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Session types provide guarantees about concurrent behaviour and can be understood 
through their correspondence with linear logic, with propositions as sessions and proofs 
as processes. However, strict linearity is limiting since there exist useful communication 
patterns that rely on non-linear behaviours. For example, shared channels can repeatedly 
spawn a process with binary communication along a fresh linear channel. Non-linearity 
can be introduced in a controlled way through the concept of graded modal types, which are 
a framework encompassing various kinds of coeffect (describing how computations make 
demands on their context). This paper shows how graded modalities can work alongside 
session types, enabling various non-linear concurrency behaviours to be re-introduced 
precisely. The ideas are demonstrated using Granule, a functional language with linear, 
indexed, and graded modal types. We define a core calculus capturing the requisite features 
and our new graded primitives, then present an operational model and establish various 
key properties.
© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Most programming languages ascribe a notion of type (dynamic or static) to data, classifying what data we are working 
with—integer, string, function, etc. Languages like Go and Rust among many others extend this to the realm of commu-
nication between two participants via typed channels, where any process with access to a channel endpoint can send and 
receive values of a given type across it. These typed channels only give us information about the nature of the data being 
communicated, however; to go beyond this we must consider behavioural types, which capture not just what data is, but 
how it is calculated.

One such behavioural type system for concurrency is session types [1,2], adding more structure to typed channels by 
incorporating a protocol that describes the precise behaviour of the processes communicating over the channel. As an 
example of such a protocol, consider the standard example (with some added flavour) of a customer who wishes to purchase 
a cake from a bakery. In natural language, we could describe the protocol as follows: the customer names their desired cake 
(a string), the bakery provides the price (an integer), and then the customer decides if they are happy with said price. If 
so, they confirm delivery details (another string), but if not, they end the communication immediately. From the customer’s 
perspective, this protocol can be described as a session type, which would look something like:
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Send String (Recv Int (Select (Send String End) End))

The particular constructs at play here will be explained in more depth later, but it is clear to see that this allows more 
information about the communication to be encoded in the type than simply the kinds of data that are being sent and 
received. We will also see later how the session type for the bakery can be understood as the dual to that of the customer, 
which helps to enforce type safety in the context of communication.

Session types naturally fit into the more general substructural discipline of linear types [3–5]. By treating data as a re-
source which must be used exactly once, linear types can capture various kinds of stateful protocols of interaction. Session 
types are inherently substructural: channels cannot in general be arbitrarily duplicated or discarded if they are to be used 
according to a precise sequence of operations (the protocol). This idea has allowed logical foundations to be developed for 
session types based on Curry-Howard correspondences with both intuitionistic [6,7] and classical linear logic [8,9]. Further-
more, linearly-typed functional languages then provide an excellent basis for session-typed programming [10]; session types 
can be represented in the linear lambda calculus via an additional interface for channels without any other changes to the 
type system [10,11].

Modern substructural type systems, however, allow us to go beyond the notion of linearity, classifying usage into more 
than just linear or non-linear. This idea originates from Bounded Linear Logic (BLL), which generalises the ! modality to 
a family of modalities indexed by a polynomial expressing an upper bound on usage [12]. For example, !x≤2 A describes a 
proposition A which can be used at most twice.

From various directions this notion of BLL has been generalised further to develop coeffect types [13–15], which are 
a framework for capturing different analyses of a program’s use of the context, all within a single type system. Graded 
modal types are an umbrella concept, encompassing coeffects and their dual notion of effects, and can provide an expressive 
system allowing for the specification and verification of many behavioural properties of programs [16]. In this paper, we 
demonstrate that combining session types with graded modal types (particularly for capturing coeffects) allows for various 
well-known non-linear behaviours of concurrent programs to be reintroduced in a linear setting in a controlled and precise 
way via the facilities of graded modalities.

A key part of this work is to reconcile the tension between three competing requirements: (1) side effects inherent in 
communication primitives, (2) non-linearity, and (3) the call-by-value semantics one might expect in most programming 
languages (in contrast to call-by-name, which is the basis of most theoretical explanations of linear and graded type sys-
tems). Requirements (1) and (2) can be satisfied more easily in a call-by-name setting, but (3) (CBV semantics) introduces 
unsoundness. Whilst a call-by-name semantics for a modal treatment of non-linearity captures the idea of a number of 
‘copies’ of a value, a call-by-value semantics unifies these copies into just one value. In the context of concurrency, then, a 
non-linear channel in a CBV semantics points to a single channel and so multiple uses within a program can lead to dead-
lock or race-conditions. Our solution revolves around preventing resource allocating primitives (those that create channels) 
from being promoted to non-linear contexts, and representing multiplicity of channels through data structures. Section 4
describes in more detail the problem and our solution.

Granule is a research programming language built upon the core of the linear λ-calculus, extended with graded modalities
as described above. A previous iteration of session types for Granule was described by Orchard et al. [16]. However, the 
system described required a monadic interface to avoid some issues caused by CBV; we solve these problems here to 
provide a more general and powerful interface for session-typed programming, and also demonstrate the broad range of 
possible applications for this interface by introducing a suite of primitives which capture the non-linear behaviours of 
reuse, replication, and repetition (providing multicasting).

We show three common patterns and how they can be described by combining linear session types and graded modal 
types: reusable channels (Section 6), replicated servers (Section 7), and multicast communication (Section 8). All of these pat-
terns are a variation on the “fork” primitive, with some amount of substructural behaviour introduced via graded modal 
types, and sometimes restrictions to protocols via type predicates. All of the ideas presented here are implemented in the 
latest versions of the Granule compiler; interested readers who wish to experiment for themselves should feel free to 
download and install the most recent release.1 We develop the operational semantics of our approach, via a core calculus 
(Section 5), and establish that type safety is preserved (which encompasses communication safety) in the presence of the 
new non-linear concurrency primitives (Section 9).

Section 10 discusses related work and Section 11 discusses further work, including a sketch of how to prove deadlock 
freedom, and various other potential extensions and applications.

Changelog The present paper is an extended version of work appearing at the PLACES 2022 workshop, with the more 
voluminous title of Replicate, Reuse, Repeat: Capturing Non-Linear Communication via Session Types and Graded Modal Types [17]. 
The present paper greatly expands the technical development, introducing a formal calculus and its operational semantics 
for both the core language and the concurrency primitives introduced here. In this version, we prove that session types 
combined with graded modal types satisfy syntactic type safety. Furthermore, we have expanded the number of primitives 
considered, added more examples and fixed a number of technical errors from the original paper.

1 The latest build of the Granule compiler is always available from https://github .com /granule -project /granule /releases.
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2. Granule and graded modal types primer

Granule’s type system is based on the linear λ-calculus augmented with graded modal types [16] as well as polymorphic 
and indexed types (in the form of user-definable GADTs). With linear typing as the basis, we cannot write functions that 
discard or duplicate their inputs as in a standard functional programming language. However, we can introduce non-linearity 
via graded modalities and use these to represent such functions, exemplified by the following Granule functions:

1 drop : ∀ {a : Type} . a [0] → ()
2 drop [x] = ()
3
4 copy : ∀ {a : Type} . a [2] → (a, a)
5 copy [x] = (x, x)

The function arrow can be read as the type of linear functions (which consume their input exactly once; note that these are 
generally notated �, but in Granule functions are linear by default, so we simply use →), but a [r] is a graded modal type 
capturing the capability to use the value ‘inside’ in a non-linear way as described by r, i.e., drop uses the value 0 times and 
copy uses it 2 times. The pattern match [x] on the left-hand side of each function eliminates the graded modality, binding 
x as a non-linear variable. The Haskell-style tuple syntax (a, a) used here represents a linear tensor product type, which 
we later notate using the ⊗ operator in our core calculus.

The central idea of graded modal types is to capture program structure via an indexed family of modalities where the 
indices have some algebraic structure which gives an abstract view of program structure. We focus on semiring graded 
necessity in this paper (written �r A in mathematical notation but A [r] in Granule) which generalises linear logic’s ! [3]
and Bounded Linear Logic [12]. The semiring structure is also equipped with a preorder. The above example uses the natural 
number graded modality with equality as its preorder, thus providing an analysis which counts exactly how many times a 
value can be used.

Another useful graded modality has grades drawn from a semiring of intervals which allows us to give bounds on how a 
value might be used. To demonstrate, we define the classic fromMaybe function which allows a value that may or may not 
exist to be retrieved from a Maybe type.

1 data Maybe a = Just a | Nothing
2
3 fromMaybe : ∀ {a : Type} . a [0..1] → Maybe a → a
4 fromMaybe [_] (Just x) = x;
5 fromMaybe [d] Nothing = d

Note that without the graded modality, this function would be ill-typed in Granule, since values are linear by default and 
one of the cases requires discarding the default value (given by the first parameter). By giving this parameter a type of 
a [0..1], we specify that it can be used either 0 times or 1 time (in other words, this value has affine behaviour rather 
than linear). There is only one total function in Granule which inhabits the type we give to fromMaybe here–linearity forbids 
defining an instance which always returns the default value.

In order to use fromMaybe we need to ‘promote’ its first input to be a graded modal value, which is written by wrapping 
a value in brackets, e.g., fromMaybe [42]. Promotion propagates any requirements implied by the graded modality to the 
free variables. For example, the following takes an input and shares the capabilities implied by its grade to two uses of 
fromMaybe:

1 fromMaybeIntPlus : Int [0..2] → Maybe Int → Maybe Int → Int
2 fromMaybeIntPlus [d] x y = fromMaybe [d] x + fromMaybe [d] y

The 0..1 usage implied by the first fromMaybe [d] and 0..1 usage by the second are added together to get the requirement 
that the incoming integer d is graded as 0..2.

Lastly, Granule includes indexed types which offer a lightweight form of dependency, allowing for type-level access to 
information about data. For example, length-indexed vectors can be defined and used as follows:

1 data Vec (n : Nat) (a : Type) where
2 Nil : Vec 0 a;
3 Cons : a → Vec n a → Vec (n + 1) a
4
5 append : ∀ {a : Type, n m : Nat} . Vec n a → Vec m a → Vec (n + m) a
6 append Nil ys = ys;
7 append (Cons x xs) ys = Cons x (append xs ys)

Indexed types allow us to ensure at the type-level that when we append two vectors, the length of the output is equal to 
the sum of the lengths of the two inputs. Again, thanks to linearity, we gain further assurances from our type signatures–
here we can guarantee that since we must use every element of the input vectors, these must also appear in the output, 
and so no information is being lost along the way.

Indexed natural numbers can be similarly defined to vectors, and are used later to provide lightweight type-dependence 
on natural number inputs:
3
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1 data N (n : Nat) where
2 Z : N 0;
3 S : ∀ {n : Nat} . N n → N (n+1)

This definition gives a way to capture a runtime witness for a type level Nat.
Granule allows type indices to be used also as grades, thus we can define for example the functorial action on vectors 

which links the size of the vector with the usage of the function to be applied to each element:

1 vmap : ∀ {a b : Type, n : Nat} . (a → b) [n] → Vec n a → Vec n b
2 vmap [_] Nil = Nil;
3 vmap [f] (Cons x xs) = Cons (f x) (vmap [f] xs)

In Granule, predicates on types can be represented similarly to Haskell’s type class constraints with type signatures of 
the form:

functionName : ∀{typeVariables} . {constraints} ⇒ type

For example, we can define a much more general version of copy as:

1 copy : ∀ {a : Type, s : Semiring, r : s}
2 . {((1 + 1) : s) � r} ⇒ a [r] → (a, a)
3 copy [x] = (x, x)

This is polymorphic in the semiring s, as well as including a constraint as a predicate that the grade r is approximated 
by 1 + 1 in this particular semiring. Types appearing in this constraint position have kind Predicate. We later introduce a 
number of type functions, returning a type of kind Predicate, in order to restrict protocols in various settings.

3. Core calculus, and linear session-typed channels

In order to later establish key properties of our approach, we replay the details of Granule’s core calculus from the work 
of Orchard et al. [16], which gives a linear type theory with graded modal types. We extend this core calculus with our 
session-typed concurrency primitives. We outline the syntax and static semantics (type system) in this section. Section 5
defines an operational semantics that incorporates the notion of processes and channels which was not previously given for 
Granule’s core calculus.

The core type theory we will focus on extends the linear λ-calculus with products, a multiplicative unit, and a semiring-
graded necessity modality �r A, where for a pre-ordered semiring (R, ∗, 1, +, 0, �) there exists a family of types {�rA}r∈R . 
Being a pre-ordered semiring requires that + and ∗ must be monotone with respect to � (but no other requirements beyond 
the semiring axioms). This language represents a simplified monomorphic subset of Granule [16], but closely resembles 
other graded systems from the literature [18–22]; the session type system presented in this paper should also be compatible 
with these, to varying extents depending on which kinds of grading the system in question accommodates.

Syntax Our syntax is that of the linear λ-calculus with multiplicative products and unit (first line of syntax below) with 
additional terms for introducing and eliminating the � modality (second line):

t ::= x | λx.t | t1 t2 | (t1, t2) | let (x,y)= t1 in t2 | unit | let unit = t1 in t2

| [t] | let [x] = t1 in t2 (terms)

Following the syntax of variables, we group terms above into pairs of introduction and elimination forms, for functions, 
tensors, units, and the graded modal respectively. The meaning of these terms is explained in the next subsection with 
reference to their typing.

3.1. Type system

Typing judgements are of the form � 
 t : A, assigning type A to a term t under context �. Types A are defined:

A, B ::= A � B | A⊗ B | unit |�rA (types)

Hence, our type syntax comprises linear function types A � B, linear multiplicative products A ⊗ B, a linear multiplicative 
unit unit, and the graded modality �rA.

Contexts � contain both linear assumptions x : A and graded assumptions x : [A]r which have originated from inside a 
graded modality. Syntax and typing are then given by the following rules:

x : A 
 x : A
var

�, x : A 
 t : B

� 
 λx.t : A � B
�i

�1 
 t1 : A � B
�2 
 t2 : A

�1 + �2 
 t1 t2 : B
�e
4
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The var, �i , and �e rules are the standard rules of the linear λ-calculus, augmented with a notion of contraction captured 
by the + operation on contexts coming from multiple sub-terms. This operation is only defined when contexts are disjoint 
with respect to linear assumptions; on overlapping graded assumptions we add their grades, e.g. (�1, x : [A]r) + (�2, x :
[A]s) = (�1 + �2), x : [A]r+s . More explicitly, context addition is specified as follows:

(�, x : A)+ �′ = (�+ �′), x : A iff x �∈ |�′|
�+ (�′, x : A)= (�+ �′), x : A iff x �∈ |�|

(�, x : [A]r)+ (�′, x : [A]s)= (�+ �′), x : [A](r+s)

∅+ �= �

�+∅= �

Note that we treat contexts as unordered, so this specification is sufficient for cases where graded assumptions for the same 
variable appear in different positions within the two contexts.

The rules involving graded modalities are perhaps more interesting:

� 
 t : A

r ∗ � 
 [t] :�rA
pr

�1 
 t1 :�rA
�2, x : [A]r 
 t2 : B

�1 + �2 
 let [x] = t1 in t2 : B
elim

�, x : A 
 t : B

�, x : [A]1 
 t : B
der

� 
 t : B

�,0 ∗ �′ 
 t : B
weak

�, x : [A]r,�′ 
 t : B
r� s

�, x : [A]s,�′ 
 t : B
approx

The pr rule (promotion) introduces a graded modality with grade r and thus must scale by r all of the input assumptions 
�, where scaling is a partial operation defined:

r ∗ ∅ = ∅ r ∗ (�, x : [A]s)= (r ∗ �), x : [A]r∗s

Thus, r ∗ � is undefined if � contains any linear assumptions and therefore implicitly in the pr rule we require that �
contains only graded assumptions. We later denote a context which contains only graded variables as [�].

The elim rule eliminates a graded modality and captures the idea that a requirement for x to be used in an r-like way 
in t2 can be matched with the capability of t1 described by its graded modal type. In Granule, this construct is folded into 
pattern matching (seen above): we can ‘unpack’ (eliminate) a graded modality via pattern matching to provide a non-linear 
(graded) variable in the body of the function (the analogue to t2 in this rule).

The der rule (‘dereliction’) connects linear typing to graded typing, showing that a requirement for a linear assumption 
is satisfied by an assumption graded by 1. Note that it is not the case that A ∼= [A]1 since dereliction only converts from a 
graded assumption to linear assumption; there is no inverse. Meanwhile, weak explains how we can weaken with variables 
graded by 0. The last important rule is the approx rule which provides grade approximation; this allows a grade r to be 
converted to another grade s, provided that s approximates r where � is the pre-order of the semiring in question.

Example 1. Some useful choices for the pre-ordered semiring (all of which are provided in Granule) include:

• The semiring of natural numbers, which we define as (N, ×, 1, +, 0, ≡). Note that the discrete ordering ≡ here means 
that this particular semiring has no approximation, and so we are tracking the exact number of times a term has been 
used. We could instead use the standard ≤ ordering on natural numbers which would then permit approximation; this 
would allow for an upper bound on a term’s usage.

• A semiring of intervals over N [16] (seen earlier), with the standard interval arithmetic definitions for + and ∗, captures 
lower- and upper-bound usage, with (l1..u1) � (l2..u2) if l2 ≤ l1 and u1 ≤ u2.

• Intervals over the extended natural number semiring, with N ∪ {∞}; these are additionally useful since constructing an 
interval with bounds 0..∞ allows us to capture a potentially arbitrary amount of use.

• The ‘none-one-tons’ semiring [23] with R = {0, 1, ω} (in Granule, these are written Zero, One, Many) for tracking linear 
vs. non-linear usage, but with zero use identified as separate to non-linearity to capture irrelevance.

• The semiring of security levels [24], with R = {Lo, Hi} such that Lo � Hi (in the ordering that we use in this paper) 
which means that high-security inputs cannot flow to low-security outputs, and 1 = Lo and 0 = Hi with ∗ = � and 
+ = �. This can be generalised to ordered lattices with an arbitrary number of security levels, as are often used for 
tracking confidentiality and related properties in type systems which focus on information flow control [25].

Finally, we have the rules for introducing and eliminating tensor products and the multiplicative unit, which are standard, 
though it is of course important to remember that products are linear and so it is not possible to discard either side: both 
elements must be used when consuming a product.
5
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�1 
 t1 : A
�2 
 t2 : B

�1 + �2 
 (t1, t2) : A ⊗ B
⊗i

�1 
 t1 : A⊗ A′
�2, x : A,y : A′ 
 t2 : B

�1 + �2 
 let (x,y)= t1 in t2 : B
⊗e

∅ 
 unit : 1
uniti

�1 
 t1 : 1
�2 
 t2 : B

�1 + �2 
 let unit = t1 in t2 : B
unite

The following gives an example that combines together several of the above rules to show how a value of type �3A presents 
the capability to use an A value three times, which is split into forming a pair with a single usage of A and the formation 
of a further graded modality:

x : A 
 x : A
var

x : [A]1 
 x : A
der

x : A 
 x : A
var

x : [A]1 
 x : A
der

x : [A]2 
 [x] :�2A
pr

x : [A]3 
 (x, [x]) : A⊗�2A
⊗i

y :�3A 
 y :�3A

y :�3A 
 let [x] = y in (x, [x]) : A ⊗�2A
elim

Note that �rA has the structure of a graded exponential comonad [24] meaning it has the following operations, all of which 
can be derived from the typing rules here: δ :�(r∗s)A ��r(�sA) and ε :�1A � A, and contr :�(r+s)A � (�rA) ⊗ (�sA) and 
weak :�0A � 1.

3.2. Linear session types in granule

The implementation of session types in Granule is based on the GV calculus (originating from Gay and Vasconcelos [10], 
further developed by Wadler [8], for which we use Lindley and Morris’ formulation [11]). The GV system extends the 
linear λ-calculus with a data type of channels Chan(S) parameterised by session types S [2], which capture the protocol of 
interaction allowed over the channel. Communication in GV is usually asynchronous: sending always succeeds, but receiving 
can block as usual, though Lindley and Morris consider a synchronous semantics [11].

Starting with a simple subset, session types can describe channels which send or receive a value of type T and then can 
be used according to session type S written !T .S or ?T .S respectively, or can be closed written end! or end?. There are then 
functions for sending or receiving a value on a channel, forking a process at one end of a channel returning the other, and 
waiting for a channel to be closed:

send : T ⊗ Chan(!T .S) � Chan(S) fork : (Chan(S) � Chan(end!)) � Chan(S)

recv : Chan(?T .S)� T ⊗Chan(S) wait : (Chan(end?) � 1)

where S is the dual session type to S , defined !T .S =?T .S , ?T .S =!T .S , end? = end! and end! = end?. The fork combina-
tor leverages the duality operation, spawning a process which applies the parameter function with a fresh channel, thus 
returning the dual endpoint.

The core interface in Granule correspondingly has operations with the following types, where Protocol is the kind of 
session types whose constructors and associated operations we highlight in purple:

send : ∀ {a : Type, p : Protocol} . LChan (Send a p) → a → LChan p
recv : ∀ {a : Type, p : Protocol} . LChan (Recv a p) → (a, LChan p)
forkLinear : ∀ {p : Protocol} . (LChan p → ()) → LChan (Dual p)
close : LChan End → ()

The type-level function Dual : Protocol → Protocol provides the standard notion of duality for session types, defined:

Dual End = End

Dual (Send a p) = Recv a (Dual p)

Dual (Recv a p) = Send a (Dual p)

Dual (Select p1 p2) = Offer (Dual p1) (Dual p2)

Dual (Offer p1 p2) = Select (Dual p1) (Dual p2)

We can define a parallel composition combinator on thunked computations (i.e., of type () → a) using forkLinear to run 
one computation in parallel and then return its result via the associated channel:
6
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1 -- ‘par‘ expects two thunks, ‘f‘ and ‘g‘
2 -- and returns their resulting values in a pair
3 par : ∀ {a : Type, b : Type} . (() → a) → (() → b) → (a, b)
4 par f g = let -- compute f in new thread
5 c = forkLinear (λc’ → close (send c’ (f ())));
6 b = g (); -- compute g in current thread
7 (a, c’) = recv c; -- get result of f from other thread
8 () = close c’
9 in (a, b)

Choice We also provide some utility operations for internal and external choice (also known as selection and offering); 
note that as described in the original formulation by Lindley and Morris [11] these can be defined in terms of the core 
functions given above, and so when it comes to our semantics we will not need to define explicit reductions for or prove 
properties relating to these operations, but we do provide them as primitives in the implementation for ease of use.

selectLeft : ∀ {p1 p2 : Protocol} . LChan (Select p1 p2) → LChan p1
selectRight : ∀ {p1 p2 : Protocol} . LChan (Select p1 p2) → LChan p2
offer : ∀ {p1 p2 : Protocol, a : Type}

. (LChan p1 → a) → (LChan p2 → a) → LChan (Offer p1 p2) → a

The following gives a brief example putting all these primitives together:

1 server : LChan (Offer (Recv Int End) (Recv () End)) → Int [0..1] → Int
2 server c [d] = offer (λc→ let (x, c) = recv c in let () = close c in x)
3 (λc→ let ((), c) = recv c in let () = close c in d) c
4
5 client : ∀ {p : Protocol} . LChan (Select (Send Int End) p) → ()
6 client c = let c = selectLeft c;
7 c = send c 42
8 in close c
9

10 example : Int -- Evaluates to 42
11 example = server (forkLinear client) [100]

The server offers a choice between being sent an integer or a unit value. The second parameter (bound to d) is used as a 
default value in the case that a unit value is received by the server, where Int [0..1] denotes that this integer can be used 
0 or 1 times (see Section 2 for more explanation of this grading). The client selects the left behaviour, sends an integer, 
then closes its side of the communication.

