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A B S T R A C T

Graded types are a class of resourceful types which allow for fine-
grained quantitative reasoning about data-flow in programs. Tracing
their roots from linear types, the use of resource annotations (or grades)
on data, allows a programmer to express structural or semantic prop-
erties of their program at the type level. Such systems have become
increasingly popular in recent years, mainly for the expressive power
that they offer to programmers; judicious use of grades in type specifi-
cations significantly reduces the number of typeable programs. These
additional constraints on types lend themselves naturally to type-
directed program synthesis, which leverage the information provided
by types to prune ill-resourced programs from the search space of
candidate programs. In synthesis, this grade information can be ex-
ploited to constrain the search space of programs even further than in
standard type systems. We present an approach to program synthesis
for linear and graded type systems, where grades form an arbitrary
pre-ordered semiring. Harnessing this grade information in synthesis
is non-trivial, and we explore the issues involved in designing and
implementing a resource-aware program synthesis tool, culminating
in an efficient and expressive program synthesis tool for the research
programming language Granule, which uses a graded type system.
We show that by harnessing grades in synthesis, the majority of our
benchmarking synthesis problems (many of which involve recursive
functions over recursive ADTs) require less exploration of the syn-
thesis search space than a purely type-driven approach and with
fewer needed input-output examples. Our type-and-graded-directed
approach is demonstrated in the Granule but we also adapt it for
synthesising Haskell programs that use GHC’s Linear Types extension,
demonstrating the versatility of our approach to resourceful program
synthesis.
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Part I

P R O G R A M S Y N T H E S I S F R O M L I N E A R A N D
G R A D E D T Y P E S



1
I N T R O D U C T I O N

Writing programs is difficult. Ensuring they are correct even more
so. A long-standing constant among programmers is the desire to
write correct programs with greater ease. To fulfil this end came pro-
gram synthesis, where the computer shares the burden of writing the
program with the human by writing part or all of the program for
them. The essence of program synthesis is the automatic generation of
program code from some specification of desired program behaviour.
Program synthesis techniques take many forms and have been applied
to almost all paradigms of programming, from early example-driven
approaches such as Manna and Waldinger [1979]’s Deadalus and
Summers [1977]’s Thesys systems, to machine learning approaches
such as inductive logic programming [Muggleton and de Raedt, 1994],
to synthesising transformations between spreadsheet columns in Ex-
cel [Gulwani, 2011]. In recent years, the emergence of Large Language
Models (LLMs) has led to their application in program synthesis
tasks [Austin et al., 2021, Jain et al., 2021], where they are trained on
datasets to generate code based on various specifications, including
natural language descriptions of desired behaviour. However, a gen-
eral observation one can make is that the task of generating a program
automatically becomes easier the richer the specification provided by
the programmer.

One of the most useful and well-studied verification and specifi-
cation tools available to modern programmers is the type system.
Not only do type systems allow many kinds of errors to be caught
statically, they also help inform the design of a program. Many pro-
grammers begin writing their programs by first defining the types,
from which the program code follows naturally. This phenomenon
will be familiar to any who have written programs in typed functional
programming languages, and results from the fact that types form a
high-level abstract specification of program behaviour.

Type-directed program synthesis is a well-studied technique for au-
tomatically generating program code from a type specification - the
goal type [Osera and Zdancewic, 2015, Kuncak et al., 2010, Frankle
et al., 2016a, Albarghouthi et al., 2013, Feser et al., 2015, Osera, 2019,
Smith and Albarghouthi, 2019, Knoth et al., 2019]. This approach has

2



introduction 3

a long history, which is deeply intertwined with automated theorem
proving and proof synthesis, thanks to the Curry-Howard correspon-
dence [Manna and Waldinger, 1980, Green, 1969].

One lens through which we can view this task is as an inversion of
type checking: we start with a goal type and inductively synthesise
well-typed sub-terms by breaking the goal into sub-goals, pruning the
search space of programs via typing as we go. This approach follows
the treatment of program synthesis as a form of proof search in logic:
given a type A we want to find a program term t which inhabits A.
We can express this in terms of a synthesis judgement which acts as the
inversion of typing or proof rules:

Γ ⊢ A ⇒ t

meaning that the term t can be synthesised for the goal type A under
a context of assumptions Γ. We may construct a calculus of synthesis
rules for a programming language, inductively defining the above
synthesis judgement for each type former. For example, we may define
a rule for standard product types in the following way:

Γ ⊢ A ⇒ t1 Γ ⊢ B ⇒ t2

Γ ⊢ A × B ⇒ (t1, t2)
×Intro

Reading ‘clockwise’ from the bottom-left: to synthesise a value of
type A × B, we synthesise a value of type A and then a value of type
B and combine them into a pair in the conclusion. The ‘ingredients’
for synthesising the sub-terms t1 and t2 come from the free-variable
assumptions contained in Γ and any constructors of A and B.

Depending on the context, there could be many possible combina-
tions of assumption choices to synthesise such a pair. Consider the
following partial program containing a program hole, marked with ?,
specifying a position at which we wish to perform synthesis:

f : A → A → A → A × A

f x y z = ?

The function has three parameters all of type A which can be used
to synthesise an expression of the goal type A × A. Expressing this
synthesis problem as an instantiation of the above ×Intro rule:

x : A, y : A, z : A ⊢ A ⇒ t1 x : A, y : A, z : A ⊢ A ⇒ t2

x : A, y : A, z : A ⊢ A × A ⇒ (t1, t2)
×Intro

Even in this simple setting, the number of possibilities starts to be-
come unwieldy. For example, we could synthesise (x, x), (x, y), (y, x)
etc. In total, there are nine (32) possible candidate programs based
on combinations of x, y and z. Ideally, we would like some way of



1.1 graded type systems 4

constraining the number of choices that are required by the synthesis
algorithm. Many systems achieve this by allowing the user to specify
additional information about their desired program behaviour. For ex-
ample, recent work has extended type-directed synthesis to refinement
types [Polikarpova et al., 2016], cost specifications [Knoth et al., 2019],
differential privacy [Smith and Albarghouthi, 2019], example-guided
synthesis [Feser et al., 2015, Albarghouthi et al., 2013] or examples
integrated with types [Frankle et al., 2016b, Osera and Zdancewic,
2015], and ownership information [Fiala et al., 2023]. The general idea
is that, with more information, whether that be richer types, additional
examples, or behavioural specifications, the proof search / program
synthesis process can be pruned and refined, requiring less explo-
ration of the search space of candidate programs, ideally reducing the
overall synthesis time.

This work presents a program synthesis approach that leverages the
information contained in linear and graded type systems that track and
enforce program properties related to data flow, statically. We refer
to these systems as resourceful type systems, since they treat data as
though it is a physical resource, constraining how data can be used
by a program and thus reducing the number of possible synthesis
choices that need to be made. Our hypothesis is that resource-and-
type-directed synthesis speeds up type-directed synthesis, reducing
the number of paths that need to be explored and the amount of
additional specification (e.g. input-output examples) required.

1.1 graded type systems

Graded type systems trace their roots to linear logic. In linear logic,
data is treated as though it were a finite resource which must be
consumed exactly once with arbitrary copying and discarding disal-
lowed [Girard, 1987]. Since Girard’s original formulation of linear logic,
several works have rendered linear logic as a type system [Wadler,
1990, Abramsky, 1993], yielding linear types. The identify function λx.x
is the ideal linearly typed program: it binds a variable and then uses it
exactly once. The K combinator λx.λy.x from SKI combinatory logic,
however, would not be linearly typed as the second variable y is never
used inside the body. Non-linear use of data is expressed through the
! modal operator (the exponential modality). This gives a binary view—
a value may either be used exactly once (i.e. as a resource) or in a
completely unconstrained way. For example, using ! the K combinator
can be written as λx.λ!y.x, where ! provides the capability to discard
y. Bounded Linear Logic (BLL) refines this view, replacing ! with a
family of indexed modal operators where the index provides an upper
bound on usage [Girard et al., 1992], e.g., !≤4A represents a value
A which may be used up to 4 times. In recent years, various works
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have generalised BLL, resulting in graded type systems in which these
indices are drawn from an arbitrary pre-ordered semiring [Brunel
et al., 2014, Ghica and Smith, 2014, Petricek et al., 2014, Abel and
Bernardy, 2020, Choudhury et al., 2021, Atkey, 2018, McBride, 2016].
This allows numerous program properties to be tracked and enforced
statically, including various kinds of reuse, privacy and confidentiality,
and capabilities. Graded types are becoming applied and adopted
in practical systems and form the basis of Haskell’s LinearTypes ex-
tension [Bernardy et al., 2018], Idris 2 [Brady, 2021], as well as the
experimental language Granule [Orchard et al., 2019].

Semantically, these semiring indexed !-modalities are modelled by
graded exponential comonads [Gaboardi et al., 2016]. The terminology
of graded modal types was proposed by Orchard et al. [2019] encom-
passing both semiring indexed !-modalities and the notion of graded
monads [Orchard et al., 2014, Katsumata, 2014, Smirnov, 2008], which
generalise monads. In this work we do not consider the latter, dealing
only with graded comonadic modalities, which are closely related
to linearity. In general, we will refer to systems which make use of
graded modal types as graded type systems.

Returning to our example in a graded setting, the arguments of the
function now have grades (annotations) that, in this context, are natural
numbers describing the exact number of times the parameters must
be used (the choice here was ours):

f : A2 → A0 → A0 → A × A

f x y z = ?

The first A is annotated with a grade 2, which in this context indicates
that it must be used twice. Likewise, the types of y and z are graded
with 0, enforcing zero usage, i.e., we are not allowed to use them in
the body of f and must discard them.

The result is that there is only one (normal form) inhabitant for
this type: (x, x); the other assumptions will not even be considered
in synthesis, allowing us to effectively prune out branches which use
resources in a way which violates the grades. In this example, these
annotations take the form of natural numbers explaining how many
times a value can be used, but we may instead wish to represent differ-
ent kinds of program properties, such as sensitivity, strictness, or secu-
rity levels for tracking non-interference, all of which are well-known
instances of graded type systems [Orchard et al., 2019, Gaboardi et al.,
2016, Abel and Bernardy, 2020]. Note that all of these examples are
technically graded presentations of coeffects, tracking how a program
uses its context, in contrast with graded types for side effects [Orchard
et al., 2014, Katsumata, 2014], which we do not consider here.

We can divide these graded coeffect systems into two main classes,
which we refer to as “linear graded” (or linear base) and “fully graded”
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(or graded base) throughout. The first are those which trace their origins
to linear logic, refining an existing non-graded type system with
graded modal types. The functional programming language Granule is
one such system. Granule is based on an underlying linear type system,
with graded modal types introduced and eliminated explicitly, through
a family of indexed modal operators □r. For instance, □2A ⊸ B
represents the type of a linear function where the argument type is
a graded modal type, graded by 2. By “unboxing” the modality, we
obtain a value which can be used twice inside the body of the function.
This system is the default basis of Granule [Orchard et al., 2019]. The
second approach does away with this linear basis, embedding graded
modalities into the function types à la Idris 2 [Brady, 2021], McBride’s
QTT [McBride, 2016, Atkey, 2018], the coeffect calculi of Petricek et al.
[2013] and Petricek et al. [2014], the core of Linear Haskell [Bernardy
et al., 2018], and the unified graded modal calculus of [Abel and
Bernardy, 2020]. In these systems, grades are expressed as annotations
function arrows, i.e. A2 → B expresses a similar idea as before, where
A is an argument type graded by 2. However, in these systems, we
do not need to do any unboxing to be able to use the value of type A
according to its grade in the body of the function.

As graded type systems develop into fully fledged programming
languages such as Idris 2 [Brady, 2021], and as traditionally non-
graded languages, such as Haskell, incorporate features from graded
types into their existing type systems [Bernardy et al., 2018], the propo-
sition of harnessing the information conveyed by these richer types
becomes increasingly attractive. As of this moment, program synthesis
in the context of graded types has remained relatively unexplored
despite the growing prevalence of such systems. Past works have
tackled the problem of proof search in Linear Logic [Hodas and Miller,
1994, Cervesato et al., 2000], which are analogous, through the lens of
Curry-Howard, to program synthesis solutions for linear types. These
works lay the foundations for our approach here, however, graded
types pose an entirely new set of challenges and integrating them into
these existing approaches is complex.

For this work, we consider Granule [Orchard et al., 2019] to be
an ideal candidate for the target language of a program synthesis
tool for graded type systems. As mentioned, Granule is a functional
programming language which combines a linear type system at its
core with indexed data types. On top of this, graded modalities are
integrated both as graded comonads and graded monads. We forgo
the treatment of Granule’s indexed types in synthesis, leaving this as
future work. Instead we focus on building a synthesis tool for Granule,
which unlocks the expressivity held by graded comonads for use
inside the synthesis algorithm itself.
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Granule also provides a language extension, known as GradedBase,
which does away with this linear type system as its foundation. Instead,
grades permeate the type system à la Petricek et al. [2014] and other
graded base systems (as mentioned above). This extension provides
us with a language capable of giving a broad representation of graded
type systems. This will factor heavily into the design of our calculi,
and we structure the rest of the thesis with this in mind.

1.2 contributions

Linear and graded types provide a rich specification of program
behaviour, which is enforced by the type checker. But how do we use
this information to make writing programs automatically easier?

thesis statement

Linear and graded types can be integrated into type-directed
program synthesis to prune incorrect branches from the
search space of candidate programs, yielding an efficient
program synthesis algorithm which ensures that generated
programs are type correct and well-resourced (by construc-
tion), i.e. they use linear values linearly, and graded values
according to their grades.

In other words, grades can be used to synthesise programs which
describe how they use their context of values. Having been given
a graded type, the synthesis tool can know exactly how values are
allowed to be used inside a program, and can use this information
during the synthesis to aid its search for the correct solution.

The primary aim of this work is to demonstrate the feasibility and
power of using resourceful types as the basis of a type-directed pro-
gram synthesis tool, culminating in the development and implemen-
tation of an expressive, efficient, and feature-rich program synthesis
tool for the Granule programming language.

We show that not only is program synthesis feasible in the context
of a graded type system, but that the information conveyed by the
grades can be used to prune the search space of programs in synthesis.
This results in our synthesis algorithm needing to consider far less
potential programs when constructing a program, as grade-violating
candidate programs may be pruned out.

Specifically, this work makes the following contributions:

• We identify an approach which makes type-directed program
synthesis in a resourceful setting feasible. Drawing inspiration
from the work of Hodas and Miller [1994] on theorem proving,
we adapt their work to graded types, and propose a dual to their
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own method, yielding two schemes for managing resources in
the synthesis of a program term.

• We use these schemes to construct two simple synthesis cal-
culi for a simplified core of Granule, which demonstrate their
effectiveness as tools for resourceful program synthesis. We im-
plement both approaches as part of the Granule toolchain and
compare their performance.

• We showcase an alternative and complementary approach to
generating a subset of Granule programs, based around useful
combinators for working in this setting. To do so, we make
use of a system inspired by Haskell’s generic type deriving
mechanism [Magalhães et al., 2010] adapted to graded types.

• We then define a synthesis calculus for a fully graded type
system. This type system is a feature-rich language based on
Granule’s GradedBase language extension, which includes recur-
sion, recursive types, and user-defined ADTs. Furthermore, we
again implement this calculus as part of the Granule toolchain.

• We evaluate our tool on a benchmark suite of recursive functional
programs leveraging standard data types like lists, streams, and
trees. We compare against non-graded synthesis provided by
Myth [Osera and Zdancewic, 2015]. We also compare against our
own tool modulo grades, i.e. we compare the number of synthesis
paths explored by our tool when taking grades into account
versus traditional un-graded synthesis.

• We prove that each of these systems is sound, i.e., synthesised
programs are typed by the goal type. A key property here is
that synthesised programs are not only well-typed, but also
well-resourced, meaning that all values inside the program are
used according to their resource constraints. We show that this
property holds for each of our synthesis calculi as part of their
soundness proofs.

• We demonstrate how our approach to resourceful program syn-
thesis can be readily applied to other graded systems. Leveraging
our calculus and implementation, we provide a prototype tool
for synthesising Haskell programs written using GHC 9’s Linear
Types language extension.

1.3 structure

This dissertation is structured into seven chapters. In the next chapter,
Chapter 2, the theoretical background of linear and graded types is
laid out. In doing so, we introduce two core calculi with simple types
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and grades, which demonstrate the two major lineages of resourceful
type systems; linear base and graded base. This chapter also introduces
the programming language Granule, which implements each of the
discussed calculi.

The rest of the dissertation is structured such that synthesis calculi
for both of these systems are defined and presented, minimising any
redundancy in the presentation. Despite the variances between the
core calculi of Chapter 2, there is a substantial degree of overlap
between the two. Thus, we adopt the following structure:

1. Chapter 3 introduces the core concepts of type-directed program
synthesis from resourceful type systems using an extension of
the typing calculus of Section 2.3.1. Specifically this chapter in-
troduces the resource management problem as it relates to program
synthesis: how do we ensure that a synthesised program is not
only well-typed but also well-resourced? To address this ques-
tion, we define two calculi of synthesis rules based on a linear
λ-calculus extended with graded modal types which tackle the
problem in different ways. To better illustrate and test the prac-
ticality of the synthesis calculi, we extend the language with
multiplicative conjunction (product types ⊗ and unit Unit) and
additive disjunction (sum types ⊗). These calculi are then imple-
mented targeting default Granule. We produce a comparative
evaluation of the implemented tool, contrasting the efficiency
of the two resource management approaches against each other,
before selecting the most performant to use going forward.

2. Following this, in Chapter 4 we present a synthesis calculus for
a target language based instead on the core graded λ-calculus
of 2.3.2. This calculus introduces several new language features
such as data constructors, pattern matching, and recursive data
types, for a rich synthesis tool implementation targeting Gran-
ule’s graded base language extension. Furthermore, we outline
several other useful extensions to the synthesis tool, such as
the inclusion of example-based synthesis, and a post-synthesis
refactoring process which re-writes synthesised programs in a
more idiomatic style.

We then evaluate the implementation on a set of benchmarks,
including several non-trivial programs which make use of these
new features. In this evaluation, we compare synthesis in a
setting which uses grades to prune the search space, to un-
graded purely type-directed synthesis. From our evaluation we
find that using grades in synthesis outperforms purely type-
driven program synthesis in terms of number of paths explored
in the search space, number of input-output examples required
or number of retries to get the desired program.
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To demonstrate the practicality and versatility of our approach,
we apply our synthesis algorithm of Chapter 4 to synthesising
programs in Haskell from type signatures using GHC’s linear
types extension (which is implemented underneath by a graded
type system).

3. Finally, we then consider an alternative approach to type-directed
synthesis, exploring a mechanism for automatically deriving
programs from their type à la Haskell’s generic deriving mech-
anism [Magalhães et al., 2010]. We base the approach on the
graded linear λ-calculus, extended with data constructors, pat-
tern matching, and recursive data types.

This approach strikes a balance between maximising coverage of
different approaches to resourceful type systems, and avoiding un-
necessary repetition, whilst gradually increasing the complexity of
the target language. By the end, we will have two synthesis tool
implementations for Granule, targeting both styles of graded systems.

1.4 publications

In this thesis, the content of some chapters is formed from previously
published papers:

• Hughes and Orchard [2020] Resourceful Program Synthesis from
Graded Linear Types. In Logic-Based Program Synthesis and
Transformation - 30th International Symposium, pp. 151-170.

This paper builds on the resource management techniques of
previous work for Linear Logic proof search to graded types. It
presents two synthesis calculi based on these approaches, and
evaluates them against each other using a suite of benchmarks
of Granule programs.

This paper constitutes a large part of Chapter 3, where a program
synthesis tool for a linear graded type system is introduced.

I was the primary author of this paper, with my contributions
including the adaptation of the resource management model to
graded types, the design of the synthesis calculi, the soundness
proofs, as well as the implementation and evaluation in Granule.

• Hughes et al. [2020] Deriving Distributive Laws for Graded
Linear Types. In 6th edition of the International Workshop on
Linearity and of the 4th edition of the International Workshop
on Trends in Linear Logic and its Applications.

The majority of Chapter 5 is derived from this paper, which
discusses an approach for automatically deriving certain classes
of graded programs in Granule as an alternative to search-based
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synthesis. The focus is on deriving distributive laws of graded
programs in Granule, but also considers deriving other useful
structural combinators. The core contribution of this work is
a tool in the vein of Haskell’s Generic Type Deriving mecha-
nism [Magalhães et al., 2010], which is implemented as part of
the Granule compiler.

My contributions to this paper included the design and imple-
mentation of the automated deriving mechanism, as well as
proving its soundness and other properties.

• Hughes et al. [2021] Linear Exponentials as Graded Modal Types.
In 5th International Workshop on Trends in Linear Logic and
Applications.

In Chapter 5 we make reference to the disparity between Gran-
ule’s□modality and Linear Logic’s !, and how ! can be recovered
in Granule through the use of a grade-level operator defined in
this paper.

My contribution in this paper was as part of the formulation of
our solution to recovering Linear Logic’s ! and implementing it
into Granule’s type checker.

• Hughes and Orchard [2024] Program Synthesis from Graded
Types. In 33rd European Symposium on Programming.

This paper presents a program synthesis calculus and implemen-
tation for a fully graded type system à la Petricek et al. [2014],
and demonstrates how these techniques can be applied to Linear
Haskell. This work forms the basis of much of Chapter 4.

I was the primary author on this paper, responsible for the design
of the synthesis calculus, proving its soundness, implementing
it into the Granule toolchain, conducting the evaluation, as well
as implementing the prototype application to Linear Haskell.



2
B A C K G R O U N D

Before diving straight into designing program synthesis calculi, we
first need to formally define our target languages. We take this chapter
as an opportunity to do so, and to examine more closely some of the
properties of these linear and graded systems.

Since Girard [1987]’s original work on Linear Logic, the develop-
ment of type systems which convey additional information about the
program’s structure has evolved into a distinct paradigm, culminat-
ing in recent years with the notion of graded types. Approaches to
graded type systems run the gamut, incorporating a wide range of
effect and coeffect systems, however, they can typically be distilled into
two categories, with distinct lineages:

• Systems where a graded modal type operator introduces and
eliminates graded modalities above some existing type system.
This is the default approach of Granule, where the underlying
type system is linear, and grade modalities are introduced and
eliminated via a family of □ modal type operators. We refer to
these as “graded linear” or “linear base” systems.

• Systems where grades permeate the program, and are introduced
via annotations on function arrows. These systems do away with
the underlying linear basis that typifies the former category of
systems. This is the approach taken by Linear Haskell [Bernardy
et al., 2018], where grades (or “multiplicities”) are specified using
the % operator. We refer to these as “fully graded” or “graded
base” systems.

These two different styles to graded types mirror the dual develop-
ment of effect systems and graded monadic systems in the literature
(see Wadler and Thiemann [2003]). In the latter case, the two were
eventually found to be equivalent, while the same treatment for the
former remains ongoing work.

roadmap The remainder of this chapter formally defines these cal-
culi, starting with the linear λ-calculus in Section 2.2.1. Following this,
in Section 2.3 we extend the linear λ-calculus with a graded modal

12
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type (Section 2.3.1) before presenting the fully graded λ-calculus (Sec-
tion 2.3.2). In Section 2.4 we briefly provide a call-by-name operational
semantics for our calculi, and note that substitution is admissible
in each. We then provide an introduction to Granule syntax in Sec-
tion 2.5, the programming language which our synthesis tool targets,
and which implements the calculi of Sections 2.3.1 and 2.3.2. We in-
clude examples of programs typeable in their respective calculi as
Granule code. Finally we outline our approach to how we these calculi
will be used in synthesis in Section 2.6.

2.1 terminology

Throughout this thesis we will tend towards using a types-and-programs
terminology rather than propositions-and-proofs. Via the Curry-Howard
correspondence, one can switch smoothly to viewing our approach to
program synthesis as proof search in logic.

The functional programming languages we discuss are presented as
typed calculi given by sets of types, terms (programs), and typing rules
that relate a term to its type. The most well-known typed calculus is the
simply-typed λ-calculus (STLC), which corresponds to the implication
fragment of intuitionistic logic. We assume familiarity with STLC, and
use this to facilitate our explanation of linear and graded types.

A judgment defines the typing relation between a type and a term
based on a context. In STLC, judgments have the form: Γ ⊢ t : A, stating
that under some context of assumptions Γ the program term t can be
assigned the type A. An assumption is a name with an associated type,
written x : A and corresponds to an in-scope variable in a program.

A term can be related to a type if we can derive a valid judgment
through the application of typing rules. The application of these rules
forms a tree structure known as a typing derivation.

2.2 linear and substructural logics

Linear logic allows one to be more descriptive about the properties
of a derivation in intuitionistic logic. In type systems such as STLC,
the properties of weakening, contraction, and exchange are assumed
implicitly. These are typing rules which are structural as they determine
how the context may be used rather than being directed by the syntax.
Weakening is a rule which allows terms that are not needed in a typing
derivation to be discarded. Contraction works as a dual to weakening,
allowing an assumption in the context to be used more than once.
Finally, exchange allows assumptions in a context to arbitrarily re-
ordered. The rules themselves are provided by Figure 2.1.
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Γ ⊢ t : B

Γ, x : A ⊢ t : B
Weakening

Γ, x : A, y : A ⊢ t : B

Γ, x : A ⊢ [x/y]t : B
Contraction

Γ1, y : B, x : A, Γ2 ⊢ t : C

Γ1, x : A, y : B, Γ2 ⊢ t : C
Exchange

Figure 2.1: Substructural rules for weakening, contraction, and exchange

Linear logic is thus known as a substructural logic because it lacks
the weakening and contraction rules, while permitting exchange. The
exclusion and inadmissibility of these rules means that in order to con-
struct a typing derivation, each assumption must be used exactly once:
arbitrarily copying or discarding hypotheses is disallowed, excluding
many programs from being typeable.

As one can imagine, the different combinations of permitted struc-
tural rules yields various other substructural logics. Affine logic per-
mits exchange and weakening, but disallows contraction, resulting in
system where values may be used at most once. Relevant logic only
disallows weakening (hypotheses can be used at least once), while
Ordered logic disallows all three (hypotheses must be used exactly
once and in order).

2.2.1 The Linear λ-Calculus

Our focus is on the implication fragment of linear logic. By permitting
only the exchange structural rule, we can integrate linear logic into
STLC, yielding a linear λ−calculus. This provides us with a foundation
for programming with substructural logics, which we will later refine
with graded types.

The types of the linear λ-calculus are given by the grammar:

A, B ::= A⊸ B (types)

Like STLC, we have one type former: the function type. Here, however,
our function type is a linear function arrow (denoted by⊸).

Typing judgments are of the form Γ ⊢ t : A, where Γ ranges over
contexts of assumptions:

Γ ::= ∅ | Γ, x : A (contexts)

Thus, a context may be empty ∅, or extended with a linear assump-
tion x : A. Throughout, comma denotes disjoint context concatenation
as well as context extension. We treat contexts as unordered lists, thus
making the exchange rule admissible.

The syntax of terms is the same as STLC, given by:

t ::= x | λx.t | t1 t2 (terms)
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x : A ⊢ x : A
Var

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A⊸ B
Abs

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A

Γ1 + Γ2 ⊢ t1 t2 : B
App

Figure 2.2: Typing rules for the linear λ-calculus

That is, a term is either a linear variable usage x, an abstraction
which binds a linear variable x in the term t, or an application of the
argument t1 to t2.

Figure 2.2 relates the terms to their types via typing rules. Linear
variables are typed in a singleton context (Var). Abstraction (Abs)
binds a linear variable which is used to type the premise. Application
(App) combines the usages across both premises through the use
of context addition (2.3.3). Context addition provides an analogue to
contraction, combining contexts that have come from typing multiple
sub-terms in a rule. Context addition, written Γ1 + Γ2, is undefined
if Γ1 and Γ2 overlap in their assumptions, i.e. a linear assumption
may not appear in both sides of the addition. This is equivalent to
concatenation on disjoint contexts.

Definition 2.2.1 (Linear context addition).

Γ + ∅ = Γ

∅ + Γ = Γ

(Γ, x : A) + Γ′ = (Γ + Γ′), x : A iff x ̸∈ |Γ′|
Γ + (Γ′, x : A) = (Γ + Γ′), x : A iff x ̸∈ |Γ|

This leaves us with a simple resourceful typing calculus, which
serves as the building block for further refinement.

Example 2.2.1. An example of a program typeable in this calculus is
the combinator for function composition:

comp : (A⊸ B)⊸ (B⊸ C)⊸ A⊸ C

comp = λx.λy.λz.y (x z)

Here, each argument is used exactly once in body of the innermost
lambda, satisfying linearity. In contrast, the K combinator from SKI
combinatory logic is not typeable in the linear λ-calculus:

k : A⊸ B⊸ A

k = λx.λy.x
(ill-typed)

as y is discarded in the body of the abstraction, violating linearity.
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2.3 from linearity to grades

Now that we have seen the linear λ-calculus itself, we are ready to
generalise the notion of data as a resource inside a program, and
formally define a graded type system. We now present two calculi,
each based on the differing view of graded types mentioned at the
top of this chapter. The first directly follows from the calculus in 2.2.1,
merely extending it with a graded modal type. The second reflects
the other approach to graded type systems where instead of the
underlying linear structure, grades are introduced via the function
type because all assumptions carry a grade.

2.3.1 The Graded Linear λ-calculus

We now define a core type system, based on the linear λ-calculus of
section 2.2.1, extended with a graded modal type. This calculus is
equivalent to the core calculus of Granule, GrMini [Orchard et al.,
2019], as well as the calculi of Brunel et al. [2014], Ghica and Smith
[2014], Petricek [2017], Petricek et al. [2014], and Gaboardi et al. [2016]
(minus graded monads). Similar approaches have been used in more
specialised systems such as the linear dependent type system of Lago
and Gaboardi [2012], and the work of Gaboardi et al. [2013], which
uses grades to capture and enforce properties of differential privacy.

We refer to the system in this section as the graded linear λ-calculus,
reflecting the underlying linear structure of the system.

Given a typing judgment Γ ⊢ t : A we say that t is both well-typed
and well-resourced to highlight the role of grading in accounting for
resource use via the semiring information.

This system forms the basis of the target language for our synthesis
tool in Chapter 3, although we extend it with some basic types for
increased expressivity.

The types of the graded linear λ-calculus are given by:

A, B ::= A⊸ B | □rA (types)

where the type □r A is an indexed family of type operators where
r is a grade ranging over the elements of a pre-ordered semiring
(R, ·, 1,+, 0,⊑) parametrising the calculus (where · and + are mono-
tonic operations (which may be partial) with respect to the pre-order
⊑).

From this semiring structure, we can derive two partial operations
on grades which will be useful later on when considering sum types:
greatest lower bounds (⊓), and least upper bounds (⊔). These are given by
Definitions 2.3.1 and 2.3.2, respectively.

Definition 2.3.1 (Partial greatest-lower bound of grades). For two
grades r and s of a given semiring, r ⊓ s is defined in terms of the
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semiring’s preorder: r ⊓ s = t if t ⊑ r and t ⊑ s and there exists no
other t′ where t′ ⊑ r, t′ ⊑ s and t ⊑ t′

Definition 2.3.2 (Partial least-upper bound of grades). For two grades
r and s of a given semiring, r ⊔ s is defined in terms of the semiring’s
preorder: r ⊔ s = t if r ⊑ t and s ⊑ t and there exists no other t′ where
r ⊑ t′, s ⊑ t′ and t′ ⊑ t

As before, typing judgments are of the form Γ ⊢ t : A, where Γ
ranges over contexts:

Γ ::= ∅ | Γ, x : A | Γ, x :r A (contexts)

Thus, a context may also be extended with a graded assumption
x :r A. For linear assumptions, structural rules of weakening and
contraction are disallowed. Graded assumptions may be used non-
linearly according to the constraints provided by their grade, the
semiring element r.

Various operations on contexts are used to capture non-linear data
flow via grading. As with the linear λ-calculus, context addition (2.3.3)
combines the contexts used to provide multiple sub-terms. However,
our new definition includes an extra case for dealing with graded
assumptions appearing in both contexts, which are combined via the
semiring + of their grades. Note that this is again a partial definition
where addition may be undefined.

Definition 2.3.3 (Graded linear context addition).

Γ + ∅ = Γ

∅ + Γ = Γ

(Γ, x : A) + Γ′ = (Γ + Γ′), x : A iff x ̸∈ |Γ′|
Γ + (Γ′, x : A) = (Γ + Γ′), x : A iff x ̸∈ |Γ|
(Γ, x :r A) + Γ′ = (Γ + Γ′), x :r A iff x ̸∈ |Γ′|
Γ + (Γ′, x :r A) = (Γ + Γ′), x :r A iff x ̸∈ |Γ|

(Γ, x :r A) + (Γ′, x :s A) = (Γ + Γ′), x :(r+s) A

Note that this is a declarative specification of context addition.
Graded assumptions may appear in any position in Γ and Γ′ as wit-
nessed by the algorithmic specification where for all Γ1, Γ2 context
addition is defined as follows by ordered cases matching inductively
on the structure of Γ2, where Γ1 + Γ2 =

Γ1 Γ2 = ∅

(Γ1 + Γ′
2), x :r A Γ2 = Γ′

2, x :r A ∧ x :r A /∈ Γ1

((Γ′
1, Γ′′

1 ) + Γ′
2), x :(r+s) A Γ2 = Γ′

2, x :s A ∧ Γ1 = Γ′
1, x :r A, Γ′′

1

(Γ1 + Γ′
2), x : A Γ2 = Γ′

2, x : A ∧ x : A /∈ Γ1
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x : A ⊢ x : A
Var

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A⊸ B
Abs

Γ1 ⊢ t1 : A⊸ B Γ2 ⊢ t2 : A

Γ1 + Γ2 ⊢ t1 t2 : B
App

Γ ⊢ t : A

Γ, [∆]0 ⊢ t : A
Weak

Γ, x : A ⊢ t : B

Γ, x :1 A ⊢ t : B
Der

Γ, x :r A, Γ′ ⊢ t : A r ⊑ s

Γ, x :s A, Γ′ ⊢ t : A
Approx

[Γ] ⊢ t : A

r · [Γ] ⊢ [t] : □rA
Pr

Γ1 ⊢ t1 : □rA Γ2, x :r A ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
Let□

Figure 2.3: Typing rules of the graded linear λ-calculus

For example, the context addition of x :4 A, y :3 B and x :2 A, y :5 B
would yield a context x :6 A, y :8 B (using the definition of + from
the natural numbers semiring). However, the context addition of x :
A, y :2 B and x : A, y :3 B is undefined, as the linear assumption x is
present in both sides of the addition.

The terms of the language are given by:

t ::= x | λx.t | t1 t2 | [t] | let [x] = t1 in t2 (terms)

In addition to the the terms of the linear λ-calculus, we also have the
construct [t] which introduces a graded modal type □rA by ‘promot-
ing’ a term t to the graded modality, and it’s dual let [x] = t1 in t2

eliminates a graded modal value t1, binding a graded variable x in
scope of t2. The typing rules relate these terms to types.

Figure 2.3 gives the typing rules. The Weak rule captures weakening
of assumptions graded by 0, where [∆]0 denotes a context containing
only graded assumptions graded by 0, a predicate on contexts given
by Definition 2.3.4:

Definition 2.3.4 (Zeroed graded contexts). For all contexts Γ, [Γ]0 is
defined:

[∅]0 = ∅ [Γ, x :0 A]0 = [Γ]0, x :0 A

[Γ, x :r A]0 = ⊥ [Γ, x : A]0 = ⊥

Context addition and Weak together therefore provide the rules of
substructural rules of contraction and weakening for graded variables.
Dereliction (Der), allows a linear assumption to be converted to a
graded assumption with grade 1.
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We allow grade approximation via their resource algebras through
the application of the Approx rule. A grade s may be converted to
another grade r, providing that r iw approximated by s, where the
relation ⊑ is the pre-order provided with the semiring. This relation is
occasionally lifted pointwise to contexts, ignoring linear assumptions:
we write Γ ⊑ Γ′ to mean that Γ′ overapproximates Γ meaning that for
all (x :r A) ∈ Γ then (x :r′ A) ∈ Γ′ and r⊑ r′.

Introduction and elimination of the graded modality is provided by
the Pr and Let rules respectively. The Pr rule propagates the grade r
to the assumptions through scalar multiplication of Γ by r where every
assumption in Γ must already be graded. Definition 2.3.5 defines a
predicate on Γ in the form of a partial operation which ensures that Γ
contain only graded variables (written [Γ]):

Definition 2.3.5 (Solely graded contexts). For all contexts Γ, [Γ] is
defined:

[∅] = ∅ [Γ, x :r A] = [Γ], x :r A [Γ, x : A] = ⊥

When an assumption in [Γ] is graded, the identity is returned, other-
wise (i.e. if an assumption is linear) the operation is undefined.

Scalar multiplication is then given by: Definition 2.3.6.

Definition 2.3.6 (Scalar context multiplication). A context which con-
sists solely of graded assumptions, i.e. [Γ], can be multiplied by a
semiring grade r ∈ R

r ·∅ = ∅ r · (Γ, x :s A) = (r · Γ), x :(r · s) A

The Let rule eliminates a graded modal value □rA into a graded
assumption x :r A with a matching grade in the scope of the let body.
This is also referred to as “unboxing”.

We give an example of graded modalities using a graded modality
indexed by the semiring of natural numbers.

Example 2.3.1. The natural number semiring with discrete ordering
(N, ·, 1,+, 0,≡) provides a graded modality that counts exactly how
many times non-linear values are used. As an example, the S combi-
nator from the SKI system of combinatory logic is typed and defined:

s : (A⊸ (B⊸ C))⊸ (A⊸ B)⊸□2A⊸ C

s = λx.λy.λz′.let [z] = z′ in (x z) (y z)

The graded modal value z′ captures the capability for a value of type
A to be used twice. This capability is made available by eliminating □
(via let) to the variable z, which has grade 2 in the scope of the body.
Likewise, we can now correctly type and write the K combinator from
Section 2.2.1 as:

k : A⊸□0B⊸ A

k = λx.λy′.let [y] = y′ in x
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Example 2.3.2. The ! modality can be (almost) recovered via the {Zero,
One, ω} semiring. For this semiring, we define + as r + s = r if
s = Zero, r + s = s if r = Zero, otherwise ω. Multiplication is r ·Zero =

Zero · r = Zero, r · ω = ω · r = ω (where r ̸= Zero), and r · 1 = 1 · r = r.
Ordering is defined as Zero ⊑ ω and One ⊑ ω. This semiring allows
us to express both linear and non-linear usage of values, with a One

grade indicating linear use, Zero requires the value be discarded, and
ω acting as linear logic’s ! and permitting unrestrained use. This is
similar to Linear Haskell’s multiplicity annotations (although Linear
Haskell has no equivalent of a Zero grade, only having One and Many

annotations) [Bernardy et al., 2018]. Using this semiring, we can write
the K combinator from Example 2.3.1 above in Granule as:

k : ∀ { a b : Type } . a [One] → b [Zero] → a

k x’ y’ = let [x] = x’ in let [y] = y’ in x

Note however that some additional restrictions are required on typing
to get exactly the behaviour of ! with respect to products [Hughes
et al., 2021]. This is an orthogonal discussion and not relevant to the
rest of this work.

2.3.2 The Fully Graded λ-calculus

As mentioned before, the second style of graded cacluli that we con-
sider are fully graded systems, such as those used in practical systems
today. For example, this is the approach taken by Idris 2 [Brady, 2021]
and the linear types extension to Haskell [Bernardy et al., 2018].

We now define a core calculus for such a type system, where grades
permeate the entire program, drawing from the coeffect calculus of
Petricek et al. [2014], Quantitative Type Theory (QTT) by McBride
[2016] and refined further by Atkey [2018], the calculus of Abel and
Bernardy [2020], and other graded dependent type theories, such
as Moon et al. [2021] (although we omit dependent types from our
language). We refer to this system as the fully graded λ-calculus.

The syntax of types is given by:

A, B ::= Ar → B | □rA (types)

where the function arrow Ar → B annotates the input type with a grade
r which is again drawn from a pre-ordered semiring (R, ·, 1,+, 0,⊑)

parametrising the calculus. The graded necessity modality □rA is
similarly annotated by the grade r being an element of the semiring.

Typing judgements have the same form as Section 2.3.1, however,
variable contexts are instead given by:

∆, Γ ::= ∅ | Γ, x :r A (contexts)
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0 · Γ, x :1 A ⊢ x : A
Var

Γ, x :r A ⊢ t : B
Γ ⊢ λx.t : Ar → B

Abs

Γ1 ⊢ t1 : Ar → B Γ2 ⊢ t2 : A
Γ1 + r · Γ2 ⊢ t1 t2 : B

App

Γ, x :r A, Γ′ ⊢ t : B r⊑ s
Γ, x :s A, Γ′ ⊢ t : B

Approx

Γ ⊢ t : A
r · Γ ⊢ [t] : □rA

Pr

Γ1 ⊢ t1 : □rA Γ2, x :r A ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B
Let□

Figure 2.4: Typing rules for the fully graded λ-calculus

That is, a context may be empty ∅ or extended with a graded as-
sumption x :r A, which must be used in a way which adheres to
the constraints of the grade r. Note that we no longer include linear
assumptions as part of our contexts. As before, structural exchange is
permitted, allowing a context to be arbitrarily reordered.

The syntax of terms is given as:

t ::= x | λx.t | t1 t2 | [t] | let [x] = t1 in t2 (terms)

As before, terms comprise the λ-calculus, extended with the promotion
construct [t] as seen in Section 2.3.1.

Figure 2.4 gives the full typing rules, which explains the meaning
of the syntax with reference to their static semantics.

Variables (rule Var) are typed in a context where the variable x
has grade 1 denoting its single usage here. All other variable as-
sumptions are given the grade of the 0 semiring element (providing
weakening), using scalar multiplication of contexts by a grade, re-using
Definition 2.3.6 from Section 2.3.1.

Abstraction (Abs) captures the assumption’s grade r onto the func-
tion arrow in the conclusion, that is, abstraction binds a variable x
which may be used in the body t according to grade r. Application
again (App) makes use of context addition to combine the contexts
used to type the two sub-terms in the premises of the application rule:

Definition 2.3.7 (Graded context addition).

Γ + ∅ = Γ

∅ + Γ = Γ

(Γ, x :r A) + Γ′ = (Γ + Γ′), x :r A iff x ̸∈ |Γ′|
Γ + (Γ′, x :r A) = (Γ + Γ′), x :r A iff x ̸∈ |Γ|

(Γ, x :r A) + (Γ′, x :s A) = (Γ + Γ′), x :(r+s) A
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As in the linear graded case, we also provide the algorithmic def-
inition of graded context addition, where graded assumptions may
appear in any position in Γ and Γ′ as witnessed by the algorithmic
specification where for all Γ1, Γ2 context addition is defined as follows
by ordered cases matching inductively on the structure of Γ2, where
Γ1 + Γ2 =

Γ1 Γ2 = ∅

(Γ1 + Γ′
2), x :r A Γ2 = Γ′

2, x :r A ∧ x :r A /∈ Γ1

((Γ′
1, Γ′′

1 ) + Γ′
2), x :(r+s) A Γ2 = Γ′

2, x :s A ∧ Γ1 = Γ′
1, x :r A, Γ′′

1

Note that Definition 2.3.7 differs only from 2.3.3, in that the former
need not consider linear assumptions.

As an example of the App rule, consider the following typing deriva-
tion for a program of type (A3 → B)1 → A3 → B:

x :1 A3 → B ⊢ x : A3 → B
Var

y :1 A ⊢ y : A
Var

x :1 A3 → B + 3 · y :1 A → B ⊢ x y : B
App

x :1 A3 → B ⊢ λy.x y : A3 → B
Abs

∅ ⊢ λx.λy.x y : (A3 → B)1 → A3 → B
Abs

This program binds a function x of type A3 → B with grade 1, i.e. it
consumes its input according to a grade of 3 and the function itself
can be used once. The application of y to x satisfied this grade usage,
as y has a grade of 3. In the App rule, we type a single use of y in
the second premise via the Var rule, and then scale this usage by the
grade 3 on the function arrow of x, satisfying the grade y was bound
with in the Abs rule.

Explicit introduction of graded modalities is achieved via the rule
for promotion (Pr). This rule is almost identical to that of 2.3.1 with the
only difference being here Γ is known to always contain only graded
assumptions, so the predicate [Γ] is not needed. Explicit unboxing
(Let□), and approximation (Approx) are likewise identical to the
calculus of 2.3.1.

Example 2.3.3. We now consider the programs shown in Examples 2.2.1, 2.3.1
(page 15) but written instead in this fully graded style. The combinator
for linear function composition is written:

comp : (A1 → B)1 → (B1 → C)1 → A1 → C

comp = λx.λy.λz = y (x z)

Note that at the term level, we do not need to unbox values graded by
a function arrow to use them in according to their grades. However,
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we may make explicit use of graded modalities which does necessitate
unboxing. Likewise, S and K can be typed and written as:

s : (A1 → (B1 → C))1 → (A1 → B)1 → A2 → C

s = λx.λy.λz.(x z) (y z)

k : A1 → B0 → A

k = λx.λy.x

2.4 operational semantics

We briefly present the reduction rules for a call-by-name operational
semantics for our calculi [Liepelt et al., 2024]. The Granule interpreter
also provides a call-by-value semantics which can be enabled via a
language extension. Note that the rules are identical for both the
graded linear and fully graded systems! Figure 2.5 collects the rules.

(λx.t2) t1 ⇝ [t1/x]t2
β

t1 ⇝ t′1
t1 t2 ⇝ t′1 t2

App

let [x] = [t1] in t2 ⇝ [t1/x]t2
□β

t1 ⇝ t′1
let [x] = t1 in t2 ⇝ let [x] = t′1 in t2

Let□

Figure 2.5: Reduction rules for the linear graded and fully graded λ-calculi

The rules are fairly straightforward and we do not rely on them
heavily in subsequent chapters, instead providing them for complete-
ness and to give an intuition of the dynamic behaviour of our calculi.

admissibility of substitution We remark that substitution is
admissible in each of the calculi. Rather than provide the details at
this point, we present the lemmas for both of the calculi once we have
extended them with the additional types mentioned above in their
respective chapters.

2.5 the granule programming language

Having defined the core calculi used throughout this thesis, we now
offer a brief introduction to the programming language Granule - the
target language of our implementation. Throughout this section, we
include the Granule equivalent code of many of the examples seen in
Sections 2.3.1 and 2.3.2.
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Granule comes in two variants, “linear base” (the default) and
“graded base” (enabled via a language extension of the same name)
which respectively correspond to the calculi of the two previous sec-
tions. We will first introduce Granule syntax in the context of the
linear base variant of Granule before showing the alternative style in
Section 2.5.3.

Granule syntax is inspired by Haskell. However, a single colon is
used for typing rather than double. Note that Granule code uses →
syntax rather than⊸ for linear functions for the sake of familiarity
with standard functional languages.

By default, Granule uses a linear type system at its core. For vari-
ables, this means that a function must either return a variable un-
changed or pass it to another linear function. If the variable has a
function type, then appling a value to that variable also counts as
a use. Consider the following (well-typed) example of a program in
Granule, the identity function:

id : ∀ { a : Type } . a → a

id x = x

Here id binds a variable x on the left, and is simply returned on the
right, adhering to linearity. Granule features ML style polymorphism,
thus top level definitions are annotated with type schemes which
quantify over kind-annotated type variables.

But what happens if we try to write a program which violates this
linearity? Consider the following equivalent Granule code of the k
combinator from Example 2.3.1:

k : ∀ { a b : Type } . a → b → a

k x y = x -- ill-typed

If we try to compile this program, we get a type error

Linearity error: Linear variable y is never used.

as the discarding of y violates linearity. Instead, we can accommodate
non-linear behaviour through the use of grades (as seen in the calculus
of Figure 2.3):

k : ∀ { a b : Type } . a → b [0] → a

k x y’ = let [y] = y’ in x

In contrast to the calculus, in Granule the grade is written post-fix
on the type, i.e. □0B becomes b [0]. A term-level unboxing via the
let construct allows us to use the variable y’ according to the grade
0 in the body of k. If we try use the values in a way which violates
their grades, we also get a type error at compilation. For example if
we changed the grade of b in the above example to 1, the fact that y is
discarded in the implementation would yield the following error:

Falsifiable theorem:

When checking ‘k‘, expected 1 uses, but instead there are (0:

Nat) actual uses.
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Likewise, the s combinator from Example 2.3.1 can be written in
Granule code as:

s : ∀ { a b c : Type }

. (a → (b → c)) → (a → b) → a [2] → c

s x y z’ = let [z] = z’ in (x z) (y z)

Granule also includes pattern matching (which we extend our calculi
with in Chapter 4), allowing us to refactor the above two programs to
pattern match on the graded modalities in the function equations:

k : ∀ { a b : Type } . a → b [0] → a

k x [y] = x

s : ∀ { a b c : Type }

. (a → (b → c)) → (a → b) → a [2] → c

s x y [z] = (x z) (y z)

2.5.1 Semiring Polymorphism

While our calculus in Figure 2.3 is parametrised by a semiring making
grades monomorphic, in Granule code we may be explicitly polymor-
phic in the grades used by quantifying over the semiring. For example,
we can then write a graded version of comp from Section 2.2.1 (i.e.
coKleisli composition) as:

comp-coKR : □r(□s A⊸ B)⊸ (□rB⊸ C)⊸□r·s A⊸ C

comp-coKR = λx.λy.λz.let[u] = x in let[v] = z in y [u [v]]

which we can write as a Granule program which is polymorphic with
respect to grades as well as types:

compCoK : ∀ {k : Semiring, r s : k, a b c : Type}

. (a [s] → b) [r]

→ (b [r] → c)

→ a [r * s]

→ c

compCoK x y z = let [u] = x in let [v] = z in y [ u [v] ]

The type scheme for compCoK quantifies over the semiring k, and then
grade variables r and s with the kind k. The grades must then be
used in the type in a polymorphic way. This gives a brief overview
of Granule syntax, and how the calculus of Figure 2.3 corresponds
to Granule code. We now consider the Granule equivalent of the
fully-graded λ-calculus, presented in Section 2.3.2.

2.5.2 Data Types and Constructors

Granule allows (Generalised) Algebraic Data Types as in ML/Haskell.
We omit discussion of GADTS for this work and focus instead on
ADTs, which can be written like so:
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data Maybe a = Nothing; Just a

To unwrap a Maybe a value to an a, we need to provide a default value
(making use of an interval grade) in case the value of Maybe a is a
Nothing:

fromMaybe : ∀ {a : Type} . a [0..1] → Maybe a → a

fromMaybe [x] Nothing = x;

fromMaybe [_] (Just x) = x

Here, we also make use of a wildcared pattern (_) in the second
function equation which indicates are intent to discard the value being
unboxed. The type checker then checks that the grade of a allows us
to do this discarding (which in this case is permissible).

Recursive ADTs can be constructed as usual, with a List data type
having the definition:

data List a = Nil; Cons a (List a)

2.5.3 The GradedBase Language Extension

To write fully graded Granule programs, we enable the GradedBase

language extension. This allows us to write programs in Granule which
correspond to the fully-graded λ-calculus of Section 2.3.2. Grades are
written on function arrows using % (in the same way that multiplicity
annotations are written in Linear Haskell). This can be seen in the
GradedBase equivalent of the program comp from Example 2.2.1 (using
natural number grades):

language GradedBase

comp : ∀ { a b c : Type }

. (a %1 → b) %1

→ (b %1 → c) %1

→ a %1

→ c

comp x y z = y (x z)

Omitting a grade annotation defaults to a grade of 1. So this function
may also be written without any annotations with the same meaning:

comp : ∀ { a b c : Type } . (a → b) → (b → c) → a → c

comp x y z = y (x z)

The semiring polymorphic version of comp in GradedBase Granule,
would be written as:

compCoK : ∀ {k : Semiring, r s : k, a b c : Type }

. (a % s → b) % n

→ (b % r → c)

→ a %(r * s)

→ c

compCoK x y z = y (x z)
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2.5.4 Granule Syntax for Program Synthesis

To synthesise an implementation for a function in Granule, a program-
mer can use a typed program hole in place of a function body (written
?), i.e.:

data List a = Nil; Cons a (List a)

tail : ∀ { a : Type } . List a [0..1] → List a

tail = ?

Invoking the synthesis tool on a Granule file will attempt to synthesise
an implementation for each program hole, and replace the hole with
the synthesised implementation.

When specifying the synthesis context of top-level definitions in
Granule, the user may supply a series of input-output examples show-
casing desired behaviour. Our approach to examples is deliberately
naïve; we evaluate a fully synthesised candidate program against the
inputs and check that the results match the corresponding outputs.
Unlike many sophisticated example-driven synthesis tools, the ex-
amples here do not themselves influence the search procedure, and
are used solely to allow the user to clarify their intent. This lets us
consider the effectiveness of basing the search primarily around the
use of grade information. An approach to synthesis of resourceful
programs with examples closely integrated into the search as well is
further work.

We augmented the Granule language with first-class syntax for spec-
ifying input-output examples, both as a feature for aiding synthesis
but also for aiding documentation that is type checked (and therefore
more likely to stay consistent with a code base as it evolves). Synthesis
specifications are written in Granule directly following a function’s
type scheme using the spec keyword. The input-output examples are
then listed per-line. Annotating a function with a spec construct is
optional, but incredibly useful in a synthesis setting:

data List a = Nil; Cons a (List a)

tail : ∀ { a : Type } . List a [0..1] → List a

spec

tail (Cons 1 Nil) = Nil;

tail (Cons 1 (Cons 2 Nil)) = Cons 2 Nil;

tail = ?

Any synthesised term must then behave according to the supplied
examples. This spec structure can also be used to describe additional
synthesis components that the user wishes the tool to make use of.
These components comprise a list of in-scope definitions separated
by commas. The user can choose to annotate each component with
a grade, describing the required usage in the synthesised term. This
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defaults to a 1 grade if not specified. For example, the specification for
a function which returns the length of a list might be (in GradedBase):

language GradedBase

data List a where Nil; Cons a (List a)

length : ∀ { a : Type } . List a %0..∞ → N

spec

length Nil = Z;

length (Cons 1 Nil) = S Z;

length (Cons 1 (Cons 1 Nil)) = S (S Z);

length 0..∞
length = ?

with the following resulting program produced by our synthesis algo-
rithm (on average in about 400ms on a standard laptop, see Section 4.5
where this is one of the benchmarks for evaluation):

length Nil = Z;

length (Cons y z) = S (length z)

2.6 two typing calculi

Having outlined the two lineages of graded type systems, we are left
with the question: what approach should we use as the basis of a
target language for a program synthesis tool? Both systems embed
properties for reasoning about program structure into the language,
however, they differ in how this information is expressed, as shown
by the variance in typing and syntax between Sections 2.3.1 and 2.3.2.

Rather than focus entirely on one approach, we opt to instead build
synthesis tools which target both systems. Our approach to synthesis
is rooted in the techniques for resource management in automated
theorem proving for linear logic [Hodas and Miller, 1994, Cervesato
et al., 2000]. Therefore, Chapter 3 uses the graded linear λ-calculus as a
natural starting point for the design of a synthesis calculus, where we
build upon the existing proof search literature to accommodate graded
modal types. In doing so we also extend graded linear λ-calculus with
some other useful types to make our language more practical, such as
linear multiplicative products ⊗, additive sums ⊕, and a Unit type.

Having established how to handle synthesis in the graded linear
setting, in Chapter 4 we then pivot to a synthesis calculi for a language
derived from the fully graded λ-calculus, as this is the approach that
is most commonly in use by practical systems today [Brady, 2021,
Bernardy et al., 2018]. In doing so, we also extend our fully graded
λ-calculus with recursive ADTs, recursive function definitions, and
polymorphism. As we have seen, systems based on both approaches
are in use today, and both pose their unique challenges in design-
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ing a synthesis tool. Furthermore, the target programming language
Granule of our implementations includes both approaches.1

1 As of Granule v0.9.3.0. Available at: https://github.com/granule-
project/granule/releases/tag/v0.9.3.0



3
A C O R E S Y N T H E S I S C A L C U L U S

We begin our first exploration into program synthesis with a synthesis
system for the graded linear λ-calculus of Section 2.3.1. The primary
aim of this chapter is to introduce the core concepts of type-directed
program synthesis in a resourceful setting, in particular, the prob-
lem of resource management. We therefore prioritise simplicity over
expressivity for our target language, with the core typing calculus of
Section 2.3.1 forming an ideal candidate. Much of the work in this
chapter is derived from Hughes and Orchard [2020].

In Chapter 1 we posed the question “how do we harness [linear
and graded types] to make writing programs automatically easier?”.
This chapter goes some way to providing an answer, by showing how
we can integrate these types into the design of a synthesis tool, using
resource constraints to prune the search space of programs.

As mentioned in Chapter 1, type-directed program synthesis can be
framed as an inversion of type checking. In type checking, we have a
judgement of the form:

Γ ⊢ t : A (type checking)

which states that under some context of assumptions Γ we can assign
the program term t the type A. In type-checking, we typically think
of starting with a term and generating its type. Synthesis inverts this
interpretation, leaving us with a synthesis judgement form:

Γ ⊢ A ⇒ t (synthesis)

which states that we can construct a program term t from the type A,
using the assumptions in Γ. Program synthesis then becomes a task
of inductively enumerating programs “bottom-up” starting from the
goal type A: we break A into sub-goals, from which sub-terms are
synthesised until the goal cannot be broken into further sub-goals. At
this point, we either synthesise a usage of a variable from Γ if possible,
a constructor for a null-ary data type if one is available, or synthesis
fails. This is the essence of type-directed program synthesis.

roadmap Resourceful types introduce another dimension to syn-
thesis: how do we ensure that the assumptions in Γ are used according

30



a core synthesis calculus 31

to their resource constraints as described by their linearity or grades
in the synthesised term t? I.e. if x : A is a linear assumption in Γ
that is used in some way to construct t, then the synthesis tool must
synthesise a t which uses x exactly once. Likewise, if x :r A is a graded
assumption, then it must be used in t in a way which satisfies its grade
r.

Firstly, in Section 3.1 we extend our calculus from Section 2.3.1
to include types that help us to write more useful programs which
properly convey the problem of resource management. The linear side
of this problem has been explored before in the context of automated
theorem proving for linear logic, and has been termed the resource man-
agement problem. We describe this problem in detail in Section 3.2 and
propose two candidate solutions which incorporate grades as well as
linearity, basing our approach on the input-output context management
model described by Hodas and Miller [1994], and further developed
by Cervesato et al. [2000].

The challenges posed by ensuring the well-resourcedness of syn-
thesised programs are best illustrated by the inclusion in our target
language of multiplicative conjunction, and additive disjunction. There-
fore, prior to fully describing the problem of resource management
and our proposed solutions, we first expand our target language with
multiplicative product (⊗), and unit types (Unit), as well as disjunctive
sum types (⊕). These extensions are detailed in Section 3.1, which will
be the target language of the synthesis calculi of this chapter. As well
as helping to conceptualise the challenges posed by program synthesis
in a resourceful setting, these have the added benefit of allowing the
synthesis of more expressive programs, without introducing unneces-
sary complexity at this stage.

Having outlined both a suitable target language and two approaches
to dealing with the issue of resource management, we then present
two synthesis calculi in Sections 3.3 and 3.4 as augmented inversions
of the typing rules. Each calculus is based on a one of our proposed
solutions to the resource management problem.

Both calculi are implemented as a synthesis tool for Granule.1 The
calculi are turned into an algorithm written in Haskell. In order to do
so, we apply an important technique from proof search literature to
our calculi: focusing [Andreoli, 1992]. Focusing removes much of the
unnecessary non-determinism present in our synthesis rules by fixing
an ordering on the application of rules. We present the two focused
forms of our original synthesis calculi in Section 3.5, which form the
basis of our Granule implementation. Following this, we provide some
details of the implementation in Section 3.6

1 The exact implementation of the rules as they appear in this thesis is depre-
cated, but may be found in Granule release v0.7.8.0: https://github.com/granule-
project/granule/releases/tag/v0.7.8.0
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Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B

Γ1 + Γ2 ⊢ (t1, t2) : A ⊗ B
Pair

Γ1 ⊢ t1 : A ⊗ B Γ2, x1 : A, x2 : B ⊢ t2 : C

Γ1 + Γ2 ⊢ let (x1, x2) = t1 in t2 : C
LetPair

Γ ⊢ t : A

Γ ⊢ inl t : A ⊕ B
Inl

Γ ⊢ t : B

Γ ⊢ inr t : A ⊕ B
Inr

Γ1 ⊢ t1 : A ⊕ B Γ2, x1 : A ⊢ t2 : C Γ3, x2 : B ⊢ t3 : C

Γ + (Γ2 ⊔ Γ3) ⊢ case t1 of inl x1 → t2; inr x2 → t3 : C
Case

∅ ⊢ () : Unit
Unit

Γ1 ⊢ t1 : Unit Γ2 ⊢ t2 : A

Γ1 + Γ2 ⊢ let () = t1 in t2 : A
LetUnit

Figure 3.1: Typing rules of for ⊗, ⊕, and 1

Each synthesis calculus implementation is then evaluated and con-
trasted against each other in Section 3.7, which measures the synthesis
calculi on a suite of simple Granule benchmark programs. Finally
we conclude with a discussion of related work in Section 6.1, and
highlight some limitations of our system in Section 3.8, showing how
we intend to proceed in subsequent chapters to address these.

3.1 a core target language

The syntax of types and terms for our extended language are given by
the following two grammars:

A, B ::= A⊸ B | A ⊗ B | A ⊕ B | Unit | □rA (types)

t ::= x | λx.t | t1 t2

| [t] | let [x] = t1 in t2

| (t1, t2) | let (x1, x2) = t1 in t2

| () | let () = t1 in t2

| inl t | inr t | case t1 of inl x1 → t2; inr x2 → t3 (terms)

Type formers comprise the graded linear λ-calculus of Section 2.3.1,
extended with multiplicative products (⊗), additive coproducts (⊕),
and multiplicative units Unit.

We use the syntax () for the inhabitant of Unit. Pattern matching
via a let is used to eliminate products and unit types; for sum types,
case is used to distinguish the constructors.

Figure 3.1 gives the typing rules. Rules for multiplicative products
(pairs) and additive coproducts (sums) are routine, where pair intro-
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duction (Pair) adds the contexts used to type the pair’s constituent
sub-terms. Pair elimination (LetPair) binds a pair’s components to
two linear variables in the scope of the body t2. The Inl and Inr rules
handle the typing of constructors for the sum type A ⊕ B. Elimination
of sums (Case) takes the least upper bound of the two contexts used to
type each branch, defined:

Definition 3.1.1 (Partial least-upper bounds of contexts). For all Γ1,
Γ2, Γ1 ⊔ Γ2 =

∅ Γ1 = ∅ ∧ Γ2 = ∅

(Γ′
1 ⊔ (Γ′

2, Γ′′
2 )), x : A Γ1 = Γ′

1, x : A ∧ Γ2 = Γ′
2, x : A, , Γ′′

2

(Γ′
1 ⊔ (Γ′

2, Γ′′
2 )), x :r⊔s A Γ1 = Γ′

1, x :r A ∧ Γ2 = Γ′
2, x :s A, Γ′′

2

where r⊔s is the least-upper bound of grades r and s if it exists, derived
from ⊑ (given by Definition 2.3.2).

As an example of the partiality of ⊔, if one branch of a case uses
a linear variable, then the other branch must also use it to maintain
linearity overall, otherwise the upper-bound of the two contexts for
these branches is not defined.

With these extensions in place, we now have the capacity to write
more idiomatic functional programs in our target language. As a
demonstration of this, and to showcase how graded modalities interact
with these new type extensions, we provide two further examples of
different graded modalities which complement these new types.

Example 3.1.1. Exact usage analysis is less useful when control-flow is
involved, e.g., eliminating sum types where each control-flow branch
uses variables differently. The N-semiring shown on page 19 can be
imbued with a notion of approximation via less-than-equal ordering,
providing upper bounds. A more expressive semiring is that of natural
number intervals [Orchard et al., 2019], given by pairs N × N written
r...s here for the lower-bound r ∈ N and upper-bound usage s ∈ N

with 0 = 0...0 and 1 = 1...1, addition and multiplication defined point-
wise, and ordering r...s ⊑ r′...s′ = r′ ≤ r ∧ s ≤ s′. Thus a coproduct
elimination function can be written and typed:

⊕e : □0...1(A⊸ C)⊸□0...1(B⊸ C)⊸ (A ⊕ B)⊸ C

⊕e = λx′.λy′.λz.let [x] = x′ in

let [y] = y′ in

case z of inl u → x u | inr v → y v

Here, ⊕0...1 takes two functions as arguments which each have
a return type C and are graded by the interval 0...1, as well as a
linear sum of type A ⊕ B. The sum is eliminated via a case statement,
where each branch uses the appropriate argument function to form
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an application with type C. Despite each branch only using one of
the argument functions, the program is well-resourced thanks to
the interval grade 0...1 giving us the ability to discard the irrelevant
function.

Example 3.1.2. Graded modalities can capture a form of information-
flow security, tracking the flow of labelled data through a program [Or-
chard et al., 2019], with a 2-point semiring of security levels where
L = {Private, Public} forms a set of abstract labels, denoting high and
low security permissions respectively, with a lattice formed by the
total order with Private ⊑ Public. Multiplication is given by ⊔, and
addition by ⊓, with 0 = Private and 1 = Public.

This allows the following well-typed program, eliminating a pair of
Lo and Hi security values, picking the left one to pass to a continuation
expecting a Lo input:

noLeak : (□LoA ⊗ □HiA)⊸ (□Lo(A ⊗ Unit)⊸ B)⊸ B

noLeak = λz.λu.let (x′, y′) = z in

let [x] = x′ in

let [y] = y′ in u [(x, ())]

3.1.1 Metatheory

Finally, as hinted at on page 23 of Chapter 2, the admissibility of
substitution is a key result that holds for this language [Orchard et al.,
2019], which is leveraged in soundness of the synthesis calculi.

Lemma 3.1.1 (Admissibility of substitution). Let ∆ ⊢ t′ : A, then:

• (Linear) If Γ, x : A, Γ′ ⊢ t : B then Γ + ∆ + Γ′ ⊢ [t′/x]t : B

• (Graded) If Γ, x :r A, Γ′ ⊢ t : B then Γ + (r ·∆) + Γ′ ⊢ [t′/x]t : B

3.2 the resource management problem

In Chapter 1 we considered a synthesis rule for pairs and highlighted
how graded types could be used to control the number of times
assumptions are used in the synthesised term.

Chapter 1 considered (Cartesian) product types ×, but in our target
language we use the multiplicative product of linear types:

Γ1 ⊢ t1 : A Γ2 ⊢ t2 : B

Γ1 + Γ2 ⊢ (t1, t2) : A ⊗ B
Pair

Each sub-term is typed by a different context Γ1 and Γ2 which are then
combined via context addition, which equates to disjoint union when
considering a solely linear setting: the pair cannot be formed if linear
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variables are shared between Γ1 and Γ2. This prevents the structural
behaviour of contraction (where a variable appears in multiple sub-
terms). Naïvely inverting this typing rule into a synthesis rule yields:

Γ1 ⊢ A ⇒ t1 Γ2 ⊢ B ⇒ t2

Γ1, Γ2 ⊢ A ⊗ B ⇒ (t1, t2)
⊗Intro

As a declarative specification, the ⊗Intro synthesis rule is sufficient.
However, this rule embeds a considerable amount of non-determinism
when considered from an algorithmic perspective. Reading ‘clockwise’
starting from the bottom-left, given some context Γ and a goal A ⊗ B,
we have to split the context into disjoint subparts Γ1 and Γ2 such that
Γ = Γ1, Γ2 in order to pass Γ1 and Γ2 to the sub-goals for A and B. For
a context of size n there are 2n possible such partitions! This quickly
becomes intractable. Instead, Hodas and Miller [1994] developed a
technique for linear logic programming, refined by Cervesato et al.
[2000], where proof search for linear logic has both an input context of
available resources and an output context of the remaining resources,
which we write as judgements of the form Γ ⊢ A ⇒− t | Γ′ for input
context Γ and output context Γ′. Synthesis for multiplicative products
then becomes:

Γ1 ⊢ A ⇒− t1 | Γ2 Γ2 ⊢ B ⇒− t2 | Γ3

Γ1 ⊢ A ⊗ B ⇒− (t1, t2) | Γ3
⊗−

Intro

where the remaining resources after synthesising for A the first term
t1 are Γ2 which are then passed as the resources for synthesising
the second term B. There is an ordering implicit here in ‘threading
through’ the contexts between the premises. For example, starting with
a context x : A, y : B, and given the following rule for synthesising a
variable usage:

Γ, x : A ⊢ A ⇒− x | Γ
Var

then the ⊗−
Intro

rule may be instantiated as:

x : A, y : B ⊢ A ⇒− x | y : B y : B ⊢ B ⇒− y | ∅

x : A, y : B ⊢ A ⊗ B ⇒− (x, y) | ∅
⊗−

Intro

(example)

Thus this approach neatly avoids the problem of having to split the
input context, and facilitates efficient proof search for linear types. We
extend this input-output context management model to the graded
linear λ-calculus to facilitate the synthesis of programs in Granule. We
term the above approach subtractive resource management (in a style
similar to left-over type checking for linear type systems [Allais, 2018,
Zalakain and Dardha, 2020]).
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Graded type systems, as we consider them here, have typing con-
texts in which free-variables are assigned a type, and a grade. In a
graded setting, the subtractive approach is problematic as there is
not necessarily a notion of actual subtraction for grades. Consider a
version of the above example for subtractively synthesising a pair, but
now for a context with some grades r and s on the input variables.
Using a variable to synthesise a sub-term now does not result in that
variable being left out of the output context. Instead a new grade must
be assigned in the output context that relates to the first by means of
an additional constraint describing that some usage took place:

∃r′.r′ + 1 = r ∃s′.s′ + 1 = s
x :r A, y :s B ⊢ A ⇒− x | x :r′ A, y :s B
x :r′ A, y :s B ⊢ B ⇒− y | x :r′ A, y :s′ B

x :r A, y :s B ⊢ A ⊗ B ⇒− (x, y) | x :r′ A, y :s′ B
⊗−

Intro

(example)

In the first synthesis premise, x has grade r in the input context, x is
synthesised for the goal, and thus the output context has some grade
r′ where r′ + 1 = r, denoting that some usage of x occurred (which is
represented by the 1 element of the semiring in graded systems).

For the natural numbers semiring, with r = 1 and s = 1 then the
constraints above are satisfied with r′ = 0 and s′ = 0. In a general
setting, this subtractive approach to synthesis for graded types requires
solving many such existential equations over semirings, which also
introduces a new source of non-determinism if there is more than
one solution. These constraints can be discharged via an off-the-shelf
SMT solver, such as Z3 [de Moura and Bjørner, 2008]. Such calls to
an external solver are costly, however, and thus efficiency of resource
management is a key concern.

We propose a dual approach to the subtractive: the additive resource
management scheme. In the additive approach, output contexts de-
scribe what was used not what was is left. In the case of synthesising
a term with multiple sub-terms (like pairs), the output context from
each premise is then added together using the semiring addition oper-
ation applied pointwise on contexts to produce the final output in the
conclusion. For pairs this looks like:

Γ ⊢ A ⇒+ t1 | ∆1 Γ ⊢ B ⇒+ t2 | ∆2

Γ ⊢ A ⊗ B ⇒+ (t1, t2) | ∆1 + ∆2
⊗+

Intro

The entirety of Γ is used to synthesise both premises. For example, for
a goal of A ⊗ A:

x :r A, y :s B ⊢ A ⇒+ x | x :1 A, y :0 B
x :r A, y :s B ⊢ A ⇒+ x | x :1 A, y :0 B

x :r A, y :s B ⊢ A ⊗ A ⇒+ (x, x) | x :1+1 A, y :0 B
⊗+

Intro

(example)
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Later checks in synthesis then determine whether the output context
describes usage that is within the grades given by Γ, i.e., that the
synthesised terms are well-resourced.

Both the subtractive and additive approaches avoid having to split
the incoming context Γ into two prior to synthesising sub-terms.

We adapt the input-output context management model of linear
logic synthesis to graded types, pruning the search space via the quan-
titative constraints of grades. It is not immediately apparent which
approach has better performance, thus we implement synthesis calculi
based on both the additive and subtractive approaches, evaluating
their performance on a set of benchmarking synthesis problems.

We now present two synthesis calculi based on the subtractive
and additive resource management schemes, respectively. The struc-
ture of the synthesis calculi mirrors a cut-free sequent calculus, with
left and right rules for each type constructor. Right rules synthesise
an introduction form for the goal type. Left rules eliminate (decon-
struct) assumptions so that they may be used inductively to synthesise
sub-terms. Each type in the core language has right and left rules
corresponding to its constructors and destructors respectively. The
rules as we present them in this section are highly non-deterministic,
and are not enough by themselves to use as the basis of an implemen-
tation - an issue which will be addressed in the subsequent section on
focusing.

3.3 a subtractive synthesis calculus

Our subtractive approach follows the philosophy of earlier work on
linear logic proof search [Hodas and Miller, 1994, Cervesato et al.,
2000], structuring synthesis rules around an input context of the
available resources and an output context of the remaining resources
that can be used to synthesise subsequent sub-terms. Synthesis rules
are read bottom-up, with judgments Γ ⊢ A ⇒− t | ∆ meaning from
the goal type A we can synthesise a term t using assumptions in Γ, with
output context ∆. We describe the rules in turn to aid understanding.
Figure 3.2 collects the rules for reference.

3.3.1 Variables

Variable terms can be synthesised from assumptions in the context of
linear and graded assumptions Γ by rules:

Γ, x : A ⊢ A ⇒− x | Γ
LinVar

− ∃s. r ⊒ s + 1

Γ, x :r A ⊢ A ⇒− x | Γ, x :s A
GrVar

−

On the left, a variable x may be synthesised for the goal A if a linear
assumption x : A is present in the input context. The input context
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without x is then returned as the output context, since x has been
used. On the right, we can synthesise a variable x for A if we have
a graded assumption of x matching the type. However, the grading
r must permit x to be used once here. Therefore, the premise states
that there exists some grade s such that grade r approximates s + 1.
The grade s represents the use of x in further synthesis judgements,
and thus x :s A is in the output context. For the natural numbers
semiring, this constraint is satisfied by s = r − 1 whenever r ̸= 0,
e.g., if r = 3 then s = 2. For intervals, the role of approximation
is more apparent: if r = 0...3 then this rule is satisfied by s = 0...2
where s + 1 = 0...2 + 1...1 = 1...3 ⊑ 0...3. In the natural numbers
semiring, this existential grade variable could be instantiated by simply
subtracting 1 from the assumption’s existing grade r. However, as not
all semirings have an additive inverse, this is instead handled via
a constraint on the new grade s, requiring that r ⊒ s + 1. In the
implementation, the constraint is discharged via an SMT solver, where
an unsatisfiable result terminates this branch of synthesis.

3.3.2 Functions

In typing, λ-abstraction binds linear variables to introduce linear
functions. Synthesis from a linear function type therefore mirrors
typing:

Γ, x : A ⊢ B ⇒− t | ∆ x ̸∈ |∆|
Γ ⊢ A⊸ B ⇒− λx.t | ∆

⊸−
R

Thus, λx.t can be synthesised given that t can be synthesised from B
in the context of Γ extended with a fresh linear assumption x : A. To
ensure that x is used linearly by t we must therefore check that it is
not present in ∆.

The elimination rule for linear function types then synthesises ap-
plications (as in Hodas and Miller [1994]):

Γ, x2 : B ⊢ C ⇒− t1 | ∆1 x2 ̸∈ |∆1| ∆1 ⊢ A ⇒− t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒− [(x1 t2)/x2]t1 | ∆2
⊸−

L

The rule synthesises a term for type C in a context that contains an
assumption x1 : A ⊸ B. The first premise synthesises a term t1 for
C under the context extended with a fresh linear assumption x2 : B,
i.e., assuming the result of x1. This produces an output context ∆1 that
must not contain x2, i.e., x2 is used by t1. The remaining assumptions
∆1 provide the input context to synthesise t2 of type A: the argument
to the function x1. This structure corresponds to a left-elimination rule
of function types in sequent calculus. In the conclusion, the application
x1 t2 is substituted for x2 inside t1, and ∆2 is the output context.
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Remark 1. One might remark upon the formulation of this rule: a
more straightforward alternative would seem to be:

Γ, x3 : B ⊢ C ⇒− t | ∆

Γ, x1 : A⊸ B, x2 : A ⊢ C ⇒− x1 t | ∆
⊸−

L

The reason for this is that such a rule would not adhere to the format
of a cut-free sequent calculus [Pfenning, 2002] which allows us to view
proof search as a purely “bottom-up” construction of a derivation,
eliminating unnecessary non-determinism.

3.3.3 Dereliction

Note that the above rule synthesises the application of a function
given by a linear assumption. What if we have a graded assumption
of function type? Rather than duplicating every left rule for both
linear and graded assumptions, we mirror the dereliction typing rule
(converting a linear assumption to graded) as:

Γ, x :s A, y : A ⊢ B ⇒− t | ∆, x :s′ A y ̸∈ |∆| ∃s. r ⊒ s + 1

Γ, x :r A ⊢ B ⇒− [x/y]t | ∆, x :s′ A
der

−

Dereliction captures the ability to reuse a graded assumption being
considered in a left rule. A fresh linear assumption y is generated
that represents a use of the graded assumption x when used in a left
rule, and must be used linearly in the subsequent synthesis of t. As
with the⊸−

L rule, the use of y is substituted for x in the body of the
synthesised term t.

The output context of the premise then contains x graded by s′,
which reflects how x was used in the synthesis of t, i.e. if x was not
used then s′ = s. The premise ∃s. r ⊒ s + 1 constrains the number of
derelictions that can be used so that the grade r is not exceeded.

One may observe that the der
− rule makes the presence of the

GrVar
− rule admissible. Synthesising the usage of a graded variable

can instead be achieved through the use of dereliction on the graded
assumption, followed by the LinVar

−. For example, the following
derivation for synthesising a value of type A from a context with the
graded assumption x :1 A using der

−:

x :s A, y : A ⊢ A ⇒− y | x :s A
LinVar

−
y /∈ x :s A ∃s.1 ⊒ s + 1

x :1 A ⊢ A ⇒− [x/y]y | x :s A
der

−

is equivalent to using the GrVar
− rule (after applying the substitution

in the der
− rule’s conclusion):

∃s.1 ⊒ s + 1

x :1 A ⊢ A ⇒− x | x :s A
GrVar

−
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Nevertheless, we find the inclusion of GrVar
− useful as an explana-

tory tool and optimisation in the implementation of the calculus.

3.3.4 Graded modalities

For a graded modal goal type □rA, we synthesise a promotion [t] if
we can synthesise the ‘unpromoted’ t from A:

Γ ⊢ A ⇒− t | ∆

Γ ⊢ □rA ⇒− [t] | Γ − r · (Γ − ∆)
□−

R

A non-graded value t may be promoted to a graded value using the
box syntactic construct. Recall that typing of a promotion [t] scales all
the graded assumptions used to type t by r. Therefore, to compute the
output context we must “subtract” r-times the use of the variables in t.
However, in the subtractive model ∆ tells us what is left, rather than
what is used. Thus we first compute the context subtraction of Γ and ∆
yielding the variable usage information about t:

Definition 3.3.1 (Context subtraction). For all Γ1, Γ2 where Γ2 ⊆ Γ1,
Γ1 − Γ2 =

Γ1 Γ2 = ∅

(Γ′
1, Γ′′

1 )− Γ′
2 Γ2 = Γ′

2, x : A ∧ Γ1 = Γ′
1, x : A, Γ′′

1

((Γ′
1, Γ′′

1 )− Γ′
2), x :q A Γ2 = Γ′

2, x :s A ∧ Γ1 = Γ′
1, x :r A, Γ′′

1

∧ ∃q. r ⊒ q + s ∧ ∀q′.r ⊒ q′ + s =⇒ q ⊒ q′

Note that this is an algorithmic definition of context subtraction. As
in graded variable synthesis, context subtraction existentially quan-
tifies a variable q to express the relationship between grades on the
right being “subtracted” from those on the left. The last conjunct
states q is the greatest element (wrt. to the pre-order) satisfying this
constraint, i.e., for all other q′ ∈ R satisfying the subtraction constraint
then q ⊒ q′ e.g., if r = 2...3 and s = 0...1 then q = 2...2 instead of, say,
0...1. This maximality condition is important for soundness (i.e. that
synthesised programs are well-typed); we discuss soundness further
in Section 3.3.7.

Thus for □−
R , Γ − ∆ is multiplied by the goal type grade r to ob-

tain how these variables are used in t after promotion. This is then
subtracted from the original input context Γ giving an output context
containing the left-over variables and grades. Context multiplication
requires that Γ − ∆ contains only graded variables, preventing the in-
correct use of linear variables from Γ in t. For example, the derivation:

∃s.0...2 ⊒ s + 1

x :0...2 A ⊢ A ⇒− x | x :s A
GrVar

−

x :0...2 A ⊢ □0...1 ⇒− [x] | x :0...2 A − 0...1 · (x :0...2 A − x :s A)
□−

R
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would be valid. Here, the subtraction x :0...2 A − x :s A yields a grade
variable q1 with the constraint ∃q1.0...2 ⊒ q1 + 0...1 and q′1 with the
maximality constraint ∀q′1.0...2 ⊒ q′1 + 0...1 ⇒ q1 ⊒ q′1, satisfied by
q1 = 0...1, and q′1 = q1, as s is satisfied by 0...1. Finally, 0...1 · x :q1 A
is subtracted from x :0...2 A to obtain the left over usage: 0...1 · x :q1 A
is x :q1 A, thus the subtraction yields a grade q2 with constraint
∃q2.0...2 ⊒ q2 + q1 and q′2 with maximality constraint ∀q′2.0...2 ⊒ q′2 +
q1 ⇒ q2 ⊒ q′2, which is satisfied by q2 = 0...1; the final output grade
for x in the □−

R rule.
Synthesis of graded modality elimination is handled by the □−

L rule:

Γ, x2 :r A ⊢ B ⇒− t | ∆, x2 :s A 0 ⊑ s

Γ, x1 : □rA ⊢ B ⇒− let [x2] = x1 in t | ∆
□−

L

Given an input context comprising Γ and a linear assumption x1 of
graded modal type, we can synthesise an unboxing of x1 if we can
synthesise a term t under Γ extended with a graded assumption x2 :r A.
This returns an output context that must contain x2 graded by s with
the constraint that s must approximate 0, as in the following synthesis
derivation where x1 is an assumption with a graded modality of grade
0, i.e. it must be discarded after unboxing:

y : A, x2 :0 A ⊢ A ⇒− y | x2 :0 A
LinVar

−
0 ⊑ 0

y : A, x1 : □0A ⊢ A ⇒− let [x2] = x1 in y | ∅
□−

L

This enforces that x2 has been used as is permitted by the grade r.

3.3.5 Products

The right rule for products ⊗−
R behaves similarly to the⊸−

L rule, again
synthesising two sub-terms, and passing the entire input context Γ
to the first premise. This is in then used to synthesise the first sub-
term of the pair t1, yielding an output context ∆1, which is passed to
the second premise. After synthesising the second sub-term t2, the
output context for this premise becomes the output context of the
rule’s conclusion. Although there is an implicit ordering present in
this rule, the ability for the implementation to backtrack means the
synthesis tool can always try alternative combinations of values for t1

and t2.
The left rule equivalent ⊗−

L binds two assumptions x1 : A x2 : B in
the premise, representing the constituent parts of the pair. As with
⊸−

L , we also ensure that these bound assumptions must not be present
in the premise’s output context ∆.
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Γ ⊢ A ⇒− t1 | ∆1 ∆1 ⊢ B ⇒− t2 | ∆2

Γ ⊢ A ⊗ B ⇒− (t1, t2) | ∆2
⊗−

R

Γ, x1 : A, x2 : B ⊢ C ⇒− t2 | ∆ x1 ̸∈ |∆| x2 ̸∈ |∆|
Γ, x3 : A ⊗ B ⊢ C ⇒− let (x1, x2) = x3 in t2 | ∆

⊗−
L

3.3.5.1 Sums

The right rules for sum types, ⊕1−R and ⊕2−R , are straightforward:

Γ ⊢ A ⇒− t | ∆

Γ ⊢ A ⊕ B ⇒− inl t | ∆
⊕1−R

Γ ⊢ B ⇒− t | ∆

Γ ⊢ A ⊕ B ⇒− inr t | ∆
⊕2−R

The ⊕−
L rule synthesises the left and right branches of a case statement

that may use resources differently:

Γ, x2 : A ⊢ C ⇒− t1 | ∆1 Γ, x3 : B ⊢ C ⇒− t2 | ∆2 x2 ̸∈ |∆1| x3 ̸∈ |∆2|
Γ, x1 : A ⊕ B ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊓ ∆2

⊕−
L

The output context therefore takes the greatest lower bound (⊓) of ∆1

and ∆2, given by definition 3.3.2,

Definition 3.3.2 (Partial greatest-lower bounds of contexts). For all Γ1,
Γ2, Γ1 ⊓ Γ2 =

∅ Γ1 = ∅ ∧ Γ2 = ∅

(∅ ⊓ Γ′
2), x :0⊓s A Γ1 = ∅ ∧ Γ2 = Γ′

2, x :s A

(Γ′
1 ⊓ (Γ′

2, Γ′′
2 )), x : A Γ1 = Γ′

1, x : A ∧ Γ2 = Γ′
2, x : A, Γ′′

2

(Γ′
1 ⊓ (Γ′

2, Γ′′
2 )), x :r⊓s A Γ1 = Γ′

1, x :r A ∧ Γ2 = Γ′
2, x :s A, Γ′′

2

where r⊓s is the greatest-lower bound of grades r and s if it exists,
derived from the pre-order ⊑ (given by Definition 2.3.1). If the greatest
lower bound of two grades does not exist, then the operation fails,
terminating the branch of synthesis.

This operation is the dual to least-upper bound (Definition 3.1.1)
operation used in the typing rule for Case, as here we are subtracting
usages rather than adding them. As an example of ⊓, consider the
semiring of intervals over natural numbers and two judgements that
could be used as premises for the (⊕−

L ) rule:

Γ, y :0...5 A′, x2 : A ⊢ C ⇒− t1 | y :2...5 A′

Γ, y :0...5 A′, x3 : B ⊢ C ⇒− t2 | y :3...4 A′

where t1 uses y such that there are 2-5 uses remaining and t2 uses
y such that there are 3-4 uses left. To synthesise case x1 of inl x2 →
t1; inr x3 → t2 the output context must be pessimistic about what
resources are left, thus we take the greatest-lower bound yielding the
interval 2 . . . 4 here: we know y can be used at least twice and at most
4 times in the rest of the synthesised program.
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Γ, x : A ⊢ A ⇒− x | Γ
LinVar

− ∃s. r ⊒ s + 1

Γ, x :r A ⊢ A ⇒− x | Γ, x :s A
GrVar

−

Γ, x : A ⊢ B ⇒− t | ∆ x ̸∈ |∆|
Γ ⊢ A⊸ B ⇒− λx.t | ∆

⊸−
R

Γ, x2 : B ⊢ C ⇒− t1 | ∆1 x2 ̸∈ |∆1| ∆1 ⊢ A ⇒− t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒− [(x1 t2)/x2]t1 | ∆2
⊸−

L

Γ, x :s A, y : A ⊢ B ⇒− t | ∆, x :s′ A y ̸∈ |∆| ∃s. r ⊒ s + 1

Γ, x :r A ⊢ B ⇒− [x/y]t | ∆, x :s′ A
der

−

Γ ⊢ A ⇒− t | ∆

Γ ⊢ □rA ⇒− [t] | Γ − r · (Γ − ∆)
□−

R

Γ, x2 :r A ⊢ B ⇒− t | ∆, x2 :s A 0 ⊑ s

Γ, x1 : □rA ⊢ B ⇒− let [x2] = x1 in t | ∆
□−

L

Γ ⊢ A ⇒− t1 | ∆1 ∆1 ⊢ B ⇒− t2 | ∆2

Γ ⊢ A ⊗ B ⇒− (t1, t2) | ∆2
⊗−

R

Γ, x1 : A, x2 : B ⊢ C ⇒− t2 | ∆ x1 ̸∈ |∆| x2 ̸∈ |∆|
Γ, x3 : A ⊗ B ⊢ C ⇒− let (x1, x2) = x3 in t2 | ∆

⊗−
L

Γ ⊢ A ⇒− t | ∆

Γ ⊢ A ⊕ B ⇒− inl t | ∆
⊕1−R

Γ ⊢ B ⇒− t | ∆

Γ ⊢ A ⊕ B ⇒− inr t | ∆
⊕2−R

Γ, x2 : A ⊢ C ⇒− t1 | ∆1 Γ, x3 : B ⊢ C ⇒− t2 | ∆2 x2 ̸∈ |∆1| x3 ̸∈ |∆2|
Γ, x1 : A ⊕ B ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊓ ∆2

⊕−
L

Γ ⊢ Unit ⇒− () | Γ
Unit−R

Γ ⊢ C ⇒− t | ∆

Γ, x : Unit ⊢ C ⇒− let () = x in t | ∆
Unit−L

Figure 3.2: Collected rules of the subtractive synthesis calculus

3.3.6 Unit

The right and left rules for units are then as follows:

Γ ⊢ Unit ⇒− () | Γ
Unit−R

Γ ⊢ C ⇒− t | ∆

Γ, x : Unit ⊢ C ⇒− let () = x in t | ∆
Unit−L

As no resources are used to synthesise a () unit value, no subtraction
need take place in the output contexts.
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3.3.7 Soundness of Subtractive Synthesis

This completes subtractive synthesis calculus. We conclude with a key
result, that synthesised terms are well-typed at the type from which
they were synthesised:

Lemma 3.3.1 (Subtractive synthesis soundness). For all Γ and A then:

Γ ⊢ A ⇒− t | ∆ =⇒ Γ − ∆ ⊢ t : A

i.e. t has type A under context Γ − ∆, that contains just those linear
and graded variables with grades reflecting their use in t.

The proof of soundness can be found in Section B.1.1 of Appendix B.
The proof is by induction. As a simple example, consider the case

of the⊸−
R rule. By induction on the premise of the rule we have:

(Γ, x : A)− ∆ ⊢ t : B

Then, since x ̸∈ |∆| then by the definition of context subtraction we
have that (Γ, x : A)− ∆ = (Γ − ∆), x : A. From this, we can construct
the following derivation, matching the conclusion:

(Γ − ∆), x : A ⊢ t : B

Γ − ∆ ⊢ λx.t : A⊸ B
Abs

3.3.8 An Example of a Subtractive Synthesis Derivation

We conclude this section with an example of a synthesis derivation
tree in Figure 3.3 for the type (□LoA ⊗ □HiA)⊸ (□Lo(A ⊗ Unit)⊸
B)⊸ B, (i.e. the noLeak program from Example 3.1.2). Due to space
constraints, we use aliases for contexts and terms cases. The values
corresponding to these aliases can be found in Table 3.1 for input
contexts, terms, and output contexts, respectively. The number of each
context/term also corresponds to the position indicated on the left
hand side of the derivation tree.

We highlight in yellow the points at which a constraint is generated
and solved, i.e. the choice points of the derivation where backtracking
may occur. Note that some of these constraints are generated and
solved in ∆8.

The first occurrence of constraint generation takes place in the
GrVar

− rule when synthesising e10 (i.e. a usage of x). Here, a con-
straint of the form ∃s.Lo ⊒ s + Lo is generated and solved, since
Lo ⊑ Lo+ Lo, for example. This grade variable s then becomes the
grade of x in the output context ∆10.

Next, we have the rather complex grade calculation that occurs in
∆8, the output context of the □−

R rule. This rule requires us to subtract
Lo · ((x :Lo A, y :Hi A) − (x :s A, y :Hi A)) from the input context
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(x :Lo A, y :Hi A) (see Section 3.3.4). We do so using Definition 3.3.1
for context subtraction, which generates two constraints for each
assumption involved in the subtraction. For x, substituting s with Lo

(the value for s we chose before) we have the constraint:

Lo ⊒ Lo+ Lo∧ ∀q′.Lo ⊒ q′ + Lo =⇒ Lo ⊒ q′

and for y we have:

∃r.Hi ⊒ r +Hi∧ ∀r′.Hi ⊒ r′ +Hi =⇒ r ⊒ r′

which is satisfied by r = Hi. Thus we have

(x :Lo A, y :Hi A)− (x :Lo·Lo A, y :Lo·Hi: A)

yielding the constraint:

∃q′′.Lo ⊒ q′′ + (Lo · Lo) ∧ ∀q′′′.Lo ⊒ q′′ + (Lo · Lo) =⇒ q′′ ⊒ q′′′

for x which is satisfied by q′′ = Lo, and for y:

∃r′′.Hi ⊒ r′′ + (Lo ·Hi) ∧ ∀r′′′.Hi ⊒ r′′ + (Lo ·Hi) =⇒ r′′ ⊒ r′′′

which is satisfied by r′′ = Hi (since Hi⊓ (Lo ·Hi) = Hi).
Following this, the only remaining constraints are generated in the

two occurrences of the □−
L rules, dealing first with y (which now has

grade r′′, i.e. Hi) and then x (which has grade q′′, i.e., Lo). Since both
0 ⊑ Lo and 0 ⊑ Hi, these constraints both succeed.
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1

2

3

4

5

6

7

Γ7 ⊢ B ⇒− e7 | ∆7
LinVar

−
u′ /∈ |∆7| (3.1)

Γ6 ⊢ B ⇒− e6 | ∆6 0 ⊑ r′′
⊸−

L

Γ5 ⊢ B ⇒− e5 | ∆5 0 ⊑ q′′
□−

L

Γ4 ⊢ B ⇒− e4 | ∆4 x′ /∈ |∆4| y′ /∈ |∆4|
□−

L

Γ3 ⊢ B ⇒− e3 | ∆3 u /∈ |∆3|
⊗−

L

Γ2 ⊢ (□Lo(A ⊗ Unit)⊸ B)⊸ B ⇒− e2 | ∆2 z /∈ |∆2|
⊸−

R

Γ1 ⊢ (□LoA ⊗ □HiA)⊸ (□Lo(A ⊗ Unit)⊸ B)⊸ B ⇒− e1 | ∆1
⊸−

R

8

9

10

∃s.Lo ⊒ s + Lo

Γ10 ⊢ A ⇒− e10 | ∆10
GrVar

−
11

Γ11 ⊢ Unit ⇒− e11 | ∆11
Unit−R

Γ9 ⊢ A ⊗ Unit ⇒− e9 | ∆9
⊗−

R

Γ8 ⊢ □Lo(A ⊗ Unit) ⇒− e8 | ∆8
□−

R

(3.1)

No. Γ (Input Context) e (Synthesised Term) ∆ (Output Context)

1 ∅ λz.e2 ∅

2 z : □LoA ⊗ □HiA λu.e3 ∅

3 z : □LoA ⊗ □HiA, let (x′, y′) = z in e4 ∅

u : □Lo(A ⊗ Unit)⊸ B

4 u : □Lo(A ⊗ Unit)⊸ B, let [x] = x′ in e5 ∅

x′ : □LoA,

y′ : □HiA

5 u : □Lo(A ⊗ Unit)⊸ B, let [y] = y′ in e6 x :q′′ A

y′ : □HiA,

x :Lo A

6 u : □Lo(A ⊗ Unit)⊸ B, [u e8/u′]e7 x :q′′ A, y :r′′

x :Lo A,

y :Hi A

7 x :Lo A, y :Hi A, u′ : B u′ x :Lo A, y :Hi A

8 x :Lo A, y :Hi A [e9] x :Lo A, y :Hi
−Lo · (x :Lo A, y :Hi A − x :s A, y :Hi A)

9 x :Lo A, y :Hi A (e10, e11) x :s A, y :Hi A

10 x :Lo A, y :Hi A x x :s A, y :Hi A

11 x :s A, y :Hi A () x :s A, y :Hi A

Table 3.1: Values for Γ, e, and ∆ throughout the synthesis derivation tree

Figure 3.3: Subtractive synthesis derivation for the Example 2.3.1
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3.4 an additive synthesis calculus

We now present the dual to subtractive resource management — the ad-
ditive approach. Additive synthesis also uses the input-output context
approach, but where output contexts describe exactly which assump-
tions were used to synthesise a term, rather than which assumptions
are still available. As with subtractive, additive synthesis rules are best
read bottom-up, with Γ ⊢ A ⇒+ t | ∆ meaning that from the type A
we synthesise a term t using exactly the assumptions ∆ that originate
from the input context Γ. The rules are collected in Figure 3.4.

3.4.1 Variables

We unpack the rules, starting with variables:

Γ, x : A ⊢ A ⇒+ x | x : A
LinVar

+

Γ, x :r A ⊢ A ⇒+ x | x :1 A
GrVar

+

For a linear assumption, the output context contains just the variable
that was synthesised. For a graded assumption x :r A, the output
context contains the assumption graded by 1.

3.4.2 Graded modalities

The subtractive approach handled the GrVar
− by a constraint ∃s. r ⊒

s + 1. Here however, the point at which we check that a graded as-
sumption has been used according to the grade takes place in the □+

L
rule, where graded assumptions are bound:

Γ, x2 :r A ⊢ B ⇒+ t | ∆ if x2 :s A ∈ ∆ then s ⊑ r else 0 ⊑ r

Γ, x1 : □rA ⊢ B ⇒+ let [x2] = x1 in t | (∆\x2), x1 : □rA
□+

L

Here, t is synthesised under a fresh graded assumption x2 :r A. This
produces an output context containing x2 with some grade s that
describes how x2 is used in t (if it was used at all). An additional
premise requires that the original grade r approximates either s if
x2 appears in ∆ or 0 if it does not, ensuring that x2 has been used
correctly. For the N-semiring with equality as the ordering, this would
ensure that a variable has been used exactly the number of times
specified by the grade.

The synthesis of a promotion is considerably simpler in the additive
approach. In subtractive resource management it was necessary to
calculate how resources were used in the synthesis of t before then
applying the scalar context multiplication by the grade r and subtract-
ing this from the original input Γ. In additive resource management,
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however, we can simply apply the multiplication directly to the output
context ∆ to obtain how our assumptions are used in [t]:

Γ ⊢ A ⇒+ t | ∆

Γ ⊢ □rA ⇒+ [t] | r ·∆
□+

R

3.4.3 Functions

Synthesis rules for⊸ have a similar shape to the subtractive calculus:

Γ, x : A ⊢ B ⇒+ t | ∆, x : A

Γ ⊢ A⊸ B ⇒+ λx.t | ∆
⊸+

R

Γ, x2 : B ⊢ C ⇒+ t1 | ∆1, x2 : B Γ ⊢ A ⇒+ t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒+ [(x1 t2)/x2]t1 | (∆1 + ∆2), x1 : A⊸ B
⊸+

L

Synthesising an abstraction (⊸+
R ) requires that x : A is in the output

context of the premise, ensuring that linearity is preserved. Likewise
for application (⊸+

L ), the output context of the first premise must
contain the linearly bound x2 : B and the final output context must
contain the assumption being used in the application x1 : A⊸ B. This
output context computes the context addition (Def. 2.3.3 on page17)
of both output contexts of the premises ∆1 + ∆2. If ∆1 describes how
assumptions were used in t1 and ∆2 respectively for t2, then the
addition of these two contexts describes the usage of assumptions for
the entire subprogram. Recall, context addition ensures that a linear
assumption may not appear in both ∆1 and ∆2, preventing us from
synthesising terms that violate linearity.

3.4.4 Dereliction

As in the subtractive calculus, we avoid duplicating left rules to match
graded assumptions by giving a synthesising version of dereliction:

Γ, x :s A, y : A ⊢ B ⇒+ t | ∆, y : A

Γ, x :s A ⊢ B ⇒+ [x/y]t | ∆ + x :1 A
der

+

The fresh linear assumption y : A must appear in the output context
of the premise, ensuring it is used. The final context therefore adds to
∆ an assumption of x graded by 1, accounting for this use of x (which
was temporarily renamed to y). As with the subtractive case, der

+

makes GrVar
+ admissible.

3.4.5 Products

The right rule for products ⊗+
R follows the same structure as its sub-

tractive equivalent, however, here Γ is passed to both premises. The



3.4 an additive synthesis calculus 49

conclusion’s output context is then formed by taking the context addi-
tion of the ∆1 and ∆2. The left rule, ⊗+

L follows fairly straightforwardly
from the resource scheme.

Γ ⊢ A ⇒+ t1 | ∆1 Γ ⊢ B ⇒+ t2 | ∆2

Γ ⊢ A ⊗ B ⇒+ (t1, t2) | ∆1 + ∆2
⊗+

R

Γ, x1 : A, x2 : B ⊢ C ⇒+ t2 | ∆, x1 : A, x2 : B

Γ, x3 : A ⊗ B ⊢ C ⇒+ let (x1, x2) = x3 in t2 | ∆, x3 : A ⊗ B
⊗+

L

3.4.6 Sums

In contrast to the subtractive rule, the rule ⊕+
L takes the least-upper

bound of the premise’s output contexts (see definition 3.1.1). Other-
wise, the right and left rules for synthesising programs from sum
types are straightforward.

Γ ⊢ A ⇒+ t | ∆

Γ ⊢ A ⊕ B ⇒+ inl t | ∆
⊕1+R

Γ ⊢ B ⇒+ t | ∆

Γ ⊢ A ⊕ B ⇒+ inr t | ∆
⊕2+R

Γ, x2 : A ⊢ C ⇒+ t1 | ∆1, x2 : A Γ, x3 : B ⊢ C ⇒+ t2 | ∆2, x3 : B

Γ, x1 : A ⊕ B ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊔ ∆2, x1 : A ⊕ B
⊕+

L

3.4.7 Unit

As in the subtractive approach, the right and left rules for unit types,
are as expected.

Γ ⊢ Unit ⇒+ () | ∅
Unit+R

Γ ⊢ C ⇒+ t | ∆

Γ, x : Unit ⊢ C ⇒+ let () = x in t | ∆, x : Unit
Unit+L

3.4.8 Soundness of Additive Synthesis

Thus concludes the rules for additive synthesis. As with subtractive,
we have prove that this calculus is sound.

Lemma 3.4.1 (Additive synthesis soundness). Given a particular pre-
ordered semiring R parametrising the calculi, then, for all contexts Γ
and ∆, types A and terms t:

Γ ⊢ A ⇒+ t | ∆ =⇒ ∆ ⊢ t : A

Thus, the synthesised term t is well-typed at A using only the
assumptions ∆ whose grades capture variable use in t. i.e., synthesised
terms are well typed at the type from which they were synthesised.
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Γ, x : A ⊢ A ⇒+ x | x : A
LinVar

+

Γ, x :r A ⊢ A ⇒+ x | x :1 A
GrVar

+

Γ, x :s A, y : A ⊢ B ⇒+ t | ∆, y : A

Γ, x :s A ⊢ B ⇒+ [x/y]t | ∆ + x :1 A
der

+

Γ, x : A ⊢ B ⇒+ t | ∆, x : A

Γ ⊢ A⊸ B ⇒+ λx.t | ∆
⊸+

R

Γ, x2 : B ⊢ C ⇒+ t1 | ∆1, x2 : B Γ ⊢ A ⇒+ t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒+ [(x1 t2)/x2]t1 | (∆1 + ∆2), x1 : A⊸ B
⊸+

L

Γ ⊢ A ⇒+ t | ∆

Γ ⊢ □rA ⇒+ [t] | r ·∆
□+

R

Γ, x2 :r A ⊢ B ⇒+ t | ∆ if x2 :s A ∈ ∆ then s ⊑ r else 0 ⊑ r

Γ, x1 : □rA ⊢ B ⇒+ let [x2] = x1 in t | (∆\x2), x1 : □rA
□+

L

Γ ⊢ A ⇒+ t1 | ∆1 Γ ⊢ B ⇒+ t2 | ∆2

Γ ⊢ A ⊗ B ⇒+ (t1, t2) | ∆1 + ∆2
⊗+

R

Γ, x1 : A, x2 : B ⊢ C ⇒+ t2 | ∆, x1 : A, x2 : B

Γ, x3 : A ⊗ B ⊢ C ⇒+ let (x1, x2) = x3 in t2 | ∆, x3 : A ⊗ B
⊗+

L

Γ ⊢ A ⇒+ t | ∆

Γ ⊢ A ⊕ B ⇒+ inl t | ∆
⊕1+R

Γ ⊢ B ⇒+ t | ∆

Γ ⊢ A ⊕ B ⇒+ inr t | ∆
⊕2+R

Γ, x2 : A ⊢ C ⇒+ t1 | ∆1, x2 : A Γ, x3 : B ⊢ C ⇒+ t2 | ∆2, x3 : B

Γ, x1 : A ⊕ B ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊔ ∆2, x1 : A ⊕ B
⊕+

L

Γ ⊢ Unit ⇒+ () | ∅
Unit+R

Γ ⊢ C ⇒+ t | ∆

Γ, x : Unit ⊢ C ⇒+ let () = x in t | ∆, x : Unit
Unit+L

Figure 3.4: Collected rules of the additive synthesis calculus

In the additive calculus, the soundness on its own does not guar-
antee that a synthesised program t is well resourced, i.e., the grades in
∆ may not be approximated by the grades in Γ. For example, a valid
judgement under semiring N≡ is:

x :2 A ⊢ A ⇒+ x | x :1 A

i.e., for goal A, if x has type A in the context then we synthesis x as
the result program, regardless of the grades. A synthesis judgement
such as this may be part of a larger derivation in which the grades
eventually match, i.e., this judgement forms part of a larger derivation
which has a further sub-derivation in which x is used again and
thus the total usage for x is eventually 2 as prescribed by the input
context. However, at the level of an individual judgement we do not
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guarantee that the synthesised term is well-resourced. A reasonable
pruning condition that could be used to assess whether any synthesis
judgement is potentially well-resourced is ∃∆′.(∆ + ∆′) ⊑ Γ, i.e., there
is some additional usage ∆′ (that might come from further on in
the synthesis process) that ‘fills the gap’ in resource use to produce
∆ + ∆′ which is overapproximated by Γ. In this example, ∆′ = x :1 A
would satisfy this constraint, explaining that there is some further
possible single usage which will satisfy the incoming grade. We apply
this pruning condition at the synthesis of terms which are binders.
Therefore, synthesised closed terms are always well-resourced.

The proof of soundness can be found in Section B.1.2 of Appendix B.
As in Section 3.3.7, the proof is fairly straightforward, by induction.

Again, we consider the⊸+
R rule. By induction we have that:

(Γ, x : A)− ∆ ⊢ t : B

Since x ̸∈ |∆| then by the definition of context subtraction we have
that (Γ, x : A)− ∆ = (Γ − ∆), x : A. From this, we can construct the
following derivation, matching the conclusion:

(Γ − ∆), x : A ⊢ t : B

Γ − ∆ ⊢ λx.t : A⊸ B
Abs

Remark 2. An observation that can be made of this soundness prop-
erty for the additive calculus is that it only guarantees soundness for
synthesis of complete programs. Synthesis of a partial program, i.e.
where some context of graded assumptions is provided to the initial
synthesis rule, cannot guarantee that the usages of those assumptions
in the synthesised program will complement their usages in the rest
of the program such that the grade constraints will be satisfied (as
grade usages are only checked in the □+

L rule). For example, consider
the following scenario (where ? represents a program hole and the
entry point of synthesis):

badPair : □1A⊸ (A ⊗ A)

badPair = λx.let [x] = x′ in (x, ?)

Although this type is in fact uninhabited, a valid synthesis judgment
for the partial program at ? would have the form:

x :1 A ⊢ A ⇒ x | x :1 A
GrVar

+

yielding the complete program:

badPair : □1A⊸ (A ⊗ A)

badPair = λx.let [x] = x′ in (x, x)
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which is clearly invalid, as the total usage of x exceeds the grade
constraint of 1.

In practice, this can be resolved in the implementation by type-
checking the enclosing program containing the synthesised partial
program and re-synthesising if grade constraints fail. In this thesis,
however, we only consider the synthesis of complete programs.

Note that in the subtractive calculus this issue does not arise, as the
grade constraint is checked at the point of variable usage.

3.4.9 An Example of an Additive Synthesis Derivation

We now repeat the example synthesis derivation from Section 3.3.8,
only here using the additive calculus to synthesise the same program
from the same type. The derivation tree can be found in Figure 3.5
for the type (□LoA ⊗ □HiA) ⊸ (□Lo(A ⊗ Unit) ⊸ B) ⊸ B. Again,
due to space constraints, we use aliases for contexts and terms cases.
The values corresponding to these aliases can be found in Table 3.2 for
input contexts, terms, and output contexts, respectively. The number
of each context/term also corresponds to the position indicated on
the left hand side of the derivation tree.

Again, we highlight in yellow the points at which a constraint is
generated and solved, i.e. the choice points of the derivation where
backtracking may occur. In comparison to the subtractive example,
the additive is considerable easier to follow. In fact, there are only
two decision points where backtracking can occur, involving relatively
straightforward constraints. Both of these occur in the □+

L rules, for
x′ and y′. In the case of y′, the first constraint to be considered, we
have the condition if y :′s A ∈ ∆5 then s′ ⊑ Hi else Hi ⊑ Hi. Here, s′ is a
potential grade that may appear on y if it were to appear in the output
context ∆5. However y is not present in ∆5, so we default to the else
clause with the trivial constraint that Hi ⊑ Hi. Likewise, in the case of
x′, we have the condition if x :s A ∈ ∆5 then s ⊑ Lo else Hi ⊑ Lo. In this
case, x does appear in ∆5 with the grade Lo, giving us the constraint
Lo ⊑ Lo, which again is trivially true.
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1

2

3

4

5

6

7

Γ7 ⊢ B ⇒+ e7 | ∆7
LinVar

+

(3.2)

Γ6 ⊢ B ⇒+ e6 | ∆6 if y :′s A ∈ ∆5 then s′ ⊑ Hi else Hi ⊑ Hi
⊸+

L

Γ5 ⊢ B ⇒+ e5 | ∆5 if x :s A ∈ ∆5 then s ⊑ Lo else Hi ⊑ Lo
□+

L

Γ4 ⊢ B ⇒+ e4 | ∆4
□+

L

Γ3 ⊢ B ⇒+ e3 | ∆3
⊗+

L

Γ2 ⊢ (□Lo(A ⊗ Unit)⊸ B)⊸ B ⇒+ e2 | ∆2
⊸+

R

Γ1 ⊢ (□LoA ⊗ □HiA)⊸ (□Lo(A ⊗ Unit)⊸ B)⊸ B ⇒+ e1 | ∆1
⊸+

R

8

9

10

Γ10 ⊢ A ⇒+ e10 | ∆10
GrVar

+
11

Γ11 ⊢ Unit ⇒+ e11 | ∆11
Unit+R

Γ9 ⊢ A ⊗ Unit ⇒+ e9 | ∆9
⊗+

R

Γ8 ⊢ □Lo(A ⊗ Unit) ⇒+ e8 | ∆8
□+

R

(3.2)

No. Γ (Input Context) e (Synthesised Term) ∆ (Output Context)

1 ∅ λz.e2 ∅

2 z : □LoA ⊗ □HiA λu.e3 z : □LoA ⊗ □HiA

3 z : □LoA ⊗ □HiA, let (x′, y′) = z in e4 u : □Lo(A ⊗ Unit)⊸ B,

u : □Lo(A ⊗ Unit)⊸ B z : □LoA ⊗ □HiA

4 u : □Lo(A ⊗ Unit)⊸ B, let [x] = x′ in e5 u : □Lo(A ⊗ Unit)⊸ B,

x′ : □LoA, y′ : □HiA,

y′ : □HiA x′ : □LoA

5 u : □Lo(A ⊗ Unit)⊸ B, let [y] = y′ in e6 x :Lo·Lo,

y′ : □HiA, u : □Lo(A ⊗ Unit)⊸ B,

x :Lo A y′ : □HiA

6 u : □Lo(A ⊗ Unit)⊸ B, [u e8/u′]e7 x :Lo·Lo,

x :Lo A, u : □Lo(A ⊗ Unit)⊸ B

y :Hi A

7 x :Lo A, y :Hi A, u′ : B u′ u′ : B

8 x :Lo A, y :Hi A [e9] Lo · x :Lo
9 x :Lo A, y :Hi A (e10, e11) x :Lo
10 x :Lo A, y :Hi A x x :Lo
11 x :s A, y :Hi A () ∅

Table 3.2: Values for Γ, e, and ∆ throughout the synthesis derivation tree

Figure 3.5: Additive synthesis derivation for the Example 2.3.1
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3.4.9.1 Additive pruning

As seen above, the additive approach delays checking whether a
variable is used according to its linearity/grade until it is bound, i.e.
in the⊸+

R ,⊸+
L , der

+, and□+
L rules. We hypothesise that this can lead

additive synthesis to explore many ultimately ill-resourced paths for
too long. For example, say we have a partial synthesis derivation for
synthesising a pair introduction form of type A ⊗ A, but our context
contains only one linear assumption of type A. Clearly we can use
this assumption to synthesise a term for the left part of the pair:

x : A ⊢ A ⇒+ x | x : A
LinVar

+

x : A ⊢ A ⇒+ ? |?
x : A ⊢ A ⊗ A ⇒+? |?

⊗+
R

However, after synthesising the left part we no longer have the avail-
able usage of x to synthesise a term for right part of the pair. Currently,
⊗+

R will allow the synthesis of the right part of the pair to take place
using x, which will then be discarded when the context addition in
the rule’s output context fails: conclusion

x : A ⊢ A ⇒+ x | x : A
LinVar

+

x : A ⊢ A ⇒+ x | x : A

x : A ⊢ A ⊗ A ⇒+ (x, x) | x : A + x : A
⊗+

R

(invalid)

Subsequently, we define a “pruning” variant of any additive rules
with multiple sequenced premises. For ⊗+

R this is:

Γ ⊢ A ⇒± t1 | ∆1 Γ − ∆1 ⊢ B ⇒± t2 | ∆2

Γ ⊢ A ⊗ B ⇒± (t1, t2) | ∆1 + ∆2
⊗±

R

Instead of passing Γ to both premises, Γ is the input only for the
first premise. This premise outputs context ∆1 that is subtracted from
Γ (highlighted in yellow) to give the input context of the second
premise. This provides an opportunity to terminate the current branch
of synthesis early if Γ − ∆1 does not contain the necessary resources
to attempt the second premise, based on Definition 3.3.1 which may
fail. The⊸+

L rule is similarly adjusted:

Γ, x2 : B ⊢ C ⇒± t1 | ∆1, x2 : B Γ − ∆1 ⊢ A ⇒± t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒± [(x1 t2)/x2] | (∆1 + ∆2), x1 : A⊸ B
⊸±

L

Lemma 3.4.2 (Additive pruning synthesis soundness). For all Γ and
A:

Γ ⊢ A ⇒± t | ∆ =⇒ ∆ ⊢ t : A

The proof of soundness can be found in Section B.1.3 of Appendix B
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3.5 focusing

The additive and subtractive calculi presented in Sections 3.3 and 3.4
provide the foundations for the implementations of a synthesis tool
for Granule programs. Implementing the rules as they currently stand,
however, would yield a highly inefficient tool. In their current form,
the rules of both calculi exhibit a high degree of non-determinism
with regard to order in which rules can be applied.

This leads to us exploring a large number of redundant search
branches: something which can be avoided through the application of
a technique from linear logic proof theory called focusing [Andreoli,
1992]. Focusing is based on the observation that some of the synthesis
rules are invertible, i.e. whenever the conclusion of the rule is derivable,
then so are its premises (e.g. the⊸−

R and⊸+
R rules). In other words,

the order in which we apply invertible rules doesn’t matter. By fixing
a particular ordering on the application of these rules, we eliminate
much of the non-determinism that arises from trying branches which
differ only in the order in which invertible rules are applied. This
focused approach restricts synthesis to generating programs in β-
normal form.

We take both of our calculi and apply this focusing technique to
them, yielding two focusing calculi. To do so, we augment our previous
synthesis judgement with an additional input context Ω:

Γ; Ω ⊢ A ⇒ t | ∆

Unlike Γ and ∆, Ω is an ordered context, which behaves like a stack.
Assumptions with types that can be broken down further are then
bound into Ω.

Using the terminology of Andreoli [1992], we refer to rules that are
invertible as asynchronous and rules that are not as synchronous. The
intuition is that of asynchronous communication: asynchronous rules
can be applied eagerly, while the non-invertible synchronous rules
require us to focus on a particular part of the judgement: either on the
assumption (if we are in an elimination rule) or on the goal (for an
introduction rule). When focusing we apply a chain of synchronous
rules until:

• We reach a position where no rules may be applied (at which
point the branch terminates).

• We have synthesised a term for our goal.

• We have exposed an asynchronous connective at which point we
switch back to applying asynchronous rules.

We divide our synthesis rules into five categories, each with their own
judgement form, which refines the focusing judgement above with an
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arrow indicating which part of the judgement is currently in focus. An
⇑ indicates an asynchronous phase, while a ⇓ indicates a synchronous
(focused) phase. The location of the arrow in the judgement indicates
whether we are focusing on the left or right:

1. Right Async:⊸R rule with the judgement:

Γ; Ω ⊢ A ⇑ ⇒ t | ∆

2. Left Async: ⊗L, ⊕L, UnitL, Der, and □L rules with the judge-
ment:

Γ; Ω ⇑ ⊢ A ⇒ t | ∆

3. Right Sync: ⊗R, ⊕1R, ⊕2R, UnitR, and □R rules with the judge-
ment:

Γ; Ω ⊢ A ⇓ ⇒ t | ∆

4. Left Sync:⊸L rule with the judgement:

Γ; Ω ⇓ ⊢ A ⇒ t | ∆

5. Var: LinVar and GrVar rules (i.e. terminal rules) with the judge-
ment:

Γ; Ω ⇓ ⊢ A ⇒ t | ∆

The complete calculi of focusing synthesis rules are given in Fig-
ures 3.6-3.11 for the subtractive calculus, and 3.12-3.16 for the additive,
divided into focusing phases. The focusing rules for the additive prun-
ing calculus are identical to the additive calculus, save for the ⊗+

R and
⊸+

L rules, which are given in Figure 3.18.
For the most part, the translation from non-focused to focused

rules is straightforward. The most notable change occurs in rules in
which assumptions are bound. In the cases where a fresh assump-
tion’s type falls into the Left Async category (i.e. ⊗, ⊕, etc.), then
it is bound in the ordered context Ω instead of Γ. Left Async rules
operate on assumptions in Ω, rather than Γ. This results in invertible
elimination rules being applied as fully as possible before focusing on
non-invertible rules when Ω is empty.

In addition to the focused forms of the original synthesis calculi,
each calculus has a set of rules which determine which part of the
synthesis judgement will be focused on: the Focus rules. These rules
are given by Figures 3.8, and 3.14 for the subtractive and additive
calculi, respectively.

We briefly describe each set of rules for the focusing phases of the
subtractive synthesis calculus.
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Γ; Ω, x : A ⊢ C ⇑ ⇒− t | ∆ x ̸∈ |∆|
Γ; Ω ⊢ A⊸ B ⇑ ⇒− λx.t | ∆

⊸−
R

Γ; Ω ⇑ ⊢ C ⇒− t | ∆ C not Right Async

Γ; Ω ⊢ C ⇑ ⇒− t | ∆
⇑−

R

Figure 3.6: Right Async rules of the focused subtractive synthesis calculus

The Right Async phase of focusing (Figure 3.6) contains the fo-
cused form of the ⊸−

R rule, which simply binds the variable from
the λ term in Ω instead of Γ. The ⇑−

R rule handles the transition from
a Right Async phase to a Left Async phase. It is applied when the
goal type C is no longer right asynchronous (i.e. not a⊸), thus we
switch to breaking down the assumptions in Ω by applying a sequence
of Left Async rules.

Γ; Ω, x1 : A, x2 : B ⇑ ⊢ C ⇒− t2 | ∆ x1 ̸∈ |∆| x2 ̸∈ |∆|
Γ; Ω, x3 : A ⊗ B ⇑ ⊢ C ⇒− let (x1, x2) = x3 in t2 | ∆

⊗−
L

Γ; Ω, x2 : A ⇑ ⊢ C ⇒− t1 | ∆1 Γ; Ω, x3 : B ⇑ ⊢ C ⇒− t2 | ∆2 x2 ̸∈ |∆1| x3 ̸∈ |∆2|
Γ; Ω, x1 : A ⊕ B ⇑ ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊓ ∆2

⊕−
L

Γ; Ω, x2 :r A ⇑ ⊢ B ⇒− t | ∆, x2 :s A 0 ⊑ s

Γ; Ω, x1 : □rA ⇑ ⊢ B ⇒− let [x2] = x1 in t | ∆
□−

L

Γ; ∅ ⊢ C ⇒− t | ∆

Γ; x : Unit ⊢ C ⇒− let () = x in t | ∆
Unit−L

Γ, x : A; Ω ⇑ ⊢ C ⇒− t | ∆ A not Left Async

Γ; Ω, x : A ⇑ ⊢ C ⇒− t | ∆
⇑−

L

Figure 3.7: Left Async rules of the focused subtractive synthesis calculus

The Left Async phase of focusing (Figure 3.7) breaks down the
assumptions in Ω via the application of left rules. The ⇑−

L rule moves
an assumption from Γ to Ω if the type is not left asynchronous.

Γ; ∅ ⊢ C ⇓ ⇒− t | ∆ C not atomic

Γ; ∅ ⇑ ⊢ C ⇒− t | ∆
focus

−
R

Γ; x : A ⇓ ⊢ C ⇒− t | ∆

Γ, x : A; ∅ ⇑ ⊢ C ⇒− t | ∆
focus

−
L

Figure 3.8: Focus rules of the focused subtractive synthesis calculus

The next set of rules are the Focus rules (Figure 3.8) which are used
to determine what synchronous phase should be entered based on
the type. In both rules, Ω is empty as a consequence of repeatedly



3.5 focusing 58

applying left rules in the Left Async phase until each assumption is
broken into assumptions without left asynchronous types. The Focus

−
R

rule requires that the goal type not be atomic (i.e. a type variable), as
the Right Sync phase comprises right rules for types. Similarly, the
Focus

−
L requires that Γ not be empty.

Γ; ∅ ⊢ A ⇓ ⇒− t1 | ∆1 ∆1; ∅ ⊢ B ⇓ ⇒− t2 | ∆2

Γ; ∅ ⊢ A ⊗ B ⇓ ⇒− (t1, t2) | ∆2
⊗−

R

Γ; ∅ ⊢ B ⇓ ⇒− t | ∆

Γ; ∅ ⊢ A ⊕ B ⇓ ⇒− inr t | ∆
⊕2+L

Γ; ∅ ⊢ A ⇓ ⇒− t | ∆

Γ; ∅ ⊢ A ⊕ B ⇓ ⇒− inl t | ∆
⊕1+L

Γ; ∅ ⊢ A ⇓ ⇒− t | ∆

Γ; ∅ ⊢ □rA ⇓ ⇒− t | Γ − r · (Γ − ∆)
□−

R

Γ; ∅ ⊢ Unit ⇓ ⇒− () | Γ
Unit−R

Γ; ∅ ⊢ A ⇑ ⇒− t | ∆

Γ; ∅ ⊢ A ⇓ ⇒− t | ∆
⇓−

R

Figure 3.9: Right Sync rules of the focused subtractive synthesis calculus

The Right Sync rules are given by Figure 3.9, comprising the
right rules for ⊗, ⊕, □, and Unit. The rule ⇓−

R switches back to a
Right Async phase if the other rules cannot be applied.

Γ; x2 : B ⇓ ⊢ C ⇒− t1 | ∆1 x2 ̸∈ |∆1| ∆1; ∅ ⊢ A ⇓ ⇒− t2 | ∆2

Γ; x1 : A⊸ B ⇓ ⊢ C ⇒− [(x1 t2)/x2]t1 | ∆2
⊸−

L

Γ; x :s A, y : A ⇓ ⊢ B ⇒− t | ∆, x :s′ A y ̸∈ |∆| ∃s. r ⊒ s + 1

Γ; x :r A ⇓ ⊢ B ⇒− [x/y]t | ∆, x :s′ A
der

−

Γ; x : A ⇑ ⊢ C ⇒− t | ∆ A not atomic and not Left Sync

Γ; x : A ⇓ ⊢ C ⇒− t | ∆
⇓−

L

Figure 3.10: Left Sync rules of the focused subtractive synthesis calculus

Γ; x : A ⇓ ⊢ A ⇒− x | Γ
LinVar

− ∃s. r ⊑ s + 1

Γ; x :r A ⇓ ⊢ A ⇒− x | Γ, x :s A
GrVar

−

Figure 3.11: Var rules of the focused subtractive synthesis calculus

Finally the Left Sync set (Figure 3.10) contains the focused ⊸−
L

rule while the Var set (Figure 3.11) contains the focused forms of
LinVar

− and GrVar
−. Both sets allow for transition to Left Async

via the ⇓−
L rule.
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This focused form of the additive synthesis calculi follows an identi-
cal scheme, given by Figures 3.12-3.17.

Γ; Ω, x : A ⊢ B ⇑ ⇒ t | ∆, x : A

Γ; Ω ⊢ A⊸ B ⇑ ⇒ λx.t | ∆
⊸+

R
Γ; Ω ⇑ ⊢ C ⇒ t | ∆ C not Right Async

Γ; Ω ⊢ C ⇑ ⇒ t | ∆
⇑+

R

Figure 3.12: Right Async rules of the focused additive synthesis calculus

Γ; Ω, x1 : A, x2 : B ⊢ C ⇒ t2 | ∆, x1 : A, x2 : B

Γ; Ω, x3 : A ⊗ B ⊢ C ⇒ let (x1, x2) = x3 in t2 | ∆, x3 : A ⊗ B
⊗+

L

Γ; Ω, x2 : A ⇑ ⊢ C ⇒ t1 | ∆1, x2 : A Γ; Ω, x3 : B ⇑ ⊢ C ⇒ t2 | ∆2, x3 : B

Γ; Ω, x1 : A ⊕ B ⇑ ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊔ ∆2, x1 : A ⊕ B
⊕+

L

Γ; Ω, x2 :r A ⇑ ⊢ B ⇒ t | ∆ if x2 :s A ∈ ∆ then s ⊑ r else 0 ⊑ r

Γ; Ω, x1 : □rA ⊢ B ⇒ let [x2] = x1 in t | (∆\x2), x1 : □rA
□+

L

Γ; ∅ ⊢ C ⇒ t | ∆

Γ; x : Unit ⊢ C ⇒ let () = x in t | ∆, x : Unit
Unit+L

Γ, x : A; Ω ⇑ ⊢ C ⇒ t | ∆ A not Left Async

Γ; Ω, x : A ⇑ ⊢ C ⇒ t | ∆
⇑+

L

Figure 3.13: Left Async rules of the focused additive synthesis calculus

Γ; ∅ ⊢ C ⇓ ⇒ t | ∆ C not atomic

Γ; ∅ ⇑ ⊢ C ⇒ t | ∆
focus

+
R

Γ; x : A ⇓ ⊢ C ⇒ t | ∆

Γ, x : A; ∅ ⇑ ⊢ C ⇒ t | ∆
focus

+
L

Figure 3.14: Focus rules of the focused additive synthesis calculus
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Γ; ∅ ⊢ A ⇓ ⇒ t1 | ∆1 Γ; ∅ ⊢ B ⇓ ⇒ t2 | ∆2

Γ; ∅ ⊢ A ⊗ B ⇓ ⇒ (t1, t2) | ∆1 + ∆2
⊗+

R

Γ; ∅ ⊢ A ⇓ ⇒ t | ∆

Γ; ∅ ⊢ A ⊕ B ⇓ ⇒ inl t | ∆
⊕1+L

Γ; ∅ ⊢ B ⇓ ⇒ t | ∆

Γ; ∅ ⊢ A ⊕ B ⇓ ⇒ inr t | ∆
⊕2+L

Γ; ∅ ⊢ A ⇓ ⇒ t | ∆

Γ; ∅ ⊢ □rA ⇓ ⇒ [t] | r ·∆
□+

R Γ; ∅ ⊢ Unit ⇒ () | ∅
Unit+R

Γ; ∅ ⊢ A ⇑ ⇒ t | ∆

Γ; ∅ ⊢ A ⇓ ⇒ t | ∆
⇓+

R

Figure 3.15: Right Sync rules of the focused additive synthesis calculus

LeftSync

Γ; x2 : B ⇓ ⊢ C ⇒ t1 | ∆1, x2 : B Γ; ∅ ⊢ A ⇓ ⇒ t2 | ∆2

Γ; x1 : A⊸ B ⇓ ⊢ C ⇒ [(x1 t2)/x2]t1 | (∆1 + ∆2), x1 : A⊸ B
⊸+

L

Γ; x :s A, y : A ⇓ ⊢ B ⇒ t | ∆, y : A

Γ; x :s A ⇓ ⊢ B ⇒ [x/y]t | ∆ + x :1 A
der

+

Γ; x : A ⇑ ⊢ C ⇒ t | ∆ A not atomic and not Left Sync

Γ; x : A ⇓ ⊢ C ⇒ t | ∆
⇓+

L

Figure 3.16: Left Sync rules of the focused additive synthesis calculus

Γ; x : A ⊢ A ⇒ x | x : A
LinVar

+

Γ; x :r A ⊢ A ⇒ x | x :1 A
GrVar

+

Figure 3.17: Var rules of the focused additive synthesis calculus

Γ; x2 : B ⇓ ⊢ C ⇒± t1 | ∆1, x2 : B Γ − ∆1; ∅ ⊢ A ⇓ ⇒± t2 | ∆2

Γ; x1 : A⊸ B ⇓ ⊢ C ⇒± [(x1 t2)/x2] | (∆1 + ∆2), x1 : A⊸ B
⊸±

L

Γ; ∅ ⊢ A ⇓ ⇒± t1 | ∆1 Γ − ∆1 ⊢ B ⇓ ⇒± t2 | ∆2

Γ; ∅ ⊢ A ⊗ B ⇓ ⇒± (t1, t2) | ∆1 + ∆2
⊗±

R

Figure 3.18: Rules of the focused additive pruning synthesis calculus

One way to view focusing is in terms of a finite state machine
given in Figure 3.19. States comprise the four phases of focusing, plus
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two additional states, Focus, and Var. Edges are then the synthesis
rules that direct the transition between focusing phases. The transitions
between these focusing phases are handled by dedicated focusing rules
for each transition. For the asynchronous phases, the ⇑R handles the
transition between Right Async to Left Async phases, while the ⇑L

handles the transition from Left Async to Focus phases. Conversely,
the ⇓ R rule deals with the transition from a Right Sync phase back
to a Right Async phase, with the ⇓ L rule likewise transitioning to a
Left Async phase. Depending on the current phase of focusing, these
rules consider the goal type, the type of the assumption currently
being focused on, as well as the size of Ω, to decide when to transition
between Focus phases.
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Right Async

Γ; Ω ⊢ A ⇑ ⇒ t | ∆
Left Async

Γ; Ω ⇑ ⊢ A ⇒ t | ∆

Focus

Γ; ∅ ⇑ ⊢ A ⇒ t | ∆

Right Sync

Γ; ∅ ⊢ A ⇓ ⇒ t | ∆
Left Sync

Γ; x : B ⇓ ⊢ A ⇒ t | ∆

Var

Γ; x : A ⇓ ⊢ A ⇒ t | ∆

⊸R

⇑R

⊗L, ⊕L,
UnitL,
□L, ⇑L

⊗L, ⊕L,
UnitL,
□L, ⇑L

FR

⇓L

FL

⇓L

⊸L

⊸L, Der

⊗R, ⊕1R, ⊕2R,
UnitR, □R

LinVar,
GrVar

Figure 3.19: Focusing State Machine

We conclude with three key results: that applying focusing is sound
for the subtractive (Lemma 3.5.1) and additive (Lemma 3.5.2), and
additive pruning (Lemma 3.5.3) synthesis calculi. The proofs are con-
tained in Sections B.1.4, B.1.5, and B.1.6 of Appendix B, respectively.
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Lemma 3.5.1 (Soundness of focusing for subtractive synthesis). For all
contexts Γ, Ω and types A, B then:

1. Right Async: Γ; Ω ⊢ A ⇑ ⇒− t | ∆ ⇐⇒ Γ, Ω ⊢ A ⇒− t | ∆

2. Left Async: Γ; Ω ⇑ ⊢ B ⇒− t | ∆ ⇐⇒ Γ, Ω ⊢ B ⇒− t | ∆

3. Right Sync: Γ; ∅ ⊢ A ⇓ ⇒− t | ∆ ⇐⇒ Γ ⊢ A ⇒− t | ∆

4. Left Sync: Γ; x : A ⇓ ⊢ B ⇒− t | ∆ ⇐⇒ Γ, x : A ⊢ B ⇒− t | ∆

5. Focus Right: Γ; ∅ ⇑ ⊢ B ⇒− t | ∆ ⇐⇒ Γ ⊢ B ⇒− t | ∆

6. Focus Left: Γ, x : A; ∅ ⇑ ⊢ C ⇒− t | ∆ ⇐⇒ Γ, x : A ⊢ B ⇒− t | ∆

i.e. t has type A under context ∆, which contains assumptions with
grades reflecting their use in t.

Lemma 3.5.2 (Soundness of focusing for additive synthesis). For all
contexts Γ, Ω and types A, B then:

1. Right Async: Γ; Ω ⊢ A ⇑ ⇒+ t | ∆ ⇐⇒ Γ, Ω ⊢ A ⇒+ t | ∆

2. Left Async: Γ; Ω ⇑ ⊢ A ⇒+ t | ∆ ⇐⇒ Γ, Ω ⊢ B ⇒+ t | ∆

3. Right Sync: Γ; ∅ ⊢ A ⇓ ⇒+ t | ∆ ⇐⇒ Γ ⊢ A ⇒+ t | ∆

4. Left Sync: Γ; x : A ⇓ ⊢ B ⇒+ t | ∆ ⇐⇒ Γ, x : A ⊢ B ⇒+ t | ∆

5. Focus Right: Γ; ∅ ⇑ ⊢ A ⇒+ t | ∆ ⇐⇒ Γ ⊢ B ⇒+ t | ∆

6. Focus Left: Γ, x : A; ∅ ⇑ ⊢ B ⇑ ⇒+ t | ∆ ⇐⇒ Γ, x : A | B ⇒+ t | ∆

i.e. t has type A under context ∆, which contains assumptions with
grades reflecting their use in t.

Lemma 3.5.3 (Soundness of focusing for additive pruning synthesis).
For all contexts Γ, Ω and types A, B then:

1. Right Async: Γ; Ω ⊢ A ⇑ ⇒± t | ∆ ⇐⇒ Γ, Ω ⊢ A ⇒± t | ∆

2. Left Async: Γ; Ω ⇑ ⊢ A ⇒± t | ∆ ⇐⇒ Γ, Ω ⊢ B ⇒± t | ∆

3. Right Sync: Γ; ∅ ⊢ A ⇓ ⇒± t | ∆ ⇐⇒ Γ ⊢ A ⇒± t | ∆

4. Left Sync: Γ; x : A ⇓ ⊢ B ⇒± t | ∆ ⇐⇒ Γ, x : A ⊢ B ⇒± t | ∆

5. Focus Right: Γ; ∅ ⇑ ⊢ A ⇒± t | ∆ ⇐⇒ Γ ⊢ B ⇒± t | ∆

6. Focus Left: Γ, x : A; ∅ ⇑ ⊢ B ⇑ ⇒± t | ∆ ⇐⇒ Γ, x : A | B ⇒± t | ∆

i.e. t has type A under context ∆, which contains assumptions with
grades reflecting their use in t.

3.6 implementation

We implemented our approach as a synthesis tool for Granule, inte-
grated with its core tool. Granule features ML-style polymorphism
(rank-1 polymorphism) but we do not address polymorphism here
(Chapter 4 offers a treatment of synthesis of polymorphic programs).
Instead, programs are synthesised from type schemes treating uni-
versal type variables as logical atoms. Multiplicative products are
primitive in Granule, although additive coproducts are provided via
ADTs, from which we define a core sum type to use defined:
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data Either a b = Left a | Right b

Constraints on resource usage are handled via Granule’s existing
symbolic engine, which compiles constraints on grades (for various
semirings) to the SMT-lib format for Z3 [de Moura and Bjørner, 2008].
In the case of graded variable synthesis in the subtractive scheme, the
kind of the assumption’s grade (i.e., what semiring it belongs to) is
inferred using Granule’s type checker, which is used to generate an
existential variable representing the remaining available usage of the
graded assumption.

We use the LogicT monad for backtracking enumerative search of the
space of candidate programs [Kiselyov et al., 2005] and the Scrap Your
Reprinter library for splicing synthesised code into syntactic “holes”
(represented by ? in Granule), preserving the rest of the program
text [Clarke et al., 2017].

The synthesis procedure can terminate in one of three ways: either
(i) a type-and-grade correct program term is synthesised and returned,
(ii) the search space of potential programs is exhausted without identi-
fying a solution, or (iii) the synthesis procedure times out after some
running for some user configurable length of time. As a type may have
multiple inhabitants, the user may also request the “next” program
after candidate solution is returned. The tool will discard the current
solution and proceed until another candidate is found (if one exists).

3.6.1 Post-Synthesis Resugaring

A synthesised term often contains some artefacts of the fact that it
was constructed automatically. The structure of our synthesis rules
means aspects of our synthesised programs are not representative in
some stylistic ways of the kind of programs functional programmers
typically write. We consider two examples of these below using Gran-
ule code, and show how we apply a refactoring (or “re-sugaring”)
procedure to any synthesised term to rewrite them in a more idiomatic
style.

3.6.1.1 Abstractions

A function definition synthesised from a function type using the⊸R

will take the form of a sequence of nested abstractions which bind the
function’s arguments, with the sub-term of the innermost abstraction
containing the function body, e.g.

pair : ∀ { a b : Type } . a → b → (a, b)

pair = λx → λy → (x, y)

In most cases, a programmer would write a function definition as
a series of equations with the function arguments given as patterns.
Our refactoring procedure collects the outermost abstractions of a
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synthesised term and transforms them into equation-level patterns
with the innermost abstraction body forming the equation body:

pair : ∀ { a b : Type } . a → b → (a, b)

pair x y = (x, y)

3.6.1.2 Unboxing

An unboxing term is synthesised via the □−
L abd □+

L rules rule as a
let expression which pattern matches over a box pattern, yielding an
assumption with the grade’s usage. Such terms can also be refactored
both into function equations and to avoid excessive use of let bindings:

k : ∀ { a b : Type } . a → b [0] → a

k x y = let [z] = y in x

which we can then refactor into

k : ∀ { a b : Type } . a → b [0] → a

k x [z] = z

This procedure includes programs which perform a nested unboxing:

comp : ∀ {k : Semiring, n m : k, a b c : Type}

. (a [m] → b) [n]

→ (b [n] → c)

→ a [n * m]

→ c

comp x y z = let [u] = x in let [v] = z in y [ u [v] ]

is refactored into:

comp : ∀ {k : Semiring, n m : k, a b c : Type}

. (a [m] → b) [n]

→ (b [n] → c)

→ a [n * m]

→ c

comp [u] y [v] = y [ u [v] ]

3.7 evaluating the synthesis calculi

Prior to evaluation, we made the following hypotheses about the
relative performance of the additive versus subtractive approaches:

H1. (Solving; Additive requires less) Additive synthesis should
make fewer calls to the solver, with lower complexity theorems
(fewer quantifiers). Dually, subtractive synthesis makes more
calls to the solver with higher complexity theorems.

H2. (Paths; Subtractive explores fewer) For complex problems, addi-
tive will explore more paths as it cannot tell whether a variable
is not well-resourced until closing a binder; additive pruning
and subtractive will explore fewer paths as they can fail sooner.
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H3. (Performance; additive faster on simpler examples) A corollary
of the above two: simple examples will likely be faster in additive
mode, but more complex examples will be faster in subtractive.

3.7.1 Methodology

To evaluate our synthesis tool we developed a suite of benchmarks
comprising Granule type schemes for a variety of operations using
linear and graded modal types. We divide our benchmarks into several
classes of problem:

• Hilbert: the Hilbert-style axioms of intuitionistic logic (including
SKI combinators), with appropriate N and N-intervals grades
where needed (see, e.g., S combinator in Example 2.3.1 or coproduct
elimination in Example 3.1.1).

• Comp: various translations of function composition into linear logic:
multiplicative, call-by-value and call-by-name using ! [Girard, 1987],
0/1 translation of intuitionistic logic using ! [Liang and Miller,
2009], and coKleisli composition over N and arbitrary semirings:
e.g. ∀r, s ∈ R:

comp-coKR : □r(□sA⊸ B)⊸ (□rB⊸ C)⊸□r · sA⊸ C

• Dist: distributive laws of various graded modalities over functions,
sums, and products, e.g., ∀r ∈ N, or ∀r ∈ R in any semiring, or
r = 0...∞:

pull⊕ : (□rA ⊕ □rB)⊸□r(A ⊕ B)

push⊸ : □r(A⊸ B)⊸□rA⊸□rB

• Vec: map operations on fixed size vectors encoded as products, e.g.:

vmap5 : □5(A⊸ B)

⊸ ((((A ⊗ A) ⊗ A) ⊗ A) ⊗ A)

⊸ ((((B ⊗ B) ⊗ B) ⊗ B) ⊗ B)

• Misc: includes Example 3.1.2 (information-flow security) and func-
tions which must share resources between graded modalities, e.g.:

share : □4A

⊸ □6A

⊸ □2(((((A ⊗ A) ⊗ A) ⊗ A) ⊗ A)⊸ B)

⊸ (B ⊗ B)
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Hilbert

⊗Intro ⊗i : ∀a, b. a⊸ b⊸ (a ⊗ b)

⊗Elim ⊗e1 : ∀a, b. (a ⊗□0b)⊸ a

⊗e2 : ∀a, b. (□0a ⊗ b)⊸ b

⊕Intro ⊕i1 : ∀a, b. a⊸ a ⊕ b

⊕i2 : ∀a, b. b⊸ a ⊕ b

⊕Elim ⊕e : ∀a, b, c. □0...1(a⊸ c)⊸□0...1(b⊸ c)⊸ (a ⊕ b)⊸ c

SKI s : ∀a, b, c. (a⊸ (b⊸ c))⊸ (a⊸ b)⊸ (□2a⊸ c)

k : ∀a, b. a⊸□0b⊸ a

i : ∀a. a⊸ a

Comp

0/1 ◦I/O : ∀a, b, c. □(□a⊸□b)⊸□(□b⊸□c)⊸□(□a⊸ c)

CBN ◦cbn : ∀a, b, c. □(□a⊸ b)⊸□(□b⊸ c)⊸□a⊸ c

CBV ◦cbv : ∀a, b, c. □(□a⊸□b)⊸□(□b⊸□c)⊸□□a⊸□c

coK-R ◦R : ∀R, r, s ∈ R, a, b, c. □r(□sa⊸ b)⊸ (□rb⊸ c)⊸□r·sa⊸ c

lin ◦ : ∀a, b, c. (a⊸ b)⊸ (b⊸ c)⊸ (a⊸ c)

coK-N ◦N : ∀r, s ∈ N, a, b, c. □r(□sa⊸ b)⊸ (□rb⊸ c)⊸□r·sa⊸ c

Dist

⊕-N pull⊕ : ∀r : N, a, b. (□ra ⊕□rb)⊸□r(a ⊕ b)

⊕-! pull⊕ : ∀a, b. (□a ⊕□b)⊸□(a ⊕ b)

⊕-R pull⊕ : ∀R, r ∈ R, a, b. (□ra ⊕□rb)⊸□r(a ⊕ b)

⊗-N pull⊗ : ∀r : N, a, b. (□ra ⊗□rb)⊸□r(a ⊗ b)

⊗-! pull⊗ : ∀a, b. (□a ⊗□b)⊸□(a ⊗ b)

⊗-R pull⊗ : ∀R, r, a, b. (□ra ⊗□rb)⊸□r(a ⊗ b)

⊸-N push⊸ : ∀r : N, a, b. □r(a⊸ b)⊸□ra⊸□rb

⊸-! push⊸ : ∀a, b. □(a⊸ b)⊸□a⊸□b

⊸-R push⊸ : ∀R, r : R, a, b. □r(a⊸ b)⊸□ra⊸□rb

Vec

vec5 vmap5 : ∀a, b. □5(a⊸ b)⊸ ((((a ⊗ a)⊗ a)⊗ a)⊗ a)

⊸ ((((b ⊗ b)⊗ b)⊗ b)⊗ b)

vec10 vmap10 : ∀a, b. as above but for 10-tuples

vec15 vmap15 : ∀a, b. as above but for 15-tuples

vec20 vmap20 : ∀a, b. as above but for 20-tuples

Misc

split⊕ split : ∀a, b, c.□2...3b⊸ (a ⊕ c)⊸ ((a ⊗□2..2b)⊕ (c ⊗□3...3b))

split⊗ split : ∀a, b.□0...2(a⊸ a⊸ a)⊸□10...10a⊸ (□2...2a ⊗□6...6a)

share share : ∀a, b.□4a⊸□6a⊸□2(((((a ⊗ a)⊗ a)⊗ a)⊗ a)⊸ b)⊸ (b ⊗ b)

Exm. 3.1.2 noLeak : ∀a, b.(□Loa ⊗□Hia)⊸ (□Lo(a ⊗ 1)⊸ b)⊸ b

Table 3.3: List of benchmark synthesis problems
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Table 3.3 provides the complete list of Granule type schemes used
for these synthesis problems (32 in total). Note that these are type
schemes which quantify over type variables (a, and b), however, we
simply treat each type variable as a logical atom, unifiable only with
itself. Chapter 4 provides a proper treatment of synthesis from Rank-1
polymorphic type schemes. Note also that □A is used as shorthand for
□0...∞ A (graded modality with indices drawn from intervals over N ∪
{∞}). The complete synthesised program code for the benchmarking
problems can be found in Section A.1 of Appendix A

We found that Z3 is highly variable in its solving time, so timing
measurements are computed as the mean of 20 trials. We used Z3

version 4.8.8 on a Linux laptop with an Intel i7-8665u @ 4.8 Ghz and
16 Gb of RAM.
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Additive Additive (pruning) Subtractive

Problem µT (ms) N µT (ms) N µT (ms) N

H
il

be
rt

⊗Intro ✓ 6.69 (0.05) 2 ✓ 9.66 (0.23) 2 ✓ 10.93 (0.31) 2

⊗Elim ✓ 0.22 (0.01) 0 ✓ 0.05 (0.00) 0 ✓ 0.06 (0.00) 0

⊕Intro ✓ 0.08 (0.00) 0 ✓ 0.07 (0.00) 0 ✓ 0.07 (0.00) 0

⊕Elim ✓ 7.26 (0.30) 2 ✓ 13.25 (0.58) 2 ✓ 204.50 (8.78) 15

SKI ✓ 8.12 (0.25) 2 ✓ 24.98 (1.19) 2 ✓ 41.92 (2.34) 4

C
om

p

01 ✓ 28.31 (3.09) 5 ✓ 41.86 (0.38) 5 × Timeout -

cbn ✓ 13.12 (0.84) 3 ✓ 26.24 (0.27) 3 × Timeout -

cbv ✓ 19.68 (0.98) 5 ✓ 34.15 (0.98) 5 × Timeout -

◦coKR ✓ 33.37 (2.01) 2 ✓ 27.37 (0.78) 2 × 92.71 (2.37) 8

◦coKN ✓ 27.59 (0.67) 2 ✓ 21.62 (0.59) 2 × 95.94 (2.21) 8

mult ✓ 0.29 (0.02) 0 ✓ 0.12 (0.00) 0 ✓ 0.11 (0.00) 0

D
is

t

⊗-! ✓ 12.96 (0.48) 2 ✓ 32.28 (1.32) 2 ✓ 10487.92 (4.38) 7

⊗-N ✓ 24.83 (1.01) 2 × 32.18 (0.80) 2 × 31.33 (0.65) 2

⊗-R ✓ 28.17 (1.01) 2 × 29.72 (0.90) 2 × 31.91 (1.02) 2

⊕-! ✓ 7.87 (0.23) 2 ✓ 16.54 (0.43) 2 ✓ 160.65 (2.26) 4

⊕-N ✓ 22.13 (0.70) 2 ✓ 30.30 (1.02) 2 × 23.82 (1.13) 1

⊕-R ✓ 22.18 (0.60) 2 ✓ 31.24 (1.40) 2 × 16.34 (0.40) 1

⊸-! ✓ 6.53 (0.16) 2 ✓ 10.01 (0.25) 2 ✓ 342.52 (2.64) 4

⊸-N ✓ 29.16 (0.82) 2 ✓ 28.71 (0.67) 2 × 54.00 (1.53) 4

⊸-R ✓ 29.31 (1.84) 2 ✓ 27.44 (0.60) 2 × 61.33 (2.28) 4

V
ec

vec5 ✓ 4.72 (0.07) 1 ✓ 14.93 (0.21) 1 ✓ 78.90 (2.25) 6

vec10 ✓ 5.51 (0.36) 1 ✓ 20.81 (0.77) 1 ✓ 142.87 (5.86) 11

vec15 ✓ 9.75 (0.25) 1 ✓ 22.09 (0.24) 1 ✓ 195.24 (3.20) 16

vec20 ✓ 13.40 (0.46) 1 ✓ 30.18 (0.20) 1 ✓ 269.52 (4.25) 21

M
is

c

split⊕ ✓ 3.79 (0.04) 1 ✓ 5.10 (0.16) 1 ✓ 10732.65 (8.01) 6

split⊗ ✓ 14.07 (1.01) 3 ✓ 46.27 (2.04) 3 × Timeout -

share ✓ 292.02 (11.37) 44 ✓ 100.85 (2.44) 6 ✓ 193.33 (4.46) 17

Exm. 3.1.2 ✓ 8.09 (0.46) 2 ✓ 26.03 (1.21) 2 ✓ 284.76 (0.31) 3

Table 3.4: Results. µT in ms to 2 d.p. with standard sample error in brackets

3.7.2 Results and Analysis

For each synthesis problem, we recorded whether synthesis was suc-
cessful or not (denoted ✓ or ×), the mean total synthesis time (µT),
and the number of calls made to the SMT solver (N). Table 3.4 sum-
marises the results with the fastest case for each benchmark high-
lighted. For all benchmarks that used the SMT solver, the solver
accounted for 91.73% − 99.98% of synthesis time, so we report only
the mean total synthesis time µT, rather than showing the SMT solver
time separately as this gives a good proxy of the solver time. We set a
timeout of 120 seconds.
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3.7.2.1 Additive versus subtractive

As conjectured in H1, the additive approach generally synthesises
programs with fewer calls to the solver than subtractive. Our first
hypothesis holds for almost all benchmarks, with the subtractive
approach often far exceeding the number made by the additive. This
is explained by the difference in graded variable synthesis between
approaches. In the additive, a constant grade 1 is given for graded
assumptions in the output context, whereas in the subtractive, a fresh
grade variable is created with a constraint on its usage which is
checked immediately. As the total synthesis time is almost entirely
spent in the SMT solver (more than 90%), solving constraints is by
far the most costly part of synthesis leading to the additive approach
synthesising most examples in a shorter amount of time.

Graded variable synthesis in the subtractive case also results in
several examples failing to synthesise due to timeout. In some cases,
e.g., the first three comp benchmarks, the subtractive approach times-
out as synthesis diverges with constraints growing in size due to
the maximality condition and absorbing behaviour of 0...∞ interval.
In the case of coK-R and coK-N, the generated constraints have the
form ∀r.∃s.r ⊒ s + 1 which is not valid ∀r ∈ N (e.g., when r = 0),
which suggests that the subtractive approach does not work well
for polymorphic grades. As further work, we are considering an
alternate rule for synthesising promotion with constraints of the form
∃s.s = s′ ∗ r, i.e., a multiplicative inverse constraint.

In more complex examples we see evidence to support our second
hypothesis. The share problem requires a lot of graded variable syn-
thesis which is problematic for the additive approach, for the reason
described in H2 that synthesis may explore many paths which are
incorrect in their eventual resource usage. In contrast, the subtractive
approach performs better, with µT = 193.3ms as opposed to additive’s
292.02ms. However, additive pruning outperforms both.

Notably, on examples which are purely linear such as andElim from
Hilbert’s axioms or mult for function composition, the subtractive
approach generally performs better. Linear programs without graded
modalities can be synthesised without the need to interface with Z3 at
all, making the differences here somewhat negligible as solver time
generally makes up for the vast proportion of total synthesis time in
the graded benchmarks.

3.7.2.2 Additive pruning

The pruning variant of additive synthesis (where subtraction takes
place in the premises of multiplicative rules) had mixed results com-
pared to the default. In simpler examples, the overhead of pruning
(requiring SMT solving) outweighs the benefits obtained from reduc-
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ing the space. However, in more complex examples which involve
synthesising many graded variables (e.g. share), pruning is especially
powerful, performing better than the subtractive approach. However,
additive pruning failed to synthesis two examples which are polymor-
phic in their grade (⊗-N) and in the semiring (⊗-R).

Overall, the additive approach outperforms the subtractive and is
able to synthesise more examples, including ones polymorphic in
grades and even the semiring. Given that the literature on linear logic
theorem proving is typically subtractive, this is an interesting result.

3.7.3 Completeness of Synthesis

While we do not provide lemmas for completeness of synthesis, we
hypothesise that this holds for the declarative focused forms of each
of the calculi. The proof of this remains as future work.

In Table 3.4 one can observe examples which succeed in the Ad-
ditive column yet fail to synthesise in the Subtractive and Additive
Pruning columns even though they do not timeout (⊗-N, ⊗-R, ⊕-N,
etc.). Rather than being the result of the synthesis rules themselves
lacking completeness, this is instead due to limitations in how the
implementation of the synthesis tool interacts with the SMT solver.
The method of compiling constraints which existentially quantify over
grades which are polymorphic (in both the natural numbers semiring
and over semirings in general) is not expressive enough in the current
system to convey the correct information to the solver. Correcting this
is ongoing work which requires co-ordination with how Granule’s
type checker compiles constraints to the SMT-lib format.

3.8 conclusion

At this point we have constructed a simple program synthesis tool
for Granule, parameterised by a resource management scheme, which
effectively deals with the problems of treating data as a resource inside
a program. Both schemes would be a reasonable choice for further
development of a synthesis tool for our language based on the graded
linear λ-calculus.

Going forward, however, we focus primarily on the additive resource
management scheme, using this as the basis for our more feature-
rich fully-graded synthesis calculus in Chapter 4. The evaluation in
Section 3.7 showed that the additive approach generally yields smaller
and simpler theorems than the subtractive, requiring less time to solve.
Theorem proving becomes even more prevalent in synthesis for a
fully graded typing calculus - potentially every rule introduces new
constraints that require solving, thus the speed at which this can be
carried out is especially important.



3.8 conclusion 72

While the tool presented in this chapter allows users to synthesise
a considerable subset of Granule programs, our language is still lim-
ited in its expressivity when compared to the core of Granule. Data
types comprise only product, sum, and unit types, while synthesis of
recursive function definitions or functions which make use of other
in-scope values such as top-level definitions is not permitted. One
notable limitation of our typing calculi is the inability to express (and
therefore synthesise) programs which perform a deep pattern match
over a graded data type. A clear example of this can be found in the
synthesis of programs which distribute a graded modality over a data
type. Consider an example of a distributive program, push:

push : □r(A ⊗ B)⊸□r A ⊗□rB

which takes a data type graded by r (in this case the product type
A ⊗ B), and distributes r over the constituent elements of the product
A and B. This example is representative of a common class of graded
programs known as distribute laws, however, we are unable to express
such programs in our simplified language.

In Granule, however, we can write the above as:

push : ∀ {k : Semiring, r : k, a b : Type}

. (a * b) [r] → (a [r] * b [r])

push [(x, y)] = ([x], [y])

by pattern matching on both the graded modality and the product
in a single nested pattern match. The ability to perform this deep
pattern matching greatly increases the expressivity of our language,
and allows us to both type and potentially synthesis much more
interesting and realistic Granule programs.

In the next chapter we show how we can synthesise such programs
and other, more complex examples by incorporating pattern matching,
algebraic data types (ADTs), and recursion into our typing calculus
and synthesis tool.



4
A N E X T E N D E D S Y N T H E S I S C A L C U L U S

In Chapter 3 we showed two ways in which a calculus of type-directed
synthesis rules can incorporate grades to ensure that synthesised
programs are both well-typed and well-resourced. We compared the
performance of these calculi against each other, however, we have
yet to show that synthesis with grades makes the task of program
synthesis easier, by reducing the search space of programs.

So far, we have considered a language with a several basic types, but
which falls short of the full features that one would expect in a practical
functional language. In this chapter, we consider a target language
which is significantly more expressive than what we have seen thus
far, constituting a fully-fledged functional programming language,
with (recursive) ADTs, recursion, and polymorphic definitions.

We also take this chapter as an opportunity to explore synthesis
in a fully graded type system. As mentioned in Chapter 2, the fully
graded λ-calculus is one of the two dominant flavours of quantitative
type system. This approach is common amongst implementations of
quantitative type systems, such as Idris 2, the Linear Types language
extension to GHC, and the GradedBase language extension of Granule
(which forms the target language of our implementation). The majority
of content of this chapter is derived from Hughes and Orchard [2024].

roadmap We begin by extending the calculus of Section 2.3.2,
adding polymorphic recursive user-defined algebraic data types, as
well as recursive function definitions with polymorphic type schemes.
Section 4.1 provides a full formal description of our target language.

We then provide a program synthesis calculus with an additive re-
source management scheme for this language in Section 4.2, describing
the rules in turn, as well as additional post-synthesis refactoring pro-
cedures as an extension of the procedures in Section 3.6.1 (Section 4.3).
We then apply focusing to this calculus in Section 4.4, as we did in
Chapter 3, using this focused form as the basis of the implementation
of our synthesis tool.

We evaluate our implementation on a set of 46 benchmarks (Sec-
tion 4.5), including several non-trivial programs which use algebraic
data types and recursion.
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In Section 4.6, to demonstrate the practicality and versatility of our
approach, we apply our algorithm to synthesising programs in Haskell
from type signatures that use GHC’s Linear Types extension, bringing
our approach to a mainstream language.

4.1 a fully graded target language

We now formally define our target language, extending the fully
graded λ-calculus of Chapter 2. Our language comprises the λ-calculus
extended with grades and a graded necessity modality, arbitrary
user-defined recursive algebraic data types (ADTs), as well as rank-1
polymorphism. The syntax of types is given by:

A, B ::= Ar → B | K A⃗ | □rA | µX.A | X | α (types)

K ::= Unit | ⊗ | ⊕ (type constructors)

κ ::= Type | κ1 → κ2 (kinds)

τ ::= ∀α : κ.A (type schemes)

Recursive types µX.A are equi-recursive (although we also provide ex-
plicit typing rules) with type recursion variables X. Data constructors
and other top-level definitions are typed by type schemes τ (rank-1
polymorphic types), which bind a set of kind-annotated universally
quantified type variables α : κ à la ML [Milner, 1978]. Thus, types may
contain type variables α. Kinds κ are standard, given by Figure 4.1.

The syntax of terms is given by:

t ::= x | λx.t | t1 t2 | [t] | C t1 ... tn | case t of p1 7→ t1; ...; pn 7→ tn

(terms)

p ::= x | _ | [p] | C p1 ... pn (patterns)

Terms consist of a graded λ-calculus, a promotion construct [t] which
introduces a graded modality explicitly, as well as data construc-
tor introduction (C t1 ... tn) and elimination via case expressions with
patterns, which are defined via the syntax of patterns p. Top-level
recursive function definitions are instead assumed to be in-scope dur-
ing synthesis, with the user providing the set of definitions that the
synthesis algorithm may use.

Typing judgements have the form Σ; Γ ⊢ t : A assigning a type A to
a term t under a type variable context Σ and variable context Γ:

Σ ::= ∅ | Σ, α : κ | Σ, X : Type (type variable contexts)

∆, Γ ::= ∅ | Γ, x :r A (variable contexts)

That is, a type variable context may be empty ∅, extended with a kind-
annotated type variable α : κ or extended with a recursion variable
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Σ, α : κ ⊢ α : κ
κVar

Σ ⊢ A : Type
Σ ⊢ □rA : Type

κ□

Σ ⊢ A : Type Σ ⊢ B : Type
Σ ⊢ Ar → B : Type

κ→

Σ ⊢ A : κ1 → κ2 Σ ⊢ B : κ1

Σ ⊢ A B : κ2
κApp

Σ ⊢ Unit : Type
κUnit

Σ ⊢ A : Type Σ ⊢ B : Type
Σ ⊢ A ⊗ B : Type

κ⊗

Σ ⊢ A : Type Σ ⊢ B : Type
Σ ⊢ A ⊕ B : Type

κ⊕

Σ, X : Type ⊢ X : Type
κX

Σ, X : Type ⊢ A : Type
Σ ⊢ µX.A : Type

κµ

Figure 4.1: Kinding rules for the fully graded typing calculus

X. Recursion variables always have kind Type. Similarly, a variable
context may be empty or extended with a graded assumption x :r A.
Graded assumptions must be used in a way which adheres to the
constraints of the grade r. Structural exchange is permitted, allowing
a context to be arbitrarily reordered. A global context D parametrises
the system, containing top-level definitions and data constructors
annotated with type schemes. This context is elided in the rules as it
never changes.

Another judgment types top-level terms (definitions) with polymor-
phic type schemes:

α : κ; ∅ ⊢ t : A
∅; ∅ ⊢ t : ∀α : κ.A

TopLevel

This rule takes the type scheme and adds its universally quantified
type variables to Σ, where they can be used subsequently in the
typing rules. This rule corresponds to the generalisation step of typing
polymorphic definitions [Milner, 1978]. The rule’s premise then types
the body at A, using the typing rules for terms of Figures 4.2, and 4.3
whose rules help explain the meaning of the syntax with reference to
their static semantics. Figure 4.2 simply gives the rules from the fully
graded λ-calculus of Section 2.3.2 adapted to include polymorphism,
while Figure 4.3 gives the typing rules for the new additions.

The use of top-level definitions is typed by the Def rule. The defi-
nition x must be present in the global definition context D, with the
type scheme ∀α : κ.A′. The type A results from instantiating all of the
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Σ ⊢ A : Type
Σ; 0 · Γ, x :1 A ⊢ x : A

Var

Σ; Γ, x :r A ⊢ t : B
Σ; Γ ⊢ λx.t : Ar → B

Abs

Σ; Γ1 ⊢ t1 : Ar → B Γ2 ⊢ t2 : A
Σ; Γ1 + r · Γ2 ⊢ t1 t2 : B

App

Σ; Γ ⊢ t : A
Σ; r · Γ ⊢ [t] : □rA

Pr

Σ; Γ, x :r A, Γ′ ⊢ t : B r⊑ s
Σ; Γ, x :s A, Γ′ ⊢ t : B

Approx

Figure 4.2: Typing rules for the fully graded polymorphic λ-calculus

(x : ∀α : κ.A′) ∈ D Σ ⊢ A = inst(∀α : κ.A′)

Σ; 0 · Γ ⊢ x : A
Def

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; 0 · Γ ⊢ C : B1
q1 → ...→ Bn

qn → K A⃗
Con

Σ; Γ ⊢ t : A Σ; r ⊢ pi : A ▷ ∆i Σ; Γ′, ∆i ⊢ ti : B
Σ; r · Γ + Γ′ ⊢ case t of p1 7→ t1; ...; pn 7→ tn : B

Case

Σ; Γ ⊢ t : A[µX.A/X]

Σ; Γ ⊢ t : µX.A
µ1

Σ; Γ ⊢ t : µX.A
Σ; Γ ⊢ t : A[µX.A/X]

µ2

Figure 4.3: Typing rules for the fully graded polymorphic calculus extensions

universal variables to types via the judgment Σ ⊢ A = inst(∀α : κ.A′)

in a standard way as in Algorithm W [Milner, 1978].
The graded λ-calculus fragment of our language remains mostly

the same as in Section 2.3.2, with the addition of pattern typing.
Furthermore, the Var rule also checks the kind of the assumption x’s
type in the premise.

Recursion is typed via the µ1 and µ2 rules, in a standard way for
equi-recursive types.

Introduction and elimination of data constructors is given by the
Con and Case rules respectively, with Case also handling graded
modality elimination via pattern matching, as in Section 5.2. For Con,
we may type a data constructor C of some data type K A⃗ (with zero
or more type parameters represented by A⃗) if it is present in the
global context of data constructors D. Data constructors are closed
requiring our context Γ to have zero-use grades, thus we scale Γ by 0.
Elimination of data constructors take place via pattern matching over
a constructor. Patterns p are typed by the judgement r ⊢ p : A ▷ ∆
which states that a pattern p has type A and produces a context of
typed binders ∆. The grade r to the left of the turnstile represents the
grade information arising from usage in the context generated by this
pattern match. This is similar to the approach used for pattern typing
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0⊑ r Σ ⊢ A : Type
Σ; r ⊢ _ : A ▷ ∅

PWild

Σ ⊢ A : Type
Σ; r ⊢ x : A ▷ x :r A

PVar

Σ; r · s ⊢ p : A ▷ Γ
Σ; r ⊢ [p] : □sA ▷ Γ

PBox

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; qi · r ⊢ pi : Bi ▷ Γi |K A⃗| > 1 ⇒ 1 ⊑ r

Σ; r ⊢ C p1 ... pn : K A⃗ ▷
−→
Γi

PCon

Figure 4.4: Pattern typing rules for the fully graded typing calculus

in Section 5.2, however, we note that we no longer have the linear
forms of the rules.

The pattern typing rules are given by Figure 4.4.
Variable patterns are typed by PVar, which simply produces a

singleton context containing an assumption x :r A from the variable
pattern with any grade r. A wildcard pattern _, typed by the PWild

rule, is only permissible with grades that allow for weakening, i.e.,
where 0 ⊑ r.

Pattern matching over data constructors is handled by the PCon

rule. A data constructor may have up to zero or more sub-patterns
(p1...pn), each of which is typed under the grade qi · r (where qi is the
grade of corresponding argument type for the constructor, as defined
in D). Additionally, we have the constraint |K A⃗| > 1 ⇒ 1 ⊑ r which
witnesses the fact that if there is more than one data constructor for
the data type (written |K A⃗| > 1), then r must approximate 1 because
pattern matching on a data constructor incurs some usage since it
reveals information about that constructor.1

By contrast, pattern matching on a type with only one constructor
cannot convey any information by itself and so no usage requirement
is imposed. Finally, elimination of a graded modality (often called
unboxing) takes place via the PBox rule, with syntax [p]. Like PCon,
this rule propagates the grade information of the box pattern’s type s
to the enclosed sub-pattern p, yielding a context with the grades r · s.

One may observe that PBox (and by extension Pr) could be con-
sidered as special cases of PCon (and Con respectively), if we were
to treat our promotion construct as a data constructor with the type
Ar → □rA. We find it helpful to keep explicit modality introduction
and elimination distinct from constructors, however, particularly with
regard to synthesis.

1 A discussion of this additional constraint on grades for case expressions is given in
Section 6.3.4 of 5 comparing how this manifests in various approaches.
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Note that Granule does not support as-patterns: each function ar-
gument contains at most one variable referencing it in the function
body.

4.1.1 Metatheory

Lastly we note that the fully graded system also enjoys admissibility
of substitution [Abel and Bernardy, 2020, Liepelt et al., 2024] which
is critical in type preservation proofs, and is needed in our proof of
soundness for synthesis:

Lemma 4.1.1 (Admissibility of substitution). Let ∆ ⊢ t′ : A, then: If
Γ, x :r A, Γ′ ⊢ t : B then Γ + (r ·∆) + Γ′ ⊢ [t′/x]t : B

4.2 a fully graded synthesis calculus

Having defined the target language, we define our synthesis calcu-
lus, which uses the additive approach to resource management (see
Section 3.4), with judgements:

Σ; Γ ⊢ A ⇒ t | ∆

That is, given an input context Γ, for goal type A we can synthesise
the term t with the output context ∆ describing how variables were
used in t. As with the typing rules, top-level definitions and data
constructors in scope are contained in a set D, which parametrises the
system and is elided in the rules. Σ is a context of kind-annotated type
variables, which we elide in rules where it is passed inductively to the
premise(s). As in the additive scheme of Chapter 3, the graded context
∆ need not use all the variables in Γ, nor with exactly the same grades.

We next present the synthesis calculus in stages, similarly to Chap-
ter 3. Each type former of the core calculus (with the exception of
type variables) has two corresponding synthesis rules: a right rule
for introduction (labelled R) and a left rule for elimination (labelled
L). We frequently apply the algorithmic reading of the judgements,
where meta-level terms to the left of ⇒ are inputs (i.e., context Γ
and goal type A) and terms to the right of ⇒ are outputs (i.e., the
synthesised term t and the usage context ∆). The synthesis calculus is
non-deterministic, i.e., for any Γ and A there may be many possible t
and ∆ such that Γ ⊢ A ⇒+ t | ∆.
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4.2.1 Core Synthesis Rules

4.2.1.1 Top-level

We begin with the TopLevel rule, which is the entry-point to synthesis,
for a judgment form with a type scheme goal instead of a type:

α : κ; ∅ ⊢ A ⇒ t | ∅
∅; ∅ ⊢ ∀α : κ.A ⇒ t | ∅

TopLevel

This rule takes the universally quantified type variables α : κ from
the type scheme and adds them to the type variable context Σ; type
variables are only equal to themselves.

4.2.1.2 Variables

For any goal type A, if there is a variable in the context matching this
type then it can be synthesised for the goal, given by the terminal rule:

Σ ⊢ A : Type
Σ; Γ, x :r A ⊢ A ⇒ x | 0 · Γ, x :1 A

Var

Said another way, to synthesise the use of a variable x, we require
that x be present in the input context Γ. The output context here then
explains that only variable x is used: it consists of the entirety of the
input context Γ scaled by grade 0 (using Definition 2.3.6), extended
with x :1 A, i.e. a single usage of x as denoted by the 1 element of the
semiring. Maintaining this zeroed Γ in the output context simplifies
subsequent rules by avoiding excessive context membership checks.

The Var rule permits the synthesis of terms which may not be
well-resourced, e.g., if r = 0, the rule still synthesises a use of x. This
is locally ill-resourced, but is acceptable at the global level as we check
that an assumption has been used correctly in the rule where the
assumption is bound. This leads us to consider some branches of
synthesis that are guaranteed to fail: at the point of synthesising a
usage of a variable in the additive scheme, isolated from information
about how else the variable is used, there is no way of knowing if
such a usage will be permissible in the final synthesised program.
However, it also reduces the amount of intermediate theorems that
need solving, which can significantly effect performance as shown in
Chapter 3, especially since the variable rule is applied very frequently.



4.2 a fully graded synthesis calculus 80

4.2.1.3 Functions

Synthesis of programs from function types is handled by the →R

and →L rules, which synthesise abstraction and application terms,
respectively. An abstraction is synthesised like so:

Γ, x :q A ⊢ B ⇒ t | ∆, x :r A r⊑ q
Γ ⊢ Aq → B ⇒ λx.t | ∆

→R

Reading bottom up, to synthesise a term of type Aq → B in context Γ
we first extend the context with a fresh variable assumption x :q A and
synthesise a term of type B that will ultimately become the body of
the function. The type Aq → B conveys that A must be used according
to q in our term for B. The fresh variable x is passed to the premise
of the rule using the grade of the binder: q. The variable x must then
be used to synthesise a term t with q usage. In the premise, after
synthesising t we obtain an output context ∆, x :r A. The Var and CR

rules (i.e. terminal rules) ensure that x is present in this context, even
if it was not used in the synthesis of t (e.g., r = 0). The rule ensures
the usage of bound term (r) in t does not violate the input grade q via
the requirement that r ⊑ q i.e. that q approximates r. If met, ∆ becomes
the output context of the rule’s conclusion.

The counterpart to abstraction synthesises an application from the
occurrence of a function in the context (a left rule):

Γ, x1 :r1 Aq → B, x2 :r1 B ⊢ C ⇒ t1 | ∆1, x1 :s1 Aq → B, x2 :s2 B

Γ, x1 :r1 Aq → B ⊢ A ⇒ t2 | ∆2, x1 :s3 Aq → B

Γ, x1 :r1 Aq → B ⊢ C ⇒ [(x1 t2)/x2]t1 | (∆1 + s2 · q ·∆2), x1 :s2+s1+(s2 · q · s3) Aq → B
→L

Reading bottom up again, the input context contains an assumption
with a function type x1 :r1 Aq → B. We may attempt to use this
assumption in the synthesis of a term with the goal type C, by applying
some argument to it. We do this by synthesising the argument from
the input type of the function A, and then binding the result of this
application as an assumption of type B in the synthesis of C. This
is decomposed into two steps corresponding to the two premises
(though in the implementation the first premise is considered first):

1. The first premise synthesises a term t1 from the goal type C
under the assumption that the function x1 has been applied and
its result is bound to x2. This placeholder assumption is bound
with the same grade as x1.

2. The second premise synthesises an argument t2 of type A for the
function x1. In the implementation, this synthesis step occurs
only after a term t1 is found for the goal C as a heuristic to avoid
possibly unnecessary work if no term can be synthesised for C.
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In the conclusion of the rule, a term is synthesised which substitutes
in t1 the result placeholder variable x2 for the application x1 t2.

The first premise yields an output context ∆1, x1 :s1 Aq → B, x2 :s2 B.
The output context of the conclusion is obtained by taking the context
addition of ∆1 and s2 · q ·∆2. The output context ∆2 is first scaled by q
since t2 is used according to q when applied to x1 (as per the type of
x1). We then scale this again by s2 which represents the usage of the
entire application x1 t2 inside t1.

The output grade of x1 follows a similar pattern since this rule
permits the re-use of x1 inside both premises of the application (which
differs from our treatment of synthesis in a linear setting). As x1’s
input grade r1 may permit multiple uses both inside the synthesis of
the application argument t2 and in t1 itself, the total usage of t1 across
both premises must be calculated.

In the first premise x1 is used according to s1, and in the second
according to s3. As with ∆2, we take the semiring multiplication of s3

and q and then multiply this by s2 to yield the final usage of x1 in t2.
We then add this to s2 + s1 to yield the total usage of x1 in t1.

The reasoning behind this grade calculation is illustrated in the
soundness proof for →L. As in the additive synthesis calculus of Chap-
ter 3, a synthesis judgment is sound if we can type the synthesised
term against the goal type using the assumptions of the output context.
We give the full details of soundness in Section 4.2.2 but use the →L

to aid in understanding how the output grades are used when typing
the synthesised term.

The total usage of x1 in the application x1 t2 is thus given by 1 +

(q · s3). Since we use x1 once on the left hand side of the application
and according to s3 inside t2, while application scales the argument
grade by the function type’s grade q. This means we can construct the
following typing derivation:

Σ ⊢ Aq → B : Type

Σ; x1 :1 Aq → B ⊢ x1 : Aq → B
Var

Σ; ∆2, x1 :s3 Aq → B ⊢ t2 : A

Σ; q ·∆2, x1 :1+(q · s3) Aq → B ⊢ x1 t2 : B
App

where

Σ; ∆2, x1 :s3 Aq → B ⊢ t2 : A

is an inductive hypothesis obtained from the second premise of the
→L rule. The rest of x’s output grade is then left to type its usage in
t1.

4.2.1.4 Using polymorphic definitions

Programs can be synthesised from a polymorphic type scheme (the
previously shown TopLevel rule), treating universally-quantified type
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variables at the top-level of our goal type as logical atoms which
cannot be unified with and are only equal to themselves. The Def rule
synthesises a use of a top-level polymorphic function via instantiation:

(x : ∀α : κ.A′) ∈ D Σ ⊢ A = inst(∀α : κ.A′)

Σ; Γ ⊢ A ⇒ x | 0 · Γ
Def

For example, in the following we have a polymorphic function flip

that we want to use to synthesise a monomorphic function:

flip : ∀ c d . (c, d) %1 → (d, c)

flip (x, y) = (y, x)

f : (Int, Int) %1 → (Int, Int)

f x = ? -- synthesis to flip x trivially

To synthesise the term flip x, the type scheme of flip is instantiated
via Def with ∅ ⊢ (Int ⊗ Int)1 → (Int ⊗ Int) = inst(∀c : Type, d :
Type.(c ⊗ d)1 → (d ⊗ c)).

4.2.1.5 Graded modalities

Graded modalities are introduced and eliminated explicitly through
the □R and □L rules, respectively. In the □R rule, we synthesise a
promotion [t] for some graded modal goal type □rA:

Γ ⊢ A ⇒ t | ∆
Γ ⊢ □rA ⇒ [t] | r ·∆

□R

In the premise, we synthesise from A, yielding the sub-term t and an
output context ∆. In the conclusion, ∆ is scaled by the grade of the
goal type r: as [t] must use t as r requires.

Grade elimination (unboxing) takes place via pattern matching in a
case statement:

Γ, y :r · q A, x :r □qA ⊢ B ⇒ t | ∆, y :s1 A, x :s2 □qA

∃s3. s1 ⊑ s3 · q ⊑ r · q
Γ, x :r □qA ⊢ B ⇒ case x of [y] → t | ∆, x :s3+s2 □qA

□L

To eliminate the assumption x of graded modal type □qA, we bind
a fresh assumption in the synthesis of the premise: y :r · q A. This
assumption is graded with r · q: the grade from the assumption’s type
multiplied by the grade of the assumption itself. As with previous
elimination rules, x is rebound in the rule’s premise. A term t is then
synthesised resulting in the output context ∆, y :s1 A, x :s2 □qA, where
s1 and s2 describe how y and x were used in t. The second premise
ensures that the usage of y is well-resourced. The grade s3 represents
how much the usage of y inside t contributes to the overall usage of x.
The constraint s1 ⊑ s3 · q conveys the fact that q uses of y constitutes a
single use of x, with the constraint s3 · q ⊑ r · q ensuring that the overall



4.2 a fully graded synthesis calculus 83

usage does not exceed the binding grade. For the output context of the
conclusion, we simply remove the bound y from ∆ and add x, with
the grade s2 + s3: representing the total usage of x in t.

4.2.1.6 Data types

The synthesis of introduction forms for data types is by the Conrule:

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; Γ ⊢ Bi ⇒ ti | ∆i

Σ; Γ ⊢ K A⃗ ⇒ C t1 ... tn | 0 · Γ + (q1 ·∆1) + ... + (qn ·∆n)
CR

where D is the set of data constructors in global scope, e.g., coming
from ADT definitions, including here products, unit, and coproducts
with (, ) : A1 → B1 → A ⊗ B, Unit : Unit, inl : A1 → A ⊕ B, and
inr : B1 → A ⊕ B.

For a goal type K A⃗ where K is a data type with zero or more
type arguments (denoted by the vector A⃗), then a constructor term
C t1 .. tn for K A⃗ is synthesised. The type scheme of the constructor in
D is first instantiated (similar to Def rule), yielding a type B1

q1 →
... → Bn

qn → K A⃗. A sub-term is then synthesised for each of the
constructor’s arguments ti in the third premise (which is repeated for
each instantiated argument type Bi), yielding output contexts ∆i. The
output context for the rule’s conclusion is obtained by performing
a context addition across all the output contexts generated from the
premises, where each context ∆i is scaled by the corresponding grade
qi from the data constructor in D capturing the fact that each argument
ti is used according to qi.

Dual to the above, constructor elimination synthesises case state-
ments with branches pattern matching on each data constructor of the
target data type K A⃗, with various associated constraints on grades
which require some explanation:

(Ci : ∀α : κ.B′
1

qi
1 → ... → B′

n
qi

n → K A⃗′) ∈ D Σ ⊢ K A⃗ : Type

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; Γ, x :r K A⃗, yi
1 :r · qi

1
B1, ..., yi

n :r · qi
1

Bn ⊢ B ⇒ ti | ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn

∃s′ ij. si
j ⊑ s′ ij · qi

j ⊑ r · qi
j si = s′ i1 ⊔ ... ⊔ s′ in |K A⃗| > 1 ⇒ 1 ⊑ s1 ⊔ ... ⊔ sm

Σ; Γ, x :r K A⃗ ⊢ B ⇒ case x of Ci yi
1...yi

n 7→ ti | (∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm)+(s1⊔...⊔sm) K A⃗
CL

where 1 ≤ i ≤ m is used to index the data constructors of which there
are m (i.e., m = |K A⃗|) and 1 ≤ j ≤ n is used to index the arguments
of the ith data constructor. For brevity, the rule focuses n-ary data
constructors where n > 0.

As with constructor introduction, the relevant data constructors
are retrieved from the global scope D in the first premise. A data
constructor type is a function type from the constructor’s arguments
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B1 . . . Bn to a type constructor applied to zero or more type parameters
K A⃗. However, in the case of nullary data constructors (e.g., for the unit
type), the data constructor type is simply the type constructor’s type
with no arguments. For each data constructor Ci, we synthesise a term
ti from the result type of the data constructor’s type in D, binding the
data constructor’s argument types as fresh assumptions to be used in
the synthesis of ti.

To synthesise the body for each branch i, the arguments of the
data constructor are bound to fresh variables in the premise, with the
grades from their respective argument types in D multiplied by the r.
This follows the pattern typing rule for constructors; a pattern match
under some grade r must bind assumptions that have the capability
to be used according to r.

The assumption being eliminated x :r K A⃗ is also included in the
premise’s context (as in →L ) as we may perform additional elimina-
tions on the current assumption subsequently if the grade r allows us.
If successful, this will yield both a term ti and an output context for
the pattern match branch. The output context can be broken down
into three parts:

1. ∆i contains any assumptions from Γ were used to construct ti

2. x :ri K A describes how the assumption x was used

3. yi
1 :si

1
B1, ..., yi

n :si
n

Bn describes how each assumption yi
j bound in

the pattern match was used in ti.

This leaves the question of how we calculate the final grade to attribute
to x in the output context of the rule’s conclusion. For each bound
assumption, we generate a fresh grade variable s′ij which represents
how that variable was used in ti after factoring out the multiplication
by qi

j. This is done via the constraint in the third premise that ∃s′ij. si
j ⊑

s′ij · qi
j ⊑ r · qi

j. The join of each s′ij (for each assumption) is then taken to
form a grade variable si which represents the total usage of x for this
branch that arises from the use of assumptions which were bound via
the pattern match (i.e. not usage that arises from reusing x explicitly
inside ti). For the output context of the conclusion, we then take the
join of output context from the constructors used. This is extended
with the original x assumption with the output grade consisting of
the join of each ri (the usages of x directly in each branch) plus the
join of each si (the usages of the assumptions that were bound from
matching on a constructor of x).

Example 4.2.1 (Example of case synthesis). Consider two possible
synthesis results:

x :r Unit ⊕ A, y :s A, z :r · q1 A ⊢ A ⇒+ z | x :0 Unit ⊕ A, y :0 A, z :1 A
(4.1)

x :r Unit ⊕ A, y :s A ⊢ A ⇒+ y | x :0 Unit ⊕ A, y :1 A (4.2)
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We will plug these into the rule for generating case expressions as
follows where in the following instead of using the above concrete
grades we have used the abstract form of the rule (the two will be
linked by equations after):

Just : ∀α : κ.A′1 → A′ ⊕ Unit ∈ D
Nothing : ∀α : κ.Unit1 → A′ ⊕ Unit ∈ D

Σ ⊢ A1 → A ⊕ Unit = inst(∀α : κ.A′1 → A′ ⊕ Unit)

Σ ⊢ Unit1 → A ⊕ Unit = inst(∀α : κ.Unit1 → A′ ⊕ Unit)

(4.1) Σ; x :r Unit ⊕ A, y :s A, z :r · q1 A ⊢ A ⇒ z | x :0 Unit ⊕ A, y :0 A, z :s1 A
(4.2) Σ; x :r Unit ⊕ A, y :s A ⊢ A ⇒ y | x :0 Unit ⊕ A, y :1 A

∃s′1. s1 ⊑ s′1 · q1 ⊑ r · q1 s′ = s′1
Σ; x :r Unit ⊕ A, y :s A ⊢ A ⇒ (case x of Just z → z;Nothing → y) | x :(0⊔0)+s′ Unit ⊕ A, y :0⊔1 A

Case

Thus, to unify (4.1) and (4.2) with the rule format we have that s1 = 1
and q1 = 1. Applying these two equalities as rewrites to the remaining
constraint, we have:

∃s′1. 1 ⊑ s′1 · 1 ⊑ r · 1 =⇒ ∃s′1. 1 ⊑ s′1 ⊑ r

These constraints can be satisfied with the natural-number intervals
semiring where y has grade 0..1 and x has grade 1..1.

Deep pattern matching, over nested data constructors, is handled
via inductively applying the Case rule but with a post-synthesis
refactoring procedure substituting the pattern match of the inner
case statement into the outer pattern match. For example, nested
matching on pairs becomes a single case with nested pattern matching,
simplifying the program:

case x of (y1, y2) → case y1 of (z1, z2) → z2

(rewritten to) ⇝ case x of ((z1, z2), y2) → z2

4.2.1.7 Recursion

Synthesis permits recursive definitions, as well as programs which
may make use of calls to functions from a user-supplied context of
function definitions in scope (using the spec construct). Synthesis of
non-recursive function applications may take place arbitrarily, how-
ever, synthesising a recursive function definition application requires
more care. To ensure that a synthesised programs terminates, we only
permit synthesis of terms which are structurally recursive, i.e., those
which apply the recursive definition to a sub-term of the function’s
inputs [Osera, 2015].

Synthesis rules for recursive types (µ-types) are straightforward:2

Γ ⊢ A[µX.A/X] ⇒ t | ∆

Γ ⊢ µX.A ⇒ t | ∆
µR

Γ, x :r A[µX.A/X] ⊢ B ⇒ t | ∆

Γ, x :r µX.A ⊢ B ⇒ t | ∆
µL

2 Though µ types are equi-recursive, we make explicit the synthesis rules here which
maps more closely to the implementation where iterative deepening information
needs to be tracked at the points of using µL and µR.
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This µR rule states that to synthesise a recursive data structure of type
µX.A, we must be able to synthesise A with µX.A substituted for the
recursion variables X in A. For example, if we wish to synthesise a
list data type List a with constructors Nil and Cons a (List a), then
when choosing the Cons constructor in the µR rule, the type of this
constructor requires us to re-apply the µR rule, to synthesise the
recursive part of Cons. Elimination of a recursive data structure may
be synthesised using the µL rule. In this rule, we have some recursive
data type µX.A in our context which we may wish to pattern match
on via the CL rule. To do this, the assumption is bound in the premise
with the type A, substituting µX.A for the recursion variables X in A.

Recursive data structures present a challenge in the implementation.
For our list data type, how do we prevent our synthesis tool from
simply applying the µL rule, followed by the CL rule on the Cons con-
structor ad infinitum? We resolve this issue using an iterative deepening
approach to synthesis similar to the approach used by Myth [Osera,
2015]. Programs are synthesised with elimination (and introduction)
forms of constructors restricted up to a given depth. If no program
is synthesised within these bounds, then the depth limits are incre-
mented. Combined with focusing (see Section 4.4), this provides the
basis for an efficient implementation of the above rules.
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(x : ∀α : κ.A′) ∈ D Σ ⊢ A = inst(∀α : κ.A′)

Σ; Γ ⊢ A ⇒ x | 0 · Γ
Def

α : κ; ∅ ⊢ A ⇒ t | ∅
∅; ∅ ⊢ ∀α : κ.A ⇒ t | ∅

TopLevel

Σ ⊢ A : Type
Σ; Γ, x :r A ⊢ A ⇒ x | 0 · Γ, x :1 A

Var

Σ; Γ, x :q A ⊢ B ⇒ t | ∆, x :r A r⊑ q
Σ; Γ ⊢ Aq → B ⇒ λx.t | ∆

→R

Σ; Γ, x1 :r1 Aq → B, x2 :r1 B ⊢ C ⇒ t1 | ∆1, x1 :s1 Aq → B, x2 :s2 B

Σ; Γ, x1 :r1 Aq → B ⊢ A ⇒ t2 | ∆2, x1 :s3 Aq → B Σ ⊢ Aq → B : Type
Σ; Γ, x1 :r1 Aq → B ⊢ C ⇒ [(x1 t2)/x2]t1 | (∆1 + s2 · q ·∆2), x1 :s2+s1+(s2 · q · s3) Aq → B

→L

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; Γ ⊢ Bi ⇒ ti | ∆i

Σ; Γ ⊢ K A⃗ ⇒ C t1 ... tn | 0 · Γ + (q1 ·∆1) + ... + (qn ·∆n)
CR

(Ci : ∀α : κ.B′
1

qi
1 → ... → B′

n
qi

n → K A⃗′) ∈ D Σ ⊢ K A⃗ : Type

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; Γ, x :r K A⃗, yi
1 :r · qi

1
B1, ..., yi

n :r · qi
1

Bn ⊢ B ⇒ ti | ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn

∃s′ ij. si
j ⊑ s′ ij · qi

j ⊑ r · qi
j si = s′ i1 ⊔ ... ⊔ s′ in |K A⃗| > 1 ⇒ 1 ⊑ s1 ⊔ ... ⊔ sm

Σ; Γ, x :r K A⃗ ⊢ B ⇒ case x of Ci yi
1...yi

n 7→ ti | (∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm)+(s1⊔...⊔sm) K A⃗
CL

Σ; Γ ⊢ A ⇒ t | ∆
Σ; Γ ⊢ □rA ⇒ [t] | r ·∆

□R

Σ; Γ, y :r · q A, x :r □qA ⊢ B ⇒ t | ∆, y :s1 A, x :s2 □qA

∃s3. s1 ⊑ s3 · q ⊑ r · q Σ ⊢ □qA : Type
Σ; Γ, x :r □qA ⊢ B ⇒ case x of [y] → t | ∆, x :s3+s2 □qA

□L

D; Σ; Γ ⊢ A[µX.A/X] ⇒ t | ∆

D; Σ; Γ ⊢ µX.A ⇒ t | ∆
µR

D; Σ; Γ, x :r A[µX.A/X] ⊢ B ⇒ t | ∆

D; Σ; Γ, x :r µX.A ⊢ B ⇒ t | ∆
µL

Figure 4.5: Collected rules of the fully graded synthesis calculus

4.2.2 Soundness of Synthesis

The relationship between synthesis and typing is given by the central
soundness result:

Theorem 4.2.1 (Soundness of synthesis). Given a particular pre-ordered
semiring R parametrising the calculi, then:
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1. For all contexts Γ and ∆, types A, terms t:

Σ; Γ ⊢ A ⇒ t | ∆ =⇒ Σ; ∆ ⊢ t : A

i.e. t has type A under context ∆ whose grades capture variable
use in t.

2. At the top-level, for all type schemes ∀α : κ.A and terms t then:

∅; ∅ ⊢ ∀α : κ.A ⇒ t | ∅ =⇒ ∅; ∅ ⊢ t : ∀α : κ.A

The first part of soundness takes the same form as soundness for
the additive calculus of Chapter 3 (see Section 3.4.8), i.e. it does not
on its own guarantee well-resourcedness. The grades in the output
context ∆ may not be approximated by the grades in the input context
Γ. Instead, an individual synthesis judgement forms part of a larger
derivation which is well-resourced. As in Chapter 3 we apply pruning
judiciously, only requiring that variable use is well-resourced at the
point of synthesising binders. Therefore synthesised closed terms are
always well-resourced (second part of the soundness theorem).

For open terms, the implementation checks that from a user-given
top-level goal A for which Γ ⊢ A ⇒ t | ∆ is derivable then t is only
provided as a valid (well-typed and well-resourced) result if ∆ ⊑ Γ.

Section B.3.1 of Appendix B provides the soundness proof, which in
part resembles a translation from sequent calculus to natural deduc-
tion, but also with the management of grades between synthesis and
type checking.

4.3 post-synthesis refactoring

In Section 3.6.1, we considered how our synthesised terms could be
refactored into a more idiomatic programming style. Those same
refactoring transformations also apply to our calculus here, along with
the additional treatment relating to case statements.

Recall that the CL binds a data constructor’s patterns as a series of
variables. Synthesising a pattern match over a nested data structure
therefore yields a term such as:

case x of

C1 y →
case y of

D1 z → ...

D2 z → ...

C2 y →
case y of

D1 z → ...

D2 z → ...



4.3 post-synthesis refactoring 89

which would be rather unnatural for a programmer to write. Nested
case statements are therefore folded together to yield a single case
statement which pattern matches over all combination of patterns
from each statement. The above cases are then transformed into the
much more compact and readable single case:

case x of

C1 (D1 z) → ...

C1 (D2 z) → ...

C2 (D1 z) → ...

C2 (D2 z) → ...

Furthermore, pattern matches over a function’s arguments in the form
of case statements are refactored such that a new function equation
is created for each unique combination of pattern match. In this way,
a refactored program should only contain case statements that arise
from pattern matching over the result of an application.

neg : Bool %1 → Bool %1

neg x = case x of

True → False;

False → True

is refactored into:

neg : Bool %1 → Bool %1

neg True = False;

neg False = True

The exception to this is where the scrutinee of a case statement is
re-used inside one of the case branches, in which case refactoring
would cause us to throw away the binding of the scrutinee’s name
and so it cannot be folded into the head pattern match, for example:

last : ∀ { a : Type } . (List a) %0..∞ → Maybe a

spec

last Nil = Nothing;

last (Cons 1 Nil) = Just 1;

last (Cons 1 (Cons 2 Nil)) = Just 2;

last %0..∞
last Nil = Nothing;

last (Cons y z) =

(case z of

Nil → Just y;

Cons u v → last z)

A final minor refactoring procedure is to refactor a variable pattern
into a wildcard pattern, in the case that the bound variable is not used
inside the body of the case branch:

throwAway : ∀ { a : Type } . a %0..∞ → ()

throwAway x = ()

is refactored into:
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throwAway : ∀ { a : Type } . a %0..∞ → ()

throwAway _ = ()

For such a scenario to occur a pattern must typed with a grade that is
approximatable by 0.

4.4 focusing

As in Chapter 3, the synthesis rules as we have presented them thus far
would be too non-deterministic to form the basis of an implementation
through direct translation into code. Again, we apply the technique of
focusing [Andreoli, 1992] to our calculus, yielding a focused synthesis
calculus which imposes an ordering on when rules may be applied at
each stage of synthesis.

We have already outlined the principles behind focusing in Sec-
tion 3.5, and thus opt not to repeat ourselves here. Instead, we merely
present the focused form of the fully graded synthesis calculus in Fig-
ures 4.6, 4.7, 4.8, 4.9, 4.10, and 4.11. and state that focusing is sound
(Lemma 4.4.1). The proof of soundness of focusing can be found in
Section B.3.2 of Appendix B.

Lemma 4.4.1 (Soundness of focusing for graded-base synthesis). For
all contexts Γ, Ω and types A:

1. Right Async : D; Σ; Γ; Ω ⊢ A ⇑ ⇒ t | ∆ ⇐⇒ D; Σ; Γ, Ω ⊢ A ⇒ t | ∆

2. Left Async : D; Σ; Γ; Ω ⇑ ⊢ B ⇒ t | ∆ ⇐⇒ D; Σ; Γ, Ω ⊢ B ⇒ t | ∆

3. Right Sync : D; Σ; Γ; ∅ ⊢ A ⇓ ⇒ t | ∆ ⇐⇒ D; Σ; Γ ⊢ A ⇒ t | ∆

4. Left Sync : D; Σ; Γ; x :r A ⇓ ⊢ B ⇒ t | ∆ ⇐⇒ D; Σ; Γ, x :r A ⊢ B ⇒ t | ∆

5. Focus Right : D; Σ; Γ; ∅ ⇑ ⊢ B ⇒ t | ∆ ⇐⇒ D; Σ; Γ ⊢ B ⇒ t | ∆

6. Focus Left : D; Σ; Γ, x :r A; ∅ ⇑ ⊢ B ⇒ t | ∆ ⇐⇒ D; Σ; Γ, x :r A ⊢ B ⇒ t | ∆

i.e. t has type A under context ∆, which contains variables with grades
reflecting their use in t.

D; Σ; Γ; Ω, x :q A ⊢ B ⇑ ⇒ t | ∆, x :r A r⊑ q
D; Σ; Γ; Ω ⊢ Aq → B ⇑ ⇒ λx.t | ∆

→R

D; α : κ; ∅; ∅ ⊢ A ⇑ ⇒ t | ∅
D; ∅; ∅; ∅ ⊢ ∀α : κ.A ⇑ ⇒ t | ∅

TopLevel

D; Σ; Γ; Ω ⇑ ⊢ B ⇒ t | ∆ B not right async

D; Σ; Γ; Ω ⊢ B ⇑ ⇒ t | ∆
⇑R

Figure 4.6: Right Async rules of the focused fully graded synthesis calculus
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(Ci : ∀α : κ.B′
1

qi
1 → ... → B′

n
qi

n → K A⃗′) ∈ D Σ ⊢ K A⃗ : Type

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

D; Σ; Γ; Ω, x :r K A⃗, yi
1 :r · qi

1
B1, ..., yi

n :r · qi
1

Bn ⇑ ⊢ B ⇒ ti | ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn

∃s′ ij. si
j ⊑ s′ ij · qi

j ⊑ r · qi
j si = s′ i1 ⊔ ... ⊔ s′ in |K A⃗| > 1 ⇒ 1 ⊑ s1 ⊔ ... ⊔ sm

D; Σ; Γ; Ω, x :r K A⃗ ⇑ ⊢ B ⇒ case x of Ci yi
1...yi

n 7→ ti | (∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm)+(s1⊔...⊔sm) K A⃗
CL

D; Σ; Γ; Ω, x :r A[µX.A/X] ⇑ ⊢ B ⇒ t | ∆

D; Σ; Γ; Ω, x :r µX.A ⇑ ⊢ B ⇒ t | ∆
µL

D; Σ; Γ; Ω, y :r · q A, x :r □qA ⇑ ⊢ B ⇒ t | ∆, y :s1 A, x :s2 □qA

∃s3. s1 ⊑ s3 · q ⊑ r · q Σ ⊢ □qA : Type
D; Σ; Γ; Ω, x :r □qA ⇑ ⊢ B ⇒ case x of [y] → t | ∆, x :s3+s2 □qA

□L

D; Σ; Γ, x :r A; Ω ⇑ ⊢ B ⇒ t | ∆ A not left async

D; Σ; Γ; Ω, x :r A ⇑ ⊢ B ⇒ t | ∆
⇑L

Figure 4.7: Left Async rules of the focused fully graded synthesis calculus

D; ΣΓ; ∅ ⊢ B ⇓ ⇒ t | ∆ B not atomic

D; Σ; Γ; ∅ ⇑ ⊢ B ⇒ t | ∆
FocR

D; Σ; Γ; x :r A ⇓ ⊢ B ⇒ t | ∆

D; Σ; Γ, x :r A; ∅ ⇑ ⊢ B ⇒ t | ∆
FocL

Figure 4.8: Focus rules of the focused fully graded synthesis calculus

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D
Σ ⊢ B1

q1 → ...→ Bn
qn → K A⃗ = inst(∀α : κ.B′

1
q1 → ...→ B′

n
qn → K A⃗′)

D; Σ; Γ; ∅ ⊢ Bi ⇓ ⇒ ti | ∆i

D; Σ; Γ; ∅ ⊢ K A⃗ ⇓ ⇒ C t1 ... tn | ∆1 + ... + ∆n
ConR

D; Σ; Γ; ∅ ⊢ A ⇓ ⇒ t | ∆

D; Σ; Γ; ∅ ⊢ □rA ⇓ ⇒ [t] | r ·∆
□R

D; Σ; Γ; ∅ ⊢ A[µX.A/X] ⇓ ⇒ t | ∆

D; Σ; Γ; ∅ ⊢ µX.A ⇓ ⇒ t | ∆
µR

D; Σ; Γ; ∅ ⊢ A ⇑ ⇒ t | ∆

D; Σ; Γ; ∅ ⊢ A ⇓ t | ∆
⇓R

Figure 4.9: Right Sync rules of the focused fully graded synthesis calculus



4.5 evaluating the synthesis calculus 92

D; Σ; Γ; x1 :r1 Aq → B, x2 :r1 B ⇓ ⊢ C ⇒ t1 | ∆1, x1 :s1 Aq → B, x2 :s2 B

D; Σ; Γ; x1 :r1 Aq → B ⇓ ⊢ A ⇒ t2 | ∆2, x1 :s3 Aq → B Σ ⊢ Aq → B : Type
D; Σ; Γ; x1 :r1 Aq → B ⇓ ⊢ C ⇒ [(x1 t2)/x2]t1 | (∆1 + s2 · q ·∆2), x1 :s2+s1+(s2 · q · s3) Aq ⊸ B

→L

D; Σ; Γ; x :r A ⇑ ⊢ B ⇒ t | ∆ A not atomic and not left sync

D; Σ; Γ; x :r A ⇓ ⊢ B ⇒ t | ∆
⇓L

Figure 4.10: Left Sync rules of the focused fully graded synthesis calculus

Σ ⊢ A : Type
D; Σ; Γ; x :r A ⇓ ⊢ A ⇒ x | 0 · Γ, x :1 A

Var

Σ ⊢ A = inst(∀α : κ.A′)

D, x : ∀α : κ.A′; Σ; Γ; ∅ ⇓ ⊢ A ⇒ x | 0 · Γ
Def

Figure 4.11: Var and Def rules of the focused fully graded synthesis calculus

4.5 evaluating the synthesis calculus

In evaluating our fully graded synthesis approach and tool, we made
the following hypotheses:

H1. (Expressivity; less consultation) The use of grades in synthesis
results in a synthesised program that is more likely to have the
behaviour desired by the user; the user needs to request fewer
alternate synthesised results (retries) and thus is consulted less
in order to arrive at the desired program.

H2. (Expressivity; fewer examples) Grade-and-type directed synthe-
sis requires fewer input-output examples to arrive at the desired
program compare with a purely type-driven approach.

H3. (Performance; more pruning) The ability to prune resource-
violating candidate programs from the search tree leads to a
synthesised program being found more quickly when synthe-
sised from a graded type compared with the same type but
without grades (purely type-driven approach).

4.5.1 Methodology

To evaluate our approach, we collected a suite of benchmarks compris-
ing graded type signatures for common transformations on data struc-
tures such as lists, streams, booleans, option (‘maybe’) types, unary
natural numbers, and binary trees. We draw many of these from the
benchmark suite of the Myth synthesis tool [Osera and Zdancewic,
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2015]. Benchmarks are divided into classes based on the main data
type, with an additional category of miscellaneous programs. The type
schemes for the full suite of benchmarks can be found in Table 4.2
while 4.1 lists the data types used by the benchmarking problems.
The complete synthesised programs, including examples used and
synthesis contexts can be found in Section A.2 of Appendix A.

To compare, in various ways, our grade-and-type-directed synthesis
to traditional type-directed synthesis, each benchmark signature is
also “de-graded” by replacing all grades in the goal with Any which
is the only element of the singleton Cartesian semiring in Granule.
When synthesising in this semiring, we can forgo discharging grade
constraints in the SMT solver entirely. Thus, synthesis for Cartesian
grades degenerates to type-directed synthesis following our rules.

To assess hypothesis 1 (grade-and-type directed leads to less consul-
tation / more likely to synthesise the intended program) we perform
grade-and-type directed synthesis on each benchmark problem and
type-directed synthesis on the corresponding de-graded version. For
the de-graded versions, we record the number of retries N needed to ar-
rive at a well-resourced answer by type checking the output programs
against the original graded type signature, retrying if the program is
not well-typed (essentially, not well-resourced). This provides a means
to check whether a program may be as intended without requiring
user input. In each case we also compared whether the resulting pro-
grams from synthesis via graded-and-type directed vs. type-directed
with retries (on non-well-resourced outputs) were equivalent.

To assess hypothesis 2 (graded-and-type directed requires fewer
examples than type-directed), we run the de-graded (Cartesian) syn-
thesis with the smallest set of examples which leads to the model
program being synthesised (without any retries). To compare across
approaches to the state-of-the-art type-directed approach, we also
run a separate set of experiments comparing the minimal number of
examples required to synthesise in Granule (with grades) vs. Myth.

To assess hypothesis 3 (grade-and-type-directed faster than type-
directed) we compare performance in the graded setting to the non-
graded Cartesian setting. Comparing our tool for speed against an-
other type-directed (but not graded-directed) synthesis tool is likely
to be largely uninformative due to differences in implementation
approach obscuring any meaningful comparison. Thus, we instead
compare timings for the graded approach and de-graded approach
within Granule. We also record the number of search paths taken (over
all retries) to assess the level of pruning in graded vs non-graded.

We ran our synthesis tool on each benchmark for both the graded
type and the de-graded Cartesian case, computing the mean after 10

trials for timing data. Benchmarking was carried out using version
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4.12.1 of Z3 on an M1 MacBook Air with 16 GB of RAM. A timeout
limit of 10 seconds was set for synthesis.

4.5.2 Results and Analysis

Table 4.3 records the results comparing grade-and-type synthesis vs.
the Cartesian (de-graded) type-directed synthesis. The left column
gives the benchmark name, number of top-level definitions in scope
that can be used as components (size of the synthesis context) la-
belled Ctxt, and the minimum number of examples needed (#/Exs)
to synthesise the Graded and Cartesian programs. In the Cartesian
setting, where grade information is not available, if we forgo type
checking a candidate program against the original graded type then
additional input-output examples are required to provide a strong
enough specification such that the correct program is synthesised
(see H3). The number of additional examples is given in parentheses
for those benchmarks which required these additional examples to
synthesise a program in the Cartesian setting.

Each subsequent results column records: whether a program was
synthesised successfully ✓ or not × (due to timeout or no solution
found), the mean synthesis time (µT) or if timeout occurred, and the
number branching paths (Paths) explored in the search space.

The first results column (Graded) contains the results for graded
synthesis. The second results column (Cartesian + Graded type-check)
contains the results for synthesising a program in the Cartesian (de-
graded) setting, using the same examples set as the Graded column,
and recording the number of retries (consultations of the type-checker)
N needed to reach a well-resourced program. In all cases, this resulting
program in the Cartesian column was equivalent to that generated by
the graded synthesis, none of which needed any retries (i.e., implicitly
N = 0 for graded synthesis). H1 is confirmed by the fact that N is
greater than 0 in 29 out of 46 benchmarks (60%), i.e., the Cartesian
case does not synthesise the correct program on the first attempt and
needs multiple retries to reach a well-resource program, with a mean
of 19.60 retries and a median of 4 retries.

For each row, we highlight the column which synthesised a result
the fastest in yellow. The results show that in 17 of the 46 benchmarks
(37%) the graded approach out-performed non-graded synthesis. This
contradicts hypothesis 3 somewhat: whilst type-directed synthesis
often requires multiple retries (versus no retries) it still outperforms
the graded equivalent. This appears to be due to the cost of our SMT
solving procedure which must first compile a first-order theorem
on grades into the SMT-lib file format, start up Z3, and then run
the solver. Considerable amounts of system overhead are incurred in
this procedure. A more efficient implementation calling Z3 directly
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(e.g., via a dynamic library call) may give more favourable results
here. However, H3 is still somewhat supported: the cases in which
the graded does outperform the Cartesian are those which involve
considerable complexity in their use of grades, such as stutter, inc,
and bind for lists, as well as sum for both lists and trees. In each of these
cases, the Cartesian column is significantly slower, even timing out for
stutter; this shows the power of the graded approach. Furthermore,
we highlight the column with the smallest number of synthesis paths
explored in blue, observing that the number of paths in the graded
case is always the same or less than those in the Cartesian+graded
type check case (apart from Tree stutter).

Interestingly the paths explored are sometimes the same because
we use backtracking search in the Cartesian+Graded type check case
where, if an output program fails to type check against the graded
type signature, the search backtracks rather than starting again.

Confirming H2, we find that for the non-graded setting without
graded type checking, further examples are required to synthesise the
same program as the graded in 20 out of 46 (43%) cases. In these cases,
an average of 1.25 additional examples was required.

Data Type Type Scheme

List Cons ∀a.a1 → List a1 → List a

Nil ∀a.List a

Stream Next ∀a.a1 → Stream a1 → Stream a

Bool True Bool

False Bool

Maybe Just ∀a.a1 → Maybe a

Nothing ∀a.Maybe a

N S N1 → N

Z N

Tree Node ∀a.Tree a1 → a1 → Tree a1 → Tree a

Leaf ∀a.Tree a

Table 4.1: Data types used in synthesis benchmarking problems
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Problem Type Scheme

Li
st

append ∀a.List a1 → a1 → List a

concat ∀a.List a1..∞ → List a1..∞ → List a

empty ∀a.Unit1 → List a

snoc ∀a.List1..∞ → a1..∞ → List a

drop ∀a.N0..∞ → List0..∞ → List a

flatten ∀a.List (List a)0..∞ → List a

bind ∀a b.List a1..∞ → (a1..∞ → List b)0..∞ → List b

return ∀a.a1 → List a

inc List N1..∞ → List N

head ∀a.List a0..1 → a0..1 → at

tail ∀a.List a0..1 → List a

last ∀a.List a0..∞ → Maybe a

length ∀a.List a → N

map ∀a b.(a1..∞ → b)0..∞ → List a1..∞ → List b

replicate5 ∀a.a5 → List a

replicate10 ∀a.a10 → List a

replicateN ∀a.N0..∞ → a0..∞ → Lista

stutter ∀a.List (a [2])1..∞ → List a

sum List N0..∞ → N

St
re

am

build ∀a.a1..1 → Stream a1..1 → Stream a

map ∀a b.Stream a1..∞ → (a1..∞ → b)1..∞ → Stream b

take1 ∀a.Stream a0..1 → a

take2 ∀a.Stream a0..1 → (a, a)

take3 ∀a.Stream a0..1 → (a, (a, a))

B
oo

l

neg Bool1 → Bool

and Bool1 → Bool1 → Bool

impl Bool1 → Bool1 → Bool

or Bool1 → Bool1 → Bool

xor Bool1 → Bool1 → Bool

M
ay

be

bind ∀a b.Maybe a1..1 → (a1..1 → Maybe b)0..1 → Maybe b

fromMaybe ∀a.Maybe a1..1 → a0..1 → a

return ∀a.a1 → Maybe a

isJust ∀a.Maybe a1 → Bool

isNothing ∀a.Maybe a1 → Bool

map ∀a b.(a1..1 → b)0..1 → Maybe a1..1 → Maybe b

mplus ∀a b.Maybe a1 → Maybe b1 → Maybe (a, b)

N
at

isEven N1..∞ → Bool

pred N1 → N

succ N1 → N

sum N1..∞ → N1..∞ → N

Tr
ee

map ∀a b.(a1..∞ → b)0..∞ → Tree a1..∞ → Tree b

stutter ∀a.Tree (a [2])1..∞ → Tree (a, a)

sum Tree N0..∞ → N

M
is

c compose ∀k : Coeffect, n m : k, a b c : Type.(am → b)n → (bn → c)1:k → an·m → c

copy ∀a.a2 → (a, a)

push ∀k : Coeffect, c : k, a b : Type.(a1 → b)c → ac → b [c]

Table 4.2: Type schemes for synthesis benchmarking results
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Graded Cartesian + Graded type-check

Problem Ctxt #/Exs. µT (ms) Paths µT (ms) N Paths

Li
st

append 0 0 (+1) ✓ 115.35 (5.13) 130 ✓ 105.24 (0.36) 8 130

concat 1 0 (+3) ✓ 1104.76 (1.60) 1354 ✓ 615.29 (1.43) 12 1354

empty 0 0 ✓ 5.31 (0.02) 17 ✓ 1.20 (0.01) 0 17

snoc 1 1 ✓ 2137.28 (2.14) 2204 ✓ 1094.03 (4.75) 8 2278

drop 1 1 ✓ 1185.03 (2.53) 1634 ✓ 445.95 (1.71) 8 1907

flatten 2 1 ✓ 1369.90 (2.60) 482 ✓ 527.64 (1.04) 8 482

bind 2 0 (+2) ✓ 62.20 (0.21) 129 ✓ 622.84 (0.95) 18 427

return 0 0 (+1) ✓ 19.71 (0.18) 49 ✓ 22.00 (0.08) 4 49

inc 1 1 ✓ 708.23 (0.69) 879 ✓ 2835.53 (7.69) 24 1664

head 0 1 ✓ 68.23 (0.53) 34 ✓ 20.78 (0.10) 4 34

tail 0 1 ✓ 84.23 (0.20) 33 ✓ 38.59 (0.06) 8 33

last 1 1 (+1) ✓ 1298.52 (1.17) 593 ✓ 410.60 (6.25) 4 684

length 1 1 ✓ 464.12 (0.90) 251 ✓ 127.91 (0.58) 4 251

map 1 0 (+1) ✓ 550.10 (0.61) 3075 ✓ 249.42 (0.73) 4 3075

replicate5 0 0 (+1) ✓ 372.23 (0.70) 1295 ✓ 435.78 (1.06) 4 1295

replicate10 0 0 (+1) ✓ 2241.87 (4.74) 10773 ✓ 2898.93 (1.47) 4 10773

replicateN 1 1 ✓ 593.86 (1.68) 772 ✓ 108.98 (0.65) 4 772

stutter 1 0 ✓ 1325.36 (1.77) 1792 × Timeout - -

sum 2 1 (+1) ✓ 84.09 (0.25) 208 ✓ 3236.74 (0.87) 192 3623

St
re

am

build 0 0 (+1) ✓ 61.27 (0.45) 75 ✓ 84.44 (0.49) 4 75

map 1 0 (+1) ✓ 351.93 (0.91) 1363 ✓ 153.01 (0.37) 0 1363

take1 0 0 (+1) ✓ 34.02 (0.23) 22 ✓ 19.32 (0.05) 0 22

take2 0 0 (+1) ✓ 110.18 (0.31) 204 ✓ 89.10 (0.18) 0 208

take3 0 0 (+1) ✓ 915.39 (1.42) 1139 ✓ 631.47 (1.14) 0 1172

B
oo

l

neg 0 2 ✓ 209.09 (0.31) 42 ✓ 168.37 (0.56) 0 42

and 0 4 ✓ 3129.30 (2.82) 786 ✓ 7069.14 (15.91) 0 2153

impl 0 4 ✓ 1735.09 (4.31) 484 ✓ 3000.48 (4.65) 0 1214

or 0 4 ✓ 1213.86 (1.02) 374 ✓ 2867.74 (3.52) 0 1203

xor 0 4 ✓ 2865.79 (4.33) 736 ✓ 7251.38 (32.06) 0 2229

M
ay

be

bind 0 0 (+1) ✓ 159.87 (0.52) 237 ✓ 55.33 (0.33) 0 237

fromMaybe 0 0 (+2) ✓ 54.27 (0.35) 18 ✓ 11.58 (0.10) 0 18

return 0 0 ✓ 9.89 (0.02) 17 ✓ 11.49 (0.04) 4 17

isJust 0 2 ✓ 69.33 (0.17) 48 ✓ 22.07 (0.09) 0 48

isNothing 0 2 ✓ 102.42 (0.32) 49 ✓ 31.89 (0.22) 0 49

map 0 0 (+1) ✓ 54.90 (0.22) 120 ✓ 22.01 (0.10) 0 120

mplus 0 1 ✓ 319.64 (0.47) 318 ✓ 70.98 (0.05) 0 318

N
at

isEven 1 2 ✓ 1027.79 (1.28) 466 ✓ 313.77 (0.92) 8 468

pred 0 1 ✓ 46.20 (0.18) 33 ✓ 48.04 (0.13) 8 33

succ 0 1 ✓ 115.16 (0.91) 76 ✓ 156.02 (0.50) 8 76

sum 1 1 (+2) ✓ 1582.23 (3.60) 751 ✓ 734.38 (1.41) 12 751

Tr
ee

map 1 0 (+1) ✓ 1168.60 (1.21) 4259 ✓ 525.47 (1.31) 4 4259

stutter 1 0 (+1) ✓ 693.44 (1.21) 832 ✓ 219.91 (1.02) 4 674

sum 2 3 ✓ 1477.83 (1.28) 3230 ✓ 3532.24 (7.19) 192 3623

M
is

c compose 0 0 ✓ 40.27 (0.08) 38 ✓ 14.53 (0.09) 2 38

copy 0 0 ✓ 5.24 (0.04) 21 ✓ 6.16 (0.10) 2 21

push 0 0 ✓ 26.66 (0.18) 45 ✓ 14.23 (0.13) 2 45

Table 4.3: Results. µT in ms to 2 d.p. with standard sample error in brackets
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We briefly examine some of the more complex benchmarks which
make use of almost all of our synthesis rules in one program. The
stutter case from the List class of benchmarks is specified as:

stutter : ∀ a . List (a [2]) %1..∞ → List a

spec

stutter % 0..∞
stutter = ?

This is a function which takes a list of values of type a, where each
element in the list is explicitly graded by 2, indicating that each
element must be used twice. The return type of stutter is a list of type
a. The argument list itself must be used at least once with potential
usage extending up to infinity, suggesting that some recursion will
be necessary in the program. This is further emphasised by the spec

, which states that we can use the definition of stutter inside the
function body in an unrestricted way. From this, we synthesise:

stutter Nil = Nil;

stutter (Cons [u] z) = (Cons u) ((Cons u) (stutter z))

in 1325ms (∼1.3 seconds). We also have a stutter case in the Tree class
of benchmarks, which instead performs the above transformation over
a binary tree data type, which yields the following program in 693ms
(∼0.7 seconds):

stutter : ∀ a b . Tree (a [2]) % 1..∞ → Tree (a, a)

spec

stutter %0..∞
stutter Leaf = Leaf;

stutter (Node y [v] u) = ((Node (stutter y)) (v, v)) (stutter

u)

Lastly, we compare between the number of examples required by Gran-
ule (using grades) and the Myth program synthesis tool (based purely
on pruning by examples). We take the cases from our benchmark set
which have an equivalent in the Myth benchmark suite [Osera and
Zdancewic, 2015]. Table 4.4 shows the number of examples used in
Granule, and the number required for the equivalent Myth case. In
both Granule and Myth this number represents the minimal number
of examples required to synthesise the correct program.
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Granule Myth

Problem #/Exs #/Exs

List

append 0 6

concat 1 6

snoc 1 8

drop 1 13

inc 1 4

head 1 3

tail 1 3

last 1 6

length 1 3

map 0 8

stutter 0 3

sum 1 3

Bool

neg 2 2

and 4 4

impl 4 4

or 4 4

xor 4 4

Nat
isEven 2 4

pred 1 3

Tree map 0 7

Table 4.4: Number of examples needed for synthesis, comparing Granule vs.
Myth

For most of the problems (15 out of 20), Granule required fewer
examples to identify the desired program in synthesis. The disparity
in the number of examples required is quite significant in some cases:
with 13 examples required by Myth to synthesise the concat problem
but only 1 example for Granule. This shows the pruning power of
graded information in synthesis, confirming H2.
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4.6 synthesis of linear haskell programs

As part of a growing trend of resourceful types being added to more
mainstream languages, Haskell has introduced support for linear
types as of GHC 9, using an underlying graded type system which
can be enabled as a language extension of GHC’s existing type sys-
tem [Bernardy et al., 2018] (the LinearType extension). This system
is closely related to Granule, but limited only to one semiring for
its grades. This however presents an exciting opportunity: can we
leverage our tool to synthesise (linear) Haskell programs?

Like Granule, grades in Linear Haskell can be expressed as “multi-
plicities” on function types: a %r -> b. The multiplicity r can be either
1 or ω (or polymorphic), with 1 denoting linear usage (also written
as ’One) and ω for (’Many) unrestricted usage. Likewise, in Granule, we
can model linear types using the 0-1-ω semiring [Hughes et al., 2021].

Synthesising Linear Haskell programs then simply becomes a task of
parsing a Haskell type into a Granule equivalent, synthesising a term
from this, and compiling the synthesised term back into Haskell. The
close syntactic correspondence between Granule and Haskell makes
this translation straightforward.

Our implementation includes a prototype synthesis tool using this
approach. A synthesis problem takes the form of a Linear Haskell
program with a hole, e.g.

{-# LANGUAGE LinearTypes #-}

swap :: (a, b) %One -> (b, a)

swap = _

We invoke the tool with gr --linear-haskell swap.hs producing:

swap (z, y) = (y, z)

Haskell tuples are converted into a Granule data type, generated based
on the tuple’s arity. This data type is given unique name based on
this size, e.g. ,4 for a tuple of arity 4. Using the special character ,

in the constructor name prevents name clashes with other in-scope
data constructors, as this character would not be permitted in a typical
user-defined constructor.

Users may make use of lists, tuples, Maybe and Either data types from
Haskell’s prelude, as well as user-defined ADTs. Further integration
of the tool, as well as support for additional Haskell features such as
GADTs is left as future work.

This tool can be especially useful as a programming aid when
writing linear versions of Haskell libraries. To conclude this section,
we showcase some of the programs synthesised via our Linear Haskell
tool with the goal of writing a Linear Haskell library for Haskell’s
Maybe data type.

{-# LANGUAGE LinearTypes #-}
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maybe :: b %Many -> (a %One -> b) %Many -> (Maybe a) %One -> b

maybe x y Nothing = x

maybe x y (Just u) = y u

bind :: Maybe a %One -> (a %One -> Maybe b) %Many -> Maybe b

bind Nothing y = Nothing

bind (Just z) y = y z

map :: (a %One -> b) %Many -> Maybe a %One -> Maybe b

map x Nothing = Nothing

map x (Just z) = Just (x z)

maybeToList :: Maybe a %One -> [a]

maybeToList Nothing = []

maybeToList (Just y) = [y]

fromMaybe :: Maybe a %One -> a %Many -> a

fromMaybe Nothing y = y

fromMaybe (Just z) y = z

4.7 conclusion

subtractive resource management Ultimately, we opted to
focus on the additive resource management scheme for Chapter 4

due to the evidence regarding the efficiency of its implementation
for a fully graded typing calculus (i.e. that the subtractive approach
required a far greater amount of time solving constraints).

In the subtractive scheme, the Var rule generates a constraint which
determines if the use of a variable is permissible based on the rest of
the partially synthesised program:

∃s. r ⊒ s + 1

Γ, x :r A ⊢ A ⇒ x | Γ, x :s A
Var

i.e., r must overapproximate one use of x plus the future use of x
given by the existential s, as in the synthesis rule for the subtractive
synthesis calculus in Chapter 3 on page 39.

Our comparative evaluation of the additive and subtractive schemes
in Section 3.7 showed that these, and other associated constraints
from the subtractive approach, are larger, typically more complex,
and are discharged more frequently than their counterparts in the
additive system (every time a variable usage is being considered in the
above case). Our evaluation concluded that the only situation where
subtractive decisively outperformed additive was on purely linear
programs. This, coupled with the fact that the subtractive approach
has limitations in the presence of polymorphic grades, influenced our
decision to adopt the additive scheme, especially as we considered
much more complex programs than in the calculi of Chapter 3, e.g.,
targeting recursion.
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In this chapter we presented a synthesis calculus for a feature-rich
type system based on the fully graded λ-calculus of section 2.3.2,
which complements our graded linear system of Chapter 3 to allow
us to synthesise programs for the major approaches to graded type
systems. This approach to synthesis enabled us to synthesise Haskell
programs using graded types via the Linear Types language extension.
We found through our experimental evaluation that synthesising pro-
grams in this calculus requires the exploration of fewer synthesis paths
when using the information provided by grades to prune the search
space of candidate programs. In terms of pure speed, un-graded type-
directed program synthesis outperformed our implementation, largely
due to the overhead of discharging constraints to an SMT solver.

This discrepancy in speed necessitates that our synthesis tool seek
a more efficient means of interfacing with the solver. However, the
theoretical advantage of grade-based pruning remains clear: the search
space was the same or reduced in all but one of our benchmarking
examples in Table 4.3.

In Section 3.8 of Chapter 3 we considered the problem of synthe-
sising programs that distribute a graded modality over a data type.
There, our inability to perform deep pattern matching in our core cal-
culus rendered us unable to synthesise programs for these distributive
laws, an issue which is resolved in this chapter.

In the following chapter, we present an alternative approach to
generating programs which exhibit this distributive behaviour using
a generic programming methodology. The approach we present in
Chapter 5 is not type-directed program synthesis of the kind we have
seen in this chapter, i.e. it is not based on enumerative search. This
approach complements the synthesis calculi presented here and in
Chapter 3, providing users with a means to automatically generate
programs purely from a type for a common class of graded programs,
as well as some other useful structural combinators.



5
AU T O M AT I C A L LY D E R I V I N G G R A D E D
C O M B I N AT O R S

Thus far we have considered program synthesis from the perspective
of enumerative search, using our types to guide us and pruning the
space of programs where possible. This approach yielded a synthesis
tool which was highly expressive, allowing the synthesis of a program
term for each syntactic form in our core calculus. In this chapter
we present an alternative approach, which targets a specific class of
graded programs: graded distributive and structural combinators. We
view this approach as a useful complement to the more powerful
type-directed synthesis. Much of the content of this chapter is derived
from Hughes et al. [2020], our Linearity/TLLA 2020 paper.

When programming with graded modal types, we have observed
there is often a need to ‘distribute’ a graded modality over a type,
and vice versa, in order to compose programs. That is, we may find
ourselves in possession of a □r(Fα) value (for some parametric data
type F) which needs to be passed to a pre-existing function (of our
own codebase or a library) which requires a F(□rα) value, or perhaps
vice versa. A distributive law (in the categorical sense, due to Street
[1972]) provides a conversion from one to the other. In this chapter,
we present a procedure to automatically synthesise these distributive
operators, applying a generic programming methodology [Hinze,
2000] to compute these operations given the base type (e.g., Fα in the
above description). This serves to ease the use of graded modal types
in practice, removing boilerplate code by automatically generating
these ‘interfacing functions’ on-demand, for user-defined data types
as well as built-in types.

Throughout, we refer to distributive laws of the form □r(Fα) →
F(□rα) as push operations (as they ‘push’ the graded modality inside
the type constructor F), and dually F(□rα) → □r(Fα) as pull opera-
tions (as they ‘pull’ the graded modality outside F). We have already
encountered some examples of push and pull operations in Chapter 3;
our benchmarks showcased pull for product and sum types (i.e. F =
⊗ and ⊕, respectively), and push for linear function types (F =⊸).

As a standalone methodology for generating a common class of
graded programs, this “deriving mechanism” serves as a complement

103
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to the synthesis calculi of Chapters 3 and 4. In many cases the solu-
tion programs to these distributive problems are straightforwardly
derivable from the type alone, making the costly enumerative search
of type-directed synthesis unnecessary. One lens through which this
can be viewed is as a library of patterns for solving a class of common
synthesis problems when dealing with graded types.

Thus, we present a tool for an automatic procedure which calculates
distributive laws from graded types and present a formal analysis of
their properties. This approach is realised in Granule, embedded into
the compiler.

roadmap We begin with a motivating example in Section 5.1 before
defining our extended calculus in Section 5.2 (which extends the
calculus of Figure 2.3 in much the same way that 4 extends 2.4)
providing an idealised, simply-typed subset of LinearBase Granule
with which we develop the core deriving mechanism. Section 5.3
gives the procedures for deriving push and pull operators for the
calculus. Section 5.4 describes the details of how these procedures are
realised in the Granule language. We then provide examples of how
other structural combinators in Granule may be derived using this
tool in Section 5.5. Finally, Section 6.3 discusses related work, while
Section 5.6 highlights future work.

We start with a motivating example typifying the kind of software
engineering impedance problem that distributive laws solve. We do so
in Granule code since it is the main vehicle for the developments here.

5.1 motivating example

Consider the situation of projecting the first element of a pair. In
Granule, this first-projection is defined and typed as the following
polymorphic function (whose syntax is reminiscent of Haskell or ML):

fst : ∀ { a b : Type, s : Semiring } . (a, b [0 : s]) → a

fst (x, [y]) = x

Linearity is the default, so this represents a linear function applied to
linear values. However, the second component of the pair is graded,
allowing weakening to be applied via unboxing in the body to discard
y of type b. In graded linear λ-calculus of Section 2.3.1, we denote
‘b [0]’ as the type □0b.

The type for fst is however somewhat restrictive: what if we are
trying to use such a function with a value (call it myPair) whose type
is not of the form (a, b [0]) but rather (a, b) [r] for some grading
term r which permits weakening? Such a situation readily arises when
we are composing functional code, say between libraries or between a
library and user code. In this situation, fst myPair is ill-typed. Instead,
we could define a different first projection function for use with myPair:
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fst’ : ∀ { a b : Type, s : Semiring, r : s }

. {0 ⩽ r} ⇒ (a, b) [r] → a

fst’ [(x, y)] = x

This implementation uses various language features of Granule to
make it as general as possible. Firstly, the function is polymorphic
in the grade r and in the semiring s of which r is an element. Next,
a refinement constraint 0 ⩽ r specifies that by the pre-ordering ⩽
associated with the semiring s, that 0 is approximated by r (essentially,
that r permits weakening). The rest of the type and implementation
looks more familiar for computing a first projection, but now the
graded modality is over the entire pair.

From a software engineering perspective, it is cumbersome to cre-
ate alternate versions of generic combinators every time we are in
a slightly different situation with regards the position of a graded
modality. Fortunately, this is an example to which a general distribu-
tive law can be deployed. In this case, we could define the following
distributive law of graded modalities over products, call it pushPair:

pushPair : ∀ { a b : Type, s : Semiring, r : s }

. (a, b) [r] → (a [r], b [r])

pushPair [(x, y)] = ([x], [y])

This ‘pushes’ the graded modality r into the pair (via pattern matching
on the modality and the pair inside it, and then reintroducing the
modality on the right hand side via [x] and [y]), distributing the
graded modality to each component. Given this combinator, we can
now apply fst (pushPair myPair) to yield a value of type a [r], on
which we can apply the Granule standard library function extract:

extract : ∀ { a : Type, s : Semiring, r : s }

. {(1 : s) ⩽ r} ⇒ a [r] → a

extract [x] = x

to get the original a value we desired:

extract (fst (pushPair myPair)) : a

The pushPair function could be provided by the standard library, and
thus we have not had to write any specialised combinators ourselves:
we have applied supplied combinators to solve the problem.

Now imagine we have introduced some custom data type List on
which we have a map function:

data List a = Cons a (List a) | Nil

map : ∀ { a b : Type } . (a → b) [0..∞] → List a → List b

map [f] Nil = Nil;

map [f] (Cons x xs) = Cons (f x) (map [f] xs)

Note that, via a graded modality, the type of map specifies that the
parameter function, of type a → b is non-linear, used between 0 and ∞
times. Imagine now we have a value myPairList : (List (a, b)) [r]
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and we want to map first projection over it. But fst expects (a, b

[0]) and even with pushPair we require (a, b) [r]. We need another
distributive law, this time of the graded modality over the List data
type. Since List was user-defined, we now must roll our own pushList

operation with type List ((a, b) [r]) → List (a [r], b [r]), and
so we are back to making specialised combinators for our data types.

The crux of this chapter is that such distributive laws can be auto-
matically calculated given the definition of a type. With our Granule
implementation of this approach (Section 5.4), we can then solve this
combination problem via the following composition of combinators:

map (extract . fst . push @(,)) (push @List myPairList) :

List a

where the push operations are written with their base type via @ (a
type application) and whose definitions and types are automatically
generated during type checking. Thus the push operation is a data-type
generic function [Hinze, 2000]. This generic function is defined induc-
tively over the structure of types, thus a programmer can introduce
a new user-defined algebraic data type and have the implementation
of the generic distributive law derived automatically. This reduces
both the initial and future effort (e.g., if an ADT definition changes or
new ADTs are introduced). Furthermore, this technique is much less
expensive than a proof search technique as no SMT solving on grade
equations is required.

Dual to the above, there are situations where a programmer may
wish to pull a graded modality out of a structure. This is possible with
a dual distributive law, which could be written by hand as:

pullPair : ∀ { a b : Type, s : Semiring, m n : s }

. (a [n], b [m]) → (a, b) [n ⊓ m]

pullPair ([x], [y]) = [(x, y)]

Note that the resulting grade is defined by the greatest-lower bound
(meet) of n and m, if it exists as defined by a pre-order for semiring
s (that is, ⊓ is not a total operation). This allows some flexibility in
the use of the pull operation when grades differ in different compo-
nents but have a greatest-lower bound which can be ‘pulled out’. Our
approach also allows such operations to be generically derived.

5.2 extending the graded linear-λ-calculus

We define here a calculus which extends the graded linear λ-calculus
of 2.3.1 with data constructors, pattern matching, and recursive data
types. This language constitutes a simplified monomorphic subset of
Granule. We include notions of data constructors and their elimination
via case expressions as a way to unify the handling of regular type
constructors.
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Γ1, x : A ⊢ t1 : A Γ2, x : A ⊢ t2 : B

Γ1 + Γ2 ⊢ letrec x = t1 in t2 : B
Letrec

(C : B1 ⊸ ...⊸ Bn ⊸ A) ∈ D

∅ ⊢ C : B1 ⊸ ...⊸ Bn ⊸ A
Con

Γ ⊢ t : A · ⊢ pi : A ▷ ∆i Γ′, ∆i ⊢ ti : B

Γ + Γ′ ⊢ case t of p1 7→ t1; ...; pn 7→ tn : B
Case

Figure 5.1: Typing rules for the extended graded linear λ-calculus

The full syntax of terms and types is given by:

t ::= x | t1 t2 | λx.t | [t] | C t0 ... tn

| case t of p1 7→ t1; ...; pn 7→ tn | letrec x = t1 in t2 (terms)

p ::= x | _ | [p] | C p0 ... pn (patterns)

A, B ::= A⊸ B | α | A ⊗ B | A ⊕ B | Unit | □rA | µX.A | X
(types)

C ::= () | inl | inr | (, ) (data constructors)

Terms comprise the graded linear λ-calculus of Section 2.3.1, extended
with data constructors, case statements for pattern matching over
a scrutinee term, and standard recursive let bindings. Patterns may
either be variable, wildcard, box, or constructor patterns. A notable
difference from Section 2.3.1 is that unboxing here takes place via
case pattern matching, instead of a specialised let expression, i.e.
let [x] = y in t becomes case y of [x] 7→ t

The syntax of types is fairly straightforward. We make type variables
explicit in our syntax through the variable α to allow distributive
laws to be derived on parametric types, and X represents a set of
recursion variables which are not exposed to the user. For the most
part, typing follows the calculus defined in section 3.1. Figure 5.1 gives
the additional rules. We briefly explain the extensions introduced for
this chapter.

The LetRec rule provides recursive bindings in the standard way.
Data constructors with zero or more arguments are introduced

via the Con rule. Here, the constructors that concern us are units,
products, and coproducts (sums), given by D, a global set of data
constructors with their types, defined:

D = {() : Unit}
∪ {(, ) : A⊸ B⊸ A ⊗ B | ∀A, B}
∪ {inl : A⊸ A ⊕ B | ∀A, B}
∪ {inr : B⊸ A ⊕ B | ∀A, B}



5.2 extending the graded linear-λ-calculus 108

· ⊢ x : A ▷ x : A
Pvar

· ⊢ pi : Bi ▷ Γi

· ⊢ Cp1..pn : A ▷ Γ1, .., Γn
Pcon

r ⊢ p : A ▷ Γ

· ⊢ [p] : □r A ▷ Γ
Pbox

r ⊢ pi : Bi ▷ Γi |A| > 1 ⇒ 1⊑ r

r ⊢ Cp1..pn : A ▷ Γ1, .., Γn
[Pcon]

r ⊢ x : A ▷ x :r A
[Pvar]

0⊑ r

r ⊢ _ : A ▷ ∅
[Pwild]

Figure 5.2: Pattern typing rules for the extended graded linear λ-calculus

Constructors are eliminated by pattern matching via the case rule.
Patterns p are typed by judgments of the form ?r ⊢ p : A ▷ ∆ meaning
that a pattern p has type A and produces a context of typed binders ∆
(used, e.g., in the typing of the case branches). The information to the
left of the turnstile denotes optional grade information arising from
being in an unboxing pattern and is syntactically defined as either:

?r ::= − | r (enclosing grade)

where − means the present pattern is not nested inside an unboxing
pattern and r that the present pattern is nested inside an unboxing
pattern for a graded modality with grade r.

The rules of pattern typing are given in Figure 5.2. The rule (PBox)
provides graded modal elimination (an ‘unboxing’ pattern), propa-
gating grade information into the typing of the sub-pattern. Thus
case t of [p] → t′ can be used to eliminate a graded modal value.
Variable patterns are typed via two rules depending on whether the
variable occurs inside an unbox pattern ([Pvar]) or not (Pvar), with
the [Pvar] rule producing a binding with the grade of the enclosing
box’s grade r. As with variable patterns, constructor patterns are split
between rules for patterns which either occur inside an unboxing
pattern or not. In the former case, the grade information is propagated
to the sub-pattern(s), with the additional constraint that if there is
more than one data constructor for the type A (written |A| > 1), then
the grade r must approximate 1 (written 1⊑ r) as pattern matching



5.3 automatically deriving push and pull 109

incurs a usage to inspect the constructor. The operation |A| counts the
number of data constructors for a type:

|Unit| = 1

|A⊸ B| = 1

|□rA| = |A|
|A ⊕ B| = |A|+ |B|
|A ⊗ B| = |A||B|
|µX.A| = |A[µX.A/X]|

and |X| is undefined (or effectively 0) since we do not allow unguarded
recursion variables in types. A type A must therefore involve a sum
type for |A| > 1.

Since a wildcard pattern _ discards a value, this is only allowed
inside an unboxing pattern where the enclosing grade permits weak-
ening, captured via 0⊑ r in rule [Pwild].

One can note that this calculus is very similar to that of Chapter 4,
extending the core calculus of Figure 2.4 with ADTS, recursion, and
pattern matching. For practicality, we also introduce an explicit letrec
construct in this calculus, which was not present in Chapter 4.

5.3 automatically deriving push and pull

Now that we have established the language, we describe the algo-
rithmic calculation of distributive laws. Universal quantification over
type variables (α) takes place implicitly prior to running the deriving
mechanism, thus type variables may be treated as logical atoms.

5.3.1 Notation

Let F : Typen → Type be an n-ary type constructor (i.e. a constructor
which takes n type arguments), whose free type variables provide
the n parameter types. We write Fαi for the application of F to type
variables αi for all 1 ≤ i ≤ n.

5.3.2 Push

We automatically calculate push for F applied to n type variables αi as
the operation:

JFαiKpush : □rFαi ⊸ F(□rαi)

where we require 1⊑ r if |Fαi| > 1 due to the [Pcon] rule (e.g., if F
contains a sum).



5.3 automatically deriving push and pull 110

JUnitKΣ
push z = case z of [()] → ()

JαKΣ
push z = z

JXKΣ
push z = Σ(X) z

JA ⊕ BKΣ
push z = case z of [inl x] → inl JAKΣ

push[x];

[inr y] → inr JBKΣ
push[y]

JA ⊗ BKΣ
push z = case z of [(x, y)] → (JAKΣ

push[x], JBKΣ
push[y])

JA⊸ BKΣ
push z = λy.case z of [ f ] →

case JAKΣ
pull y of [u] → JBKΣ

push[( f u)]

JµX.AKΣ
push z = letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)

−−−−−→
[□rαi/αi]

push in f z

Figure 5.3: Interpretation rules for JAKpush

For types A closed with respect to recursion variables, let JAKpush =
λz.JAK∅

push z given by an intermediate interpretation JAKΣ
push where Σ

is a context of push combinators for the recursive type variables. This
interpretation is defined by Figure 5.3. In the case of push on a value
of type Unit, we pattern match on the value, eliminating the graded
modality via the unboxing pattern match and returning the unit value.
For type variables α, push is simply the identity of the value, while
for recursion variables X we lookup the variable’s binding in Σ and
apply it to the value z. For sum and product types, push works by
pattern matching on the type’s constructor(s) and then inductively
applying push to the promoted arguments, re-applying them to the
constructor(s). Unlike pull below, the push operation can be derived for
function types, with a contravariant use of pull. For recursive types,
we inductively apply push to the value with a fresh recursion variable
bound in Σ, representing a recursive application of push. There is no
derivation of a distributive law for types which are themselves graded
modalities, as this would depend on the particular graded modalities
being distributed (see Gaboardi et al. [2016]).

Section B.2.3 in Appendix B gives the proof that JAKpush is type
sound, i.e., its derivations are well-typed:

Proposition 1 (Type soundness of JF αiKΣ
push). JFαiKΣ

push : □rFαi →
F(□rαi)
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JUnitKΣ
pull z = case z of () → [()]

JαKΣ
pull z = z

JXKΣ
pull z = Σ(X) z

JA ⊕ BKΣ
pull z = case z of inl x → case JAKΣ

pull x of [u] → [inl u];

inr y → case JBKΣ
pull y of [v] → [inr v]

JA ⊗ BKΣ
pull z = case z of (x, y) →

case (JAKΣ
pull x, JBKΣ

pull y) of ([u], [v]) → [(u, v)]

JµX.AKΣ
pull z = letrec f = JAK

Σ,X 7→ f :µX.A
−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in f z

Figure 5.4: Interpretation rules for JAKpull

5.3.3 Pull

We automatically calculate pull for F applied to n type variables αi as
the operation:

JF αiKpull : F (□ri αi)⊸□dn
i=1 ri

(F αi)

Type constructor F here is applied to n arguments each of the form
□ri αi, i.e., each with a different grading of which the greatest-lower
bound

dn
i=1 ri (derived from the semiring’s pre-order, as per Defini-

tion 2.3.1) is the resulting grade (see pullPair from Section 5.1).
For types A closed with respect to recursion variables, let JAKpull =

λz.JAK∅
pull z given by an intermediate interpretation JAKΣ

pull where Σ
is a context of pull combinators for the recursive type variables. This
interpretation is defined by Figure 5.4.

Just like push, we cannot apply pull to graded modalities themselves.
Unlike push, we cannot apply pull to function types. That is, we cannot
derive a distributive law of the form (□r A ⊸ □rB) ⊸ □r(A ⊸ B).
This is because introducing the concluding □r would require the
incoming function (□r A ⊸ □rB) to itself be inside □r due to the
promotion rule (pr), which does not match the type scheme for pull.

The rest of the derivation above is similar but dual to that of push.
Section B.2.3 in Appendix B gives the proof that JAKpull is type

sound, i.e., its derivations are well-typed:

Proposition 2 (Type soundness of JF αiKpull). F (□ri αi) → □dn
i=1 ri

(F αi)
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Example 5.3.1. To illustrate the above procedures, the derivation of
λz.J(α ⊗ α)⊸ βKpush z : □r((α ⊗ α) ⊸ β) ⊸ ((□rα ⊗□rα) ⊸ □rβ)
is:

λz.J(α ⊗ α)⊸ βK∅
push z

= λz.λy.case z of [ f ] → case Jα ⊗ αK∅
pull y of [u] → JβK∅

push[( f u)]

= λz.λy.case z of [ f ] →
case (case y of (x′, y′) →

case (JαK∅
pull x′, JαK∅

pull y′) of ([u], [v]) → [(u, v)]) of

[u] → JβK∅
push[( f u)]

= λz.λy.case z of [ f ] →
case (case y of (x′, y′) →

case (x′, y′) of ([u], [v]) → [(u, v)]) of [u] → [( f u)]

Remark 3. One might ponder whether linear logic’s exponential
!A [Girard, 1987] is modelled by the graded necessity modality over
N∞ intervals, i.e., with !A ≜ □0..∞ A. This is a reasonable assumption,
but □0..∞ A has a slightly different meaning to !A, exposed here: whilst
JA ⊗ BKpush : □0..∞(A ⊗ B) ⊸ (□0..∞ A ⊗□0..∞B) is derivable in our
language, linear logic does not permit !(A ⊗ B)⊸ (!A⊗!B). Models
of ! provide only a monoidal functor structure which gives pull for
⊗, but not push [Benton et al., 1992]. This structure can be recovered
in Granule through the introduction of a partial type-level operation
which selectively disallows push for ⊗ in semirings which model the !
modality of linear logic. An example of such a semiring is the {Zero,
One, ω} semiring we encountered in Example 2.3.2 on page 20, which
is intended to specifically model linear logic’s ! modality.1

The algorithmic definitions of ‘push’ and ‘pull’ can be leveraged
in a programming context to automatically yield these combinators
for practical purposes. We discuss how this is leveraged inside the
Granule compiler in Section 5.4. Before that, we study the algebraic
behaviour of the derived distributive laws.

5.3.4 Properties

We note that these distributive laws are mutually inverse:

Proposition 5.3.1 (Pull is right inverse to push). For all n-arity types F
which do not contain function types, then for type variables (αi)i∈1≤i≤n and
for all grades r ∈ R where 1⊑ r if |Fαi| > 1, then:

JF αiKpull(JF αiKpush) = id : □rFαi ⊸□rFαi

1 The work in Hughes et al. [2021] arose as a result of this work.
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Proposition 5.3.2 (Pull is left inverse to push). For all n-arity types F
which do not contain function types, then for type variables (αi)i∈1≤i≤n and
for all grades r ∈ R where 1⊑ r if |Fαi| > 1, then:

JF αiKpush(JF αiKpull) = id : F(□rαi)⊸ F(□rαi)

Section B.2.4 of Appendix B gives the proofs, leveraging a typed
equational theory for our lanugage. This equational theory is defined
in Section B.2.1 of Appendix B.

Additional properties of these distributive laws can be found in
Hughes et al. [2020]. Prima facie, the above push and pull operations are
simply distributive laws between two (parametric) type constructors
F and □r, the latter being the graded modality. However, both F

and □r have additional structure. If the mathematical terminology
of ‘distributive laws’ is warranted, then such additional structure
should be preserved by push and pull (e.g., as in how a distributive
law between a monad and a comonad must preserve the behaviour
of the monad and comonad operations after applying the distributive
law [Power and Watanabe, 2002]). We choose to omit discussion of
these properties here as they are less directly relevant to the purpose
of this thesis.

5.4 implementation in granule

The Granule type checker implements the algorithmic derivation of
push and pull distributive laws as covered in the previous section.
Whilst the syntax of our language types had unit, sum, and product
types as primitives, in Granule these are provided by a more general
notion of type constructor which can be extended by user-defined,
generalized algebraic data types (GADTs). The procedure outlined in
Section 5.3 is therefore generalised slightly so that it can be applied
to any data type: the case for A ⊕ B is generalised to types with an
arbitrary number of data constructors.

Our deriving mechanism is exposed to programmers via explicit
(visible) type application (akin to that provided in GHC Haskell [Eisen-
berg et al., 2016]) on reserved names push and pull. Written push @T

or pull @T, this signals to the compiler that we wish to derive the
corresponding distributive laws at the type T (where T is an n-ary type
constructor). For example, for the List : Type → Type data type from
the standard library, we can write the expression push @List which
the type checker recognises as a function of type:

push @List : ∀ { a : Type, s : Semiring, r : s }

. {1 ⩽ r} ⇒ (List a) [r] → List (a [r])

Note this function is not only polymorphic in the grade, but poly-
morphic in the semiring itself. Granule identifies different graded
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modalities by their semirings, and thus this operation is polymorphic
in the graded modality. When the type checker encounters such a
type application, it triggers the derivation procedure of Section 5.3,
which also calculates the type. The result is then stored in the state of
the frontend to be passed to the interpreter (or compiler) after type
checking. The derived operations are memoized so that they need not
be re-calculated if a particular distributive law is required more than
once. Otherwise, the implementation largely follows Section 5.3 with-
out surprises, apart from some additional machinery for specialising
the types of data constructors coming from (generalized) ADTs.

5.4.1 Examples

Earlier, we motivated the crux of the work in this chapter with a
concrete example, which we can replay here in Granule, using its type
application technique for triggering the automatic derivation of the
distributive laws. Previously, we defined pushPair by hand which can
now be replaced with:

push @(,) : ∀ { a b : Type, s : Semiring, r : s }

. (a, b) [r] → (a [r], b [r])

Note that in Granule (,) is an infix type constructor for product types
as well as terms. We can then replace the previous fst’ with:

fst’ : ∀ { a b : Type, r : Semiring }

. {0 ⩽ r} ⇒ (a, b) [r] → a

fst’ = let [x’] = fst (push @(,) x) in x’

The point however in the example is that we need not even define this
intermediate combinator, but can instead write the following wherever
we need to compute the first projection of myPair : (a, b) [r]:

extract (fst (push @(,) myPair)) : a

We already saw that we can then generalise this by applying this first
projection inside of the list directly using push @List:

map (extract . fst . push @(,)) (push @List myPairList) :

List a

where myPairList : (List (a, b)) [r].
In a slightly more elaborate example, we can use the pull combinator

for pairs to implement a function that duplicates a pair (given that
both elements can be consumed twice):

copyPair : ∀ { a, b : Type }

. (a [0..2], b [2..4]) → ((a, b), (a, b))

-- where, copy : a [2] → (a, a)

copyPair x = copy (pull @(,) x)

Note pull computes the greatest-lower bound of intervals 0..2 and
2..4 which is 2..2, i.e., we can provide a pair of a and b values which
can each be used exactly twice: exactly what is required for copy.
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As another example, interacting with Granule’s indexed types
(GADTs), consider a simple programming task of taking the head
of a sized-list (vector) and duplicating it into a pair. The head opera-
tion is typed:

head : ∀ { a : Type, n : Nat }

. (Vec (n + 1) a) [0..1] → a

which has a graded modal input with grade 0..1 meaning the input
vector is used 0 or 1 times: the head element is used once (linearly)
for the return but the tail is discarded.

This head element can then be copied via a graded modality, e.g., a
value of type (Vec (n + 1) (a [2])) [0..1] permits:

copyHead’ : ∀ { a : Type, n : Nat :}

. (Vec (n + 1) (a [2])) [0..1] → (a, a)

-- [y] unboxes (a [2]) to y:a usable twice

copyHead’ xs = let [y] = head xs in (y, y)

Here we “unbox” the graded modal value of type a [2] to get a non-
linear variable y which we can use precisely twice. However, what
if we are in a programming context where we have a value Vec (n

+ 1) a with no graded modality on the type a? We can employ two
idioms here: (i) take a value of type (Vec (n + 1) a) [0..2] and split
its modality in two: (Vec (n + 1) a) [2] [0..1] , and then (ii) use push
on the inner graded modality [2] to get (Vec (n + 1) (a [2])) [0..1].

Using push @Vec we can thus write the following to duplicate the
head element of a vector:

copyHead : ∀ { a : Type, n : Nat }

. (Vec (n + 1) a) [0..2] → (a, a)

copyHead = copy . head . push@(→) [push @Vec] . disject

which employs the combinator disject from the standard library and
two derived distributive laws, of type:

disject : ∀ { a : Type, s : Semiring, n m : s }

. a [m * n] → (a [n]) [m]

push @Vec : ∀ { a : Type, n : Nat, s : Semiring, r : s }

. (Vec n a) [r] → Vec n (a [r])

push@(→) : ∀ { a b : Type, s : Semiring, r : s }

. (a → b) [r] → a [r] → b [r]

5.5 deriving other useful structural combinators

So far we have motivated the use of distributive laws, and demon-
strated that they are useful in practice when programming in lan-
guages with linear and graded modal types. The same methodology
we have been discussing can also be used to derive other useful
generic combinators for programming with linear and graded modal
types. In this section, we consider two structural combinators, drop
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JCwKΣ
dropz = dropCw

z

JUnitKΣ
dropz = case z of () → ()

JXKΣ
dropz = Σ(X)z

JA ⊕ BKΣ
dropz = case z of inl x → JAKdrop(x); inr y → JBKdrop(y)

JA ⊗ BKΣ
dropz = case z of (x, y) →

case JAKdrop(x) of () →
case JBKdrop(y) of () → ()

JµX.AKΣ
dropz = letrec f = JAKΣ,X 7→ f :A⊸1

drop in f z

Figure 5.5: Interpretation rules for JAKdrop

and copyShape, in Granule as well as related type classes for dropping,
copying, and moving resources in Linear Haskell.

5.5.1 A Combinator for Weakening (“drop”)

First, we consider a combinator for “dropping,” or consuming, values
in Granule:

JFαKdrop : Fα⊸ FUnit

The built-in type constants of Granule can be split into those which
permit structural weakening Cw such as Int, Char, and those which do
not Cl such as Handle (file handles) and Chan (concurrent channels).

Those that permit weakening contain non-abstract values that can in
theory be systematically inspected in order to consume them. Granule
provides a built-in implementation of drop for Cw types, which is then
used by the derivation procedure of Figure 5.5 to derive weakening
on compound types.

Note we cannot use this procedure in a polymorphic context (over
type variables α) since type polymorphism ranges over all types,
including those which cannot be dropped like Cl.

5.5.2 A Combinator for Copying “shape”

The “shape” of values for a parametric data types F can be determined
by a function shape : FA → FUnit, usually derived when F is a functor
by lifting a function A → Unit (dropping elements) [Jay and Cockett,
1994]. This provides a way of capturing the size, shape, and form of a
data structure. Often when programming with data structures which
must be used linearly, we may wish to reason about properties of the
data structure (such as the length or “shape” of the structure) but we
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may not be able to drop the contained values. Instead, we wish to
extract the shape but without consuming the original data structure
itself. For example, say we have some list of values and wish to know
its length. Our length function may take a linear list as an argument
and consumes it, giving us back an integer. But what if we are not yet
ready to give up our list?

This can be accomplished with a function which copies the data
structure exactly, returning this duplicate along with a data structure
of the same shape, but with the terminal nodes replaced with values
of the unit type Unit (the ‘spine’). For example, consider a pair of
integers: (1, 2). Then applying copyShape to this pair would yield
(((), ()), (1, 2)). The original input pair is duplicated and returned
on the right of the pair, while the left value contains a pair with the
same structure as the input, but with values replaced with (). This
is useful, as it allows us to use the left value of the resulting pair to
reason about the structure of the input (e.g., its depth / size), while
preserving the original input. This is particularly useful for deriving
size and length combinators for collection-like data structures. As with
“drop”, we can derive such a function automatically:

JFαKcopyShape : Fα⊸ FUnit⊗ Fα

defined by JAKcopyShape = λz.JAK∅
copyShapez by an intermediate interpre-

tation JAKΣ
copyShape, given by Figure 5.6. The implementation recursively

follows the structure of the type, replicating the constructors, reaching
the crucial case where a polymorphically type z : α is mapped to
((), z) in the third equation.

5.5.3 Implementation in Granule

Granule implements both these derived combinators in a similar way
to push/pull providing copyShape and drop which can be derived for a
type T via type application, e.g. drop @T : T → () if it can be derived.
Otherwise, the type checker produces an error, explaining why drop is
not derivable at type T. As an example of using copyShape in Granule,
consider the case where we want to find the length of a list, without
consuming the list itself. Without copyShape, we would have to write
our length function so that it returns the input list after computing its
size, resulting in the rather cumbersome implementation:

data List = Cons a | Nil

data N = S N | Z

length : ∀ { a : Type } . List a → (N, List a)

length Nil = (Z, Nil);

length (Cons x xs) =

let (n, xs’) = length xs in (S n, Cons x xs’)
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JCwKΣ
copyShapez = ((), z)

JUnitKΣ
copyShapez = case z of () → ((), ())

JαKΣ
copyShapez = ((), z)

JXKΣ
copyShapez = Σ(X)z

JA ⊕ BKΣ
copyShapez = case z of

inl x → case JAKΣ
copyShape(x) of (s, x′) →

(inl s, inl x′)

inr y → case JBKΣ
copyShape(y) of (s, y′) →

(inr s, inr y′)

JA ⊗ BKΣ
copyShapez = case z of (x, y) →

case JAKΣ
copyShape(x) of (s, x′) →

case JBKΣ
copyShape(y) of

(s′, y′) → ((s, s′), (x′, y′))

JµX.AKΣ
copyShapez = letrec f = JAKΣ,X 7→ f :A⊸1⊗A

copyShape in f z

Figure 5.6: Interpretation rules for JAKcopyShape

Using copyShape, we can rewrite this definition of length into a simpler
form which doesn’t have to worry about how it consumes its input:

length : ∀ { a : Type } List a → N

length Nil = Z

length (Cons _ xs) = S (length xs)

and then to call length on a list, we instead pass in the shape of the
list rather than the list itself:

let (shape, myList’) = copyShape@List myList in length shape

5.6 conclusion

The work described here addresses the practical aspects of applying
these techniques in real-world programming. Our hope is that this aids
the development of the next generation of programming languages
with rich type systems for high-assurance programming.

In the next chapter, we collect and describe the related work for
various aspects of this thesis. Following this, we conclude our synthesis
journey by describing some future directions that this work might
take.



6
R E L AT E D W O R K

This chapter collects various branches of related work from previ-
ous chapters. We begin in Section 6.1 with a brief overview of other
approaches to the problem of resource non-determinism (or the “re-
source management problem”) in the context of linear logic proof
search, an issue which was discussed at length in Chapter 3. Having
established this background, Section 6.2 offers a comparison between
the approach of this thesis and another recent work which deals with
the notion of resources in synthesis: the ReSyn tool of Knoth et al.
[2019]. Finally, we conclude this chapter with Section 6.3, an overview
of the work that relates to Chapter 5 and our approach to generic
programming for graded types.

6.1 comparison of resource management approaches

This section discusses alternative approaches to the issue of resource
non-determinism in synthesis, which we discussed in Section 3.2.

Before the work of Hodas and Miller [1994], the problem of resource
non-determinism was first identified by Harland and Pym [2000].
Their solution delays splitting of contexts at a multiplicative connec-
tive. They proposed a solution where proof search is formulated in
terms of constraints on propositions. The logic programming language
Lygon [lyg] implements this approach.

Our approach to synthesis implements a backward style of proof
search: starting from the goal, recursively search for solutions to
sub-goals. In contrast to this, forward reasoning approaches attempt to
reach the goal by building sub-goals from previously proved sub-goals
until the overall goal is proved. Chaudhuri and Pfenning [2005a,b]
consider forward approaches to proof search in linear logic using the
inverse method [Degtyarev and Voronkov, 2001] where the resource
non-determinism that is typical to backward approaches is absent.

6.2 comparison with resyn

Knoth et al. [2019]’s work introduces a programming language and
synthesis tool named ReSyn which uses resource constraints obtained

119



6.2 comparison with resyn 120

through automated amortised resource analysis (AARA) [Çiçek et al.,
2017, Hoffmann et al., 2012, Wang et al., 2017] and Liquid refinement
types [Rondon et al., 2008] to guide the synthesis process, producing
a program which adheres to these constraints. Although both this ap-
proach and our own both relate to the static tracking of resources, the
type system of ReSyn and Granule differ in their notion of resources.

In ReSyn, a syntactic construct called ‘tick’ represents the consump-
tion of a resource. which can be used to track several properties such
as asymptotic time complexity, memory usage, and execution time.
For example, ‘tick’ may be applied to each recursive call in a function,
allowing the programmer to provide a static bound on the number of
recursive calls that a program makes.

This AARA approach is combined with Liquid types to support
verification of non-trivial functional properties of a program. Types are
annotated with a natural number (termed potential) which provides an
upper bound on resource usage. Knoth et al. [2019] draw a comparison
between this notion of potential and Bounded Linear Logic [Girard
et al., 1992]. In Granule, one might express potential through the
interval over the extended natural numbers semiring. Liquid types
also allow ReSyn to express resource bounds which are dependent
on a program’s values, using conditional linear arithmetic (CLIA) to
represent potential instead of constant values. The type checker then
ensures that a program has enough potential to fulfil the requirements
provided by the type

Whilst cost annotation in ReSyn provides its notion of resources, the
relationship between this approach and the general semiring-graded
account of resources considered is not clear. In fact, we believe it
is largely unknown how to relate a ‘tick-based’ cost model with a
semiring graded necessity (although some work in this direction exists
by Çiçek et al. [2016]).

However, despite these differences in type system, there is still a
comparison to be made between how ReSyn and our own work handle
program synthesis. Synthesis in ReSyn must still address the issue of
resource management when constructing programs which adhere to
some potential. Similarly to this work, a synthesis context in ReSyn

contains a set of free variables available for use in synthesis with some
‘potential’ annotation. When synthesising syntactic constructs with
multiple sub-terms the ReSyn is required to distribute the available
resources between the different branches of synthesis. In ReSyn, when
a context Γ requires sharing between Γ1 and Γ2 such that Γ1 + Γ2 = Γ,
ReSyn needs to guess what potential annotations are needed such that
synthesis of both sub-terms has the necessary potential. In contrast to
the algorithmic resource schemes we implement in Section 3.2, ReSyn

uses a constraint-based approach, which shares a greater familiarity
with the approach of Harland and Pym [2000]. We elide the details of
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their constraint generation and solving here, and encourage interested
readers to study their paper.

6.3 generic deriving methodology and graded distribu-
tive laws

In this section we consider some of the wider related work as they
relate to the ideas presented in Chapter 5.

6.3.1 Generic Programming Methodology

The deriving mechanism for Granule is based on the methodology
of generic functional programming [Hinze, 2000], where functions
may be defined generically for all possible data types in the lan-
guage; generic functions are defined inductively on the structure of
the types. This technique has notably been used before in Haskell,
where there has been a strong interest in deriving type class instances
automatically. Particularly relevant to this work is the work on generic
deriving [Magalhães et al., 2010], which allows Haskell program-
mers to automatically derive arbitrary class instances using standard
datatype-generic programming techniques as described above.

6.3.2 Non-graded Distributive Laws

Distributive laws are standard components in abstract mathematics.
Distributive laws between categorical structures used for modelling
modalities (like monads and comonads) are well explored. For exam-
ple, Brookes and Stone [1993] defined a categorical semantics using
monads combined with comonads via a distributive law capturing
both intensional and effectful aspects of a program. Power and Watan-
abe [2002] study in detail different ways of combining comonads and
monads via distributive laws. Such distributive laws have been applied
in the programming languages literature, e.g., for modelling streams
of partial elements [Uustalu and Vene, November 2006].

6.3.3 Graded Distributive Laws

Gaboardi et al. [2016] define families of graded distributive laws for
graded monads and comonads. They include the ability to interact the
grades, e.g., with operations such as □ι(r, f )♢ f A → ♢κ(r, f )□r A between
a graded comonad □r and graded monad ♢ f where ι and κ capture
information about the distributive law in the grades. In comparison,
our distributive laws here are more prosaic since they involve only a
graded comonad (semiring graded necessity) distributed over a func-
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tor and vice versa. That said, the scheme of Gaboardi et al. suggests
that there might be interesting graded distributive laws between □r

and the indexed types, for example, □r(Vec n A) → Vec (r ∗ n) (□1A)

which internally replicates a vector. However, it is less clear how useful
such combinators would be in general or how systematic their con-
struction would be. In contrast, the distributive laws explained here
appear frequently and have a straightforward uniform calculation.

We noted in Section 5.3 that neither of our distributive laws can
be derived over graded modalities themselves, i.e., we cannot derive
push : □r□s A → □s□r A. Such an operation would itself be a dis-
tributive law between two graded modalities, which may have further
semantic and analysis consequences beyond the normal derivations
here for regular types. Exploring this is future work, for which the pre-
vious work on graded distributive laws can provide a useful scheme
for considering the possibilities here. Furthermore, Granule has both
graded comonads and graded monads so there is scope for explor-
ing possible graded distributive laws between these in the future
following Gaboardi et al. [2016].

6.3.4 Typed Analysis of Consumption in Pattern Matching

This chapter’s study of distributive laws provides an opportunity
to consider design decisions for the typed analysis of pattern matching
since the operations of Section 5.3 are derived by pattern matching in
concert with grading. We compare here the choices made surrounding
the typing of pattern matching in four works (1) Granule and its
core calculus [Orchard et al., 2019] (2) the graded modal calculus Λp

of Abel and Bernardy [2020] (3) the dependent graded system GraD
of Choudhury et al. [2021] and (4) Linear Haskell [Bernardy et al.,
2018].

granule Pattern matching against a graded modality □r A (with
pattern [p]) in Granule is provided by the Pbox rule (Figure 5.2) which
triggers typing pattern p ‘under’ a grade r at type A. This was denoted
via the optional grade information r ⊢ p : A ▷ Γ which then pushes
grading down onto the variables bound within p. Furthermore, it is
only under such a pattern that wildcard patterns are allowed ([Pwild]),
requiring 0⊑ r, i.e., r can approximate 0 (where 0 denotes weakening).
None of the other systems considered here have such a facility for
weakening via pattern matching.

For a type A with more than one constructor (|A| > 1), pattern
matching its constructors underneath an r-graded box requires 1⊑ r.
For example, eliminating sums inside an r-graded box □r(A ⊕ B)
requires 1⊑ r as distinguishing inl or inr constitutes a consumption
which reveals information (i.e., pattern matching on the ‘tag’ of the
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data constructors). By contrast, a type with only one constructor
cannot convey any information by its constructor and so matching
on it is not counted as a consumption: eliminating □r(A ⊗ B) places
no requirements on r. The idea that unary data types do not incur
consumption (since no information is conveyed by its constructor) is a
refinement here to the original Granule paper as described by Orchard
et al. [2019], which for [Pcon] had only the premise 1⊑ r rather
than |A| > 1 =⇒ 1⊑ r here (although the implementation already
reflected this idea).

the Λ p
calculus Abel and Bernardy’s unified modal system

Λp is akin to Granule, but with pervasive grading (rather than base
linearity) akin to the coeffect calculus [Petricek et al., 2014] and Linear
Haskell [Bernardy et al., 2018]. Similarly to the situation in Granule,
Λp also places a grading requirement when pattern matching on a
sum type, given by the following typing rule in their syntax [Abel and
Bernardy, 2020, Fig 1, p.4]:

γΓ ⊢ t : A1 + A2 δΓ, xi :q Ai ⊢ ui : C q ≤ 1
(qγ + δ)Γ ⊢ caseq t of {inj1x1 7→ u1; inj2x2 7→ u2} : C

+-elim

The key aspects here are that variables xi bound in the case are used
with grade q as denoted by the graded assumption xi :q Ai in the
context of typing ui and then that q ≤ 1 which is exactly our constraint
that 1⊑ r (their ordering just runs in the opposite direction to ours).
For the elimination of pair and unit types in Λp there is no such
constraint, matching our idea that arity affects usage, captured in
Granule by |A| > 1 =⇒ 1⊑ r. Their typed-analysis of patterns is
motivated by their parametricity theorems.

grad The dependent graded type system GraD of Choudhury et
al. also considers the question of how to give the typing of pattern
matching on sum types, with a rule in their system [Choudhury et al.,
2021, p.8] which closely resembles the +-elim rule for Λp:

∆; Γ1 ⊢ q : A1 ⊕ A2 ∆; Γ2 ⊢ b1 : A1
q−→ B

∆; Γ2 ⊢ b2 : A2
q−→ B 1 ≤ q

∆; q · Γ1 + Γ2 ⊢ caseq a of b1; b2 : B
STcase

The direction of the preordering in GraD is the same as that in
Granule but, modulo this ordering and some slight restructuring,
the case rule captures the same idea as Λp: “both branches of the
base analysis must use the scrutinee at least once, as indicated by the
1 ≤ q constraint.” [Choudhury et al., 2021, p.8]. Choudhury et al., also
provide a heap-based semantics which serves to connect the meaning
of grades with a concrete operational model of usage, which then
motivates the grading on sum elimination here. In the simply-typed
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version of GraD, matching on the components of a product requires
that each component is consumed linearly.

linear haskell The paper on Linear Haskell by Bernardy et al.
[2018] has a case expression for eliminating arbitrary data constructors,
with grading similar to the rules seen above. Initially, this rule is for
the setting of a semiring over R = {1, ω} and has no requirements
on the grading to represent the notion of inspection, consumption, or
usage due to matching on (multiple) constructors. This is reflected in
the current implementation where we can define the following sum
elimination:

match :: (Either a b) %r -> (a %1 -> c) -> (b %1 -> c) -> c

match (Left x) f _ = f x

match (Right x) _ g = g x

However, later when considering the generalisation to other semirings
they state that “typing rules are mostly unchanged with the caveat that
caseπ must exclude π = 0” [Bernardy et al., 2018] where π is the grade
of the case guard. This appears a more coarse-grained restriction than
the other three systems, excluding even the possibility of Granule’s
weakening wildcard pattern which requires 0 ≤ π. Currently, such
a pattern must be marked as ’Many in Linear Haskell (i.e., it cannot
explain that first projection on a pair does not use the pair’s second
component). Furthermore, the condition π ̸= 0 does not require that
π actually represents a consumption, unlike the approaches of the
other three systems. The argument put forward by Abel and Bernardy
for their restriction to mark a consumption (q ≤ 1) for the sake of
parametricity is a compelling one, and the concrete model of Choud-
hury et al. gives further confidence that this restriction captures well
an operational model. Thus, it seems there is a chance for fertilisation
between the works mentioned here and Linear Haskell’s vital work,
towards a future where grading is a key tool in the typed-functional
programmer’s toolbox.
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C O N C L U S I O N

In this dissertation, we have provided a framework for designing
program synthesis tools based on linear and graded type systems,
overcoming the challenges imposed by treating program values as
resources, and leveraging the type systems’ properties to build two
efficient synthesis tools, targeting two common flavours of graded
type system: the linear-base style and the graded-base style.

In our thesis statement in Chapter 1, we claimed that this work
would demonstrate how linear and graded types could be integrated
into a synthesis tool. The synthesis calculi we have developed evidence
this claim, and we have also demonstrated their efficiency with respect
to the search space of programs in our evaluation in Chapter 4.

In summary, in our work we have succeeded in:

• Building several core calculi for two varieties of graded type
systems, encompassing the major approaches in the literature,
with both styles differing in expressivity and imposing unique
requirements.

• Implementing these synthesis calculi as tools for Granule, as
fully integrated components of the Granule toolchain.

• Evaluating each of these systems in a variety of criteria, our main
result being that synthesis with graded types is an effective way
of reducing the program synthesis search space.

• Showing that programs require fewer examples than in a purely
example-driven synthesis setting, such as MYTH.

• Providing an alternative approach to generating graded combi-
nators, based on a generic programming methodology.

• Adapting our synthesis technique to Haskell, showing the via-
bility of our framework as a foundation for building synthesis
tools for other graded type systems in the real world.

• Proved the soundness of each of these systems, reasoning about
the behavioural properties of our synthesis calculi.
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Essentially, we have shown that program synthesis from linear and
graded types is a feasible and effective approach to reducing the
search space of a program synthesis task. The expressivity of linear
and graded types in describing the static semantics of a program
offers many benefits to programmers, so harnessing this expressivity
in synthesis is a something that we find will be useful to programs
in this context, allowing the synthesis of programs often without the
need for additional specification such as examples.

There remain many avenues for future exploration, which we intend
to pursue, and hope that others will also find use in this approach
when designing synthesis tools for their own type systems.

7.1 future directions

Our goal was to demonstrate the viability of a resource-aware type-
directed program synthesis tool which assists the programmer in
writing programs with resource-sensitive types. We intend to pursue
further improvements to our tool which serve this end, including
reducing the overhead of SMT solving, integrating examples into the
search algorithm itself in the style of Myth [Osera and Zdancewic,
2015] and Leon [Kneuss et al., 2013], as well as considering possible
semiring-dependent optimisations that may be applicable.

7.1.1 SMT Solving

Related to the above, there is scope for improving the interaction
between the synthesis tool and the SMT solver, to make synthesis
more efficient. Both evaluations showed that the bulk of synthesis time
is spent solving constraints in the SMT solver. Making this interaction
more streamlined is therefore particularly appealing.

Alternatively, one could imagine implementing custom solvers for
the more commonly used semirings. From our lists of benchmarking
examples in Tables 3.3 and 4.2, we can see the natural number, and
intervals over the natural numbers semirings appear frequently, more
than any other semiring. An SMT solver which focuses purely on
solving in these semirings, sacrificing the generality provided by
solvers such as Z3 [de Moura and Bjørner, 2008], may be a worthwhile
avenue of exploration. This approach would also avoid the overhead
of serialising constraints to SMT-LIB format and starting up Z3.

7.1.2 Generalised Algebraic Data Types

A logical next step is to incorporate GADTs (Generalised ADTs), i.e.,
indexed types, into the synthesis algorithm. Granule provides support
for user-defined GADTs, and the interaction between grades and type
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indices is a key contributor to Granule’s expressive power [Orchard
et al., 2019]. Consider our list type benchmarks for example. In most
cases, when we want to synthesise a recursive function definition
which takes a list as input, we have to give the list a 0..∞ interval
grade to account for potentially unlimited usage. Take for example a
program that replicates a value some number of times to create a list
typed:

rep : ∀ { a : Type } . Int → a % 0..∞ → List a

spec

rep % 0..∞
rep = ?

Given a standard indexed type of natural numbers, defined:

data N (n : Nat) where

Z : N 0;

S : N n → N (n+1)

and sized-indexed vectors:

data Vec (n : Nat) (a : Type) where

Nil : Vec 0 ;

Cons : a → Vec n a → Vec (n+1) a

a refined rep function can be given a much tighter specification, con-
necting the usage of the input function to the length of the vector,
from which we could synthesise the program:

vrep : ∀ { n : Nat, a : Type } . N n → a % n → Vec n a

spec

vrep % n

vrep Z c = Nil;

vrep (S n) c = Cons c (vrep n c)

The latter type not only provides us with a greater opportunity to
prune grade-violating programs, its type is also much more descriptive
of the user’s intent. Adapting our approach to GADTs is future work,
and mostly consists of extending the typing for our synthesis rule for
case statements to handle GADT specialisation.

GADTs are sometimes referred to as lightweight dependent types.
Dependent type systems allow arbitrary program properties to be
expressed and verified during type checking, with types being in-
dexed by arbitrary program terms. Several works have endeavoured to
integrate fully-dependent types into a quantitative setting [Choudhury
et al., 2021, Abel et al., 2023, McBride, 2016, Krishnaswami et al., 2015].
One such example, Moon et al. [2021]’s GERTY is based on Granule
and has a prototype implementation, making it a particularly appeal-
ing target for experimenting with the synthesis in a fully-dependent
graded setting, using the foundations laid by the work in this thesis.
Another is the Idris 2 programming language [Brady, 2021], which im-
plements dependent types in a quantitative setting, and is an example
of such resourceful systems being used in a practical system.
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7.1.3 Ownership-Based Type Systems

Linearity is closely related to the notions of uniqueness [Barendsen
and Smetsers, 1993, Smetsers et al., 1994], as well as ownership and
borrowing [Mycroft and Voigt, 2013]. The programming language Rust
uses a system based on these ideas [Matsakis and Klock, 2014, Jung
et al., 2017, 2019], providing memory safety guarantees through the
“borrow checker”, which ensures that only one owner of a value can
write to its memory location at any time. Multiple reads are permitted,
however, via borrowing. Marshall et al. [2022] give a type theoretic
view of Rust’s borrow checker, which Rust treats as a separate entity
from the type checker. This view opens the gateway for type-directed
program synthesis, where techniques we provide for synthesis in
this work can be generalised to incorporate Rust-like approaches to
resourceful types.

7.1.4 Large Language Models

With the rise in Large Language Models (LLMs) showing their power
at program synthesis tasks [Austin et al., 2021, Jain et al., 2021], the
deductive approach still has something to contribute: it provides
correct-by-construction synthesis based on specifications, rather than
predicted programs which may violate more fine-grained type con-
straints (e.g., as provided by grades). Future approaches may combine
both LLM approaches with deductive approaches, where the logical
engine of the deductive approach can guide prediction, e.g. by being
used for hyperparameter tuning. Exploring this is further work and a
general opportunity and challenge for the synthesis community.

7.2 final remarks

Type-directed program synthesis has long been an attractive field in
computer science partially due to the potential it offers: the ability to
write programs that are correct by construction, with significant help
from the computer.

We feel that type-directed program synthesis complements linear
and graded types very well. As richer types further constrain the
number of possible inhabitants, theoretically there is less work to
be done by the computer to identify the program which behaves
according to the user’s intent. A potential future extension to this
work is to use this resourceful information to help inform users why
their desired program was not able to be synthesised.

Programming with linear and graded types can require significantly
more forethought than standard functional programming, and pro-
grams which seem correct at first glance to a user might actually
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be resource-violating. Our hope is that the tools developed in this
work may be useful in reducing this cognitive overhead, and that the
ideas we have developed may be useful to those in both the program
synthesis, and the quantitative types communities.
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A P P E N D I X



A
B E N C H M A R K I N G S U I T E S

a.1 synthesised programs for the graded linear synthe-
sis calculi

This section includes the synthesised programs for the benchmarking
problems in Section 3.7.

a.1.1 Hilbert

1. ⊗-Intro:

and : ∀ { a b : Type } . a → b → (a, b)

and x y = (x, y)

2. ⊗-Elim:

and1 : ∀ { a b : Type } . (a, b [0]) → a

and1 (y, [u]) = y

and2 : ∀ { a b : Type } . (a [0], b) → b

and2 ([u], z) = z

3. ⊕-Intro:

data Either a b = Left a | Right b

or1 : ∀ a b . a → