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ABSTRACT Quality inspection is an industrial field with a growing interest in anomaly detection research.
An anomaly in an image can either be structural or logical. While structural anomalies lie on the image
objects, challenging logical anomalies are hidden in the global relations between the image components.
The proposed approach, Vision Graph based Logical Anomaly Detection (ViGLAD), uses the graph
representation of an image for logical anomaly detection. Defining an image as a structure of nodes and edges
leverages new possibilities for detecting hidden logical anomalies by introducing vision graph autoencoders.
Our experiments on public datasets show that using vision graphs enhances the performance of state-of-the-
art teacher-student-autoencoder neural networks in logical anomaly detection while achieving robust results
in structural anomaly detection.

INDEX TERMS Logical anomaly detection, graph neural networks, vision graphs.

I. INTRODUCTION

ANOMALY detection is the task of recognizing a devia-
tion in the test data based on a learned data distribution

during training [1], [2]. Anomalies are the rare deviations that
can occur, which can for instance be related in image data to
the structure of certain objects, called structural anomalies, or
to the global structure of the image, called logical anomalies.

While a structural anomaly is local to one object on the
image, a logical anomaly is usually hidden behind the relation
between multiple parts of the image, hence its global aspect.
Logical anomalies cannot be fully detected with the tradi-
tional anomaly detection approaches based on local features
extracted from convolution layers or embedded in sequences
extracted from transformer blocks. For this reason, logical
anomaly detection methods have been following other ap-
proaches focusing on extracting both the local and global
features of the image or on the relation between its segmented
objects.

Image anomaly detection research has been focusing on
detecting structural anomalies on objects found in the MvTec
anomaly detection dataset [3]. An anomaly detection data-
set has two classes, namely the normal class and the anoma-
lous class and is usually unbalanced [4]. State-of-the-art ap-
proaches, such as Glass [5] and EfficientAD [6] are unsuper-
vised and achieve very high performance in this benchmark.

Recent research has been shifting to logical anomalies found
in the MvTec Logical Constraints [7] dataset. This task repre-
sents a challenge for most of the methods mentioned above.
For instance, EfficientAD [6] achieves an image area under
receiver operating characteristic curve (AUC) value of 55.26
on the "screw bag" subset of this logical anomaly detection
dataset.

The nature of the logical anomalies affecting the global
relations of image parts is similar to anomalies that can
be found in graph data. Anomaly detection for graph data
is an active research field that has multiple applications in
financial, security and biological fields. Until now, graph
anomaly detection has been considered as a separate research
field from image anomaly detection. The idea and aim of our
research is to combine graph and image anomaly detection
by introducing Vision Graph Logical Anomaly Detection
(ViGLAD). Our work proposes a novel approach in the field
of logical anomaly detection in image data based on the graph
representation of an image. Graph representations for images
has been considered in previous works, however, only in the
context of image and point cloud semantic segmentation [8]
and recently for image classification and object detection [9].
Our idea is to use this graph representation and the recently
introduced vision graph blocks [10] for logical anomaly de-
tection in image data. Vision graph blocks transform and ex-
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change information among the graph nodes of image patches.
We show in this work that representing an image as graph
and learning how to reconstruct its graph representation with
vision graph convolutions and deconvolutions allows the de-
tection of logical anomalies in images by learning local and
global logical relations of its objects. We summarize the
contribution of this work as follows:

• We introduce a novel approach that uses both convolu-
tion layers and vision graph blocks for logical anomaly
detection.

• We propose a novel vision graph autoencoder architec-
ture based on vision graph blocks using novel vision
graph deconvolutions inspired by vision graph convo-
lutions, which have been used for graph information
processing.

• We combine graph autoencoders with image convolu-
tion neural networks to establish a robust logical and
structural anomaly detection method that outperforms
state-of-the-art approaches on logical anomaly detection
datasets such as MvTec Logical Constraints [7] and on
structural datasets such as VisA [11].

This Section I has introduced the considered research
challenge and the contribution idea. Section II describes the
research state in the novel field of logical anomaly detection
and the recent development of vision graph neural networks.
Section III explains the ViGLAD method and Section IV
presents our experimental work to evaluate its performance
in both logical and structural anomaly detection tasks. In Sec-
tion VI, we discuss the results of the evaluation and describe
the limitations of our approach to present the potential for
future work that can be based on ViGLAD in Section VII.