The final definition example spawns the client with a channel and connects the dual end of the channel to the server 
which returns the received value of 42 here.

Core calculus representation In the core calculus we add a type of channels indexed by session types (protocols), with 
grammar:

A := . . . | Chan P (types, extended)

P := Send A P | Recv A P | End (session types)

with the duality function P on session types defined as expected:

(Send A P)= Recv A P (Recv A P)= Send A P End = End

As mentioned above, we elide the offer and select types from the core calculus and the theoretical development in this 
paper, since they can also be emulated using send and receive and coproducts as in the Fst presentation of GV [11].

The term language is extended with the following primitives and their typing:

send : Chan (Send A P) � A � Chan P

receive : Chan (Recv A P)� A ⊗ Chan P

forkLinear : (Chan P � 1)� Chan P

close : Chan End � 1

We assume asynchronous communication, which is captured in the operational model of Section 5.
7



D. Marshall and D. Orchard Information and Computation 301 (2024) 105234
4. The relationship between grading, call-by-value, and effects

The type system described thus far is based heavily on that of Orchard et al. [16], though with some simplifications 
where we elide concepts that are irrelevant to this paper. Orchard et al. also described an earlier version of session types 
in Granule based somewhat on the GV calculus, but the session types were not included in the language’s formal semantics 
at the time, which resulted in some cases where combining grading and session types led to unsoundness and the possible 
introduction of deadlocks. This work resolves these issues and we will present a full operational semantics in Section 5
as part of our formal theory of graded session types, but before we do this we first discuss the problems present in the 
original system and describe our solution.

The first and primary problem becomes apparent when promoting a primitive function which creates new channels. 
Consider the following example which is allowed by the type system described so far:

1 problematic : Int
2 problematic =
3 let [c] : ((LChan (Recv Int End)) [2]) = [forkLinear (λc → close (send c 42))];
4 (n, c’) = recv c; () = close c’;
5 (m, c’) = recv c; () = close c’
6 in (n + m)

On line 3, the program forks a process that sends 42 on a channel, but under a promotion, with the type explaining that 
we want to use the resulting value twice (given by the explicit type signature here). This promotion then allows two uses 
of the channel on lines 4-5.

The typical semantics for coeffect-based calculi in the literature is call-by-name [13,24,15,19]. Under a call-by-name 
semantics, which Granule allows via the extension language CBN, this program executes and produces the expected result 
of 84. The key is that call-by-name reduction substitutes the call to forkLinear into the two uses of variable c on lines 4 and 
5, and thus we are receiving from two different channels. However, under the default call-by-value semantics (which was 
chosen in Granule for simplicity, performance, and to avoid complications resulting from effects), line 3 is fully evaluated 
(underneath the graded modal introduction), and so variable c on lines 4 and 5 refers to a single channel. This means that 
executing this program blocks indefinitely on line 5; we get an error from the underlying implementation’s concurrency 
primitives (written in Haskell) describing a thread blocked indefinitely in an MVar operation. This comes 
from Granule’s runtime which leverages these standard primitives.

In order to get around this problem with non-linear channels in a call-by-value setting, Orchard et al. [16] instead 
deal with channels monadically, so here we would end up with a channel of type (Session (LChan ...)) [2] (with 
the Session monad).2 To make this example well-defined would then require a distributive law which maps from this 
to Session ((LChan ... ) [2]), copying the channel. Providing such a distributive law is unsound—it would enable 
problematic and thus indefinite blocking—and fortunately it is also not derivable. However, we wish to avoid the monadic 
programming style as it is not required when working with just linear channels.

Our alternative solution is that we instead syntactically restrict promotion to terms which do not allocate resources, i.e., 
whose reduction does not create linear channels. In particular this includes reducible expressions containing the forkLinear
primitive which causes the difficulty here. Non-linear channels are then re-introduced by additional primitives in Sections 6, 
7 and 8 which allow for precise and carefully managed non-linear usage, allowing for grading to be combined with linear 
channels even in a call-by-value setting and without the extra overhead that was required when every channel had to be 
wrapped in the Session monad.

Thus, we modify the promotion rule to be:

� 
 t : A ¬resourceAllocator(t)

r ∗ � 
 [t] :�rA
pr

where resourceAllocator(t) classifies those terms whose reduction to a value would trigger creation of a resource; such terms 
contain a use of the forkLinear primitive (or the other fork primitives introduced in later sections) in a reducible position. 
Note in particular that ¬resourceAllocator(λx.forkLinear t) since reduction does not happen underneath a λ-abstraction (Sec-
tion 5 defines the reduction semantics). Definition 6 in Appendix A gives the formal definition. Generally, any term whose 
reduction semantics creates channels is classified as a resource allocator.

Promotion is not the only source of unsoundness in the session type system of Orchard et al., [16] however. Some 
additional restrictions on the primitives which combine grading with linear channels are required, in order to prevent 
possible problems that can occur when two ends of the same channel reach inconsistent communication states or are used 
at different grades. We will discuss these problems further in Sections 6, 7 and 8 where we will go on to define how exactly 
these new primitives must operate in order to properly preserve communication safety.

2 In Granule such a channel would in fact have the type (LChan ... <Session>) [2], with <Session> being an instance of the graded monadic 
<r> modalities which are dual to the graded comonadic [r] modalities. We elide discussing these further here since we will not need any monad other 
than Session.
8
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Linear Haskell Note that since we developed this approach, other work has resolved the same problem relating to promo-
tion through different techniques. Originally, the linear types extension to Haskell [20] avoided this difficulty by only ever 
allocating new resources (such as linear channels or mutable arrays) inside a continuation, which is passed around at every 
step until deallocation to prevent the allocator itself from ever being promoted.

More recently, this strategy of requiring specialised restrictions on the interface for each resource allocator has been 
generalised by introducing a “linear constraint” [26] called Linearly. This constraint is assumed whenever a new resource is 
allocated, and since the assumption must be used exactly once this prevents the promotion of a linear resource constructor 
in much the same way. A continuation is still necessary when Linearly is initially assumed, but unlike before this same 
qualification can now be used generically across many types of resource.

5. Semantics

We define an operational model for our linear session types here, in order to make the connection between our type 
system and the underlying communication behaviours more concrete, and so that we can prove that type safety will con-
tinue to hold after our extensions with additional primitives in Sections 6, 7, and 8. We give a semantics to terms in the 
context of runtime “configurations” of processes and channels. This allows us to show that progress can always be made 
regardless of the current state of the global configuration, and proving preservation of typing of the overall configuration. 
We discuss deadlock freedom as further work in Section 11, with a sketch of the key theorems and definitions.

5.1. Operational semantics

The semantics is call-by-value and at its core is based on the standard small-step operational semantics for the linear 
λ-calculus and its extension to graded modal types in a call-by-value setting given by Orchard et al. [16]. We extend this 
with the processes and channels.

Processes A process configuration tracks the state of a number of processes, comprising ordinary terms, running in parallel:

P ::= · | (P | tR) (process configurations)

R ::= ◦ | • (role)

(the parentheses are typically omitted). The role ◦ marks a subordinate process and • marks the main process. Typing of 
process configurations later establishes that a well-typed process configuration has exactly one main process (Section 5.2).

Configurations are subject to an equivalence relation capturing commutativity and associativity of the parallel composi-
tion in process configurations:

P1 | P2 ≡ P2 | P1 (P1 | P2) | P3 ≡ P1 | (P2 | P3)

In subsequent relations (e.g., reduction) we work up-to process equivalence, i.e., we can freely apply the equivalence relation 
to rearrange process configurations. This relation is akin to structural congruence in process algebras.

Channels Communication channels in the operational semantics are represented by pairs of dual channel endpoints to allow 
asynchronous duplex communication. Throughout, c ranges over channel endpoint names, which appear in ‘positive’ and 
‘negative’ forms:

c ::= n+ | n− (channel endpoint names)

The dual of an endpoint name c is another endpoint name, denoted c, where n+ = n− and n− = n+ and thus duality is an 
involution, i.e., c ≡ c.

Channel configurations record the contents of channel endpoints in the current environment by associating names with a 
queue �v of message values:

C ::= · | C, c = �v (channel configurations)

We write 〈 〉 for an empty queue, �v : v for a queue with value v enqueued on the end, and v : �v for a queue with v on the 
front (ready to be dequeued).

We will sometimes refer to c as simply a channel, and also as a reference to its contents (the queue) within a configu-
ration.
9
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Reduction Single-step global reductions are then defined over pairs of process and channel configurations (which we refer 
to as global configurations) with reductions of the form:

(P; C) � (P ′; C′)
where P, P ′ are (incoming and outgoing) process configurations and C, C′ are (incoming and outgoing) channel configura-
tions respectively. The channel configuration may be updated if reduction involves applying a concurrency primitive, which 
could involve spawning two endpoints of a new channel or communicating a value from one end of a channel to the other.

Channels inside a channel configuration can either be linear or they can be shared, which means that rather than being 
used linearly they are used according to some grade r. We will discuss this in more detail when we describe primitives that 
can spawn graded channels, starting from Section 6.

The standard call-by-value small-step semantics for the linear λ-calculus embeds within this more complex global con-
figuration semantics through the use of the following rule:

t � t′

(P | tR; C) � (P | t′R; C)
REDUCE

which states that if the term t can reduce to t′ (without any need to interact with the global context) then we can make 
that same reduction within the global configuration, at any role, whilst threading all of the extra channel configuration 
information through so that it can come back into play once we reach a communication step. Going forwards, we elide the 
role in places where a reduction rule is agnostic to the role, assuming that the role of a process being reduced is preserved 
in its corresponding location in the output process configuration.

We will now briefly discuss how these standard reduction steps work in practice, to provide a foundation from which we 
can go on to explain the behaviour of our core session type primitives in this setting of process and channel configurations. 
We will explain some rules in detail and elide others which are very similar to those already introduced. All reduction rules 
for the entire semantics are collected together in Appendix A.

The core reduction rules for the (CBV) linear λ-calculus terms are of course β-reduction and function application, which 
are given as follows.

t1 � t′1
t1 t2 � t′1 t2

�app

t � t′

v t � v t′
�prim

(λx.t)v � t[v/x]�β

Our semantics is call-by-value, and left-to-right: we fully reduce the left-hand side of a function application to a value and 
then reduce on the right.

Perhaps more interesting are the rules for “boxed” terms which are those typed with a graded modality in our system; 
note that in many other Granule-related papers with call-by-need semantics any boxed term is a value by default, but here 
a boxed term is only a value if the term inside the box is itself a value. The reduction rules are:

let [x] = [v] in t � t[v/x]��β

t � t′

[t]� [t′]��reduce

t1 � t′1
let [x] = t1 in t2 � let [x] = t′1 in t2

�let�

Thus we can β-reduce an introduction-elimination pair for the graded modal values, eliminating the box modality through 
pattern matching. We reduce inside the box for terms that are not yet values, and we have a congruence rule for reducing 
the term in an elimination form. We will skip over the rules for tensor product and unit in this section, since they are very 
similar to the rules for boxed terms, with rules for reducing terms inside a pair and also substitution and elimination for 
products and unit as above.

The real action happens when we reach an instance of application where the value being applied on the left is some 
(potentially already partially applied) communication primitive and the term on the right is the final parameter for said 
primitive, as this is where some communication behaviour needs to occur and so we will have to consider the state of 
the channel configuration. We begin by considering the creation of a new channel, which occurs through the use of the 
forkLinear primitive. For this we need to now extend the syntax of terms to include runtime values, which in this setting are 
just channel endpoint names c:

t ::= . . . | c (Runtime terms)

Furthermore, we also define the notion of an evaluation context, denoted Ctxt, in which reduction can occur at a single 
“hole” in the syntax tree:
10
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Definition 1 (Evaluation contexts). Syntax trees with a single hole are defined:

Ctxt ::= Contexts
| −
| Ctxt t
| v Ctxt
| [Ctxt]
| let [x] = Ctxt in t
| let unit = Ctxt in t
| let (x,y)= Ctxt in t
| (Ctxt, t)
| (v,Ctxt)

where − denotes a hole and we write Ctxt{t} to denote the operation of filling the hole in Ctxt with a term t.

The operational semantics of forkLinear, in some evaluation context, is then:

#c

(P | Ctxt{forkLinear (λx.t)}; C) � (P | t[c/x]◦ | Ctxt{c}; C, c = 〈〉, c = 〈〉) FORKLINEAR

In this case, we select a fresh name c for the new channel (denoted by #c in the premise) and add both dual endpoints of 
the channel (c and c) to the channel configuration, each empty of values for now. As well as reducing the term by carrying 
out the expected substitution we also spawn a new process for communication on the fresh channel and add it to the 
process configuration, marked as a subordinate process.

In the forkLinear rule, we need not concern ourselves with whether the fresh endpoint name c is a positive channel 
name n+ or negative n− since the actual polarity is immaterial; whatever fresh name we have, the channel configuration is 
extended with a queue associated to this endpoint name c and a queue associated to its dual endpoint name c.

The next cases we consider are sending and receiving information on one end of a channel, where the dual end will 
have to receive or provide said information in turn. Sending is asynchronous, given by:

(P | Ctxt{send c v}; C, c = �v) � (P | Ctxt{c}; C, c = �v : v)
SEND

The value v provided by the user is consumed, and the channel configuration is updated by appending v to the end of 
whatever queue of values is already present inside the dual end of the channel they sent on, where they will later be 
necessarily received by virtue of the session type guarantees. The process configuration contains the original end of the 
channel in context, which the sender will continue to use according to the next step of its protocol given by the session 
type. Conversely, receiving operates as follows:

(P | Ctxt{receive c}; C, c = v : �v) � (P | Ctxt{(v, c)}; C, c = �v)
RECV

In this case, the first value is popped from the queue of values contained in the end of the channel held by the receiver, 
and this is given to the user inside the context in the process configuration; they can again continue to use their end of the 
channel according to its protocol. This may involve receiving more values or sending values to the dual end depending on 
the particular session type that has been specified.

Finally, channels are closed as follows:

(P | Ctxt{close c}; C, c = 〈〉) � (P | Ctxt{unit}; C)
CLOSE

Note this reduction closes the referred-to endpoint of the channel c, rather than its dual, akin to how RECV receives from 
the referred to endpoint of the channel. This allows for asynchronous behaviour since the dual endpoint c may still have 
values in its queue to be received.

5.2. Runtime typing

In order to later consider type safety properties, we extend typing to process and channel configurations, considering a 
notion of runtime typing.

For runtime typing of terms, the same typing rules apply but where the context also contains channel names and their 
typing. We refer to a runtime context by the letter �, defined:

�= ∅ |�, c : Chan P (Runtime contexts)

�= . . . |� (Contexts (redefined))
11
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where c : Chan P types a linear channel. Contexts � are then extended to include �, though it is sometimes useful to denote 
contexts that contain only runtime types (channel types) separately by using the � notation.

Context addition extends to �, treating the linear channel names just as linear variables. The variable rule of typing 
extends to channel names, i.e., we can derive runtime typing:

c : Chan P 
 c : Chan P
var

Process configurations P are typed by a judgment �, � 
P : A where A is the type of the main process and � are the term 
variables and � the channel names in scope of the processes in P . Here, the type ⊥ is a type that cannot be given to any 
term, but is used only for process configuration typing to denote a configuration without a main process.

∅ 
 · : ⊥ empty

�1,�1 
 P : ⊥
�2,�2 
 t : A

�1 + �2,�1 +�2 
 P | t• : A
main

�1,�1 
 P : A
�2,�2 
 t : 1

�1 + �2,�1 +�2 
 P | t◦ : A
sub

Empty process configurations are given the type ⊥. The main rule puts a term t in parallel with a configuration P and 
marks it as the main process and thus the process configuration has the type of this process. The sub rule puts a term t
in parallel with a configuration P , but this term is marked as a subordinate process with ◦ (of which there may be many) 
and thus the return type of t must be unit. The process configuration’s type is that of P . Note that this type can itself be 
⊥, and so a process configuration with type ⊥ is not necessarily empty.

Channel configurations C are typed by a judgment � 
 C , defined:

∅ 
 ·nil

� 
 C
�, c : Chan P 
 C, c = 〈〉 empty

� 
 C
�, c : Chan End 
 C, c = �v end

�1 
 v : A �1,�2, c : Chan P 
 C, c = �v : v

�1,�2, c : Chan (Send A P) 
 C, c = �v send

�1 
 v : A �1,�2, c : Chan P 
 C, c = �v
�1,�2, c : Chan (Recv A P) 
 C, c = v : �v recv

The empty rule says that a channel endpoint that is empty can have any type (it is in a ‘waiting state’). Meanwhile, the
end rule says a channel can be typed at Chan End while its dual endpoint may contain any number of values. Reading the
send rule bottom-up, the conclusion types a channel on which a value v of type A can be sent and thus we can type that 
channel with the continuation behaviour P in the premise when that value has been enqueued on the channel. Note that 
channel value is the dual to the typing, since sending is actioned by enqueueing on the dual endpoint. Reading the recv

rule bottom-up, the conclusion types a channel on which a value v of type A can now be received (from the head of the 
channel) with the continuation behaviour P in the premise after the value has been received (and hence removed) from 
the front of the channel.

5.2.1. Summary
So far we have established just the operational semantics for the core calculus with linear channels. We are now in a 

position to establish the key properties of well-typed programs containing graded modal session types but we delay this to 
Section 9.

Next, we introduce the new non-linear communication primitives which are the main contribution of this paper and 
expand the operational semantics to include their model, and associated definitions, which also includes expanding the 
definition of processes to include some intermediate runtime processes. In Section 9, we then consider the syntactic type 
safety properties for the full calculus with the non-linear extensions included.

6. Reusable channels

A reusable or non-linear channel is one which can be shared and thus used repeatedly in a sound way. This contrasts 
with the notion seen in Section 4 of promoting a fresh linear channel to being non-linear in a call-by-value setting, which 
was unsound; a linear channel used in a shared way can easily lead to a deadlock where one user of the channel leaves it 
in a state which is then blocking for another user of the channel. The key problem with sharing a channel is ending up with 
inconsistent states across different shared usages. This can be avoided if the protocol allowed on the channel is restricted 
12
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such that only a single ‘action’ (send, receive, choice, or offer) is allowed, and thus if the channel is used multiple times 
it can never be left in an inconsistent state across shared uses. This is captured by the idea that (P | P ) �= P in general 
in process calculi (like CCS or the π -calculus) and so a replicated channel which has more than a single action cannot be 
split off into many parallel uses, e.g., (ab)∗ | (ab)∗ �≡ (ab)∗ . However, if there is only a single action then multiple repeated 
parallel uses are consistent, e.g., a∗ | a∗ ≡ a∗ .

We capture this idea via the following variant of the fork primitive with arbitrarily graded channels:

forkNonLinear : ∀ {p : Protocol, s : Semiring, r : s}
. {SingleAction p, ExactSemiring s}

⇒ ((LChan p) [r] → ()) → (LChan (Dual p)) [r]

where ExactSemiring : Semiring → Predicate restricts acceptable semirings to only those that do not permit any approx-
imation (so as far as semirings mentioned in this paper are concerned, the grade r is allowed to be a natural number, 
representing exact usage, but importantly is not allowed to be an interval, representing a range of possible usages) and 
SingleAction : Protocol → Predicate is a type constraint that characterises only those protocols which comprise a single 
send, receive, choice, or offer, i.e.,

SingleAction End SingleAction (Send a End) SingleAction (Offer End End)
SingleAction (Recv a End) SingleAction (Select End End)

As an example, consider a channel in a graded modality which says it can be used exactly n times. The following uses this 
channel to send every element of a vector of size n (using the Vec type of Section 2):

1 sendVec : ∀ {n : Nat, a : Type} . (LChan (Send a End)) [n] → Vec n a → ()
2 sendVec [c] Nil = ();
3 sendVec [c] (Cons x xs) =
4 let c’ = send c x;
5 () = close c’
6 in sendVec [c] xs

This code shows the powerful interaction between grading, linearity, and indexed types in Granule. Note that the above 
code is typeable without any of the new primitives described in this section, but would be unusable without promoting a 
use of forkLinear. However, we can complete this example with a dual process (recvVec) that is then connected to sendVec
via forkNonLinear:

1 recvVec : ∀ {n : Nat, a : Type} . N n → (LChan (Recv a End)) [n] → Vec n a
2 recvVec Z [c] = Nil;
3 recvVec (S n) [c] = let (x, c’) = recv c;
4 () = close c’
5 in Cons x (recvVec n [c])
6
7 length’ : ∀ {n : Nat, a : Type} . Vec n a → (N n, Vec n a)
8 length’ Nil = (Z, Nil);
9 length’ (Cons x xs) = let (n, xs) = length’ xs in (S n, Cons x xs)

10
11 example : ∀ {n : Nat, a : Type} . Vec n a → Vec n a
12 example xs = let (n, list) = length’ xs
13 in recvVec n (forkNonLinear (λc→ sendVec c list))
14
15 main : Vec 5 Int
16 main = example (Cons 1 (Cons 1 (Cons 2 (Cons 3 (Cons 5 Nil)))))

Since forkNonLinear gives us a pair of channels whose semiring-usage is exact, we must consume all values produced 
by sendVec on the dual endpoint. Therefore, the receiver recvVec needs to know how many elements to receive. This 
information is passed separately (via an indexed natural number N n) so that recvVec can induct on the natural number 
and leave no message unreceived. A system with dependent session types [27,7] could avoid this by first sending the length, 
but this is not (yet) possible in Granule; the Gerty prototype language provides full dependent types and graded modal types 
which would be a good starting point [28].

6.1. Semantics

In the notation of the core calculus, the forkNonLinear primitive has its typing rendered as:

SingleAction(P ) ExactSemiring(S) r : S

∅ 
 forkNonLinear : (�rChan P � 1) ��r(Chan P)
forkNonLin

This primitive now introduces the notion of a non-linear, or shared channel, which we reflect into the runtime typing and 
channel configuration typing that was setup in Section 5.
13
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As an example (partial) derivation here, consider the following term which uses forkNonLinear with a protocol 
Send Int End, and the natural numbers semiring with grade 2 to spawn a process reusing the channel twice to send two 
integer terms (3 then 5), yielding the dual channel which can be used twice to receive two integers:

y : [Chan (Send Int End)]2 
 let unit = close (send y 3) in close (send y 5) : 1

x :�2(Chan (Send Int End)) 
 let [y] = x in let unit = close (send y 3) in close (send y 5) : 1
elim

∅ 
 λx.let [y] = x in let unit = close (send y 3) in close (send y 5) : 1
�i

∅ 
 forkNonLinear (λx.let [y] = x in let unit = close (send y 3) in close (send y 5)) :�2(Chan (Recv Int End))
forkNonLin

Shared channel typing We extend runtime-typing contexts � with a shared channel typing:

�= · |�, c : Chan P |�, c :∗ Chan P (Runtime contexts)

where c :∗ Chan P types a shared channel.
The predicate [�] classifying graded contexts then also extends to include the rule that [�] =⇒ [�, c :∗ Chan P], i.e., we 

treat shared channels akin to graded variables, as graded variables may be used non-linearly. Runtime context addition then 
needs to account for sharing:

Definition 2 (Runtime context addition). Runtime context addition is akin to context addition, where channels can be marked 
as linear or shared and addition is only defined for contexts that are disjoint in their linear channels and where shared 
channels may appear in either context:

∅+�2 =�2
�1 +∅=�1

(�1, c : Chan P)+�2 = (�1 +�2), c : Chan P iff c �∈ dom(�2)

�1 + (�2, c : Chan P)= (�1 +�2), c : Chan P iff c �∈ dom(�1)

(�1, c :∗ Chan P1)+ (�2, c :∗ Chan P2)= (�1 +�2), c :∗ Chan P where P = P1 �� P2

where P1 �� P2 defines compatibility of shared channel session types, a symmetric partial operation defined:

P �� P = P if SingleAction(P)

P �� End = P if SingleAction(P)

End �� P = P if SingleAction(P)

where SingleAction is a built-in predicate on protocols:

SingleAction(End) SingleAction(Recv A End) SingleAction(Send A End)

Thus, two shared channels are compatible when they have the same protocol, or when one of the shared channels has 
been used and is in the End state. For example, consider three non-linear uses of a shared channel c whose protocol is 
a single action Send A End; after one communication is performed, one of the uses of c is typed as End, but this is still 
compatible with the two remaining non-linear uses of c typed at Send A End.

Thus, + combines contexts which are disjoint in their linear channels, and allows shared channels to be included in both 
contexts as long as their session types are compatible, computing via �� their compatible shared type.

Scalar multiplication of contexts extends smoothly to scalar multiplication of runtime contexts where r ∗ (�, c :∗
Chan P) = (r ∗�), c :∗ Chan P.

The variable rule extends to shared channel names:

c :∗ Chan P 
 c : Chan P
varChanS

The weakening rule also extends to shared channel names:

� 
 t : B

�,0 ∗ �′, c :∗ Chan P 
 t : B
weakChanS

Channel configurations and reduction In channel configurations, we explicitly denote shared channels with assignments writ-
ten c∗ = �v . If we need to distinguish a linear channel in a channel configuration, we write c1 = �v though if the linear or 
shared nature is immaterial we write c = �v as before. The typing of channel configurations behaves the same for shared 
channels as linear channels.

Send and receive reduction rules apply to shared channels exactly as linear channels. However, the close primitive has a 
different reduction semantics for shared channels:
14
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(P | Ctxt{close c}; C, c∗ = �v) � (P | Ctxt{unit}; C, c∗ = �v)
SHAREDCLOSE

Note that when a shared channel is closed, we preserve it inside the channel configuration rather than removing it. Further-
more, we do not even require that it is empty since the channel may be shared and messages may have arrived for another 
interaction, e.g., particularly in the case of forkNonLinear.

An important point here is that although the channel is preserved, unlike in the linear close rule, this still does not 
permit orphan messages to remain inside any channel when it is closed. This is because of the ExactSemiring constraint on 
the forkNonLinear primitive, which ensures that there are always exactly the same number of senders as receivers, and the 
SingleAction constraint, which restricts each participant to only send or receive a single message. Indeed, this is exactly 
why both of these restrictions are necessary.

Reduction semantics for forkNonLinear Now that we have extended the runtime typing notions to shared channels we can 
consider the operational semantics of forkNonLinear.

The operational model of forkNonLinear follows the typing: its reduct starts with an application of this primitive to a 
function value forkNonLinear (λx.t) in some evaluation context within a process reducing by creating a fresh shared channel 
endpoint c (and its dual endpoint c) and spawning a new process t with x replaced by the graded modal lifting of the 
channel [c] and returning the dual endpoint also inside a graded modal box:

#c

(P | Ctxt{forkNonLinear (λx.t)}; C)

� (P | Ctxt{[c]} | t[[c]/x]◦; C, c∗ = 〈 〉, c∗ = 〈 〉)
FORKNONLINEAR

The spawned process based on the function body t (with the promoted channel substituted in) is marked as being a 
subordinate process with ◦. The newly created channels in the context are marked as being shared channels c∗ and c∗ .

7. Replicated servers

The π -calculus provides replication of a process P as the process !P , which session-typed π -calculus variants have 
refined into the more controlled idea of having a replicated ‘server’. Here, the spawning of replicated instances is controlled 
via a special receive [29–31], e.g., written like ∗c(x).P meaning receive an x on channel c and then continue as P , whilst 
still providing the original process. From an operational semantics point of view this looks like ∗c(x).P | c〈d〉.Q →∗c(x).P |
P [d/x] | Q where c〈d〉.Q sends the message d to the server which ‘spawns’ off a fresh copy of the server process P whilst 
also preserving the original server process for further clients to interact with.

This important pattern is not achievable with the reusable channels of Section 6 but the non-linearity inherent to repli-
cated servers can be captured and explained again via the combination of graded and indexed types. We provide the 
replicated server functionality here as the fork variant forkReplicate:

forkReplicate : ∀ {p : Protocol, n : Nat} . {ReceivePrefix p}
⇒ (LChan p → ()) [0..n] → N n → Vec n ((LChan (Dual p)) [0..1])

Here the grading is less general than in Section 6; we instead focus on a particular grading which says that given a server 
process (LChan p → ()) that can be used 0 to n times, then we get a vector of size n of dual channels which we can use 
to interact with the server. The predicate ReceivePrefix p classifies those protocols which start with a receive, i.e.:

ReceivePrefix (Recv a p) ReceivePrefix (Offer p1 p2)

Each returned client channel can itself be discarded due to the graded modality ... [0..1]. Thus, we can choose not to 
use any/all of the client channels, reflected in the dual side where the server can be used at most n times. This introduces 
some flexibility in the amount of usage.

The following example demonstrates forkReplicate to define a simple server that can receive requests to receive two 
further integers which it adds and sends back, or requests to compare a received integer for equality to 0:

1 addServer : LChan (Offer (Recv Int (Recv Int (Send Int End)))
2 (Recv Int (Send Bool End))) → ()
3 addServer c =
4 offer
5 (λc→ let (x, c) = recv c;
6 (y, c) = recv c;
7 in close (send c (x + y))
8
9 (λc→ let (x, c) = recv c;

10 in close (send c (x == 0))) c

We then define two clients client1 and client2 that can interact with this server, exercising both parts of the offered 
choice:
15
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1 client1 : ∀ {p : Protocol}
2 . LChan (Select (Send Int (Send Int (Recv Int End))) p) → Int
3 client1 c = let (x, c) = recv (send (send (selectLeft c) 10) 20);
4 () = close c
5 in x
6
7 client2 : ∀ {p : Protocol}
8 . LChan (Select p (Send Int (Recv Bool End))) → Bool
9 client2 c = let (b, c) = recv (send (selectRight c) 42);

10 () = close c
11 in b

We then compose the server and clients together using forkReplicate to get a vector of channels, which we pattern match 
on immediately to get the channels to pass to each client (which are composed in parallel using par defined in Section 3.2):

1 import Parallel -- Provides the ‘par‘ combinator derived from ‘forkLinear‘
2 main : (Int, Bool)
3 main =
4 let (Cons [c1] (Cons [c2] Nil)) = forkReplicate [addServer] (S (S Z))
5 in par (λ () → client1 c1) (λ () → client2 c2)

In the intuitionistic linear logical propositions of Caires and Pfenning [6], this same idea of a replicating fork is captured by 
a non-linear channel (in Dual Intuitionistic Linear Logical style) which yields a linear version when interacted with; this is 
akin to the idea of shared channels [2]. Our approach codifies the same principle using graded modalities, but only allows 
finite replication. Section 7.2 shows a variation of this primitive which allows unbounded replication.

7.1. Semantics

In the notation of the core calculus, the forkReplicate primitive has its typing rendered as:

ReceivePrefix(P)

∅ 
 forkReplicate :�0..n(Chan P � 1)� N n � Vec n (�0..1(Chan P))
forkRep

We thus also extend the core calculus with indexed types for natural numbers and vectors, which previously were derived 
inside Granule using the syntax of GADTs (see Section 2):

A ::= . . . | N n | Vec n A

These indexed types are internally definable in Granule as GADTs, but for simplicity we add them as primitive to the core 
calculus, with standard introduction rules:

∅ 
 Z : N 0
Z

� 
 t : N n

� 
 S t : N (n+ 1)
S

∅ 
 〈 〉 : Vec 0 A
nil

�1 
 t1 : A �2 
 t2 : Vec n A

�1 + �2 
 t1 :: t2 : Vec (n+ 1)A
cons

We elide their eliminators here for brevity, but their elimination is standard following usual eliminators for indexed 
types [32] (see also Granule’s type system [16], whose indexed type eliminators also cause specialisation in grades, allowing 
type indices and grades to interact). As a shorthand, we write a vector constructor with n elements as 〈t1, .. , tn〉.

As an example (partial) derivation, the following uses forkReplicate to spawn a server that can be used at most three 
times to receive an integer and sends it back incremented:

∅ 
 λx.let (y, x)= receive x in close (send x (y + 1)) : Chan (Recv Int (Send Int End)) � 1

∅ 
 [λx.let (y, x)= receive x in close (send x (y + 1))] :�0..3(Chan (Recv Int (Send Int End))� 1)
pr

∅ 
 forkReplicate [λx.let (y, x)= receive x in close (send x (y + 1))] : N 3 � Vec 3 (�0..1(Chan (Send Int (Recv Int End))))
forkRep

The operational model of forkReplicate splits into two rules. The first follows the typing and corresponds to a β-reduction 
of forkReplicate: its reduct has an application of this primitive to a promoted function application and a natural number term 
forkReplicate [λx.t] n. The result is to spawn off a number of intermediate processes called “watchers” and to return to the 
originating process a vector of fresh channel endpoints (each promoted), of type Vec n (�0..1(Chan P)):

#c1 . . . #cn

(P | Ctxt{forkReplicate [λx.t]n}; C)

� (P | Ctxt{〈[c1], .. , [cn]〉} | Wch (c1 �→ λx.t) | .. | Wch (cn �→ λx.t)
; C, c1

∗ = 〈 〉, .., cn
∗ = 〈 〉, c1

∗ = 〈 〉, .., cn
∗ = 〈 〉)

FORKREPLICATE
16
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Thus, n pairs of fresh channel endpoints are created and the forkReplicate reduct, in some evaluation context Ctxt, is replaced 
by a vector of the dual endpoints (promoted to the graded modality). In parallel, n “watcher” processes are created, where 
Wch (c �→ t) is a runtime process waiting to receive a value on channel c and containing the continuation of the replicated 
process body: the suspended computation of process t , abstracted over the channel x.

Watcher processes (which are not ordinary terms) have the following typing, under the process typing judgment:

�1,�1 
 P : A �2, x : Chan (Recv A′ P),�2 
 t : 1

�1 + (0..1 ∗ �2),�1 +�2, c : Chan (Recv A′ P) 
 P | Wch (c �→ λx.t) : A
watch

Thus, given a t which has a free x which is a channel on which we can receive, then t can be placed into a watcher process, 
linked to the channel c on which a receive can occur. Note that in the conclusion here we scale the requirement of t by 
0..1 since t may never be evaluated as forkReplicate provides an upper bound on the number of possible replications.

The second part of the operational semantics for forkReplicate then involves reducing a watcher process into a regular 
term-based process upon receiving an initial request:

(P | Wch (c �→ λx.t); C, c = v : �v) � (P | t[c/x]◦; C, c = v : �v)
WATCHER

For a watcher on channel c, if there is a value v at the end head of the channel v then a new subordinate process is formed, 
substituting c for x. Note that the channel is left unchanged so that the spawned process can receive the value; the presence 
of the value v in the channel simply triggers the spawning of the process from the watcher.

7.2. Variations

In forkReplicate, each returned channel (in a vector) can be discarded due to the graded modality ... [0..1]: we can 
choose not to use any/all of the client channels, which allows for some flexibility in the amount of usage. A more strict 
variant is given as:

forkReplicateExactly : ∀ {p : Protocol, n : Nat} . {ReceivePrefix p}
⇒ (LChan p → ()) [n] → N n → Vec n (LChan (Dual p))

meaning we have exactly n clients that must spawn the server n times.
A more powerful version of replication allows an unknown number of clients (possibly infinite), with an interface similar 

to forkReplicate but returning a lazy stream of client channels which can be affinely used:

data Stream a = Next a (Stream a)

forkReplicateForever : ∀ {p : Protocol} . {ReceivePrefix p}
⇒ (LChan p → ()) [0..∞] → (Stream (LChan (Dual p))) [0..1]

The result is a stream wrapped in the graded modality with grade 0..1. Due to the typing of pattern matching in Granule, 
one can pattern match on the stream inside the graded modality, such that its components inherit the grade 0..1; e.g., 
example [Next c rest] = ... binds the stream rest in the scope of the function body with the same grade 0..1 so it can 
be used once or not at all.

This last variation of replication captures more closely the replicated server concept found in session-typed π -calculi. 
The above two primitives are provided in the implementation but are not considered in the core calculus and metatheory 
here.

8. Multicast sending

The final primitive we introduce here provides the notion of multicast (or broadcast) communication where messages on 
a channel can be received by multiple processes by copying the messages. This non-linearity is thus on the payload values 
being sent, with a graded modal type deployed to explain that the amount of non-linearity in the messages matches the 
number of receiving processes (clients). The forkMulticast primitive provides this behaviour, typed in Granule:

forkMulticast : ∀ {p : Protocol, n : Nat}
. {Sends p}

⇒ (Chan (Graded n p) → ()) → N n → Vec n (Chan (Dual p))

where Graded : Nat → Protocol → Protocol is a built-in type function that adds a graded modality to payload types, 
defined:

Graded n End = End
Graded n (Send a p) = Send (a [n]) (Graded n p)
Graded n (Recv a p) = Recv (a [n]) (Graded n p)
Graded n (Select p1 p2) = Select (Graded n p1) (Graded n p2)
Graded n (Offer p1 p2) = Offer (Graded n p1) (Graded n p2)
17
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and Sends : Protocol → Predicate is a built-in predicate defined:

Sends End

Sends p

Sends (Send a p)

Sends p1 Sends p2

Sends (Select p1 p2)

Thus, as long as we are sending values that are wrapped in the graded modality such that they can be used n times, we 
can then broadcast these to n client processes via the Vec n (Chan (Dual p)) channels returned by forkMulticast.

For example, in the following we have a broadcaster that takes a channel which expects an integer to be sent which 
can be used 3 times.

1 broadcaster : LChan (Send (Int [3]) End) → ()
2 broadcaster c = close (send c [42])

We can then broadcast these results with forkMulticast broadcaster (S (S (S Z))) producing a 3-vector of channels. 
Below we aggregate the results from these three receiver channels by applying aggregateRecv to the vector, giving us the 
result 126, i.e. 3 * 42.

1 aggregateRecv : ∀ {n : Nat} . Vec n (LChan (Recv Int End)) → Int
2 aggregateRecv Nil = 0;
3 aggregateRecv (Cons c cs) = let (x, c) = recv c;
4 () = close c
5 in x + aggregateRecv cs
6
7 main : Int -- Evaluates to 126
8 main = aggregateRecv (forkMulticast broadcaster (S (S (S Z))))

8.1. Semantics

In the notation of the core calculus, the forkMulticast primitive has its typing rendered as:

Sends(P)

∅ 
 forkMulticast : (Chan (GradednP)� 1)� N n � Vec n (Chan P)
forkMulti

Similarly to forkReplicate, the operational model of forkMulticast comprises two rules; a β-reduction that generate some 
intermediate processes, and a rule actioning those processes in response to communication. The β-reduction rule follows 
the typing; its reduct has an application of the primitive to a function value and a natural number term: forkMulticast (λx.t) n. 
The result is to spawn the process derived from t as well as a special “forwarding” process (explained below):

#c #c1 . . . #cn

(P | Ctxt{forkMulticast (λx.t)n}; C)

� (P | Ctxt{〈c1, .. , cn〉} | t[c/x]◦ | Fwd (c �→ c1, .., cn)

; C, c = 〈〉, c = 〈〉, c1 = 〈〉, .., cn = 〈〉, c1 = 〈〉, .., cn = 〈〉)

FORKMULTICAST

Thus, n pairs of fresh channel endpoints are created, c1 . . . cn , and the forkMulticast reduct is replaced by a vector of the dual 
endpoints 〈c1, .. , cn〉. In parallel, the function body t from the reduct has c substituted for x to form a subordinate process 
t[c/x]◦ , and a “forwarding” process is created. The forwarding process Fwd (c �→ c1, .., cn) is a runtime process that receives 
a graded modal value from c, unboxes the value and forwards copies of this payload on the (dual end of) channels c1 to cn .

Forwarder processes are typed by the process typing judgment as:

Sends(P) �,� 
 P : A

�,�, c : Chan (GradednP), ci : Chan P 
 P | Fwd (c �→ c1, .., cn) : A
fwd

where ci : Chan P is short hand for the typing c1 : Chan P, .., cn : Chan P. For example, if P = Send B P′ (satisfying the Sends
predicate) then c : Chan (Recv (�nB) (GradednP′)) in the above.

The reduction of the forwarding process then occurs by receiving on channel c an n-graded value, which gets sent along 
n further channels:

(P | Fwd (c �→ c1, .., cn); C, c = [v] : �v, c1 = �v1, .., cn = �vn)� (P | Fwd (c �→ c1, .., cn); C, c = �v, c1 = �v1 : v, .., cn = �vn : v)

FORWARDER

Note that there is no “garbage collection” step for the forwarding process, though this can be easily added as an implemen-
tational detail.
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9. Properties

We consider the standard probes on the language design: whether typing guarantees progress of reduction (that we do 
not get stuck, or blocked locally) and preservation of types (that reduction does not conflict with the specifications of types 
and maintains its meaning throughout). Proofs of all the statements that follow are provided in the appendix.

We are now in a position to establish the key properties of well-typed programs containing graded modal session types. 
Our semantics defined over global configurations that was presented in Section 5 allows us to demonstrate that type safety 
(and thus communication safety) holds by proving two main theorems: progress and preservation.

Lemma 1. Value lemma
Given � 
 v : A then, depending on the type, the shape of v can be inferred:

• A = A′ � B then v = λx.v ′ or a partially applied primitive term p.
• A =�rA′ then v = [v ′].
• A = A′ ⊗ B then v = (v1, v2).
• A = 1 then v = unit.
• A = Chan P then v = c.

Note that as in other session-typed systems, typability of an expression is not sufficient to guarantee that it can imme-
diately make progress at runtime [10]. For example, a channel with type Chan (Recv A P) can only make progress if the dual 
channel has already sent the value that this channel needs to receive (as described by the Recv rule). Our progress theorem 
applies to well-typed configurations that also satisfy the following property.

Definition 3. Given � 
 t : A ∧ � 
 C then we say that C is buffered with respect to �, written buffered(C, �), if for any 
channel c in C with type Chan (Recv A P), we have that c contains at least one value v .

The full inductive definition of the buffered predicate is as follows, where c :r . . . in the runtime contexts and c =r . . . in 
the process configurations abstracts over both linear and shared channels.

buffered(·,�)

buffered(C,�)

buffered((C, c =r �v), (�, c :r Chan End))

buffered(C,�)

buffered((C, c =r �v), (�, c :r Chan (Send A P)))

buffered(C,�)

buffered((C, c =r v : �v), (�, c :r Chan (Recv A P)))

Theorem 1 (Progress terms).

� 
 t : A

∧ � 
 C

∧ buffered(C,�)

∧ � 
 P : B

=⇒ value(t)∨ ∃t′,C′,P ′. (P | t; C) � (P ′ | t′; C′)

A process configuration P contains all values, defined by the predicate values(P), if every process is either a value v or 
is a forwarder or watcher process.

Theorem 2 (Progress global config).

� 
 P : A ∧ � 
 C ∧ buffered(C,�)

=⇒ values(P)∨ ∃C′,P ′.(P; C) � (P ′; C′)

Proof. (Highlights) See Appendix C for the full proof.
Note that there are two separate progress theorems here; the first is akin to the standard progress theorem on terms, 

though some cases require additional information from the process and channel configurations and the overall result is that 
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either the term t is a value, or a global step can be taken which can reduce either or both of the two configurations along 
with the term. The second global progress theorem consider cases where we must reduce a process configuration without 
being able to focus on a term, for example if we need to reduce based on watcher and forwarder processes which only exist 
at runtime.

Most cases in the first progress theorem proceed exactly as they would in a standard proof of progress for a type system; 
in these cases the Reduce rule from the global semantics allows us to say that if a term can be reduced in the standard 
way, then we can take a global step which does not affect the remainder of the process configuration or any of the channels 
which exist at runtime, simply reducing that term in place.

The interesting cases in this proof are the ones where a communication primitive is applied to a value, which by the 
value lemma (Lemma 1) must be a channel. In these cases we cannot reduce by only considering the term; the rules we 
must use are the global semantic rules for the communication primitives, which take into account the channels that are 
present in the channel configuration and in some cases (such as ForkReplicate and ForkMulticast) also spawn additional 
processes.

The second proof is not too involved, and almost follows as a corollary of the first, but does require a little extra work 
for the cases of watcher and forwarder processes. Note in particular that it is possible for a forwarder process to still be 
present and for no reduction to be possible, but this is only in cases where all other terms are values, so the theorem does 
still hold here because values(P) holds for a process configuration as long as all terms have been fully reduced. �
Theorem 3 (Preservation).

�,� 
 P : A ∧ � 
 C ∧ (P; C) � (P ′; C′)
=⇒ ∃�′. �,�′ 
 P ′ : A ∧ �′ 
 C′

Proof. (Highlights) See Appendix D for the full proof.
The proof proceeds by induction on the structure of process configuration typing, in concert with channel configuration 

typing and then the inductive definition of global reductions that are possible at each typing.
Preservation for reduction of a single term comes from previous preservation results for Granule’s core calculus [16].
For the concurrent primitives (both the communication primitives and forking primitives introduced here), their reduc-

tions involve terms in a reduction context. A lemma provides factorisation for a well-typed term in context, i.e., if Ctxt{t}
is well-typed then Ctxt{x} is well-typed and t is well-typed separately (Lemma 6, p. 28). This lemma tells us that either 
x is a linear variable, i.e., the term t is substituted into a linear hole position, or x is a graded variable, i.e., the term t is 
substituted into a graded hole position, which for � 
 Ctxt{t} : B then gives us:

(∃�1,�2,A, r. ¬resourceAllocator(t)
∧ �1, x : [A]r 
 Ctxt{x} : B
∧ [�2] 
 t : A
∧ �= �1 + r ∗ �2)

Critical here is that we know that this factorisation tells us that t is not a resource allocator. Given a global reduction which 
leads to a new term t′ , we then have the evidence to show that ¬resourceAllocator(t′) in these cases. Context application
lemmas then give the dual result allowing us to reconstruct a well-typed term in context, i.e., Ctxt{t′} is well-typed (with 
preserved types).

Note that communication primitives (send, receive, close) are not resource allocators and can occur in graded contexts, in 
which case the factorisation lemma also states that their channels must therefore be shared, since [�2] classifies (runtime) 
contexts which are all graded or all shared channels. In these cases, the typing preservation is straightforward.

For the forking primitives, and auxiliary processes like forwarding and watching, the factorisation lemma tells us that 
these must necessarily be within a linear context as they are resource allocators, and thus given � 
 Ctxt{t} : B we can 
factorise the typing into �1, x : A 
 Ctxt{x} : B and �2 
 t : A where � = �1 +�2. This shows us the effect of restricting terms 
to non-resource allocators in ensuring preservation. The type preservation then follows by the constructing the typing of 
the subject produced by reduction, which all satisfy the theorem statement.

For the forkReplicate case, the ReceivePrefix(P) predicate is essential to type preservation: the watcher processes that 
forkReplicate reduces into rely on having receiving channels in order to continue reducing. Furthermore, the typing of a 
forkReplicate reduct has its first argument of type �0..n(Chan P � 1). Since this argument is a value in the reduct, by 
inversion (the value Lemma 1), it is necessarily of the form [λx.t] and we have �1, x : Chan P, �1 
 t : 1 and 0..n∗ (�1, �1) 

[λx.t] : (Chan P � 1) where �1, �1 is a graded context. Reduction yields n watchers, each of which holds a copy of t that by 
the typing of watchers promotes their resources by 0..1 to 0..1 ∗ (�1, �1). Thus the n-wise parallel composition therefore 
(by distributivity of ∗ over +) results in preserving the 0..n ∗ (�1, �1) resources.

For the forkMulticast case, the Sends(P) predicate is essential to type preservation also: the forwarding processes that 
forkMulticast reduce into rely on having a receiving channel endpoint and subsequent channels to send upon. Further-
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more, the payload grading given by Graded n P ensures that the copying of the value to n channel endpoints is well-
resourced. �

Progress and preservation go some way to ensuring that our approach does not undermine guarantees of the language. 
A further useful property to prove would be deadlock freedom. We give a sketch of how to prove this for our system in 
Section 11, although completing it for the full system here is left as further work.

10. Related work

Shared channels Session type theories often provide non-linearity via shared names which provide repeated behaviours such 
as a replicable ‘server’ [2] akin to our forkReplicate concept.

Particularly relevant in our context of linear types, Caires and Pfenning give a session-types meaning to intuitionistic 
linear logic in which propositions denote the types of (linear) channels and the exponential modality ! types the communi-
cation of shared servers which can be repeatedly spawned [6]; that is, !A denotes the type of a non-linear shared channel 
which is used by a ‘server’ process to spawn new sessions conforming to the communication behaviour of A. The production 
of a new ‘client’ channel involves giving a semantic meaning to dereliction where a non-linear (shared) channel has a linear 
copy ‘sharded’ off. In their formulation, �; � 
 P :: T types a process P providing behaviour T along a channel, and using 
non-linear channels � and linear channels �. Access to the replicable server then involves the following process and typing:

�, u : A;�, y : A 
 P :: T

�, u : A;� 
 (ν y)u〈y〉.P :: T

i.e., access to the shared server via shared channel u : A (essentially a !A linear channel) is provided to P by the new linear 
channel y : A, amounting to contraction of u and dereliction of u into y. This is coherent with a call-by-name semantics for 
linear logic where a value of type !A is essentially an infinite number of copies of an A value, whereas in the call-by-value 
semantics !A is just a single A value that can be used non-linearly. Therefore in our CBV approach, forkReplicate provides 
a vector of client channels to capture the notion of channel copies.

In the GV calculus, Lindley and Morris add replicated channels by first extending GV with an S4-style � modality (akin 
to the exponential modality) to provide “unlimited types” [11]. They derive a replicate primitive of the following type (where 
in GV, the type !A.S denotes a channel on which we first send an A then behave as S , see Section 3.2):

replicate : (!(�S).end!)⊗ (�(S � end!)) � end!
replicate(x, f )= send ([let [g] = f in fork f ], x)

(we have used our notation for modal introduction and elimination to make the derivation more easily understood here).
Thus, replication takes a pair of (1) a channel x on which is sent a �S value, i.e., a non-linear channel which can behave 

as S and (2) a non-linear function f which expects a channel behaving as S as input). The function unboxes the non-linear 
function f into an instance g , and forks this, but underneath modal promotion, yielding a ‘boxed’ channel which is then 
sent on the input channel x. Whilst GV is call-by-value like Granule, the derivation above is only sound if � behaves in a 
call-by-name way, i.e., we do not reduce under � but instead capture the enclosing fork such that uses of it on the dual 
endpoint of x get a freshly forked function g each time. Thus, the semantics of � in GV in this extension differs to Granule 
which is ‘pervasively’ call-by-value, evaluating inside of modalities.

For more detail, Appendix E gives a rendering of replicate in Granule, but using its call-by-name language extension for 
soundness.

Non-linear communication Possibly the closest ideas to the ones described in our work that exist in the literature appear 
in the type system developed by Zalakain and Dardha, who use leftover typing to define a resource-aware variant of the 
π -calculus that can represent shared channels (which can be freely discarded or reused), graded channels (which must be 
used precisely n times for some n) and linear channels [33].

Applying their notion of ‘graded channel’ allows them to capture roughly the same behaviour as our forkNonLinear
primitive, but their work does not consider more general forms of grading (though their mechanisation allows for user-
defined resource algebras). We capture some of the same ideas inside our unified graded approach, showing how different 
amounts of sharing can be characterised precisely with the interaction of linear, indexed, and graded types; our setting is 
also more general, since we work in a pre-existing programming language rather than developing a calculus specifically 
focused on communication.

Another paper which describes some similar non-linear communication patterns to our work is the generalisation of 
session types via adjoint logic presented by Pruiksma and Pfenning [34]. Here, they offer the capacity for both multi-
cast communication and replicated servers, corresponding to our forkMulticast and forkReplicate primitives respectively. 
However, their system does not include any notion of grading, and so while they offer non-linear communication this is 
without the precise quantification allowed by grading in our system.
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Classical session types As well as the session-based interpretation of intuitionistic linear logic mentioned above [6], it is also 
possible to understand the correspondence between communication and logic by relying on classical linear logic, as was 
first demonstrated by Wadler [8]. The differences between these two systems go beyond the superficial; it has been shown 
that there exists a class of processes which are typable following the classical interpretation but not via the intuitionistic 
interpretation, and that these are the processes which break the so-called locality principle for shared channels [35].

Recent work by Kokke, Morris and Wadler extends this interpretation through an approach which draws on notions from 
bounded linear logic [9]. While their notion of a shared channel corresponds closely to the one that we develop in our work 
(which may be unsurprising, since graded modal types are also built upon the foundation of bounded linear logic), their 
focus is more on accounting for non-determinism and races in a logical setting while preserving deadlock freedom. Their 
paper contrasts the system they develop with other related work on manifest sharing [36]; said work uses modal operators 
to describe the interaction between linear and shared processes, and has greater expressivity when it comes to non-linear 
communication, but this comes at the cost of reintroducing deadlocks in some circumstances.

Graded sessions in linear Haskell We explored combining grading with linear session types in Granule, but this could be ex-
tended to other settings. The linear types extension to Haskell is based on a calculus involving graded function arrows [20], 
and adding additional multiplicities to this system is a possibility. The Priority Sesh library provides a convenient embedding 
of the GV linear session calculus in Haskell [37], and extending this to make use of more precise information about channel 
usage could be valuable. This would also allow for experimenting with graded channels in a setting where grading can be 
implicit, rather than one where (like Granule) all grades are explicitly encoded via modalities.

11. Discussion and conclusion

The key idea here is that graded types capture various standard non-linear forms of communication pattern atop the 
usual linear session types presentation. The demands of call-by-value required a different approach to past work on the 
interaction between graded types and session types, including the syntactic restriction discussed in Section 4 and vectors to 
capture multiplicity of channels. We have also proven type safety and various essential communication properties given the 
additional restriction on promoting channels and the other features introduced here.

Deadlock freedom Whilst the proofs of progress and preservation go some way to ensuring that our new primitives do not 
undermine the guarantees of the language, a further useful and important property to prove would be deadlock freedom. 
Whilst progress and preservation suggest that we don’t become locally stuck, they do not rule out the possibility of some 
subset of processes becoming indefinitely blocked due to a mutual dependency. Proving deadlock freedom is future work 
though we sketch some details here based on other approaches in the literature.

There have been various proofs of deadlock freedom for session-typed calculi with asynchronous communication. These 
approaches generalise duality to compatibility, for example in the work of Fowler [38] and Bocchi et al. [39]. In essence, 
compatibility needs to take into account that asynchronous protocols may be ‘out of sync’ as one process sends to another, 
filling a channel’s buffer without those messages being received yet. We can tie together the types of two channel endpoints 
P1, P2 with the contents of the associated channel values (buffers) �v1, �v2 via a relation:

� 
 c1 : (P1 − �v1) �� c2 : (P2 − �v2)

meaning that P1 is compatible with P2 once the channel buffer values �v1 and �v2 have been ‘stripped off’ the head of the 
protocol. For example, a receiving protocol Recv A P for channel endpoint c is compatible with another protocol P′ for the 
dual channel endpoint c, if the channel has a value v of type A in its head, and then P and P ′ are compatible with that v
removed:

� 
 c : (P − �v1) �� c : (P′ − �v2) � 
 v : A

� 
 c : ((Recv A P)− v : �v1) �� c : (P′ − �v2)
��RECV

Following Fowler [38], we then need to adapt process configuration typing into a typing of the entire configuration (process 
and channels), with parallel composition enforcing that between two processes there is exactly one pair of compatible 
endpoints connecting them, i.e.:

�1,�1, c : Chan P 
 t : A �2,�2, c : Chan P′ 
 P : ⊥;C
� 
 c : (P − �v1) �� c : (P′ − �v2)

�1 + �2,�1 +�2 +�, c : Chan P, c : Chan P′ 
 P | t• : A;C, c = �v1, c = �v2

From this ‘global’ configuration typing, we can then prove that there is a limit on the number of ‘connection’ points between 
processes:
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Definition 4 (Connection). For processes P1 and P2 then we define those channels endpoints that connect them via the 
function:

connected(P1,P2)=
⋃

{{c, c} | c ∈ fn(P1), c ∈ fn(P2)}

Lemma 2 (Limited connectivity). If �, � 
P : A; C and P =P ′ |P1 |P2 then ∃c.connections(P1, P2) ⊆ {c, c}

We note however that, for a full proof for our system here, the above lemma needs extending to handle forwarding 
processes which have a number of channels connecting processes, but where only sending is allowed.

Deadlock can then be characterised in terms of mutually dependent blocked processes, which are ruled out by the typing, 
similar to the formulation of Lindley and Morris for GV [11]. That is, a term t blocked on a channel c is a term which is 
equivalent to some evaluation context in which a receive is applied to c:

blocked(t, c) � ∃Ctxt. t ≡ Ctxt{receive c} ∨ t ≡ Ctxt{close c}
Thus, the term t can only reduce further in composition with another a global configuration. A dependency can then be 
characterised as a term which is both blocked on a channel and with a free-variable dependency:

depends(t, c, x) � blocked(t, c) ∧ x ∈ fv(Ctxt{t})
depends(P, c, x) � (∃t,P ′. P ≡ (P ′ | tR) ∧ depends(t, c, x))

∨(∃P1,P2. P ≡ (P1 | P2) ∧ ∃d.depends(P1, c,d)∧ depends(P2,d, x))

The main definition of a deadlocked configuration with cyclic dependencies can then be characterised as:

deadlocked(P) � ∃P ′,P1,P2. P ≡ (P ′ | P1 | P2)

∧ ∃c,d.depends(P1, c,d)∧ depends(P2,d, c)

From Lemma 2, we conjecture that this then enables the proof of deadlock freedom theorem:

Theorem conjecture 1. If �, � 
P : A; C then ¬deadlocked(P).

Further work remains to flesh out the details of Lemma 2 for forwarding, and to integrate the global configuration typing 
(processes and channels together, with compatibility) into the progress and preservation theorems here, rather than their 
current formulation with process and channel configuration typing separate.

Recursion and other combinators A notable omission from our core session types calculus is the ability to define recursive pro-
tocols. However, some of the power of recursive session types is provided here; reusable channels (Section 6) are equivalent 
to linearly recursive session types (e.g., μx.P .x), although the expected usage has to be precisely specified in the grading 
since for example allowing the grade r to be instantiated to 0..∞ to capture an arbitrary amount of use would break our 
guarantee of deadlock freedom. Further work is to integrate standard ideas on recursive session types and to explore their 
interaction with grading.

Note that combinations of the ideas here should also be possible; for example, combining multicast sending with reuse 
to get channels which we can repeatedly use to broadcast upon.

Applications of graded sessions Using the linear channels already present in Granule it is possible to represent functions that 
are sequentially realizable [40]; a sequentially realizable function is one which has outwardly pure behaviour but relies on a 
notion of local side effects which are contained within the body of the function. Looking into which such behaviours may 
be more easily expressed by introducing non-linearity via graded channels would be an avenue for future work.

More recently, the GV session type calculus has been extended to allow for multiparty session types [41], allowing for 
concurrent communication between several participants at a time. It has also been shown that this multiparty system is 
strictly more general than the original binary GV system. It would be interesting to explore an implementation of this in 
Granule, particularly with a view to introducing grading into this setting to see if it can increase expressivity further.

Other resource allocators As discussed in Section 4, it is necessary to restrict promotion of channels due to Granule’s default 
call-by-value semantics, since omitting this restriction allows for a linear channel to be used non-linearly. A very similar 
caveat applies if we consider mutable arrays. Recent work describes how to represent uniqueness of reference within Gran-
ule in addition to linearity [42]; however, this takes place in a call-by-name setting, because if a unique array is promoted 
under call-by-value then we end up with multiple references to the same array, so we can no longer guarantee uniqueness 
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for mutation. This is resolved in later work incorporating a call-by-value semantics by restricting promotion in much the 
same way as we have here for linear channels [43].

These are most likely not the only resource allocators for which such a restriction applies. Future work is to develop 
a better understanding of the general case here, and to further explore the best way to embed interfaces for allocating 
resources in a graded type system such as Granule’s which can express multiple different evaluation strategies.

Uniqueness and graded sessions Uniqueness in a concurrent setting was considered in various works by de Vries et al., but in 
particular we draw attention to their paper on resource management via unique and affine channels [44]. They allow for a 
notion of a channel which we can guarantee unique access to after i communication steps where i is some natural number; 
this is a form of grading, though quite different from the ideas we have discussed. It would be interesting to explore how 
we can represent this in Granule which already has both uniqueness and graded session types, and whether we gain further 
expressivity from doing so. This idea closely relates to recent work by Rocha and Caires on introducing mutable state into 
the classical linear logic interpretation of session types [45], through typing rules inspired by differential linear logic.
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Appendix A. Collected rules

A.1. Typing

x : A 
 x : A
var

�, x : A 
 t : B

� 
 λx.t : A � B
�i

�1 
 t1 : A � B
�2 
 t2 : A

�1 + �2 
 t1 t2 : B
�e

�1 
 t1 : A
�2 
 t2 : B

�1 + �2 
 (t1, t2) : A ⊗ B
⊗i

�1 
 t1 : A⊗ A′
�2, x : A,y : A′ 
 t2 : B

�1 + �2 
 let (x,y)= t1 in t2 : B
⊗e

∅ 
 unit : 1
uniti

�1 
 t1 : 1
�2 
 t2 : B

�1 + �2 
 let unit = t1 in t2 : B
unite

�, x : A 
 t : B

�, x : [A]1 
 t : B
der

¬resourceAllocator(t)
[�] 
 t : A

r ∗ � 
 [t] :�rA
pr

� 
 t : B

�,0 ∗ �′ 
 t : B
weak

�, x : [A]r,�′ 
 t : B
r� s

′ approx
�, x : [A]s,� 
 t : B
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Definition 5 (Graded contexts). [�] classifies those contexts which contain only graded variables:

[∅]
[�]

[�, x : [A]r]

Definition 6 (Resource allocating terms). Predicate definition:

resourceAllocator(forkLinear) resourceAllocator(forkNonLinear)

resourceAllocator(forkReplicate) resourceAllocator(forkMulticast)

resourceAllocator(t)

resourceAllocator([t])
resourceAllocator(t1)

resourceAllocator(t1 t2)

resourceAllocator(t2)

resourceAllocator(t1 t2)

resourceAllocator(t1)

resourceAllocator((λx.t1) t2)

resourceAllocator(t1)

resourceAllocator(let [x] = t1 in t2)

resourceAllocator(t2)

resourceAllocator(let [x] = t1 in t2)

resourceAllocator(t1)

resourceAllocator(let unit = t1 in t2)

resourceAllocator(t2)

resourceAllocator(let unit = t1 in t2)

resourceAllocator(t1)

resourceAllocator(let (x,y)= t1 in t2)

resourceAllocator(t2)

resourceAllocator(let (x,y)= t1 in t2)

resourceAllocator(t1)

resourceAllocator((t1, t2))

resourceAllocator(t2)

resourceAllocator((t1, t2))

Primitives

∅ 
 send : A⊗ Chan Send A P � Chan P
send

∅ 
 receive : Chan Recv A P � A⊗ Chan P
recv

∅ 
 forkLinear : (Chan P � 1)� Chan P
fork

∅ 
 close : Chan End � 1
close

SingleAction(P ) ExactSemiring(S) r : S

∅ 
 forkNonLinear : (�rChan P � 1) ��r(Chan P)
forkNonLin

ReceivePrefix(P)

∅ 
 forkReplicate :�0..n(Chan P � 1)� N n � Vec n (�0..1(Chan P))
forkRep

Sends(P)

∅ 
 forkMulticast : (Chan (GradednP)� 1)� N n � Vec n (Chan P)
forkMulti

Runtime typing

c : Chan P 
 c : Chan P
var

c :∗ Chan P 
 c : Chan P
varChanS

� 
 t : B

�,0 ∗ �′, c :∗ Chan P 
 t : B
weakChanS

In typing derivations in the appendix, we abstract over whether a channel is linear or shared by writing c :r Chan P.
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A.2. Global configuration reduction rules

t � t′

(P | tR; C) � (P | t′R; C)
REDUCE

(P; C) � (P ′; C′)
(P | t; C) � (P ′ | t; C′) PAR

(P | Ctxt{send c v}; C, c = �v) � (P | Ctxt{c}; C, c = �v : v)
SEND

(P | Ctxt{receive c}; C, c = v : �v) � (P | Ctxt{(v, c)}; C, c = �v)
RECV

#c

(P | Ctxt{forkLinear (λx.t)}; C) � (P | t[c/x]◦ | Ctxt{c}; C, c = 〈〉, c = 〈〉) FORKLINEAR

(P | Ctxt{close c}; C, c∗ = �v) � (P | Ctxt{unit}; C, c∗ = �v)
SHAREDCLOSE

(P | Ctxt{close c}; C, c1 = 〈〉) � (P | Ctxt{unit}; C)
CLOSE

#c

(P | Ctxt{forkNonLinear (λx.t)}; C) � (P | Ctxt{[c]} | t[[c]/x]◦; C, c∗ = 〈 〉, c∗ = 〈 〉) FORKNONLINEAR

#c1 . . .#cn

(P | Ctxt{forkReplicate [λx.t]n}; C) � (P | Ctxt{〈[c1], .. , [cn]〉} | Wch (c1 �→ λx.t) | .. | Wch (cn �→ λx.t); C, c1 = 〈〉, .., cn = 〈〉, c1 = 〈〉, .., cn = 〈〉) FORKREPLICATE

#c #c1 . . .#cn

(P | Ctxt{forkMulticast (λx.t) n}; C) � (P | Ctxt{〈c1, .. , cn〉} | t[c/x]◦ | Fwd (c �→ c1, .., cn); C, c = 〈〉, c = 〈〉, c1 = 〈〉, .., cn = 〈〉, c1 = 〈〉, .., cn = 〈〉) FORKMULTICAST

A.3. Standard small-step reduction rules

(λx.t)v � t[v/x]�β

t1 � t′1
t1 t2 � t′1 t2

�app

t � t′

v t � v t′
�prim

let (x,y)= (v1,v2) in t3 � t3[v1/x][v2/y]�⊗β

t1 � t′1
let (x,y)= t1 in t2 � let (x,y)= t′1 in t2

�let⊗

t1 � t′1
(t1, t2) � (t′1, t2)

�⊗reduceL
t2 � t′2

(v, t2) � (v, t′2)
�⊗reduceR

let unit = unit in t � t
�βunit

t1 � t′1
let unit = t1 in t2 � let unit = t′1 in t2

�letunit

let [x] = [v] in t � t[v/x]��β

t1 � t′1
let [x] = t1 in t2 � let [x] = t′1 in t2

�let�

t � t′

[t]� [t′]��reduce

Appendix B. Auxiliary results

Linear and graded substitution lemmas have been previously proved by Orchard et al. [16] for the core calculus used 
here:

Lemma 1 (Linear substitution). [16] Given �1, x : A 
 t1 : B and �2 
 t2 : A then �1 + �2 
 t1[t2/x] : B.

Lemma 2 (Graded substitution). [16] Given �1, x : [A]r 
 t1 : B and [�2] 
 t2 : A and ¬resourceAllocator(t2) then �1 + r ∗ �2 

t1[t2/x] : B.
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Proof. Proof as in Orchard et al. [16], but where the additional premise of ¬resourceAllocator(t2) is deployed in the promo-
tion case. �

Definition 7 (Evaluation contexts). 

Ctxt ::= Contexts
| −
| Ctxt t
| v Ctxt
| [Ctxt]
| let [x] = Ctxt in t
| let unit = Ctxt in t
| let (x,y)= Ctxt in t
| (Ctxt, t)
| (v,Ctxt)

Lemma 3 (Non-resource allocator context). ¬resourceAllocator(Ctxt{t}) =⇒ ¬resourceAllocator(Ctxt{x})

Proof. Trivial by the definition of resourceAllocator(t) and since x is a variable and not a resource allocator. �

Lemma 4 (Non-resource allocator composition). ¬resourceAllocator(Ctxt{x}) ∧ ¬resourceAllocator(t) =⇒ ¬resourceAlloca-
tor(Ctxt{t})

Proof. By induction on the definition of contexts and the definition of resourceAllocator(t). �

Lemma 5 (Contexts preserve resource allocator property).

resourceAllocator(t) =⇒ resourceAllocator(Ctxt{t})

Proof. By induction on the grammar of context terms: the structure of context terms matches the inductive term structure 
of resourceAllocator.

• Ctxt =− by identity;
• Ctxt = Ctxt′ t′ . By induction on the first premise and modus ponens with the antecedent then resourceAllocator(Ctxt′{t})

and thus resourceAllocator(Ctxt′{t} t′) by the definition.
• Ctxt = v Ctxt′ . By induction on the second premise and modus ponens with the antecedent then resourceAllocator(Ctxt′{t})

and thus resourceAllocator(v Ctxt′{t}) by the definition.
• Ctxt = [Ctxt′]. By induction on the first premise and modus ponens with the antecedent then resourceAllocator(Ctxt′{t})

and thus resourceAllocator([Ctxt′{t}]) by the definition.
• Ctxt = let [x] = Ctxt′ in t2. By induction on the first premise and modus ponens with the antecedent then resourceAlloca-

tor(Ctxt′{t}) and thus resourceAllocator(let [x] = Ctxt′{t} in t2) by the definition.
• Ctxt = let unit = Ctxt′ in t2. By induction on the first premise and modus ponens with the antecedent then resourceAllo-

cator(Ctxt′{t}) and thus resourceAllocator(let unit = Ctxt′{t} in t2) by the definition.
• Ctxt = let (x, y) = Ctxt′ in t2. By induction on the first premise and modus ponens with the antecedent then 

resourceAllocator(Ctxt′{t}) and thus resourceAllocator(let (x, y) = Ctxt′{t} in t2) by the definition.
• Ctxt = (Ctxt′, t′). By induction on the first premise and modus ponens with the antecedent then resourceAllocator(Ctxt′{t})

and thus resourceAllocator((Ctxt′{t}, t′)) by the definition.
• Ctxt = (v, Ctxt′). By induction on the first premise and modus ponens with the antecedent then resourceAllocator(Ctxt′{t})

and thus resourceAllocator((v, Ctxt′{t})) by the definition. �

Corollary 1 (Non-resource-allocating contextual term).

¬resourceAllocator(Ctxt{t}) =⇒ ¬resourceAllocator(t)

Proof. Dual of Lemma 5 (modus tollens) �
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Lemma 6 (Context factorisation).

� 
 Ctxt{t} : B

=⇒ (∃�1,�2,A. �1, x : A 
 Ctxt{x} : B
∧ �2 
 t : A
∧ �= �1 + �2)

∨ (∃�1,�2,A, r. ¬resourceAllocator(t)
∧ �1, x : [A]r 
 Ctxt{x} : B
∧ [�2] 
 t : A
∧ �= �1 + r ∗ �2)

Proof. By induction on Ctxt:

• Ctxt =−, i.e., the premise is that � 
 t : B and thus the result is given by �1 = · and �2 = � with derivation:

var x : B 
 x : B (ctxt)

and the substitute derivation given by the premise. Thus, we prove this case by giving the first disjunct.
• Ctxt = Ctxt′ t′ where Ctxt{t} = Ctxt′{t} t′ i.e., with premise derivation:

�′
1 
 Ctxt′{t} : A′ � B �′

2 
 t′ : A′

� 
 Ctxt′{t} t′ : B
�e

where � = �′
1 + �′

2.
By induction on the first premise, then there are two cases:
– (first disjunct) We have �′′

1, �′′
2 such that �′′

1, x : A 
 Ctxt′{x} : A′ � B and �′′
2 
 t : A such that �′

1 = �′′
1 + �′′

2.
We conclude with derivation:

�′′
1, x : A 
 Ctxt′{x} : A′ � B �′

2 
 t′ : A′

(�′′
1 + �′

2), x : A 
 Ctxt′{x} t′ : B
�e

(ctxt)

i.e., where �1 = �′′
1 + �′

2 and �2 = �′′
2 where � = �1 + �2 = �′′

1 + �′
2 + �′′

2 = �′
1 + �′

2 from the induction and by 
commutativity and associativity of +.
The concluding substitute �′′

2 
 t : A is from the induction.
– (second disjunct) We have �′

1, �′′
2 such that ¬resourceAllocator(t) and �′′

1, x : [A]r 
 Ctxt′{x} : A′ � B and [�′′
2] 
 t : A

such that �′
1 = �′′

1 + r ∗ �′′
2.

We conclude with derivation:

�′′
1, x : [A]r 
 Ctxt′{x} : A′ � B �′

2 
 t′ : A′

(�′′
1 + �′

2), x : A 
 Ctxt′{x} t′ : B
�e

(ctxt)

i.e., where �1 = �′′
1 + �′

2 and where �2 = [�′′
2] where:

�= �′
1 + �′

2 {premise }
= �′′

1 + r ∗ �′′
2 + �′

2 {induction �′
1 }

= �′′
1 + �′

2 + r ∗ �′′
2 {+ comm. and assoc.}

= �1 + r ∗ �2 {concluding contexts}

The concluding substitute [�′′
2] 
 t : A is from the induction and that ¬resourceAllocator(t).

• Ctxt = v Ctxt′ where Ctxt{t} = v Ctxt′{t} i.e., with premise derivation:

�′
1 
 v : A′ � B �′

2 
 Ctxt′{t} : A′

� 
 v Ctxt′{t} : B
�e

where � = �′
1 + �′

2.
By induction on the second premise, then there are two cases:
– (first disjunct) We have �′′

1, �′′
2 such that �′′

1, x : A 
 Ctxt′{x} : A′ and �′′
2 
 t : A such that �′

2 = �′′
1 + �′′

2. We can then 
conclude with:

�′
1 
 v : A′ � B �′′

1, x : A 
 Ctxt′{x} : A′

�′
1 + �′′

1, x : A 
 v Ctxt′{x} : B
�e

(ctxt)

and substitute �′′
2 
 t : A (from the induction) where �1 = �′

1 + �′′
1 and �2 = �′′

2 where � = �1 + �2 = �′
1 + �′′

1 + �′′
2

from the induction and by commutativity and associativity of +.
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– (second disjunct) We have �′′
1, �′′

2 such that ¬resourceAllocator(t) and �′′
1, x : [A]r 
 Ctxt′{x} : A′ and [�′′

2] 
 t : A such 
that �′

2 = �′′
1 + r ∗ �′′

2.
We can then conclude with:

�′
1 
 v : A′ � B �′′

1, x : [A]r 
 Ctxt′{x} : A′

�′
1 + �′′

1, x : [A]r 
 v Ctxt′{x} : B
�e

(ctxt)

and ¬resourceAllocator(t) (from the induction) and substitute [�′′
2] 
 t : A (from the induction) where �1 = �′

1 + �′′
1

and �2 = �′′
2 where:

�= �′
1 + �′

2 {premise }
= �′

1 + �′′
1 + r ∗ �′′

2 {induction �′
1 }

= �1 + r ∗ �2 {concluding contexts}

• Ctxt = [Ctxt′] where Ctxt{t} = [Ctxt′{t}] i.e., with premise derivation:

¬resourceAllocator(Ctxt′{t}) [�′
1] 
 Ctxt′{t} : A′

� 
 [Ctxt′{t}] :�rA′
pr’

where � = r ∗ �′
1.

By induction on the second premise, there are two cases:
– (first disjunct) We have �′′

1, �′′
2 such that �′′

1, x : A 
 Ctxt′{x} : A′ and �′′
2 
 t : A such that �′

1 = �′′
1 + �′′

2, and we know 
that [�′′

1] since the premise derivation gives us that [�′
1].

We can then conclude with the derivation (giving the second disjunct):

Lemma 3

¬resourceAllocator(Ctxt′{x})

ind.hyp.

[�′′
1], x : A 
 Ctxt′{x} : A′

[�′′
1], x : [A]1 
 Ctxt′{x} : A′

der

r ∗ �′′
1, x : [A]r 
 [Ctxt′{x}] :�rA′

pr

(ctxt)

with substitute �′′
2 
 t : A (from the induction) and with �1 = r ∗ �′′

1 and �2 = �′′
2 where:

�= r ∗ �′
1 {premise }

= r ∗ (�′′
1 + �′′

2) {induction �′
1 }

= r ∗ �′′
1 + r ∗ �′′

2 {∗ dist. }
= �1 + r ∗ �2 {concluding contexts}

From the premise derivation ¬resourceAllocator(Ctxt′{t}), by Corollary 1, we then have that ¬resourceAllocator(t) as 
needed here.

– (second disjunct) We have ¬resourceAllocator(t) and �′′
1, �′′

2 such that �′′
1, x : [A]s 
 Ctxt′{x} : A′ and [�′′

2] 
 t : A such 
that �′

1 = �′′
1 + s ∗ �′′

2, and we know that [�′′
1] since the premise derivation gives us that [�′

1].
We can then conclude with the derivation (giving the second disjunct):

Lemma 3

¬resourceAllocator(Ctxt′{x})
ind.hyp.

[�′′
1], x : [A]s 
 Ctxt′{x} : A′

r ∗ �′′
1, x : [A]r∗s 
 [Ctxt′{x}] :�rA′

pr

(ctxt)

with substitute [�′′
2] 
 t : A (from the induction) and with �1 = r ∗ �′′

1 and �2 = �′′
2 where:

�= r ∗ �′
1 {premise }

= r ∗ (�′′
1 + s ∗ �′′

2) {induction �′
1 }

= r ∗ �′′
1 + r ∗ s ∗ �′′

2 {∗ dist. }
= �1 + r ∗ s ∗ �2 {concluding contexts}

and ¬resourceAllocator(t) from the induction, as required.
• Ctxt = let [y] = Ctxt′ in t2 where Ctxt{t} = let [y] = Ctxt′{t} in t2. i.e., with premise derivation:

�′
1 
 Ctxt′{t} :�rA′ �′

2,y : [A′]r 
 t2 : B

�′
1 + �′

2 
 let [y] = Ctxt′{t} in t2 : B
elim

where � = �′
1 + �′

2.
By induction on the first premise, then there are two case:
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– (first disjunct) We have �′′
1, �′′

2 such that �′′
1, x : A 
 Ctxt′{x} : A′ and �′′

2 
 t : A such that �′
1 = �′′

1 + �′′
2.

We can then conclude with:

�′′
1, x : A 
 Ctxt′{x} :�rA′ �′

2,y : [A′]r 
 t2 : B

(�′′
1 + �′

2), x : A 
 let [y] = Ctxt′{x} in t2 : B
elim

and substitute �′′
2 
 t : A (from the induction) where �1 = �′′

1 + �′
2 and �2 = �′′

2 therefore:

�= �′
1 + �′

2 {premise }
= �′′

1 + �′′
2 + �′

2 {induction �′
1 }

= �′′
1 + �′

2 + �′′
2 {+ comm. and assoc.}

= �1 + �2 {concluding contexts}

– (second disjunct) We have ¬resourceAllocator(t) and �′′
1, �′′

2 such that �′′
1, x : [A]s 
 Ctxt′{x} : A′ and [�′′

2] 
 t : A such 
that �′

1 = �′′
1 + s ∗ �′′

2.
We can then conclude with:

�′′
1, x : [A]s 
 Ctxt′{x} :�rA′ �′

2,y : [A′]r 
 t2 : B

(�′′
1 + �′

2), x : [A]s 
 let [y] = Ctxt′{x} in t2 : B
elim

and substitute [�′′
2] 
 t : A (from the induction) where �1 = �′′

1 + �′
2 and �2 = �′′

2 therefore:

�= �′
1 + �′

2 {premise }
= �′′

1 + s ∗ �′′
2 + �′

2 {induction �′
1 }

= �′′
1 + �′

2 + s ∗ �′′
2 {+ comm. and assoc.}

= �1 + s ∗ �2 {concluding contexts}

and ¬resourceAllocator(t) as required, from the induction.
• Ctxt = let unit = Ctxt′ in t2 where Ctxt{t} = let unit = Ctxt′{t} in t2. i.e., with premise derivation:

�′
1 
 Ctxt′{t} : 1 �′

2 
 t2 : B

�′
1 + �′

2 
 let unit = Ctxt′{t} in t2 : B
elim

where � = �′
1 + �′

2.
By induction on the first premise, then there are two cases:
– (first disjunct) We have �′′

1, �′′
2 such that �′′

1, x : A 
 Ctxt′{x} : 1 and �′′
2 
 t : A such that �′

1 = �′′
1 + �′′

2.
We can then conclude with:

�′′
1, x : A 
 Ctxt′{x} : 1 �′

2 
 t2 : B

(�′′
1 + �′

2), x : A 
 let [y] = Ctxt′{x} in t2 : B
elim

and substitute �′′
2 
 t : A (from the induction) where �1 = �′′

1 + �′
2 and �2 = �′′

2 therefore:

�= �′
1 + �′

2 {premise }
= �′′

1 + �′′
2 + �′

2 {induction �′
1 }

= �′′
1 + �′

2 + �′′
2 {+ comm. and assoc.}

= �1 + �2 {concluding contexts}

– (second disjunct) We have ¬resourceAllocator(t) and �′′
1, �′′

2 such that �′′
1, x : [A]s 
 Ctxt′{x} : 1 and [�′′

2] 
 t : A such 
that �′

1 = �′′
1 + s ∗ �′′

2.
We can then conclude with:

�′′
1, x : [A]s 
 Ctxt′{x} : 1 �′

2 
 t2 : B

(�′′
1 + �′

2), x : [A]s 
 let [y] = Ctxt′{x} in t2 : B
elim

and substitute [�′′
2] 
 t : A (from the induction) where �1 = �′′

1 + �′
2 and �2 = �′′

2 therefore:

�= �′
1 + �′

2 {premise }
= �′′

1 + s ∗ �′′
2 + �′

2 {induction �′
1 }

= �′′
1 + �′

2 + s ∗ �′′
2 {+ comm. and assoc.}

= �1 + s ∗ �2 {concluding contexts}

and ¬resourceAllocator(t) as required, from the induction.
• Ctxt = let (x, y) = Ctxt in t2 the same as above, modulo the additional free variables for x and y in the scope of t2;
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• Ctxt = (Ctxt′, t′) where Ctxt{t} = (Ctxt′{t}, t′). i.e., with premise derivation:

�′
1 
 Ctxt′{t} : A′ �′

2 
 t′ : B′

�′
1 + �′

2 
 (Ctxt′{t}, t′) : A′ ⊗ B′
⊗i

where � = �′
1 + �′

2.
By induction on the first premise, then there are two case:
– (first disjunct) We have �′′

1, �′′
2 such that �′′

1, x : A 
 Ctxt′{x} : A′ and �′′
2 
 t : A such that �′

1 = �′′
1 + �′′

2.
We can then conclude with:

�′′
1, x : A 
 Ctxt′{x} : A′ �′

2 
 t′ : B′

�′′
1 + �′

2, x : A 
 (Ctxt′{t}, t′) : A′ ⊗ B′
⊗i

and substitute �′′
2 
 t : A (from the induction) where �1 = �′′

1 + �′
2 and �2 = �′′

2 therefore:

�= �′
1 + �′

2 {premise }
= �′′

1 + �′′
2 + �′

2 {induction �′
1 }

= �′′
1 + �′

2 + �′′
2 {+ comm. and assoc.}

= �1 + �2 {concluding contexts}

– (second disjunct) We have ¬resourceAllocator(t) and �′′
1, �′′

2 such that �′′
1, x : [A]s 
 Ctxt′{x} : A′ and [�′′

2] 
 t : A such 
that �′

1 = �′′
1 + s ∗ �′′

2.
We can then conclude with:

�′′
1, x : [A]s 
 Ctxt′{x} : A′ �′

2 
 t′ : B′

�′′
1 + �′

2, x : [A]s 
 (Ctxt′{t}, t′) : A′ ⊗ B′
⊗i

and substitute [�′′
2] 
 t : A (from the induction) where �1 = �′′

1 + �′
2 and �2 = �′′

2 therefore:

�= �′
1 + �′

2 {premise }
= �′′

1 + s ∗ �′′
2 + �′

2 {induction �′
1 }

= �′′
1 + �′

2 + s ∗ �′′
2 {+ comm. and assoc.}

= �1 + s ∗ �2 {concluding contexts}

and ¬resourceAllocator(t) as required, from the induction.
• Ctxt = (v, Ctxt′) where Ctxt{t} = (v, Ctxt′{t}). i.e., with premise derivation:

�′
1 
 v : A′ �′

2 
 Ctxt′{t} : B′

�′
1 + �′

2 
 (v,Ctxt′{t}) : A′ ⊗ B′
⊗i

where � = �′
1 + �′

2.
By induction on the second premise, then there are two case:
– (first disjunct) We have �′′

1, �′′
2 such that �′′

1, x : A 
 Ctxt′{x} : A′ and �′′
2 
 t : A such that �′

2 = �′′
1 + �′′

2.
We can then conclude with:

�′
1 
 v : A′ �′′

1, x : A 
 Ctxt′{x} : B′

(�′
1 + �′′

1), x : A 
 (v,Ctxt′{x}) : A′ ⊗ B′
⊗i

and substitute �′′
2 
 t : A (from the induction) where �1 = �′

1 + �′′
1 and �2 = �′′

2 therefore:

�= �′
1 + �′

2 {premise }
= �′

1 + �′′
1 + �′′

2 {induction �′
1 }

= �1 + �2 {concluding contexts}

– (second disjunct) We have ¬resourceAllocator(t) and �′′
1, �′′

2 such that �′′
1, x : [A]s 
 Ctxt′{x} : A′ and [�′′

2] 
 t : A such 
that �′

2 = �′′
1 + s ∗ �′′

2.
We can then conclude with:

�′
1 
 v : A′ �′′

1, x : [A]s 
 Ctxt′{x} : B′

(�′
1 + �′′

1), x : [A]s 
 (v,Ctxt′{x}) : A′ ⊗ B′
⊗i

and substitute [�′′
2] 
 t : A (from the induction) where �1 = �′

1 + �′′
1 and �2 = �′′

2 therefore:

�= �′
1 + �′

2 {premise }
= �′

1 + �′′
1 + s ∗ �′′

2 {induction �′
1 }

= �1 + s ∗ �2 {concluding contexts}

and ¬resourceAllocator(t) as required, from the induction. �
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Lemma 7 (Context application (linear)).

�1, x : A 
 Ctxt{x} : B

∧ �2 
 t : A

=⇒ �1 + �2 
 Ctxt{t} : B

Proof. By induction on the structure of evaluation contexts

• Ctxt =−, i.e., the premise is:

x : A 
 x : A
var

(ctxt)

(i.e., �1 = · and A = B).
Then the conclusion follows by Ctxt{t} = t therefore the second premise provides the conclusion.

• Ctxt = Ctxt′ t′ where Ctxt{x} = Ctxt′{x} t′ i.e., with premise derivation:

�′
1, x : A 
 Ctxt′{x} : A′ � B �′

2 
 t′ : A′

(�′
1 + �′

2), x : A 
 Ctxt′{x} t′ : B
�e

By induction on the first premise, yielding: �′
1 + �2 
 Ctxt′{t} : A′ � B therefore the conclusion can be constructed as:

�′
1 + �2 
 Ctxt′{t} : A′ � B �′

2 
 t′ : A′

(�′
1 + �2)+ �′

2 
 Ctxt′{t} t′ : B
�e

which by commutativity and associativity of + matches the conclusion.
• Ctxt = v Ctxt′ where Ctxt{x} = v Ctxt′{x} i.e., with premise derivation:

�′
1 
 v : A′ � B �′

2, x : A 
 Ctxt′{x} : A′

(�′
1 + �′

2), x : A 
 v Ctxt′{x} : B
�e

By induction on the second premise, yielding: �′
2 + �2 
 Ctxt′{t} : A′ therefore the conclusion can be constructed as:

�′
1 
 v : A′ � B �′

2 + �2 
 Ctxt′{t} : A′

(�′
1 + �′

2)+ �2 
 v Ctxt′{t} : B
�e

satisfying the goal of the lemma.
• Ctxt = [Ctxt′] where Ctxt{x} = [Ctxt′{x}] i.e., with premise derivation:

[�′
1] 
 Ctxt′{x} : A′

r ∗ �′
1 
 [Ctxt′{x}] :�rA′

pr

where �′
1 must contain x. However, this leads to a contradiction since there cannot possibly be a linear assumption x

in the conclusion due to the form of the typing. Therefore, the premise is false and this case is trivial.
• Ctxt = let [y] = Ctxt′ in t2 where Ctxt{x} = let [y] = Ctxt′{x} in t2. i.e., with premise derivation:

�′
1, x : A 
 Ctxt′{x} :�rA′ �′

2,y : [A′]r 
 t2 : B

(�′
1 + �′

2), x : A 
 let [y] = Ctxt′{x} in t2 : B
elim

By induction on the first premise, yielding: �′
1 + �2 
 Ctxt′{t} :�rA′ . Therefore the conclusion can be constructed as:

�′
1 + �2 
 Ctxt′{t} :�rA′ �′

2,y : [A′]r 
 t2 : B

(�′
1 + �2)+ �′

2 
 let [y] = Ctxt′{t} in t2 : B
elim

which by commutativity and associativity of + matches the goal.
• Ctxt = let unit = Ctxt′ in t2 where Ctxt{x} = let unit = Ctxt′{x} in t2. i.e., with premise derivation:

�′
1, x : A 
 Ctxt′{x} : 1 �′

2 
 t2 : B

(�′
1 + �′

2), x : A 
 let [y] = Ctxt′{x} in t2 : B
elim

By induction on the first premise, yielding: �′
1 + �2 
 Ctxt′{t} :�rA′ . Therefore the conclusion can be constructed as:

�′
1 + �2 
 Ctxt′{t} : 1 �′

2 
 t2 : B

(�′
1 + �2)+ �′

2 
 let [y] = Ctxt′{t} in t2 : B
elim

which by commutativity and associativity of + matches the goal.
32



D. Marshall and D. Orchard Information and Computation 301 (2024) 105234
• Ctxt = let (x, y) = Ctxt in t2 the same as above, modulo the additional free variables for x and y in the scope of t2;
• Ctxt = (Ctxt′, t′) where Ctxt{x} = (Ctxt′{x}, t′). i.e., with premise derivation:

�′
1, x : A 
 Ctxt′{x} : A′ �′

2 
 t′ : B′

(�′
1 + �′

2), x : A 
 (Ctxt′{x}, t′) : A′ ⊗ B′
⊗i

By induction on the first premise then �′
1 + �2 
 Ctxt′{t} : A′ . Therefore the goal can be constructed as:

�′
1 + �2 
 Ctxt′{t} : A′ �′

2 
 t′ : B′

(�′
1 + �2)+ �′

2 
 (Ctxt′{x}, t′) : A′ ⊗ B′
⊗i

satisfying the goal by commutativity and associativity of +.
• Ctxt = (v, Ctxt′) where Ctxt{x} = (v, Ctxt′{x}). i.e., with premise derivation:

�′
1 
 v : A′ �′

2, x : A 
 Ctxt′{x} : B′

(�′
1 + �′

2), x : A 
 (v,Ctxt′{x}) : A′ ⊗ B′
⊗i

By induction on the second premise we have �′
2 + �2 
 Ctxt′{t} : B′ . Therefore the goal can be constructed as:

�′
1 
 v : A′ �′

2 + �2 
 Ctxt′{t} : B′

�′
1 + (�′

2 + �2) 
 (v,Ctxt′{x}) : A′ ⊗ B′
⊗i

satisfying the goal by associativity of +. �
Lemma 8 (Context application (graded)).

�1, x : [A]r 
 Ctxt{x} : B

∧ [�2] 
 t : A

∧¬resourceAllocator(t)

=⇒ �1 + r ∗ �2 
 Ctxt{t} : B

Proof. By induction on the structure of evaluation contexts and their typing.
Note that for all possible contexts, it is possible that typing is by (non-syntax directed) (approx) rule and thus we have:

�1, x : [A]s 
 t′ : B s� r

�1, x : [A]r 
 t′ : B
approx

Then by induction on the premise we have �1 + s ∗ �2 
 t′ : B.
Let �2 = xi : [Ai]si for 1 ≤ i ≤ |�2| since by the premise every assumption is graded in the context. Then we can then 

construct the conclusion as follows:

�1 + s ∗ �2 
 t′ : B

si � si
refl

s� r

s ∗ si � r ∗ si
monoton.+unit

�1 + r ∗ �2 
 t′ : B
approx*

The rest is by induction now we have considered this possibility at each context term:

• Ctxt =−.
There are therefore two possibilities for the derivation of the premise:
– (var/der combination)

x : A 
 x : A
var

x : [A]1 
 x : A
der

(i.e., �1 = · and A = B and r = 1).
Since 1 ∗ �2 = �2 and since Ctxt{t2} = t2 then we can conclude with the second premise �2 
 t2 : B
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– (var/der/approx combination)

x : A 
 x : A
var

x : [A]1 
 x : A
der

1� r

x : [A]r 
 x : A
approx

(i.e., �1 = · and A = B).
Let �2 = xi : [A]si (since by the premise every assumption is graded in the context). Then we can then construct the 
conclusion as follows:

�2 
 t : A
(second premise)

si � si
refl

1� r

si � r ∗ si
monoton.+unit

r ∗ �2 
 t : A
approx*

• Ctxt = Ctxt′ t′ where Ctxt{x} = Ctxt′{x} t′ . i.e., with premise derivation:

�′
1, x : [A]s1 
 Ctxt′{x} : A′ � B �′

2, x : [A]s2 
 t′ : A′

(�′
1 + �′

2), x : [A]s1+s2 
 Ctxt′{x} t′ : B
�e

i.e., where r = s1 + s2. This derivation applies without loss of generality here for application since we can set s2 = 0 in 
the case that x �∈ FV(t′).
By induction on both premise we attain:

�′
1 + s1 ∗ �2 
 Ctxt′{t} : A′ � B (ih1)

�′
2 + s2 ∗ �2 
 t′ : A′ (ih2)

From which we construct the concluding judgment:

�′
1 + s1 ∗ �2 
 Ctxt′{t} : A′ � B �′

2 + s2 ∗ �2 
 t′ : A′

�′
1 + s1 ∗ �2 + �′

2 + s2 ∗ �2 
 Ctxt′{t} t′ : B
�e

which since r = s1 + s2, and by distributivity of ∗ over +, and commutativity and associativity of + yields: �′
1 + �′

2 +
r ∗ �2 
 Ctxt′{t} t′ : B.

• Ctxt = v Ctxt′ where Ctxt{x} = v Ctxt′{x} i.e., with premise derivation:

�′
1, x : [A]s1 
 v : A′ � B �′

2, x : [A]s2 
 Ctxt′{x} : A′

(�′
1 + �′

2), x : [A]s1+s2 
 v Ctxt′{x} : B
�e

This case proceeds as above by induction on both premises.
• Ctxt = [Ctxt′] where Ctxt{x} = [Ctxt′{x}] i.e., with premise derivation:

¬resourceAllocator(Ctxt′{x}) [�′
1], x : [A]s2 
 Ctxt′{x} : A′

s1 ∗ (�′
1, x : [A]s2) 
 [Ctxt′{x}] :�rA′

pr’

i.e., where r = s1 ∗ s2 and �1 = s1 ∗ �′
1

By induction on the second premise we attain:

�′
1 + s2 ∗ �2 
 Ctxt′{t} : A′ (ih)

From which we construct the concluding judgment:

Lemma 4

¬resourceAllocator(Ctxt′{t}) �′
1 + s2 ∗ �2 
 Ctxt′{t} : A′

s1 ∗ (�′
1 + s2 ∗ �2) 
 [Ctxt′{t}] :�rA′

pr’

which by distributivity of ∗ over + and associativity of ∗ yields: s1 ∗�′
1+(s1 ∗ s2)∗�2 
 [Ctxt′{t}] :�rA′ . and by r = s1∗s2

and �1 = s1 ∗ �′
1 yields the goal: �1 + r ∗ �2 
 [Ctxt′{t}] : A′

• Ctxt = let [y] = Ctxt′ in t2 where Ctxt{x} = let [y] = Ctxt′{x} in t2. i.e., with premise derivation:

�′
1, x : A 
 Ctxt′{x} :�rA′ �′

2,y : [A′]r 
 t2 : B

(�′
1 + �′

2), x : A 
 let [y] = Ctxt′{x} in t2 : B
elim

Proceeds by induction similarly to the (App-L) case, with no extra context manipulation necessary.
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• Ctxt = let unit = Ctxt′ in t2 where Ctxt{x} = let unit = Ctxt′{x} in t2. i.e., with premise derivation:

�′
1, x : A 
 Ctxt′{x} : 1 �′

2 
 t2 : B

(�′
1 + �′

2), x : A 
 let [y] = Ctxt′{x} in t2 : B
elim

Proceeds by induction similarly to the (App-L) case, with no extra context manipulation necessary.
• Ctxt = let (y, z) = Ctxt′ in t2 where Ctxt{x} = let (y, z) = Ctxt′{x} in t2. i.e., with premise derivation:

�′
1, x : A 
 Ctxt′{x} : A1 ⊗ A2 �′

2,y : A1, z : A2 
 t2 : B

(�′
1 + �′

2), x : A 
 let (y, z)= Ctxt′{x} in t2 : B
elim

Proceeds by induction similarly to the (App-L) case, with no extra context manipulation necessary.
• Ctxt = (Ctxt′, t′) where Ctxt{x} = (Ctxt′{x}, t′). i.e., with premise derivation:

�′
1, x : A 
 Ctxt′{x} : A′ �′

2 
 t′ : B′

(�′
1 + �′

2), x : A 
 (Ctxt′{x}, t′) : A′ ⊗ B′
⊗i

Proceeds by induction similarly to the (App-L) case, with no extra context manipulation necessary.
• Ctxt = (v, Ctxt′) where Ctxt{x} = (v, Ctxt′{x}). i.e., with premise derivation:

�′
1 
 v : A′ �′

2, x : A 
 Ctxt′{x} : B′

(�′
1 + �′

2), x : A 
 (v,Ctxt′{x}) : A′ ⊗ B′
⊗i

Proceeds by induction similarly to the (App-R) case, with no extra context manipulation necessary. �
Lemma 9. Value lemma

Given � 
 v : A then, depending on the type, the shape of v can be inferred:

• A = A′ � B then v = λx.v ′ or a partially applied primitive term p.
• A =�rA′ then v = [v ′].
• A = A′ ⊗ B then v = (v1, v2).
• A = 1 then v = unit.
• A = Chan P then v = c.

Proof. Recall that the value terms sub-grammar is:

v ::= (v1,v2) | unit | [v] | λx.v | c | p (value terms sub-grammar)

where p are partially-applied primitives. In other words,

p ::= close | send | send c | receive | forkLinear | forkNonLinear

| forkReplicate | forkReplicate c

| forkMulticast | forkMulticast c

We then proceed by case analysis on the type A to match the structure of the lemma. In each case we must consider 
what possible values can be assigned the type A and by which rules.

In all cases, there exist additional derivations based on dereliction, weakening and approximation, e.g., for the case where 
A = A′ � B:

�, x : A′ 
 t : A′ � B

�, x :�1A′ 
 t : A′ � B
der

�, x : A′ 
 t : A′ � B

�, x :�1A′,0 ∗� 
 t : A′ � B
der

�,y :�rA′′,�′, x : A′ 
 t : A′ � B r� s

�,y :�sA′′,�′, x : A′ 
 t : A′ � B
der

In all of these cases we can apply induction on the premise to get the result since the term is preserved between the 
premise and the conclusion.

We elide handling this separately each time in the cases that follow as the reasoning through dereliction is the same 
each time.
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• A = A′ � B then there are two classes of possible typing:
– Abstract term:

�, x : A′ 
 v′ : B

� 
 λx.v′ : A′ � B
�i

thus v = λx.v′ as in the lemma statement.
– Primitive term p formed by an application of zero or more values to a primitive operation, of which there are then 

ten possibilities:

1.

∅ 
 close : Chan End � 1
close

then v = close.

2.

∅ 
 send : A⊗ Chan Send A P � Chan P
send

then v = send.

3.

·
c : Chan P 
 c : Chan P

var

∅ 
 send : A⊗ Chan Send A P � Chan P
send

c : Chan P 
 send c : A � Chan P
�e

then v = send c.

4.

∅ 
 receive : Chan Recv A P � A⊗ Chan P
recv

then v = receive.

5.

∅ 
 forkLinear : (Chan P � 1) � Chan P
fork

then v = forkLinear.

6.

∅ 
 forkNonLinear : (�rChan P � 1) ��r(Chan P)
forkNonLin

then v = forkNonLinear.

7.

ReceivePrefix(P)

∅ 
 forkReplicate :�0..n(Chan P � 1) � N n � Vec n (�0..1(Chan P))
forkRep

then v = forkReplicate.

8.

·
c : Chan P 
 c : Chan P

var

c :�0..1Chan P 
 [c] :�0..1Chan P
pr ReceivePrefix(P)

∅ 
 forkReplicate :�0..n(Chan P � 1) � N n � Vec n (�0..1(Chan P))
forkRep

c :�0..1Chan P 
 forkReplicate [c] : N n � Vec n (Chan P)
�e

then v = forkReplicate [c].
9.

Sends(P)

∅ 
 forkMulticast : (Chan (GradednP) � 1) � N n � Vec n (Chan P)
forkMulti

then v = forkMulticast.
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10.

·
c : Chan (GradednP) 
 c : Chan (GradednP)

var Sends(P)

∅ 
 forkMulticast : (Chan (GradednP) � 1) � N n � Vec n (Chan P)
forkMulti

c : Chan (GradednP) 
 forkMulticast c : N n � Vec n (Chan P)
�e

then v = forkMulticast c.
• A =�rA′ then there is only one possible non-dereliction typing of a value at that type:

� 
 v′ : A′

r ∗ � 
 [v′] :�rA′
pr

thus v = [v′] as in the lemma statement.
• A = A′ ⊗ B then there is only one possible non-dereliction typing of a value at that type:

�1 
 v1 : A′ �2 
 v2 : B

�1 + �2 
 (v1,v2) : A′ ⊗ B
⊗i

thus v = (v1, v2) as in the lemma statement.
• A = 1 then there is only one possible non-dereliction typing of a value at that type:

∅ 
 unit : 1
uniti

thus v = unit as in the lemma statement.
• A = Chan P then the only possible typing that is a value is given by:

·
c : Chan P 
 c : Chan P

var

thus v = c as in the lemma statement, regardless of the protocol P. �
Appendix C. Progress proof

Theorem 1 (Progress terms).

� 
 t : A

∧ � 
 C
∧ buffered(C,�)

∧ � 
 P : B

=⇒ value(t)∨ ∃t′,C′,P ′. (P | t; C) � (P ′ | t′; C′)

Proof. We prove this by induction on the three judgments forming the assumptions.
First, we case split on the typing of process configurations: � 
 P : B.

• (cons)

�1,�1 
 P : A
�2,�2 
 t : B

�1 + �2,�1 +�2 
 P | tR : A
consR

In this case, we can write the process configuration P as P ′ | t′′ , or in other words as another process configuration P ′
extended with some term t′′ .
By induction, there are two possibilities here: either t′′ is itself a value, or there exists some reduction (P ′; C) �
(P ′′; C′).
If there is such a reduction, then we can make a global reduction using the following rule:

(P; C) � (P ′; C′)
(P | t; C) � (P ′ | t; C′) PAR

and the overall progress theorem is satisfied.
Otherwise, we must consider the possible reductions for the additional term t.
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• (empty)

∅ 
 · : ⊥ empty

Since the process configuration is empty in this case, it cannot make any reductions, so again we only need to consider 
the possible reductions originating from the term t .
We then induct on the last step of the typing derivation �1 
 t : A. Note that in some cases the process and channel 
configurations do not come into play, in which case the proof proceeds roughly the same as the standard progress 
theorem on terms; either t is a value, in which case the theorem holds directly by induction, or we can take a step 
t � t′ , in which case we will be able to take a global step via the Reduce rule. In these cases we can generally ignore 
the presence of the runtime context �1.
– (var)

x : A 
 x : A
var

Trivial since the variable x cannot be reduced and so is necessarily a value.
– (abs)

�, x : A 
 t : B

� 
 λx.t : A � B
�i

Trivial since (λx.t) is already a value.
– (app)

�1 
 t1 : A � B
�2 
 t2 : A

�1 + �2 
 t1 t2 : B
�e

By induction on the first premise, there are two possibilities: either t1 = v for some value v or t1 � t′1 for some t′1.
In the first case, by the value lemma there are eleven cases to consider.

1. t1 = λx.t′1. Here, there are two possibilities: either t2 = v for some value v or t2 � t′2 for some t′2.
In the first case, we can reduce by Reduce using the reduction:

(λx.t)v � t[v/x]�β

In the second case, since λx.t′1 is a value then by induction on the premise we can reduce by Reduce using the 
reduction:

t � t′

v t � v t′
�prim

2. t1 = close, where A = Chan End. Therefore, we induct on the second argument. There are two cases.
∗ t2 is a value. Then, by the value lemma, t2 = c and the runtime typing derivation has two possible (consequen-

tial) specialisations:

(a)

·
c : Chan End 
 c : Chan End

var

∅ 
 close : Chan End � 1
close

c : Chan End 
 close c : 1
�e

Therefore, by Lemma 7 our overall succedent is of the form �′
2, c : Chan End 
 Ctxt{close c} : A.

By inversion on the typing of channel configurations, we necessarily have:

� 
 C
�, c :r Chan End 
 C, c = 〈〉 empty

Therefore, there is a reduction as follows:

1 CLOSE

(P | Ctxt{close c}; C, c = 〈〉) � (P | Ctxt{unit}; C)
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(b) ·
c :∗ Chan End 
 c : Chan End

varS

∅ 
 close : Chan End � 1
close

c :∗ Chan End 
 close c : 1
�e

Therefore, by Lemma 7 our overall succedent is of the form �′
2, c :∗ Chan End 
 Ctxt{close c} : A.

There is then a reduction as follows:

(P | Ctxt{close c}; C, c∗ = �v) � (P | Ctxt{unit}; C, c∗ = �v)
SHAREDCLOSE

∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
close t2 � close t′2

�prim

3. t1 = send, where A = Chan (Send A′ P) � A′ � Chan P. Therefore, we induct on the second argument. There are 
two cases.
∗ t2 is a value. Then, by the value lemma, t2 = c and so t1 t2 = send c which is also a value.
∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
send t2 � send t′2

�prim

4. t1 = send c, where A = A′ � Chan P. Therefore, we induct on the second argument. There are two cases.
∗ t2 = x for some value x. The runtime typing derivation specialises to:

. . .

c :r Chan (Send A′ P) 
 send c : A′ � Chan P
�e

·
∅ 
 v : A′

var

c :r Chan (Send A′ P) 
 send c x : Chan P
�e

Therefore, by Lemma 7 our overall succedent is of the form �′
2, c :r Chan (Send A′ P) 
 Ctxt{send c x} : A.

By inversion, channel configuration typing must be of the form:

�1 
 v : A
�1,�2, c :r Chan P 
 C, c = �v : v

�1,�2, c :r Chan (Send A P) 
 C, c = �v send

with � =�1, �2.
In this case, there is then a reduction as follows:

(P | Ctxt{send c v}; C, c = �v) � (P | Ctxt{c}; C, c = �v : v)
SEND

∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
send c t2 � send c t′2

�prim

5. t1 = receive, where A = Chan (Recv A′ P) � A′ ⊗ Chan P. Therefore, we induct on the second argument. There are 
two cases.
∗ t2 is a value. Then, by the value lemma, v2 = c and the runtime typing derivation refines to:

. . .

c :r Chan (Recv A′ P) 
 c : Chan (Recv A′ P)
var

∅ 
 receive : Chan Recv A P � A⊗ Chan P
recv

c :r Chan (Recv A′ P) 
 receive c : A′ ⊗ Chan P
�e

Therefore, by Lemma 7 our overall succedent is of the form �′
2, c :r Chan (Recv A′ P) 
 Ctxt{receive c} : A.

Now, since the channel configuration C must be buffered with respect to �, the channel c cannot be empty, 
and so it must contain at least one value v . Hence, there is only one possibility for the channel configuration 
typing:

�1 
 v : A
�1,�2, c :r Chan P 
 C, c = �v

r
recv
�1,�2, c : Chan (Recv A P) 
 C, c = v : �v
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with � =�1, �2.
Then there is a reduction as follows:

(P | Ctxt{receive c}; C, c = v : �v) � (P | Ctxt{(v, c)}; C, c = �v)
RECV

∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
receive t2 � receive t′2

�prim

6. t1 = forkLinear, where A = (Chan P � 1) � Chan P. Therefore, we induct on the second argument. There are two 
cases.
∗ t2 is a value. Then, by the value lemma, t2 = λx.t′2 for some t′2 and we can construct the following runtime 

typing derivation:

x : Chan P 
 t′2 : 1

∅ 
 λx.t′2 : Chan P � 1
�i

∅ 
 forkLinear : (Chan P � 1) � Chan P
fork

∅ 
 forkLinearλx.t′2 : Chan P
�e

Therefore, by Lemma 7 our overall succedent is of the form �′
2 
 Ctxt{forkLinearλx.t′2} : A.

Then there is a reduction as follows:

#c

(P | Ctxt{forkLinear (λx.t)}; C) � (P | t[c/x]◦ | Ctxt{c}; C, c = 〈〉, c = 〈〉) FORKLINEAR

where the channel configuration is typed �′
2 = C and we select a fresh name c for the channel being forked.

∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
forkLinear t2 � forkLinear t′2

�prim

7. t1 = forkNonLinear, where A = (�r(Chan P) � 1) � �r(Chan P). Therefore, we induct on the second argument. 
There are two cases.
∗ t2 is a value. Then, by the value lemma, t2 = λx.t′2 for some t′2 and we can construct the following runtime 

typing derivation:

x :�r(Chan P) 
 t′2 : 1

∅ 
 λx.t′2 :�r(Chan P) � 1
�i

∅ 
 forkNonLinear : (�rChan P � 1) ��r(Chan P)
forkNonLin

∅ 
 forkNonLinearλx.t′2 :�r(Chan P)
�e

(C.1)

Note that this derivation cannot include any instances of the approx rule, because of the ExactSemiring con-
straint present in the type signature of forkNonLinear, and so the grade r must remain the same throughout 
the typing.
Therefore, by Lemma 7 our overall succedent is of the form �′

2 
 Ctxt{forkNonLinearλx.t′2} : A.
Then there is a reduction as follows:

#c

(P | Ctxt{forkNonLinear (λx.t)}; C)� (P | Ctxt{[c]} | t[[c]/x]◦; C, c∗ = 〈 〉, c∗ = 〈 〉) FORKNONLINEAR

where the channel configuration is typed �′
2 = C and we select a fresh name c for the channel being forked.

∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
forkNonLinear t2 � forkNonLinear t′2

�prim

8. t1 = forkReplicate, where A = �0..1(Chan P � 1) � N n � Vec n (Chan P). Therefore, we induct on the second 
argument. There are two cases.
∗ t2 is a value. Then, by the value lemma, t2 = [λc.t′2] for some t′2 and t1 t2 is forkReplicate [λc.t′2] which is also a 

value.
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∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
forkReplicate t2 � forkReplicate t′2

�prim

9. t1 = forkReplicate c, where A = N n � Vec n (Chan P). Therefore, we induct on the second argument. There are 
two cases.
∗ t2 is a value. Then, by the value lemma, t2 = λx.t′2 for some t′2 and the runtime typing derivation refines to:

x : Chan P 
 t′2 : 1

∅ 
 λx.t′2 : Chan P � 1
�i

∅ 
 [λx.t′2] :�0..n(Chan P � 1)
pr ReceivePrefix(P)

∅ 
 forkReplicate :�0..n(Chan P � 1)� N n � Vec n (�0..1(Chan P))
forkRep

∅ 
 forkReplicate [λx.t′2] : N n � Vec n (�0..1(Chan P))
�e

∅ 
 forkReplicate [λx.t′2]n : Vec n (�0..1(Chan P))
�e

Therefore, by Lemma 7 our overall succedent is of the form �′
2 
 Ctxt{forkReplicate [λx.t′2] n} : A.

Then there is a reduction as follows:

#c1 . . .#cn

(P | Ctxt{forkReplicate [λx.t]n}; C)� (P | Ctxt{〈[c1], .. , [cn]〉} | Wch (c1 �→ λx.t) | .. | Wch (cn �→ λx.t); C, c1 = 〈〉, .., cn = 〈〉, c1 = 〈〉, .., cn = 〈〉) FORKREPLICATE

where the channel configuration is typed �′
2 = C and we select fresh names c and c1 . . . cn for the channels 

being forked.
∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
forkReplicate c t2 � forkReplicate c t′2

�prim

10. t1 = forkMulticast, where A = (Chan (GradednP) � 1) � N n � Vec n (Chan P). Therefore, we induct on the second 
argument. There are two cases.
∗ t2 is a value. Then, by the value lemma, t2 = λc.t′2 for some t′2 and t1 t2 is forkMulticastλc.t′2 which is also a 

value.
∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
forkMulticast t2 � forkMulticast t′2

�prim

11. t1 = forkMulticast c, where A = N n � Vec n (Chan P). Therefore, we induct on the second argument. There are two 
cases.
∗ t2 is a value. Then, by the value lemma, t2 = λx.t′2 for some t′2 and the runtime typing derivation refines to:

x : Chan (GradedrP) 
 t′2 : 1

∅ 
 λx.t′2 : Chan (GradedrP) � 1
�i

∅ 
 forkMulticast (λx.t′2) : N n � Vec n (Chan P)
�e Sends(P)

∅ 
 forkMulticast : (Chan (GradednP) � 1)� N n � Vec n (Chan P)
forkMulti

∅ 
 forkMulticast (λx.t′2)n : Vec n (Chan P)
�e

Therefore, by Lemma 7 our overall succedent is of the form �′
2 
 Ctxt{forkMulticastλx.t′2 n} : A.

Then there is a reduction as follows:

#c #c1 . . .#cn

(P | Ctxt{forkMulticast (λx.t)n}; C) � (P | Ctxt{〈c1, .. , cn〉} | t[c/x]◦ | Fwd (c �→ c1, .., cn); C, c = 〈〉, c = 〈〉, c1 = 〈〉, .., cn = 〈〉, c1 = 〈〉, .., cn = 〈〉) FORKMULTICAST

where the channel configuration is typed �′
2 = C and we select fresh names c and c1 . . . cn for the channels 

being forked.
∗ t2 is not a value, and has a reduction t2 � t′2 for some t′2. Then we can reduce by Reduce using the reduction:

t2 � t′2
forkMulticast c t2 � forkMulticast c t′2

�prim

In the second case, by induction on the premise we can reduce by Reduce using the reduction:

t1 � t′1
t t � t′ t

�app
1 2 1 2
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– (pr)

� 
 t : A

r ∗ � 
 [t] :�rA
pr

There are two cases: either t = v for some value v , or t � t′ for some t′ .
In the first case, [v] is a value.
In the second case, we can reduce by Reduce using the reduction:

t � t′

[t]� [t′]��reduce

– (elim)

�1 
 t1 :�rA
�2, x : [A]r 
 t2 : B

�1 + �2 
 let [x] = t1 in t2 : B
elim

By induction on the first premise, there are two possibilities: either t1 = v for some value v or t1 � t′1 for some t′1.
In the first case, by the value lemma t1 = [v′] for some value v ′ . This refines the typing as follows:

∅ 
 v′ : A

∅ 
 [v′] :�rA
pr

x : [A]r 
 t2 : B

∅ 
 let [x] = [v′] in t2 : B
elim

Therefore, we can reduce by Reduce using the reduction:

let [x] = [v] in t � t[v/x]��β

In the second case, by induction on the premise we can reduce by Reduce using the reduction:

t1 � t′1
let [x] = t1 in t2 � let [x] = t′1 in t2

�let�

– (der)

�, x : A 
 t : B

�, x : [A]1 
 t : B
der

Goal achieved immediately by induction on the premise.
– (weak)

� 
 t : B

�,0 ∗ �′ 
 t : B
weak

Goal achieved immediately by induction on the premise.
– (approx)

�, x : [A]r,�′ 
 t : B
r� s

�, x : [A]s,�′ 
 t : B
approx

Goal achieved immediately by induction on the premise.
– (tensor)

�1 
 t1 : A
�2 
 t2 : B

�1 + �2 
 (t1, t2) : A⊗ B
⊗i

There are three cases: either t1 = v1 and t2 = v2 for some pair of values (v1, v2), t1 = v for some value v but t2 � t′2
for some t′2, or t1 � t′1 for some t′1.
In the first case, (v1, v2) is a value.
In the second case, we can reduce by Reduce using the reduction:

t2 � t′2
(v, t ) � (v, t′ )

�⊗reduceR

2 2
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In the third case, we can reduce by Reduce using the reduction:

t1 � t′1
(t1, t2) � (t′1, t2)

�⊗reduceL

– (pairElim)

�1 
 t1 : A⊗ A′
�2, x : A,y : A′ 
 t2 : B

�1 + �2 
 let (x,y)= t1 in t2 : B
⊗e

By induction on the first premise, there are two possibilities: either t1 = v for some value v or t1 � t′1 for some t′1.
In the first case, by the value lemma t1 = (v1, v2) for some pair of values (v1, v2). This refines the typing as follows:

∅ 
 v1 : A ∅ 
 v2 : A′

∅ 
 (v1,v2) : A⊗ A′
⊗i

x : A,y : A′ 
 t2 : B

∅ 
 let (x,y)= (v1,v2) in t2 : B
⊗e

Therefore, we can reduce by Reduce using the reduction:

let (x,y)= (v1,v2) in t3 � t3[v1/x][v2/y]�⊗β

In the second case, by induction on the premise we can reduce by Reduce using the reduction:

t1 � t′1
let (x,y)= t1 in t2 � let (x,y)= t′1 in t2

�let⊗

– (unit)

∅ 
 unit : 1
uniti

A value.
– (unitElim)

�1 
 t1 : 1
�2 
 t2 : B

�1 + �2 
 let unit = t1 in t2 : B
unite

By induction on the first premise, there are two possibilities: either t1 = v for some value v or t1 � t′1 for some t′1.
In the first case, by the value lemma t1 = unit and so we can reduce by Reduce using the reduction:

let unit = unit in t � t
�βunit

In the second case, by induction on the premise we can reduce by Reduce using the reduction:

t1 � t′1
let unit = t1 in t2 � let unit = t′1 in t2

�letunit �

A process configuration P contains all values, defined by the predicate values(P), if every process is either a value v or 
is a forwarder or watcher process.

Theorem 2 (Progress global config).

� 
 P : A ∧ � 
 C ∧ buffered(C,�)

=⇒ values(P)∨ ∃C′,P ′.(P; C) � (P ′; C′)

Proof. By induction on the two judgments forming the assumptions.
First, we case split on the typing of process configurations: � 
 P : A.

• (empty)

∅ 
 · : ⊥ empty

This case is trivial, as values(P) holds by default for an empty process configuration.
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• (cons)

�1,�1 
 P : A
�2,�2 
 t : B

�1 + �2,�1 +�2 
 P | tR : A
consR

Here, we can decompose P into P ′ | t. First, focus on the particular term t and apply Theorem 1.
Then, either t is a value or there exists some possible reduction (P | t; C) � (P ′ | t′; C′).
If we can make such a reduction, then the theorem is satisfied. If not, then apply induction to the smaller process 
configuration P ′ . We find that either values(P ′) holds or there exists a reduction (P ′; C) � (P ′′; C′).
If values(P ′), then since t is also a value we have values(P) and we are done.
Otherwise, we apply the following rule to find a reduction satisfying the theorem:

(P; C) � (P ′; C′)
(P | t; C) � (P ′ | t; C′) PAR

• (watch)

�1,�1 
 P : A �2, x : Chan (Recv A′ P),�2 
 t : 1

�1 + (0..1 ∗ �2),�1 +�2, c : Chan (Recv A′ P) 
 P | Wch (c �→ λx.t) : A
watch

By induction on the first assumption, we have either that values(P) or that there exists some reduction (P; C) �
(P ′; C′).
If there is such a reduction, we can make a global reduction as follows:

(P; C) � (P ′; C′)
(P | Wch (c �→ λx.t); C) � (P ′ | Wch (c �→ λx.t); C′) PAR

Otherwise, we must reduce on the watcher process itself. Note that due to the session typing of the channel in the 
runtime context, and the condition requiring that C is buffered, the channel configuration must be typed as follows:

�1 +�2 
 C �1 +�2 
 v : A′

�1 +�2, c : (Recv A′ P) 
 C, c = v : �v recv

(C.2)

Hence, we can construct the following global reduction:

(P | Wch (c �→ λx.t); C, c = v : �v) � (P | t[c/x]◦; C, c = v : �v)
WATCHER

• (forward)

Sends(P) �,� 
 P : A

�,�, c : Chan (GradednP), ci : Chan P 
 P | Fwd (c �→ c1, .., cn) : A
fwd

By induction on the first assumption, we have either that values(P) or that there exists some reduction (P; C) �
(P ′; C′).
If there is such a reduction, we can make a global reduction as follows:

(P; C) � (P ′; C′)
(P | Fwd (c �→ c1, .., cn); C) � (P ′ | Fwd (c �→ c1, .., cn); C′) PAR

Otherwise, we must reduce on the forwarder process itself. Note that due to the session typing of the channel in 
the runtime context, and the condition requiring that C is buffered, then the channel configuration must be typed as 
follows:

∅ 
 v : A′

∅ 
 [v] :�nA′
pr

�, c1 : Chan P, .., cn : Chan P, c : Chan P 
 C, c1 = �v1 : v, .., cn = �vn : v, c = �v
�, c1 : Chan (Send A P), .., cn : Chan (Send A P), c : Chan P 
 C, c1 = �v1, .., cn = �vn, c = �v send

n

�, c1 : Chan (Send A P), .., cn : Chan (Send A P), c : Chan (Recv (�nA′)P) 
 C, c1 = �v1, .., cn = �vn, c = [v] : �v recv

(C.3)

Hence, we can construct the following global reduction:

� � � � � � FORWARDER �
(P | Fwd (c �→ c1, .., cn); C, c = [v] : v, c1 = v1, .., cn = vn)� (P | Fwd (c �→ c1, .., cn); C, c = v, c1 = v1 : v, .., cn = vn : v)
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Appendix D. Preservation proof

Theorem 3 (Preservation).

�,� 
 P : A ∧ � 
 C ∧ (P; C) � (P ′; C′)
=⇒ ∃�′. �,�′ 
 P ′ : A ∧ �′ 
 C′

Proof. By induction on the three judgments forming the assumptions here.
We first case split on the typing of process configurations: �, � 
 P : A.

• (empty)

∅ 
 · : ⊥ empty

There is no reduction on the empty process configuration so this case is trivially true since the antecedent is false.
• (cons) We consider an abstraction over the two possibilities for extending a process configuration with a term which is 

either main or subordinate process:

�1,�1 
 t : B �2,�2 
 P : A

�1 + �2,�1 +�2 
 P | tR : A  R B
consR

where R abstracts over whether t is a subprocess ◦ or the main process • and A  R B selects the appropriate type 
depending on R, i.e.,

A  • B = B ∧ A =⊥
A  ◦ B = A ∧ B = 1

We then case on the reduction of process configurations consider the role R where pertinent.
– (send)

(P | Ctxt{send c v}; C, c = �v) � (P | Ctxt{c}; C, c = �v : v)
SEND

with process configuration typing:

�1,�1, c :r Chan (Send A P) 
 Ctxt{send c v} : B �2,�2 
 P : A

�1 + �2,�1 +�2, c :r Chan (Send A P) 
 P | Ctxt{send c v}R : A
consR

(D.1)

and channel configuration typing:

�3 
 v : A �3,�4, c :r Chan P 
 C, c = �v : v

�3,�4, c :r Chan (Send A P) 
 C, c = �v send

(D.2)

where (�3, �4) =�1 +�2.
We can then construct the consequent channel configuration typing given by the premise of (D.2):

�1 +�2, c :r Chan P 
 C, c = v : �v
From typing �1, �1 
 Ctxt{send c v} : B, and by Lemma 6 we have two cases:
1. Typing �′

1, �
′
1 
 send c v : A′′ and �′

2, y : A′′, �′
2 
 Ctxt{y} : B with �1 = �′

1 + �′
2 and �1 = �′

1 + �′
2, which by 

inversion must therefore be of the form:

. . . c : Chan (Send A′ P) 
 c : Chan (Send A′ P)
var

∅, c : Chan (Send A′ P) 
 send c : A′ � Chan P
�e ∅ 
 v : A′

∅, c : Chan (Send A′ P) 
 send c v : Chan P
�e

i.e., where A′′ = Chan P and �′
1 = · and �′

1 = c : Chan (Send A′ P).
Therefore, for the goal of this theorem we construct the typing:

∅, c : Chan P 
 c : Chan P
var
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By Lemma 7 then �′
2, �

′
2, c : Chan P 
 Ctxt{c} : B which is equal to �1, �′

2, c : Chan P 
 Ctxt{c} : B.
We then build the process configuration type:

�′
2,�

′
2, c : Chan P 
 Ctxt{c} : B �2,�2 
 P : A

�′
2 + �2,�

′
2 +�2, c : Chan P 
 P | Ctxt{c}R : A

consR

�1 + �2,�1 +�2, c : Chan P 
 P | Ctxt{c}R : A
≡

(D.3)

where the equality step follows by �1 =�′
1 +�′

2 =�′
2 and �1 = �′

1 + �′
2 = �′

2.
2. Typing [�′

1,�
′
1] 
 send c v : A′′ and �′

2, y : [A′′]r, �′
2 
 Ctxt{y} : B with �1 = r ∗�′

1 +�′
2 and �1 =�′

1 +�′
2, which by 

inversion must therefore be of the form:

c :∗ Chan (Send A′ P) 
 c : Chan (Send A′ P)
varChanS

c :∗ Chan (Send A′ P) 
 send c : A′ � Chan P
�e ∅ 
 v : A′

c :∗ Chan (Send A′ P) 
 send c v : Chan P
�e

i.e., where A′′ = Chan P and �′
1 = · and �′

1 = c :∗ Chan (Send A′ P).
Therefore, for the goal of this theorem we construct the typing:

c :∗ Chan P 
 c : Chan P
varChanS

By Lemma 8 then �′
2, �

′
2, c :∗ Chan P 
 Ctxt{c} : B which is equal to �1, �′

2, c :∗ Chan P 
 Ctxt{c} : B (since �1 =
r ∗ �′

1 + �′
2 = r ∗ ∅ + �′

2 = �′
2).

We then build the process configuration type:

�′
2,�

′
2, c :∗ Chan P 
 Ctxt{c} : B �2,�2 
 P : A

�′
2 + �2,�

′
2 +�2, c :∗ Chan P 
 P | Ctxt{c}R : A

consR

�1 + �2,�1 +�2, c :∗ Chan P 
 P | Ctxt{c}R : A
≡

(D.4)

where the equality step follows by �1 =�′
1 +�′

2 =�′
2 and �1 = r ∗ �′

1 + �′
2 = �′

2.
– (recv)

(P | Ctxt{receive c}; C, c = v : �v)� (P | Ctxt{(v, c)}; C, c = �v)
RECV

with process configuration typing:

�1,�1, c :r Chan (Recv A P) 
 Ctxt{receive c} : B �2,�2 
 P : A

�1 + �2,�1 +�2, c :r Chan (Recv A P) 
 P | Ctxt{receive c}R : A
consR

(D.5)

with channel configuration typing:

�3 
 v : A �3,�4, c :r Chan P 
 C, c = �v
�3,�4, c :r Chan (Recv A P) 
 C, c = v : �v recv

(D.6)

where (�3, �4) =�1+�2. (note that empty cannot be used in the root of this derivation as the reduction constraints 
the channel to start non-empty).
We then construct the consequent channel configuration typing given by the premise of (D.6):

�1 +�2, c :r Chan P 
 C, c = �v
From typing �1, �1 
 Ctxt{receive c} : B, and by Lemma 6 then there are two possible cases:
1. Typing �′

1, �
′
1 
 receive c : A′′ and �′

2, y : A′′, �′
2 
 Ctxt{y} : B with �1 = �′

1 + �′
2 and �1 = �′

1 + �′
2, which by 

inversion must therefore be of the form:

∅, c : Chan (Recv A P) 
 c : Chan (Recv A P)
var

∅, c : Chan (Recv A P) 
 receive c : (A ⊗ Chan P)
�e

where A′′ = (A ⊗ Chan P) and �′ = · and �′ = c : Chan (Recv A P).
1 1
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Therefore, for the goal of this theorem we construct the typing:

c : Chan P 
 c : Chan P
var ∅ 
 v : A′ (by (D.6))

c : Chan P 
 (v, c) : (A⊗ Chan P)
⊗i

By Lemma 7 then �′
2, �

′
2, c : Chan P 
 Ctxt{(v, c)} : B which is equal to �1, �′

2, c : Chan P 
 Ctxt{(v, c)} : B
We then construct the preserved process configuration typing:

�′
2,�

′
2, c : Chan P 
 Ctxt{(v, c)} : B �2,�2 
 P : A

�′
2 + �2,�

′
2 +�2, c : Chan P 
 P | Ctxt{(v, c)}R : A

consR

�1 + �2,�1 +�2, c : Chan P 
 P | Ctxt{(v, c)}R : A
≡

(D.7)

where the equality step follows by �1 =�′
1 +�′

2 =�′
2 and �1 = �′

1 + �′
2 = �′

2.
2. Typing [�′

1,�
′
1] 
 receive c : A′′ and �′

2, y : [A′′]r, �′
2 
 Ctxt{y} : B with �1 = r ∗ �′

1 + �′
2 and �1 = �′

1 +�′
2, which 

by inversion must therefore be of the form:

c :∗ Chan (Recv A P) 
 c : Chan (Recv A P)
varChanS

c :∗ Chan (Recv A P) 
 receive c : (A ⊗ Chan P)
�e

where A′′ = (A ⊗ Chan P) and �′
1 = · and �′

1 = c :∗ Chan (Recv A P).
Therefore, for the goal of this theorem we construct the typing:

c :∗ Chan P 
 c : Chan P
varChanS ∅ 
 v : A′ (by (D.6))

c :∗ Chan P 
 (v, c) : (A ⊗ Chan P)
⊗i

By Lemma 8 then �′
2, �

′
2, c :∗ Chan P 
 Ctxt{(v, c)} : B which is equal to �1, �′

2, c :∗ Chan P 
 Ctxt{(v, c)} : B (since 
�1 = r ∗ �′

1 + �′
2 = r ∗ ∅ + �′

2 = �′
2).

We then construct the preserved process configuration typing:

�′
2,�

′
2, c :∗ Chan P 
 Ctxt{(v, c)} : B �2,�2 
 P : A

�′
2 + �2,�

′
2 +�2, c :∗ Chan P 
 P | Ctxt{(v, c)}R : A

consR

�1 + �2,�1 +�2, c :∗ Chan P 
 P | Ctxt{(v, c)}R : A
≡

(D.8)

where the equality step follows by �1 =�′
1 +�′

2 =�′
2 and �1 = r ∗ �′

1 + �′
2 = �′

2.
– (close)

(P | Ctxt{close c}; C, c1 = 〈〉)� (P | Ctxt{unit}; C)
CLOSE

with process configuration typing:

�1,�1, c : Chan End 
 Ctxt{close c} : B �2,�2 
 P : A

�1 + �2,�1 +�2, c : Chan End 
 P | Ctxt{close c}R : A
consR

(D.9)

(i.e., c �∈ dom(�2)) with only one potential channel configuration typing:

�1 +�2 
 C
�1 +�2, c : Chan End 
 C, c1 = 〈〉 empty

(D.10)

The goal channel configuration �1 +�2 
 C is then given by the premise of (D.10).
From typing �1, �1 
 Ctxt{close c} : B, and by Lemma 6, and since we know here that c is a linear channel, then 
the typing factorises to the typing �′

1, �
′
1 
 close c : A′′ and �′

2, y : A′′, �′
2 
 Ctxt{y} : B with �1 = �′

1 + �′
2 and �1 =

�′
1 +�′

2, which by inversion must therefore be of the form:

c : Chan End 
 c : Chan End

c : Chan End 
 close c : 1
�e

where A′′ = 1 and �′ = · and �′ = c : Chan End.
1 1
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Therefore, for the goal of this theorem we construct the typing:

∅ 
 unit : 1
uniti

By Lemma 7 then �′
2, �

′
2 
 Ctxt{unit} : B.

We then construct the preserved process configuration typing:

�′
2,�

′
2 
 Ctxt{unit} : B �2,�2 
 P : A

�′
2 + �2,�

′
2 +�2 
 P | Ctxt{unit}R : A

consR

�1 + �2,�1 +�2 
 P | Ctxt{unit}R : A
≡

(D.11)

where the equality step follows by �1 =�′
1 +�′

2 =�′
2 and �1 = �′

1 + �′
2 = �′

2.
– (sharedClose)

(P | Ctxt{close c}; C, c∗ = �v)� (P | Ctxt{unit}; C, c∗ = �v)
SHAREDCLOSE

with process configuration typing:

�1,�1, c :∗ Chan End 
 Ctxt{close c} : B �2,�2 
 P : A

�1 + �2,�1 +�2, c :∗ Chan End 
 P | Ctxt{close c}R : A
consR

(D.12)

and channel configuration typing �1 +�2, c :∗ Chan End 
 C, c∗ = �v .
Since the reduction semantics preserves the channel configuration, this channel configuration typing then also pro-
vides the goal configuration typing as-is.
From typing �1, �1 
 Ctxt{close c} : B, and by Lemma 6, and since we know here that c is a non-linear channel, then 
the typing factorises to the typing [�′

1,�
′
1] 
 close c : A′′ and �′

2, y : [A′′]r, �′
2 
 Ctxt{y} : B with �1 = r ∗ �′

1 + �′
2 and 

�1 =�′
1 +�′

2, which by inversion must therefore be of the form:

c :∗ Chan End 
 c : Chan End

c :∗ Chan End 
 close c : 1
�e

where A′′ = 1 and �′
1 = · and �′

1 = c :∗ Chan End.
Therefore, for the goal of this theorem we construct the typing:

∅ 
 unit : 1
uniti

c :∗ Chan End 
 unit : 1
weakChanS

By Lemma 8 then �′
2, �

′
2, c :∗ Chan End 
 Ctxt{unit} : B.

We then construct the preserved process configuration typing:

�′
2,�

′
2, c :∗ Chan End 
 Ctxt{unit} : B �2,�2 
 P : A

�′
2 + �2,�

′
2 +�2, c :∗ Chan End 
 P | Ctxt{unit}R : A

consR

�1 + �2,�1 +�2, c :∗ Chan End 
 P | Ctxt{unit}R : A
≡

(D.13)

where the equality step follows by �1 =�′
1 +�′

2 =�′
2 and �1 = r ∗ �′

1 + �′
2 = �′

2.
– (fork)

#c

(P | Ctxt{forkLinear (λx.t)}; C) � (P | t[c/x]◦ | Ctxt{c}; C, c = 〈〉, c = 〈〉) FORKLINEAR

with process configuration typing:

�1,�1 
 Ctxt{forkLinear (λx.t)} : B �2,�2 
 P : A

�1 + �2,�1 +�2 
 P | Ctxt{forkLinear (λx.t)}R : A
consR

(D.14)

with channel configuration typing:

�1 +�2 
 C (D.15)

From typing �1, �1 
 Ctxt{forkLinear (λx.t)} : B, and by Lemma 6 there are two possibilities:
1. (second disjunct) (with Ctxt{forkLinear (λx.t)} factorising into a graded binding) Gives ¬resourceAllocator(forkLinear

(λx.t)) which is a contradiction, thus we can conclude trivial by ex falso.
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2. (first disjunct) Typing �′
1, �

′
1 
 forkLinear (λx.t) : A, which by inversion must therefore be of the form:

�′
1, x : Chan P,�′

1 
 t : 1

�′
1,�

′
1 
 (λx.t) : Chan P � 1

�i

�′
1,�

′
1 
 forkLinear (λx.t) : Chan (P)

�e
(D.16)

where A = Chan (P) and �′′
1, x : Chan (P), �′′

1 
 Ctxt{x} : B where �1 = �′
1 + �′′

1 and �1 =�′
1 +�′′

1.
Therefore, for the goal of this theorem we construct the typings:

∅, c : Chan (P) 
 c : Chan (P)
var

and

∅, c : Chan P 
 c : Chan P
var

(D.17)

By Lemma 7 then �′′
1, c : Chan (P) 
 Ctxt{c} : B.

We construct the goal channel configuration typing as:

�1 
 C
�1 +�2, c : Chan P 
 C, c = 〈〉 empty

�1 +�2, c : Chan P, c : Chan (P) 
 C, c = 〈〉, c = 〈〉 empty

with process configuration typing then given by:

�′′
1,�′′

1, c : Chan (P) 
 Ctxt{c} : B �2,�2 
 P : A

�′′
1 + �2,�

′′
1 +�2, c : Chan (P) 
 P | Ctxt{c}R : A

consR
(D.16) (D.17)

�′
1,�

′
1, c : Chan P 
 t[c/x] : 1

subst

�′′
1 + �2 + �′

1,�
′
1 +�2 +�′′

1, c : Chan P, c : Chan (P) 
 P | t[c/x]◦ | Ctxt{c}R : A
sub

�1 + �2,�1 +�2, c : Chan P, c : Chan (P) 
 P | t[c/x]◦ | Ctxt{c}R : A
≡

where disjointness conditions in the above for c and c are satisfied by the fact that c is fresh as per the semantics, 
and disjointness of the constituent contexts comes from their original disjointness being defined (e.g., �1 =�′

1 +
�′′

1).
– (forkNonLinear)

#c

(P | Ctxt{forkNonLinear (λx.t)}; C) � (P | Ctxt{[c]} | t[[c]/x]◦; C, c∗ = 〈 〉, c∗ = 〈 〉) FORKNONLINEAR

with process configuration typing:

�1,�1 
 Ctxt{forkNonLinear (λx.t)} : B �2,�2 
 P : A

�1 + �2,�1 +�2 
 P | Ctxt{forkNonLinear (λx.t)}R : A
consR

(D.18)

with channel configuration typing:

�1 +�2 
 C (D.19)

From typing �1, �1 
 Ctxt{forkNonLinear (λx.t)} : B, and by Lemma 6 there are two possibilities:
1. (second disjunct) (with Ctxt{forkNonLinear (λx.t)} factorising into a graded binding) Gives ¬resourceAllocator(fork-

NonLinear (λx.t)) which is a contradiction, thus we can conclude trivial by ex falso.
2. (first disjunct) There is a typing �′

1, �
′
1 
 forkNonLinear (λx.t) : A, which by inversion must therefore be of the form:

�′
1, x :�r(Chan P),�′

1 
 t : 1

�′
1,�

′
1 
 (λx.t) :�r(Chan P) � 1

�i

�′
1,�

′
1 
 forkNonLinear (λx.t) :�r(Chan (P))

�e
(D.20)

where A =�r(Chan (P)) and �′′
1, x :�r(Chan (P)), �′′

1 
 Ctxt{x} : B and where �1 = �′
1 + �′′

1 and �1 =�′
1 +�′′

1.
For the goal of this theorem we construct the typings:

∅, c :∗ Chan (P) 
 c : Chan (P)
var

∅, c :∗ Chan (P) 
 [c] :�r(Chan (P))
pr

(D.21)
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and

∅, c :∗ Chan P 
 c : Chan P
var

∅, c :∗ Chan P 
 [c] :�r(Chan P)
pr

(D.22)

By Lemma 7 then �′′
1, �′′

1, c :∗ Chan P 
 Ctxt{[c]} : B.
We then construct the consequent channel configuration typing:

�1 +�2 
 C
(D.19)

�1 +�2, c :∗ Chan P 
 C, c∗ = 〈 〉 empty

�1 +�2, c :∗ Chan P, c :∗ Chan P 
 C, c∗ = 〈 〉, c∗ = 〈 〉 empty

and process configuration:

�′′
1,�′′

1, c :∗ Chan P 
 Ctxt{[c]} : B �2,�2 
P : A

�′′
1 + �2,�

′′
1 +�2, c :∗ Chan P 
P | Ctxt{[c]}R : A

consR
(D.20) (D.22)

�′
1,�

′
1, c :∗ Chan P 
 t[[c]/x] : 1

graded-subst

�′
1 + �′′

1 + �2,�
′
1 +�′′

1 +�2, c :∗ Chan P, c :∗ Chan P 
P | Ctxt{[c]}R | t[[c]/x]◦ : A
sub

�1 + �2,�1 +�2, c :∗ Chan P, c :∗ Chan P 
P | Ctxt{[c]}R | t[[c]/x]◦ : A
≡

where disjointness conditions in the above for c and c are satisfied by the fact that c is fresh as per the semantics, 
and disjointness of the constituent contexts comes from their original disjointness being defined (e.g., �1 =�′

1 +
�′′

1.
– (forkReplicate)

#c1 . . .#cn

(P | Ctxt{forkReplicate [λx.t]n}; C)� (P | Ctxt{〈[c1], .. , [cn]〉} | Wch (c1 �→ λx.t) | .. | Wch (cn �→ λx.t); C, c1 = 〈〉, .., cn = 〈〉, c1 = 〈〉, .., cn = 〈〉) FORKREPLICATE

with process configuration typing:

�1,�1 
 Ctxt{forkReplicate [λx.t]n} : B �2,�2 
 P : A

�1 + �2,�1 +�2 
 P | Ctxt{forkReplicate [λx.t]n}R : A
consR

(D.23)

with channel configuration typing:

�1 +�2 
 C (D.24)

From typing �1, �1 
 Ctxt{forkReplicate [λx.t] n} : B, and by Lemma 6 there are two possibilities:
1. (second disjunct) (with Ctxt{forkReplicate [λx.t] n} factorising into a graded binding) Gives ¬resourceAllocator(fork-

Replicate [λx.t] n) which is a contradiction, thus we can conclude trivial by ex falso.
2. (first disjunct) then there is a typing �′′

1, �′′
1 
 forkReplicate [λx.t] n : A, which by inversion must therefore be of the 

form:

�′′
1, x : Chan P,�′′

1 
 t : 1

�′′
1,�′′

1 
 λx.t : Chan P � 1
�i

(0..n) ∗ �′′
1,�′′

1 
 [λx.t] :�0..n(Chan P � 1)
pr

(0..n) ∗ �′′
1,�′′

1 
 forkReplicate [λx.t] : N n � Vec n (�0..1(Chan (P)))
�e

(0..n) ∗ �′′
1,�′′

1 
 forkReplicate [λx.t]n : Vec n (�0..1(Chan (P)))
�e

(D.25)

where A = Vec n (�0..1(Chan (P))) and �′
1, x : Vec n (�0..1(Chan (P))), �′

1 
 Ctxt{x} : B and where �1 =�′
1 +�′′

1 and 
where �1 = �′

1 + (0..n) ∗ �′′
1

Furthermore by the ReceivePrefix(P) constraint of forkReplicate we know that P = Recv A′ P′ .
For the goal of this theorem we construct the typings:

. . .

c1 :∗ Chan (Send A′ P′), .., cn :∗ Chan (Send A′ P′) 
 〈[c1], .. , [cn]〉 : Vec n (�0..1(Chan (Send A′ P′)))
cons

n
+ nil

By Lemma 7 then:
�′

1, �
′
1, c1 :∗ Chan (Send A′ P′), .., cn :∗ Chan (Send A′ P′) 
 Ctxt{〈[c1], .. , [cn]〉} : B.

The consequent channel configuration has type derivation (and as a short hand we write ci : Chan P1 for c1 :∗
Chan P1, .., cn :∗ Chan Pn):
50



D. Marshall and D. Orchard Information and Computation 301 (2024) 105234
�1 +�2 
 C
�1 +�2, ci : Chan (Recv A′ P′), ci :∗ Chan (Send A′ P′) 
 C, c1

∗ = 〈 〉, .., cn
∗ = 〈 〉, c1

∗ = 〈 〉, .., cn
∗ = 〈 〉 empty*

We then construct the process configuration typing where �′ =�, ci :∗ Chan (Recv A′ P′), ci :∗ Chan (Send A′ P′)
�′

1,�′
1, ci :∗ Chan (Send A′ P′) 
 Ctxt{〈[c1], .. , [cn]〉} : B �2,�2 
P : A

�′
1 + �2,�′

1 +�2, ci :∗ Chan (Send A′ P′) 
P | Ctxt{〈[c1], .. , [cn]〉}R : A
consR

�′′
1, x : Chan (Recv A′ P′),�′′

1 
 t : 1
(D.25)

�′
1 + (0..1 ∗ �′′

1)+ �2,�′
1 +�′′

1 +�2,�′ 
P | Ctxt{〈[c1], .. , [cn]〉}R | Wch (c1 �→ λx.t) : A
watch

�′
1 + (0..n ∗ �′′

1)+ �2,�′
1 +�′′

1 +�2,�′ 
P | Ctxt{〈[c1], .. , [cn]〉}R | Wch (c1 �→ λx.t) | .. | Wch (cn �→ λx.t) : A
watch*

�1 + �2,�1 +�2,�′ 
P | Ctxt{〈[c1], .. , [cn]〉}R | Wch (c1 �→ λx.t) | .. | Wch (cn �→ λx.t) : A
≡

since 0..1 + . . . + 0..1 n-times is equal to 0..n, satisfying the typing goal, and where disjointness conditions in 
the above for ci and ci are satisfied by the fact that ci are all fresh as per the semantics, and disjointness of the 
constituent contexts comes from their original disjointness being defined (e.g., �1 =�′

1 +�′′
1.

– (watch)

(P | Wch (c �→ λx.t); C, c = v : �v)� (P | t[c/x]◦; C, c = v : �v)
WATCHER

with process configuration typing:

�1, x : Chan (Recv A′ P),�1 
 t : 1 �2,�2 
 P : A

0..1 ∗ �1 + �2,�1 +�2, c : Chan (Recv A′ P) 
 P | Wch (c �→ λx.t) : A
watch

(D.26)

and channel configuration typing:

�1 +�2 
 C �1 +�2 
 v : A′

�1 +�2, c : (Recv A′ P) 
 C, c = v : �v (D.27)

For the goal of this theorem we construct the typing:

�1, x : Chan (Recv A′ P),�1 
 t : 1 (D.26) c : Chan (Recv A′ P) 
 c : Chan (Recv A′ P)
var

1..1 ∗ �1,�1, c : Chan (Recv A′ P) 
 t[c/x] : 1
subst

0..1 ∗ �1,�1, c : Chan (Recv A′ P) 
 t[c/x] : 1
approx

(D.28)

From this we can construct the channel configuration typing as just (D.27) and the process config typing:

�2,�2 
 P : A 0..1 ∗ �1,�1, c : Chan (Recv A′ P) 
 t[c/x] : 1 (D.28)

0..1 ∗ �1 + �2,�1 +�2, c : Chan (Recv A′ P) 
 P | t[c/x]◦ : A
watch

and the premise channel configuration provides the consequent channel configuration.
– (forkMulticast)

#c #c1 . . .#cn

(P | Ctxt{forkMulticast (λx.t) n}; C)� (P | Ctxt{〈c1, .. , cn〉} | t[c/x]◦ | Fwd (c �→ c1, .., cn); C, c = 〈〉, c = 〈〉, c1 = 〈〉, .., cn = 〈〉, c1 = 〈〉, .., cn = 〈〉) FORKMULTICAST

with process configuration typing: process configuration typing:

�1,�1 
 Ctxt{forkMulticast (λx.t)n} : B �2,�2 
 P : A

�1 + �2,�1 +�2 
 P | Ctxt{forkMulticast (λx.t)n}R : A
consR

(D.29)

with channel configuration typing:

�1 +�2 
 C (D.30)

From typing �1, �1 
 Ctxt{forkMulticast (λx.t) n} : B, and by Lemma 6 there are two possibilities:
1. (second disjunct) (with Ctxt{forkReplicate [λx.t] n} factorising into a graded binding) Gives ¬resourceAllocator(fork-

Replicate [λx.t] n) which is a contradiction, thus we can conclude trivial by ex falso.
2. (first disjunct) Then there is a typing �′

1, �
′
1 
 forkMulticast (λx.t) n : A, which by inversion must therefore be of the 

form:

�′
1, x : Chan (GradednP′),�′

1 
 t : 1

�′
1,�

′
1 
 λx.t : Chan (GradednP′) � 1

�i

�′
1,�

′
1 
 forkMulticast (λx.t) : N n � Vec n (Chan P′)

�e

�′
1,�

′
1 
 forkMulticast (λx.t)n : Vec n (Chan P′)

�e
(D.31)
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where A = Vec n (Chan P) and �′′
1, x : Vec n (Chan P), �′′

1 
 Ctxt{x} : B and P = Graded n P′ and where �1 = �′
1 + �′′

1
and where �1 =�′

1 +�′′
1.

For the goal of this theorem we construct the typing:

. . .

c1 : Chan P, .., cn : Chan P 
 〈c1, .. , cn〉 : Vec n (Chan P)
cons

n
+ nil

By Lemma 7 then �′′
1, �′′

1, �′ 
 Ctxt{〈c1, .. , cn〉} : B
The consequent channel configuration has type derivation where we write �′ = c1 : Chan P, .., cn : Chan P and 
�′ = c1 : Chan P, .., cn : Chan P.

�1 +�2 
 C
�1 +�2, c : Chan (GradednP), c : Chan (GradednP),�′,�′ 
 C, c = 〈〉, c = 〈〉, c1 = 〈〉, .., cn = 〈〉, c1 = 〈〉, .., cn = 〈〉 empty*

We then construct the process configuration typing:

�′′
1,�′′

1,�′ 
 Ctxt{〈c1, .. , cn〉} : B �2,�2 
P : A

�′′
1 + �2,�′′

1 +�2,�′ 
P | Ctxt{〈c1, .. , cn〉}R : A
consR �′

1, x : Chan (GradedrP′),�′
1 
 t : 1

�′
1,�′

1, c : Chan (GradednP′) 
 t[c/x] : 1
subst

�′
1 + �′′

1 + �2,�′
1 +�′′

1 +�2, c : Chan (GradednP′),�′ 
P | Ctxt{〈c1, .. , cn〉}R | t[c/x]◦ : A
consR

�′
1 + �′′

1 + �2,�′
1 +�′′

1 +�2,�′,�′, c : Chan (GradednP′), c : Chan (GradednP′) 
P | Ctxt{〈c1, .. , cn〉}R | t[c/x]◦ | Fwd (c �→ c1, .., cn) : A
fwd

�1 + �2,�1 +�2,�′,�′, c : Chan (GradednP′), c : Chan (GradednP′) 
P | Ctxt{〈c1, .. , cn〉}R | t[c/x]◦ | Fwd (c �→ c1, .., cn) : A
≡

satisfying the goal.
– (forward)

(P | Fwd (c �→ c1, .., cn); C, c = [v] : �v, c1 = �v1, .., cn = �vn)� (P | Fwd (c �→ c1, .., cn); C, c = �v, c1 = �v1 : v, .., cn = �vn : v)
FORWARDER

with process configuration typing:

Sends(P) �,� 
 P : A

�,�, c : Chan (GradednP), ci : Chan P 
 P | Fwd (c �→ c1, .., cn) : A
fwd (D.32)

(specialisation of the fwd rule since Sends(Recv A′ P) = Sends(P)) and with channel configuration typing:

�0 
 v : A′

�0 
 [v] :�nA′
pr

�0 
 v : A′ �0,�1, c1 : Chan P, .., cn : Chan P, c : Chan P 
 C, c1 = �v1 : v, .., cn = �vn : v, c = �v
�0,�1, c1 : Chan (Send A P), .., cn : Chan (Send A P), c : Chan P 
 C, c1 = �v1, .., cn = �vn, c = �v send

n

�0,�1, c1 : Chan (Send A P), .., cn : Chan (Send A P), c : Chan (Recv (�nA′)P) 
 C, c1 = �v1, .., cn = �vn, c = [v] : �v recv

(D.33)

where � =�0, �1.
The goal channel configuration typing is then given by the premise of (D.33):

�0 
 v : A′ �1, c1 : Chan P, .., cn : Chan P, c : Chan P 
 C, c1 = �v1 : v, .., cn = �vn : v, c = �v
�0,�1, c1 : Chan (Send A P), .., cn : Chan (Send A P), c : Chan P 
 C, c1 = �v1, .., cn = �vn, c = �v send

n

From the definition of Sends(Recv A′ P) = Sends(P) and Sends(Send A′ P) = Sends(P) therefore we can define the 
process configuration typing as:

Sends((P)) Sends(P) �,� 
 P : A

�,�, c : Chan (P), c1 : Chan P, .., cn : Chan P 
 P | Fwd (c �→ c1, .., cn) : A
fwd �

Appendix E. Related work further details; comparison with GV

The construction in GV of the replicate primitive can also be captured in Granule. Their construction [11, Appendix B]
can be written in Granule with �A = A [Many] (where R = {Zero, One, Many} is a semiring for capturing linear/non-linear 
behaviour [47]) but only if we both turn off the resource allocator restriction on promotion that we introduced in Section 4, 
which was critical for soundness in our call-by-value semantics, and use call-by-name semantics, both of which are provided 
by a language extension:

1 language CBN -- Call-by-Name semantics, also turns off the restriction
2 -- to non-resource allocating terms in promotion
3
4 -- GV ‘replicate‘
5 replicate : ∀ {s : Protocol}
6 . (LChan (Send ((LChan (Dual s)) [Many]) End)
7 , (LChan s → ()) [Many]) → LChan End
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8 replicate (x, f) =
9 let [g] = f in send x [forkLinear g]

10
11 -- Dual ‘request’ primitive
12 request : ∀ {s : Protocol}
13 . LChan (Recv ((LChan s) [Many]) End) → LChan s
14 request s = let (w , s) = recv s
15 in let () = close s
16 in let [y] = w in y

Data availability

No data was used for the research described in the article.
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