜆∕𝑛∕𝑎𝜆∕𝑛 + 𝑐𝜆∕𝑛
)

(1 + 𝑜𝑝(1)),

where

𝑎𝜆∕𝑛 = 𝐾
2(𝐾 − 1)2

1
4
(𝑒2𝜃0 − 𝑒−2𝜃0 )2𝒆𝑇3 (−𝐂0)−1∕2𝐖2

0𝜆∕𝑛−𝑗
(−𝐂0)−1∕2𝒆3,

𝑏𝜆∕𝑛 = 1
2(𝐾 − 1)

1
2
(𝑒2𝜃0 − 𝑒−2𝜃0 )

(

1
√

𝑛

∑

𝑖∈[𝑛]
𝒗𝑇𝑖

)

𝑊0𝜆∕𝑛−𝑗 (𝐈 −𝐖0𝜆∕𝑛−𝑗 )(−𝐂0)−1∕2𝒆3

𝑐𝜆∕𝑛 =

(

1
√

𝑛

∑

𝑖∈[𝑛]
𝒗𝑇𝑖

)

(

𝐾 − 2
2(𝐾 − 1)2𝐖

2
0𝜆∕𝑛−𝑗

− 1
𝐾 − 1𝐖0𝜆∕𝑛−𝑗

)

(

1
√

𝑛

∑

𝑖∈[𝑛]
𝒗𝑖

)

+ 1
2𝐾

𝐾
∑

𝑗=1

(

1
√

𝑛𝑗

∑

𝑖∈[𝑗]
𝒗𝑇𝑖

)

(

𝑊0𝜆∕𝑛−𝑗
1

𝐾 − 1 + 𝐈
)2

(

1
√

𝑛𝑗

∑

𝑖∈[𝑗]
𝒗𝑖

)

.

Over 𝜆∕
√

𝑛 ∈ [0,∞), when 𝜆∕
√

𝑛 = max{0,−𝑏𝜆∕𝑛∕𝑎𝜆∕𝑛}, CV𝑎(𝜆) asymptotically attains the minimum

−𝑏2𝜆∕𝑛∕𝑎𝜆∕𝑛 + 𝑐𝜆∕𝑛 = − 1
2𝐾

((

1
√

𝑛

∑

𝑖∈[𝑛] 𝒗𝑇𝑖

)

𝐖0𝜆∕𝑛−𝑗 (𝐈 −𝐖0𝜆∕𝑛−𝑗 )(−𝐂0)−1∕2𝒆3
)2

𝒆𝑇3 (−𝐂0)−1∕2𝑊 2
0𝜆∕𝑛−𝑗

(−𝐂0)−1∕2𝒆3
+ 𝑐𝜆∕𝑛

which is independent of 𝜃0.
Note that

𝐖0𝜆∕𝑛−𝑗 = 𝐈 + 𝜆
𝑛

𝐾
𝐾 − 1

(𝑒2𝜃0 + 𝑒−2𝜃0 )(−𝐂0)−1∕2𝒆3𝒆𝑇3 (−𝐂0)−1∕2

1 − 𝜆
𝑛

𝐾
𝐾−1 (𝑒

2𝜃0 + 𝑒−2𝜃0 )𝒆𝑇3 (−𝐂0)−1𝒆3
.

𝐖0𝜆∕𝑛−𝑗 (𝐈 −𝐖0𝜆∕𝑛−𝑗 ) =
𝜆
𝑛
𝑂(1).

For fixed 𝜃0 ≠ 0, 𝜆 satisfying 𝜆∕
√

𝑛 → ∞ and 0 ≤ 𝜆∕𝑛 ≤ 𝜔0, it follows from the above equations that CV𝑎(𝜆) tends to infinity.
While for bounded 𝜆∕

√

𝑛, 𝜆∕𝑛 tends to zero, 𝐖0𝜆∕𝑛−𝑗 → 𝐼 and

𝑎𝜆∕𝑛 →
𝐾

2(𝐾 − 1)2
1
4
(𝑒2𝜃0 − 𝑒−2𝜃0 )2𝒆𝑇3 (−𝐂0)−1𝒆3,

𝑏𝜆∕𝑛−𝑗 ∕𝑎𝜆∕𝑛−𝑗 = − 𝜆
√

𝑛
𝑂(1)

2(𝑒2𝜃0 + 𝑒−2𝜃0 )
√

𝑛(𝑒2𝜃0 − 𝑒−2𝜃0 )

×

1
√

𝑛

∑

𝑖∈[𝑛] 𝒗𝑇𝑖 (−𝐂0)−1∕2𝒆3𝒆𝑇3 (−𝐂0)−1∕2

1 − (𝜆𝐾∕(𝑛(𝐾 − 1)))(𝑒2𝜃0 + 𝑒−2𝜃0 )𝒆𝑇3 (−𝐂0)−1𝒆3
.

(

𝜆
√

𝑛
+ 𝑏𝜆∕𝑛−𝑗 ∕𝑎𝜆∕𝑛−𝑗

)2

= 𝜆2

𝑛
(1 − 𝑜𝑝(1))2.

𝑐𝜆∕𝑛 →
𝐾

2(𝐾 − 1)2 (−𝜒
2
3 + 𝜒2

3𝐾 ),

where 𝜒2
3 and 𝜒2

3𝐾 are two dependented chi-squared random variables. Therefore, for 𝜆∕𝑛 ∈ [0, 𝜔0] CV𝑎(𝜆) asymptotically attains
the minimum − 𝐾

2(𝐾−1)2 𝜒
2
3 + 𝐾

2(𝐾−1)2 𝜒
2
3𝐾 when 𝜆∕

√

𝑛 = 0. This implies that 𝜆𝑐 𝑣∕
√

𝑛 tends to zero in probability when the true value
f 𝜃0 ≠ 0. The proof is completed.

Proof of Proposition 3.2. Note that when 𝜃 = 0, 𝐂 = diag(𝜎−2,−2, 0) is degenerate. Let
0 0 0
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𝒖𝑖 =
(

𝑧𝑖0, 𝑧2𝑖0 − 1)𝑇 .

Then
1
𝑛
𝜕 𝑙𝑖𝑛𝑐
𝜕𝝍𝑇 ∣(𝜇0 ,𝜂0 ,0)=

1
𝑛

𝑛
∑

𝑖=1
(𝒖𝑇𝑖 , 0)

𝑇

Letting 𝑧∗𝑖 = (𝑦𝑖 − 𝜇∗
𝜆)∕𝜎

∗
𝜆 , we have

𝑐11(𝝍∗
𝜆) = − 1

𝜎∗2𝜆
−

𝛼∗2𝜆
𝜎∗2𝜆

2
𝜋
(1 + 𝑜𝑝(1))

𝑐12(𝝍∗
𝜆) = − 2

𝜎∗𝜆

1
𝑛

𝑛
∑

𝑖=1
𝑧∗𝑖 +

𝛼∗𝜆
𝜎∗𝜆

√

2∕𝜋 𝑂𝑝(𝜃∗𝜆 + 1∕
√

𝑛).

𝑐13(𝝍∗
𝜆) = −

𝛿∗2𝜆
𝜎∗𝜆

√

2∕𝜋 −
𝜃∗2𝜆
2𝜎∗𝜆

√

2∕𝜋 −
𝛼∗𝜆
𝜎∗𝜆

1
𝑛

𝑛
∑

𝑖=1

𝜙(𝐴∗
𝑖 )

𝛷(𝐴∗
𝑖 )

×
(

𝛼∗𝜆
(

𝑧∗𝑖 + 𝛿∗𝜆
√

2∕𝜋
)

+
𝜙(𝐴∗

𝑖 )
𝛷(𝐴∗

𝑖 )

)

×
(

𝛼∗𝜆(1 − 𝛿∗2𝜆 )
√

2∕𝜋
)

= 𝑂𝑝(𝜃∗2𝜆 ).

𝑐13(𝝍∗
𝜆)

𝜃∗2𝜆
→ − 1

𝜎∗𝜆

√

2∕𝜋
( 3
2
+ 2∕𝜋

)

as 𝜃∗𝜆 → 0.

𝑐21(𝝍∗
𝜆) = 𝑐12 ∣𝝍∗

𝜆

𝑐22(𝝍∗
𝜆) = 𝜃∗𝜆

4
𝜋

𝑛
∑

𝑖=1
𝑧∗2𝑖 + 𝜃∗𝜆𝑂𝑝(𝜃∗𝜆 + 1∕

√

𝑛).

𝑐23(𝝍∗
𝜆)

𝜃∗𝜆
→

4
𝜋

as 𝑛 → ∞.

𝑐31(𝝍∗
𝜆) = 𝑐13(𝝍∗

𝜆), 𝑐32(𝝍∗
𝜆) = 𝑐23(𝝍∗

𝜆)

𝑐33(𝝍∗
𝜆) =

2
𝜋
1
𝑛

𝑛
∑

𝑖=1

(

1 − 𝑧∗2𝑖
)

+ 𝜃∗𝜆𝑂𝑝(𝜃∗𝜆 + 1∕
√

𝑛).

Let

𝐈11 =
(

𝑐11 𝑐12
𝑐21 𝑐22

)

, 𝐈12 =
(

𝑐13
𝑐23

)

, 𝐈21 = 𝐈𝑇12, 𝐈22 = 𝑐33 −
𝜆
𝑛
(𝑒2𝜃 + 𝑒−2𝜃).

Let 𝐈110 = diag(−1∕𝜎20 ,−2), 𝐈220 = 2
𝜋

1
𝑛
∑𝑛

𝑖=1(1 − 𝑧2𝑖0) − 2𝜆∕𝑛, 𝐈∗11𝜆 = 𝐈11 ∣(𝜇∗𝜆 ,𝜂∗𝜆 ,𝜃∗𝜆 ), 𝐈∗12𝜆 = 𝐈12 ∣(𝜇∗𝜆 ,𝜂∗𝜆 ,𝜃∗𝜆 ), 𝐈∗21𝜆 = 𝐈21 ∣(𝜇∗𝜆 ,𝜂∗𝜆 ,𝜃∗𝜆 ) and
𝐈∗22𝜆 = 𝐈22 ∣(𝜇∗𝜆 ,𝜂∗𝜆 ,𝜃∗𝜆 ). Then

𝐈−111 = 1
𝑐11𝑐22 − 𝑐21𝑐12

(

𝑐22 −𝑐12
−𝑐21 𝑐11

)

,

𝐈21𝐈−111 𝐈12 =
𝑐231𝑐22 − 2𝑐32𝑐21𝑐13 + 𝑐232𝑐11

𝑐11𝑐22 − 𝑐21𝑐12
.

𝐈∗21𝜆𝐈
−1
110𝐈

∗
12𝜆 =

𝜃∗2𝜆 𝑂𝑝(1)
1

𝜎∗2𝜆

2
𝑛
∑𝑛

𝑖=1 𝑧
∗2
𝑖 + 𝑂𝑝(1∕𝑛) + 𝜃∗𝜆𝑂𝑝(𝜃∗ + 1∕√𝑛)

.

𝐈∗22𝜆 − 𝐈∗21𝜆𝐈
−1
110𝐈

∗
12𝜆 = 2

𝜋
1
𝑛

𝑛
∑

𝑖=1

(

1 − 𝑧∗2𝑖
)

− 2𝜆
𝑛

+ 𝜃∗𝑂𝑝(𝜃∗𝜆 + 1∕
√

𝑛).

𝐈∗12𝜆 = 4
𝜋
𝜃∗𝜆

(

𝑂𝑝(𝜃∗𝜆),
1
𝑛

𝑛
∑

𝑖=1
𝑧∗2𝑖 + 𝑂𝑝(𝜃∗𝜆 + 1∕

√

𝑛)

)𝑇

.

We have

− 1
√

𝑛

𝑛
∑

𝑖=1
𝒖𝑖 = 𝐈∗11𝜆

(

√

𝑛(�̂�𝜆 − 𝜇0)
√

𝑛(�̂�𝜆 − 𝜂0)

)

+ 𝐈∗12𝜆
√

𝑛�̂�𝜆

0 = 𝐈∗21𝜆

(

√

𝑛(�̂�𝜆 − 𝜇0)
√

)

+ 𝐈∗22𝜆�̂�𝜆
𝑛(�̂�𝜆 − 𝜂0)

17 
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which implies

− 1
√

𝑛

𝑛
∑

𝑖=1
𝒖𝑖 −

√

𝑛�̂�𝜆𝐈∗12𝜆 = 𝐈110

(

√

𝑛(�̂�𝜆 − 𝜇0)
√

𝑛(�̂�𝜆 − 𝜂0)

)

(1 + 𝑜𝑝(1))

(−𝐈110)−1
1
√

𝑛

𝑛
∑

𝑖=1
𝒖𝑖 +

√

𝑛�̂�𝜆(−𝐈110)−1𝐈∗12𝜆 =

(

√

𝑛(�̂� − 𝜇0)
√

𝑛(�̂� − 𝜂0)

)

(1 + 𝑜𝑝(1)),

0 = 𝐈∗21𝜆(−𝐈110)
−1 1

𝑛

𝑛
∑

𝑖=1
𝒖𝑖 +

(

𝐈∗21𝜆(−𝐈110)
−1𝐈∗12𝜆 + 𝐈∗22𝜆

)

�̂�𝜆

to which �̂�𝜆 = 0 is a solution, since 𝐈21 ∣(𝜇∗𝜆 ,𝜂∗𝜆 ,0)= 0 and 𝐈12 ∣(𝜇∗𝜆 ,𝜂∗𝜆 ,0)= 0. Note that
1
𝑛
𝑙𝑖𝑛𝑐 𝑝(�̂�𝜆|𝒚) = 1

𝑛
𝑙𝑖𝑛𝑐 𝑝(𝜇0, 𝜂0, 0|𝒚) + 1

𝑛

𝑛
∑

𝑖=1
𝒖𝜏𝑖 (�̂�𝜆 − 𝜇0, ̂𝜂𝜆 − 𝜂0)𝜏

+ 1
2
(�̂�𝜆 − 𝜇0, ̂𝜂𝜆 − 𝜂0, �̂�𝜆)diag(𝐈110, 𝐈220)(�̂�𝜆 − 𝜇0, ̂𝜂𝜆 − 𝜂0, �̂�𝜆)𝜏

× (1 + 𝑜𝑝(1))

= 1
𝑛
𝑙𝑖𝑛𝑐 𝑝(𝜇0, 𝜂0, 0|𝒚) + 1

𝑛

𝑛
∑

𝑖=1
𝒖𝜏𝑖 (�̂�𝜆 − 𝜇0, ̂𝜂𝜆 − 𝜂0)𝜏

+ 1
2
(�̂�𝜆 − 𝜇0, ̂𝜂𝜆 − 𝜂0)𝐈110(�̂�𝜆 − 𝜇0, ̂𝜂𝜆 − 𝜂0)𝜏 (1 + 𝑜𝑝(1))

+ 1
2
𝐈220�̂�2𝜆(1 + 𝑜𝑝(1))

= 1
𝑛
𝑙𝑖𝑛𝑐 𝑝(𝜇0, 𝜂0, 0|𝒚) + 1

𝑛

𝑛
∑

𝑖=1
𝒖𝜏𝑖 (−𝐈110)

𝜏 1
𝑛

𝑛
∑

𝑖=1
𝒖𝑖(1 + 𝑜𝑝(1))

+ 1
𝑛

𝑛
∑

𝑖=1
𝒖𝜏𝑖 (−𝐈110)

−1𝐈∗12𝜆�̂�𝜆(1 + 𝑜𝑝(1))

− 1
2

(

1
𝑛

𝑛
∑

𝑖=1
𝒖𝜏𝑖 (−𝐈110)

−1 + 𝐈∗21𝜆(−𝐈110)
−1�̂�𝜆

)

(−𝐈110)

×

(

(−𝐈110)−1
1
𝑛

𝑛
∑

𝑖=1
𝒖𝑖 + (−𝐈110)−1𝐈∗12𝜆�̂�𝜆

)

+ 1
2
𝐈220�̂�2𝜆(1 + 𝑜𝑝(1))

= 1
𝑛
𝑙𝑖𝑛𝑐 𝑝(𝜇0, 𝜂0, 0|𝒚) + 1

𝑛

𝑛
∑

𝑖=1
𝒖𝜏𝑖 (−𝐈110)

𝜏 1
𝑛

𝑛
∑

𝑖=1
𝒖𝑖(1 + 𝑜𝑝(1))

− 1
2
(

−𝐈220 + 𝐈21∗(−𝐈110)−1𝐈∗12𝜆
)

�̂�2𝜆(1 + 𝑜𝑝(1))

which attains the maximum at �̂�𝜆 = 0 when 𝐈220 ≤ 0, that is, when
𝜆
√

𝑛
≥ max

{

1
𝜋

1
√

𝑛

𝑛
∑

𝑖=1

(

1 − 𝑧2𝑖0
)

, 0

}

.

This implies:

• When 𝜆∕
√

𝑛 → ∞, we have �̂�𝜆 = 0.
• When 1

𝜋
1
√

𝑛

∑𝑛
𝑖=1

(

1 − 𝑧2𝑖0
)

≤ 0, for any 𝜆 ≥ 0, we have �̂�𝜆 = 0.

When �̂�𝜆 = 0, we have
(

√

𝑛(�̂� − 𝜇0)∕𝜎0
√

𝑛(�̂� − 𝜂0)

)

. =
⎛

⎜

⎜

⎝

1
√

𝑛

∑𝑛
𝑖=1 𝑧𝑖0

1
2
√

𝑛

∑𝑛
𝑖=1

(

𝑧2𝑖0 − 1)
⎞

⎟

⎟

⎠

(1 + 𝑜𝑝(1))

which is asymptotically normal with mean zero and covariance matrix diag(1, 1∕2). When

0 ≤ 𝜆
√

𝑛
< 1

𝜋
1
√

𝑛

𝑛
∑

𝑖=1

(

1 − 𝑧2𝑖0
)

−

√

𝑛
2

𝐈∗21𝜆(−𝐈110)
−1𝐈∗12𝜆,

we have
1 𝑙𝑖𝑛𝑐 𝑝(�̂�𝜆|𝒚) >

1 𝑙𝑖𝑛𝑐 𝑝(𝜇0, 𝜂0, 0|𝒚) + 1
𝑛
∑

𝒖𝜏 (−𝐈110)𝜏
1

𝑛
∑

𝒖𝑖(1 + 𝑜𝑝(1)).
𝑛 𝑛 𝑛 𝑖=1
𝑖 𝑛 𝑖=1
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Therefore, when 1
𝜋

1
√

𝑛

∑𝑛
𝑖=1

(

1 − 𝑧2𝑖0
)

> 0, there is 𝜆 such that 1
𝑛 𝑙𝑖𝑛𝑐 𝑝(�̂�𝜆, ̂𝜂𝜆, �̂�𝜆|𝒚) attains the maximum at non-zero �̂�𝜆 satisfying

√

𝑛
2

𝐈∗21𝜆(−𝐈110)
−1𝐈∗12𝜆 < 1

𝜋
1
√

𝑛

𝑛
∑

𝑖=1

(

1 − 𝑧2𝑖0
)

.

The proof is completed.

Proof of Theorem 2. It follows from
𝜕 𝑙𝑖𝑛𝑐 (�̂� [−𝑗]𝜆 ∣ 𝒚[−𝑗])

𝜕𝝍𝑇 = 0

and Taylor’s theorem that

− 1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
(𝒖𝑇𝑖 , 0)

𝑇 =
(

𝐈11 𝐈12
𝐈21 𝐈22

)

𝝍∗
[−𝑗]𝜆

(�̂� [−𝑗]𝜆 − (𝜇0, 𝜂0, 0)),

where 𝝍∗
[−𝑗]𝜆 = 𝑡 × (�̂� [−𝑗]𝜆) for some 0 ≤ 𝑡 ≤ 1. Furthermore, if �̂�[−𝑗]𝜆 ≠ 0, then

𝐈∗[−𝑗]21𝜆

�̂�[−𝑗]𝜆
(−𝐈110)−1

1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖 + 𝐈∗[−𝑗]21𝜆 (−𝐈110)−1𝐈

∗[−𝑗]
12𝜆 + 𝐈∗[−𝑗]22𝜆 = 0.

Consider 𝜆 at which 𝐈∗[−𝑗]22𝜆 − 𝐈∗[−𝑗]21𝜆 𝐼−1110𝐈12𝜆 ≠ 0. We have

(�̂� [−𝑗]𝜆 − (𝜇0, 𝜂0, 0))𝑇 = (−𝐈110)−1
(

1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖 + 𝐈∗[−𝑗]12𝜆 �̂�𝜆

)

(1 + 𝑜𝑝(1))

=
(

(−𝐈110)−1 − (−𝐈110)−1𝐈∗[−𝑗]12𝜆

×
(

𝐈∗[−𝑗]22𝜆 + 𝐈∗[−𝑗]21𝜆 (−𝐈110)−1𝐈12∗
)−1

𝐈21∗(−𝐼110)−1
)

× 1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖(1 + 𝑜𝑝(1)). (A.1)

Similarly, it follows from
𝜕 𝑙𝑖𝑛𝑐 (�̂�𝑗 , ̂𝜂𝑗 , 0 ∣ 𝒚𝑗 )

𝜕𝝍𝑇 = 0

and Taylor’s theorem that

(�̂�𝑗 − 𝜇0, ̂𝜂𝑗 − 𝜂0)𝑇 = (−𝐈110)−1 1
𝑛𝑗

∑

𝑖∈[𝑗]
𝒖𝑖(1 + 𝑜𝑝(1)).

Consequently, we have

(�̂�[−𝑗]𝜆 − �̂�𝑗 , ̂𝜂[−𝑗]𝜆 − �̂�𝑗 )𝑇

= (−𝐈110)−1
(

1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖 + 𝐈∗[−𝑗]12𝜆 �̂�𝜆 −

1
𝑛𝑗

∑

𝑖∈[𝑗]
𝒖𝑖

)

(1 + 𝑜𝑝(1))

= 1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]

{

(−𝐈110)−1 − (−𝐈110)−1𝐈∗[−𝑗]12𝜆

×
(

𝐈∗[−𝑗]22𝜆 + 𝐈∗[−𝑗]21𝜆 (−𝐈110)−1𝐈
∗[−𝑗]
12𝜆

)−1
𝐈∗[−𝑗]21𝜆 (−𝐈110)−1

}

𝒖𝑖(1 + 𝑜𝑝(1))

− 1
𝑛𝑗

∑

𝑖∈[𝑗]
(−𝐈110)−1𝒖𝑖(1 + 𝑜𝑝(1)).

It follows from Proposition 3.2 that for 𝜆 ≥ max
{

1
𝜋
∑

𝑖∈[−𝑗]
(

1 − 𝑧2𝑖0
)

, 0
}

, we have �̂�[−𝑗]𝜆 = 0, 1 ≤ 𝑗 ≤ 𝐾.
On other hand, using the Taylor expansion, we have

𝑙𝑖𝑛𝑐 (�̂�[−𝑗]𝜆, ̂𝜂[−𝑗]𝜆, 0 ∣ 𝒚𝑗 ) − 𝑙𝑖𝑛𝑐 (�̂�𝑗 , ̂𝜂𝑗 , 0 ∣ 𝒚𝑗 )

=
𝑛𝑗
2
(�̂� [−𝑗]𝜆 − �̂� 𝑗 )

1
𝑛𝑗

𝜕2𝑙𝑖𝑛𝑐 (�̂�∗
[−𝑗]𝜆)

𝜕𝝍𝑇 𝜕𝝍
(�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝑇

=
𝑛𝑗
2
(�̂� [−𝑗]𝜆 − �̂� 𝑗 )diag(−𝜎−20 ,−2, 0)(�̂� [−𝑗]𝜆 − (�̂�𝑗 , ̂𝜂𝑗 , 0))(1 + 𝑜𝑝(1))

= − 𝑛𝑗
2
(�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝐈110(�̂� [−𝑗]𝜆 − �̂� 𝑗 )𝑇 (1 + 𝑜𝑝(1))

= − 𝑛𝑗
2

(

1
𝑛

∑

𝒖𝑖 −
1
𝑛

∑

𝒖𝑖

)𝑇

(−𝐈110)−1

[−𝑗] 𝑖∈[−𝑗] 𝑗 𝑖∈[𝑗]
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×

(

1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖 −

1
𝑛𝑗

∑

𝑖∈[𝑗]
𝒖𝑖

)

(1 + 𝑜𝑝(1)). (A.2)

Therefore,

CV(𝜆) + 1
𝐾

𝐾
∑

𝑗=1
𝑙𝑖𝑛𝑐 (�̂�𝑗 , ̂𝜂𝑗 , 0 ∣ 𝒚𝑗 )

= 1
2𝐾

𝐾
∑

𝑗=1
𝑛𝑗

(

1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖 −

1
𝑛𝑗

∑

𝑖∈[𝑗]
𝒖𝑖

)𝑇

(−𝐼110)−1

×

(

1
𝑛[−𝑗]

∑

𝑖∈[−𝑗]
𝒖𝑖 −

1
𝑛𝑗

∑

𝑖∈[𝑗]
𝒖𝑖

)

(1 + 𝑜𝑝(1)).

The proof is completed.
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