II. RELATED WORK
The datasets used in the training phase of anomaly detection
methods are highly unbalanced, containing usually no or few
anomalous data, in contrast to training datasets for image
classification or object detection and segmentation. For this
reason, researchers are more focused on unsupervised learn-
ing approaches [12] rather than supervised learning methods
[13], [14]. Based on the availability of anomaly data during
training, the supervision approach for anomaly detection can
vary. While supervised image classification or object detec-
tion can be used for anomaly detectionwith balanced datasets,
unsupervised anomaly detection is more researched because
of the usually unbalanced nature of datasets in practice. In
fact, if examples from the anomaly class are available and
labeled on image level, binary image classification can be
used to predict if an image is normal or anomalous. Object
detection techniques can also be adopted for anomaly detec-
tion, if example anomaly images are available for training and
are labeled on object level by defining the areas or pixels
representing the anomaly. The output of such models will
be a bounding box or a segmentation map of the anomaly
area. The unsupervised context is based on the assumption
that the training set exclusively contains normal data. In
practice one cannot exclude the possibility that some anomaly

data have contaminated the training set. This setup is called
fully unsupervised anomaly detection [15]. Recently, few-
shot anomaly detection [16] approaches have been emerging,
especially with the use of unified models that are trained on
different classes and able to detect anomalies within a new
class of objects.
Based on the nature of the test data, other settings can be

considered. If the anomaly type has not been seen during
training, then supervised approaches are developed to fit the
open-set setup [13], [14]. This is also considered in the Out-
Of-Distribution task, where the unseen anomaly data is from
a novel class that is not considered during training [17], [18].
However if the unseen test anomaly is from a known class
but from another domain, then the task becomes anomaly
detection under domain or distribution shift [19].

A. LOGICAL ANOMALY DETECTION
The focus of the anomaly detection task has been developing
from detecting structural anomalies on individual objects in
an image, such as scratches or deformations, to also consider
logical anomalies in the global context of the image, such
as wrong number of objects or wrong spatial order. This
development originating from practical examples has been
introduced to research with novel logical anomaly datasets,
such as the MvTec Logical Constraints dataset [7].
Logical anomaly detection methods can be categorized in

two groups. The first one focuses on detecting anomalies in
the relations between the components of an image defined
in a prior segmentation step. In [20], the authors propose an
approach that uses a histogram matching and an entropy loss
based segmentation to define the image components compos-
ing both a component and a class memory bank parallel to
a patch memory bank used to compute the anomaly score.
In [21], the authors also perform an image segmentation with
the help of a pre-trained model to calculate a component
memory bank during training. In a similar approach, the
authors in [22] use the segmentation of multiple scales in a
decoder to define a foreground and a background component
in each stage and define if the foreground is an anomaly in
the context of the background of each scale.
The second category of logical anomaly detection tech-

niques consider both local and global features of the image.
In [23], the authors introduce a framework to extract local fea-
tures and their corresponding global features through a local-
global bottleneck. In a second stage, local and global feature
estimation networks based on the transformer architecture are
trained on normal data and are used in the inference stage
to compute the anomaly score. In another work, the authors
in [24] define logical anomalies as unpicturable anomalies
that have to be detected based on local and global features
extracted by the teacher-student-auto-encoder architecture of
the EfficientAD approach introduced in [6].
In summary, logical anomaly detection is an active research

field with a growing attention. To the best of our knowledge,
unsupervised approaches are achieving a performance level
that is not consistent over all types of logical anomalies.
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This can be discovered in the performance difference over
the subsets of the MvTec Logical Constraints dataset [7],
especially in "screw bag" and "breakfast box".

B. VISION GRAPH NEURAL NETWORKS
Hypergraph theory, introduced by Berge in 1987, models
complex problems in operational research and combinatorial
optimization. It extends traditional graph theory by repre-
senting multi-way relationships, which are essential in fields
like psychology, biology, and artificial intelligence. Hyper-
graphs are particularly effective for applications involving
network modeling, data structures, process scheduling, and
computational systems due to their ability to capture more
general types of relationships beyond binary ones. In image
analysis, hypergraphs provide a nuanced representation of
interactions between image segments, enhancing the effec-
tiveness in advanced image processing tasks [25]. GraphNeu-
ral Networks (GNNs), introduced by [26] in 2009, are neu-
ral networks specifically designed for graph-structured data.
Unlike traditional neural networks, which handle fixed-size
input vectors or sequences, GNNs can process graphs directly,
making them ideal for applications involving relationships
and interactions between entities. Their key innovation is the
ability to propagate information along graph edges, enabling
the learning of node representations that reflect the structure
and features of their neighborhoods. GNNs have been also
extended to graph convolution networks (GCN) in [27] to
enable effective learning on non-Euclidean domains and to
GNNs with attention mechanisms to enhance their ability to
capture more complex relationships in graphs [28] and be
robust against corrupt test data [29].

GNNs can predict molecular properties, aiding in bio-
logical and chemical computation by analyzing molecular
interactions [30] and they can predict social impacts and links
in social networks and in traffic networks, they accurately
forecast traffic conditions. In neuroscience, they help study
conditions like bipolar disorder and diabetic optic neuropathy.
Additionally, they are used to enhance text categorization
in natural language processing, to improve image and text
classification, to predict drug side effects and to develop
recommender systems [31]. Graph Neural Networks are also
widely used for anomaly detection in social networks like
BlogCatalog and Flickr, as well as academic paper citation
networks such as ACM [32], in traffic networks security de-
tecting attacks and threats [33] or in trust networks to identify
suspicious users in trading networks [34].

Recently, Vision Graph [10] and Vision Hypergraph [9]
networks have been introduced for image classification and
object detection tasks, where an image is represented as a
graph or a hypergraph and fed to an isotropic and pyramid
networks to identify low-level features and their high level
dependencies. With the novel vision graph and hypergraph
blocks, these networks have been able to achieve state-of-the-
art results in both tasks. Analogically, a hypergraph neural
network architecture for electron micrograph classification
has been introduced by [35]. This architecture encodes visual

hypergraphs to capture structural and feature information, fa-
cilitating the learning of relation structure-aware embeddings.
It identifies discrete visual elements and their dependencies,
optimizing the representation of scale-variant elements for an
improved classification performance.
Our work is inspired by the use of graph structures for

anomaly detection in general. However, we use the graph
representation of an image for a novel task, namely to capture
logical anomalies in images with the use of the recently
introduced vision graph blocks.

III. APPROACH
The proposed approach, shown in Figure 1 and described
in Section III-C, is composed of two main branches: a vi-
sion graph auto-encoder branch and an image convolution
teacher-student branch. The vision graph is built with a vision
graph constructor based on the input image as described
in Section III-A and then processed through a vision graph
auto-encoder described in Section III-B. The outputs of both
branches is combined in a later step to build a local and global
anomaly map. During inference, the maximum value of this
map is combined with the Mahalanobis distance between the
extracted features of the test image and a representation of the
training images to compute the anomaly score.

A. VISION GRAPH CONSTRUCTOR
The first component of our proposed approach is responsi-
ble of computing the graph representation of the image and
is composed of a tockenization step followed by a nearest
neighbours graph optimization as explained below.We set the
image graphs to be both finite, unidirected and connectedwith
no isolated vertex or nodes [25]. Considering an input image
I ∈ RH×W×3, the graph constructor G outputs a vision graph
G = (V, E):

G = G(I). (1)

The graph G is constructed as follows: We first resize
the image I to I ′ ∈ RH ′×W ′×3. Following the structure
in Figure 2 according to [36], we embed the image into
N = H ′

4 × W ′

4 patches pi ∈ RD×D with D = 4, building
a feature matrix P = [p1, p2, . . . , pN ] representing a nodes
set V = {v1, v2, . . . , vN} with the each feature vector pi
associated with the node vi. For each node vi, the set of its
k nearest neighbours Nk(pi) is defined based on the distance
between the feature vectors. The edge matrix E ∈ RN×N is
built as

eij =

{
1 if vj ∈ Nk(vi),
0 else.

(2)

B. VISION GRAPH AUTO-ENCODER
The proposed vision graph auto-encoder is composed of an
encoder built with Convolution Vision Graph (ConvViG)
blocks and a decoder built with Deconvolution Vision Graph
(DeconvViG) blocks. In a ConvViG block, we start with a
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FIGURE 1: Overall structure of the Vision Graph Logical Anomaly Detection (ViGLAD) approach. From left to right, it is composed
of a graph constructor including an image embedding step, a feature extraction phase composed of a vision graph auto-encoder built
with ConViG and DeconViG blocks, a PDN [6] based student and teacher. The features extracted are extracted to build an anomaly
maps used in addition to the Mahalanobis distance of some extracted features in order to compute the anomaly score in inference.

graph convolution step. For each node feature vector pi and
its k neighbours qj ∈ Nk(pi), we compute the output p′i of the
graph convolution step H as

p′i = H(gconv(pi)) (3)

with the basic graph convolution function gconv defined as
in [37]. The graph convolution function H is composed of
a multi-head representation of h heads and a fully connection
layer FCconv with weights W i

FCconv

p′i = [head1(gconv(pi))W 1
FCconv , . . . , head

h(gconv(pi))W h
FCconv ].

(4)
This results in a new feature matrix P′ = [p′1, p

′
2, . . . , p

′
N ]. We

summarize the graph convolution step as GraphConv

P′ = GraphConv(P) (5)

TheGraphConv operation is wrapped by two fully connected
layers FCgIn and FCgOut and an activation function σg. The
output Y of this operation is computed as

Y = FCgOut

[
σg

[
GraphConv

(
FCgIn(P)

)]]
+ P (6)

The second component of the ConvViG Block is a Feed-
Forward Network (FFN) with two fully connected layers
FCFFN1 and FCFFN2 separated by an activation function
σFFN . The output Z of the ConvViG Block can be computed
as

Z = FCFFN2

[
σFFN

[
FCFFN1(Y )

]]
+ Y . (7)

In this work, we introduce the inverse operation of the
graph convolution, which we integrate in the decoder part of
the vision graph auto-encoder. The structure of the Decon-
volution Vision Graph (DeconvViG) block is similar to the
ConvViG block using a basic transpose convolution function
gdeconv instead of the basic convolution function gconv. Given
the feature vector pli of a node i in a layer l, the output feature
feature vector pl+1

i = gdeconv(pli) is computed as

pl+1
i = σdeconv

[
norm

[
TrConv2D(concat[pli , p

′
i
l ])
]]

(8)

with norm being a batch normalization operation [38],
TrConv2D being a transposed convolution operation [39] and
concat being a concatenation of both feature vectors. The
neighbourhood distance vector p′i

l is computed

p′i
l = max[qlj − pli |qlj ∈ Nk(pli)]. (9)

with Nk(pli) being the k neighbours set of the feature vector
pli .
Based on the ConvViG and DeconvViG blocks, we build

a vision graph auto-encoder Ag. Given the input image I
and the constructed graph G, the output of the vision graph
auto-encoder composed of an encoder E of depth denc and a
decoder D of depth ddec is

Ag(G) = D[E(G)]. (10)

The output Ei in each layer i of the encoder is computed as

Ei = downsampling(ConvViG(Ei−1)), (11)

E0 = downsampling(ConViG(G)). (12)
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FIGURE 2: Image embedding procedure according to [36]. The
image input is first resized then transformedwith three blocks of
convolution and batch normalization. The non-linear Gaussian
Error Linear Units activation function (GeLu) [40] is added
after the first and second block. The output is a four channel
feature map divided in N patches of size 4× 4.

For the decoder, the output Dj of each layer j is computed as

Dj = upsampling(DeconvViG(Dj−1)), (13)

D0 = upsampling(DeconViG(Edenc)). (14)

The downsampling and upsamplinbg operations are based on
convolution and transposed convolution [39] layers followed
by a batch normalization layer [38].

C. VISION GRAPH LOGICAL ANOMALY DETECTION
The architecture of the introduced approach, Vision Graph
Logical Anomaly Detection (ViGLAD) is inspired from the
EfficientAD unsupervised anomaly detection method [6].
ViGLAD is mainly composed of a teacher network T , a
student network S based on the Patch Description Network
(PDN) architecture proposed in [6] and our proposed graph
auto-encoder Ag. The teacher and student networks have the
same layer structure. The teacher is trained in a first step
based on a knowledge distillation from a WideResNet-101
backbone [41] pretrained on the ImageNet dataset [42] for a
classification task.

The student network is trained to imitate the distilled
teacher network frozen during training by minimizing the LST
loss function

LST =
1

CWH

[∑
c

∥T (I)c − S(I)c∥2F +
∑
c

∥S(Ir)c∥2F
]
(15)

withC being the channel number of the output features and Ir
being a random image from the ImageNet dataset [42] used in
the knowledge distillation phase. All losses introduced in this
section are computed based on the ∥.∥2F Frobenius norm [43].
With this loss, the student will be able to predict the output of
the teacher for normal images and fails to predict it for images
with structural anomalies.

The vision graph auto-encoder is also trained to imitate
the teacher network frozen during training by minimizing the
LAgT loss function

LAgT =
1

CWH

∑
c

∥T (I)c − Ag(G)c∥2F . (16)

With this loss, the vision graph auto-encoder will be able to
predict the teacher output except for fine-grained structural
anomalies and will focus on the global structure of the image.
In order to extract the logical anomalies, a third term LSAg is
added to the loss function describing the distance between the

second half of to the student output S ′ and the output of the
vision graph auto-encoder

LSAg =
1

CWH

∑
c

∥Ag(G)c − S ′(I)c∥
2

F . (17)

The total loss function of ViGLAD during training
L = LST + LAgT + LSAg is intended to train the network to
detect both structural and especially logical anomalies. The
intention behind using the vision graph auto-encoder instead
of the original auto-encoder of EfficientAD [6] is to increase
the capability of the network to learn features depending on
logical relations from the graph representation in order to
detect logical anomalies.
During inference, the anomaly score is calculated based on

the difference between the output of the teacher and first half
of the student networks, called local anomaly map, as well
as the distance between the output of the vision graph auto-
encoder and the second half of the student network, called
global anomaly map. After an average pooling step over the
channels, both anomaly maps are merged and the maximum
is defined as the reconstruction anomaly score Ar . In order
to further highlight the logical anomalies, we add a second
anomaly score component, called feature anomaly score Af
computed as

Af = MG[y′S′(I)] (18)

with MG being the Mahalanobis distance under Gaussian
distribution of the features computed in the second part of the
student output. MG is computed according to [24] as:

MG[y′S′(I)] =
√
(y′S′(I) − µ)TΣ−1(y′S′(I) − µ) (19)

with y′S′(I) being the average pooling result of the output
features from the student second half. µ and Σ are the mean
and covariance matrix of the features produced by the student
second half with a set of images from the training set. The
total anomaly score of ViGLAD is A = Ar + Af .

IV. EXPERIMENTAL WORK
A. DATASETS
The proposed approach ViGLAD is designed to detect log-
ical anomalies in image data in an unsupervised setup. We
evaluate its performance based on the public logical anomaly
datasets MvTec Logical Constraints [7], CAD-SD [44] and
Digit Anatomy [45]. The structure of the selected datasets,
as shown in Table 1, is composed of a training set containing
only normal data, a validation set containing a smaller number
of normal data and a test set composed of normal data and
anomaly data. We split the anomaly data in the test set into
logical and structural anomalies, in order to describe the
performance of our approach for logical anomaly detection
in comparison to structural anomaly detection. We build the
Digit Anatomy dataset [45] by randomly choosing examples
from the MNIST dataset [46] and introducing misorder and
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TABLE 1: Structure of the considered datasets. Each dataset
is compose one or multiple subsets. The number of images for
training, validation and testing set of each subset is presented.
Only logical anomalies are considered in testing set.

Dataset Subset Train
normal

Validate
normal

Test
normal

Test
anomaly

Screw
bag 360 60 122 137

MvTec
Logical

Breakfast
box 351 62 102 83

Constraints
Juice
bottle 335 54 94 142

[7] Pushpins 372 69 138 91
Splicing
connectors 360 60 119 108

Candle 810 90 100 100

Capsule 488 54 60 100

Cashew 405 45 50 100
Chewing
gum 408 45 50 100

Fryum 405 45 50 100

VisA Macaroni1 810 90 100 100

[11] Macaroni2 810 90 100 100

Pcb1 814 90 100 100

Pcb2 811 90 100 100

Pcb3 816 90 100 100
Pipe
fryum 405 45 50 100

CAD-
SD [44] Screw 400 72 139 85

Digit
Anatomy [45] Digits 360 60 110 120

flipping of digits as logical anomalies, while considering
missing and novel digits as structural anomalies.

In addition to the logical anomaly detection datasets,
we execute an evaluation on the structural anomaly dataset
VisA [11], in order to compare our proposed method to state-
of-the-art approaches and evaluate its generalization capabil-
ity to other types of anomalies with a different context than
the objects found in the logical anomaly detection datasets.

B. BASELINES
In this section, we present the results of the experimental work
with the target to describe the performance of our proposed
approach in comparison to state-of-the-art methods in logi-
cal and structural anomaly detection. We select as baselines
methods based on both feature embedding and reconstruction.
From feature embedding methods, we select PatchCore [41],
Padim [47] and Fastflow [48]. These methods are based on
a pretrained feature extracting backbone that feed different
architectures to transform and cluster these features in order
to build a representation of the normal data, where anomaly
data during inference cannot fit in. These approaches have
been successful in different anomaly detection tasks in the last
years. For reconstruction methods, we select EfficientAD [6]
and PUAD [24], since they contain both an auto-encoder for
reconstruction and can be a direct baseline to compare to our

TABLE 2: Image AUC results for experiments onMvTec Logical
Constraints [7], CAD-SD [44] and DigitAnatomy [45] for Effi-
cientAD (EffAD) [6], PUAD [24], PatchCore [41], Padim [47]
and Fastflow [48] and ViGLAD (ours). The architectures of
EfficientAD [6], PUAD [24] and ViGLAD (ours) are based on
a medium PDN [6] the Mahalanobis distance is computed based
on the second half of the student features (average of 5 runs).

Dataset Subset
EffAD
[6]

PUAD
[24]

PatchCore
[41]

Padim
[47]

FastFlow
[48]

ViGLAD
(ours)

Screw
bag 55.26 79.47 58.08 48.80 67.78 81.83

MvTec
Logical

Breakfast
box 84.49 89.44 57.04 45.51 58.07 93.95

Constraints Juice
bottle 99.97 99.98 35.93 54.30 55.52 99.68

[7] Pushpins 98.94 96.61 49.43 48.86 64.46 87.30
Splicing
connectors 96.21 96.38 57.74 49.53 76.29 92.43

CAD-
SD [44] Screw 99.63 99.38 73.29 48.37 66.70 99.91

Digit
Anatomy
[45]

Digit 93.78 96.08 88.66 94.39 86.27 96.11

method.With this direct comparison, we can directly interpret
the effect of using graph representation of images and the
effect of convolution and deconvolution vision graph blocks.

C. IMPLEMENTATION
For the experiments of this article, we build ViGLAD with
a medium PDN for the teacher and student networks as
described in [6]. For the embedding of the input images,
we resize the input images to (224, 224, 3) and build the
vision graph with dilated knn (k = 12). In the encoder, as
well as in the decoder, we use 12 vision graph blocks with
a downsampling and an upsampling step after the second,
fourth, tenth and twelfth vision blocks of the encoder and
decoder respectively. The number of output channels of the
teacher and auto-encoder is c = 384 and c = 768 for
the student. For graph convolution, we use the max-pooling
graph feature aggregator [37], that we have also adopted for
the deconvolution step. We conduct our experiments on an
RTX 4070 Nvidia GPU with 8 GB of memory hardware for
100.000 epochs with a batch size of 1, a starting learning rate
of 10−4 and an Adam optimizer. We set the normalization
quantiles introduced in [6] to qstart = 0.9 and qend = 0.995
for all experiments, except for Digit Anatomy [45], where
we set the set the normalization quantiles to qstart = 0.9 and
qend = 0.999.

D. RESULTS
Our evaluation on the logical anomaly datasets reveals two
key results that can be seen in Table 2. First, the methods that
achieve state-of-the-art performance for structural anomaly
detection are not able to detect logical anomalies. In con-
trast, methods that also consider global features and their
relations in their loss functions achieve good results detecting
both types of anomalies, even though they are based on the
same feature extracting backbones. Second, incorporating the
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FIGURE 3: Example qualitative results for normal images and images with logical anomalies in the "breakfast box" subset from the
MvTec Logical Constraints dataset [7], in CAD-SD [44], in DigitAnatomy [45] and in the "cashew" subset from the visA dataset [11].
Since EfficientAD [6] and PUAD [24] generate the same anomaly map and differ only in the anomaly score calculation, we combine
the results for both methods in this figure.
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TABLE 3: Image AUC results for experiments on visA [11]
subsets for EfficientAD (EffAD) [6], PUAD [24], PatchCore [41],
Padim [47] and Fastflow [48] and ViGLAD (ours). The archi-
tectures of EfficientAD [6], PUAD [24] and ViGLAD (ours) are
based on a medium PDN [6] the Mahalanobis distance is com-
puted based on the second half of the student features (average
of 5 runs).

Dataset Subset
EffAD
[6]

PUAD
[24]

PatchCore
[41]

Padim
[47]

FastFlow
[48]

ViGLAD
(ours)

Candle 98.92 98.99 95.84 85.40 96.84 99.08

Capsule 85.93 81.75 46.80 44.93 71.80 92.91

Cashew 98.26 98.87 55.27 51.11 84.71 99.01
Chewing
gum 99.96 99.90 30.47 30.48 99.91 99.70

Fryum 98.82 98.74 30.72 53.59 91.91 98.41

VisA Macaroni1 99.75 99.61 55.48 55.91 90.88 99.06

[11] Macaroni2 97.70 94.42 72.52 51.47 49.75 92.58

Pcb1 99.98 99.96 43.72 74.80 79.64 99.89

Pcb2 99.84 99.95 45.76 56.56 74.43 99.78

Pcb3 99.02 99.03 98.79 37.27 68.95 98.97
Pipe
fryum 99.94 99.60 57.92 94.39 79.27 99.65

graph representation of an image and using graph convo-
lution and deconvolution lead to better results for logical
anomaly detection, especially in subsets that are challenging
for logical anomaly detection methods without the graph
representation of the input image. This can be observed in
the "screw bag" and "breakfast box" subsets, where our ap-
proach achieve 81.83 and 93.95 image AUC compared to the
second best method PUAD [24] that achieves 79.47 and 89.44
image AUC. Regarding the remaining subsets, our approach
achieves comparable results and its performance does not
deteriorate, even in the "juice bottle" subset, whose logical
anomalies are very close to its structural anomalies.

On the other hand, the results of the evaluation on the
structural anomaly detection dataset VisA [11] from Table 3
show that our method also achieve state-of-the-art results and
outperform the baseline methods on multiple subsets. In aver-
age, our approach outperforms the best result of the baseline
methods achieved by EfficientAD [6] with an average image
AUC of 98.09 compared to 98.01.

V. ABLATION STUDY
In order to analyze the proposed architecture of our approach,
we conduct an ablation study by defining the impact of
different setups on the overall performance on the "screw
bag" subset, which is the most challenging in the MvTec
logical constraints dataset [7]. First, we analyze the graph
representation with the use of vision graph convolution and
deconvolution blocks in different components of ViGLAD.
For this purpose, we test three different implementations:
using vision graph blocks in the teacher and student networks
(GPDN-AE), using vision graph blocks in the auto-encoder
(PDN-ViGAE) and using vision graph blocks in the teacher,
student and auto-encoder (GPDN-ViGAE). The results pre-

FIGURE 4: Ablation study vision graph blocks use on the
"screw bag" logical subset.

TABLE 4: Ablation study PDN [6] size. The architecture of the
network is ViG-AE with Mahalanobis distance computed based
on the second half of the student features.

PDN size small medium

Logical 78.07 81.14

Structural 91.69 90.68

All 84.88 85.91

sented in Figure 4 show that using the Mahalanobis distance
for the teacher or student output as part of the anomaly score
plays an important role in highlighting the global features
extracted from convolution layers in the student next to the
global features extracted from the vision graph blocks in
the vision graph auto-encoder. As a result, only building
the auto-encoder based on the vision graph blocks (PDN-
ViGAE) in combination with using the Mahalanobis distance
as part of the anomaly score lead to the best results for
both logical and structural anomaly detection. the proposed
approach ViGLAD in the evaluation section above is built as
a PDN-ViGAEwith the Mahalanobis distance included in the
anomaly score.
Second, we study the influence of the PDN [6] size in

the student and teacher networks. Table 4 shows that using
a deeper PDN [6] leads to better results on logical anomalies.
However, for structural anomalies, using a small PDN [6]
slightly outperforms the medium size. Since our focus in this
paper lies in detecting logical anomalies, we use medium size
PDN [6] in our approach that achieves a better performance
in average.
Table 5 describes the results of using different features

for the computation of the Mahalanobis distance used in the
anomaly score to highlight unpicturable (logical) anomalies.
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FIGURE 5: The graph representation of the node with the highest anomaly score. The first column represents the input graph before
the first vision graph block. The second column represents the output graph of the encoder. The third column represents the output
graph of the decoder.

TABLE 5: Ablation study about the features used for the compu-
tation of theMahalanobis distance for the unpicturable anomaly
score. The experiments have been conducted on the "screw bag"
sub-dataset fromMvTec logical constraints dataset [7]. The size
of the PDN [6] has been set to medium.

Features Teacher Student former Student second

Logical 64.83 64.15 81.83

Structural 89.27 87.30 90.68

All 77.05 75.72 85.91

TABLE 6: Ablation study about the number of k-neighbours
used for constructing the graph of each image. The experiments
have been conducted on the "screw bag" sub-dataset from
MvTec logical constraints dataset [7]. The size of the PDN [6]
has been set to medium.

k-neighbours k=3 k=9 k=12 k=15

Logical 77.62 81.14 81.83 79.10

Structural 93.35 90.68 91.64 94.50

All 85.48 85.91 86.73 86.80

Using the second half of the student output leads to the best
results on the considered dataset since they are responsible
for training the student to also imitate the graph vision auto-
encoder in learning global features and their higher relations.

For the last part of the ablation study, we focus on the
graph representation of the image and its features through-
out the vision graph auto-encoder. For this purpose, we test
ViGLAD with different k values for the dilated knn based

graph construction step. The results summarized in Table 6
show that using higher k values lead to better results on logical
anomalies. However the performance stagnates with values
higher than 9. Since the k value determines how many nodes
are connected to each other, we opt for the smallest value
being k = 9, in order to limit the complexity of the image
graphs.

VI. DISCUSSION AND LIMITATIONS
The results presented in the previous section confirm our
hypothesis, stating that representing an image as graph and
learning how to reconstruct its graph representation with
graph convolutions and deconvolutions enable the capability
to learn local and global logical relations of the objects of an
image. This allows detecting logical anomalies, which can af-
fect these local and global relations. The graph representation
and processing have been used as a second branch parallel
to an image convolution branch that has been proven to be
efficient in detecting structural anomalies. This combination
has been shown in our work to be efficient in detecting both
logical and structural anomalies and achieve state-of-the-art
results in general image anomaly detection. The conducted
ablation study has shown that the graph representation in
both branches of ViGLAD enhances its performance in com-
parison to the baseline EfficientAD [6] architecture that is
solely based on image convolution. However, it is still to be
studied if using the proposed vision graph convolution and de-
convolution blocks can be transferred to other architectures,
and if it enhances their capability to detect logical anomalies
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without decreasing their performance in detecting other types
of anomalies.

Figure 5 shows some example results of our approach and
the development of the graph representation of the image. We
observe for normal images the capability of the vision graph
auto-encoder to reproduce the graph even for the node with
the highest anomaly score. For anomaly images, the vision
graph auto-encoder is not capable to reconstruct the input
graph.

The performance gap experienced by our approach in the
subset "pushpins" from the MvTec logical constraints [7] can
be explained by the presence of multiple objects in the image
in comparison to other subsets. In this case, we experience
an under representation of the possible global relations in
one image between the different objects. This means that the
low complexity of the constructed graph could be not able to
represent all possible global relations in an image with a high
number of objects. This can be explored in further research
in order to find the optimal graph representation for an image
independent from its number of objects.

VII. CONCLUSION
Logical anomalies are challenging to be detected in images
because they are unpicturable, meaning that they cannot be
directly seen on the individual objects of a scene but have
to be interpreted from the global relations between the ob-
jects of the scene. State-of-the-art anomaly detection meth-
ods, which have been originally developed to detect struc-
tural anomalies related to individual objects, are not able
to achieve good performance in detecting logical anomalies
in images. On the other side, anomaly detection in graph
data have been focusing on detecting the relations between
different nodes of the graph. This has been the motivation
to introduce graph representation which has been recently
introduced to image classification also to logical anomaly
detection in images. Our proposed approach proposes the use
of graph representation and its feature extracting and repre-
sentation in baseline anomaly detection methods. This have
resulted in an enhancement of their ability to detect logical
anomalies without decreasing their performance in detecting
structural anomalies. Our approach achieves state-of-the-art
performance in detecting both types of anomalies with a
remarkable advantage in benchmark datasets. This work lies
the basis for further exploring the advantages and limitations
of this novel framework for logical anomaly detection.
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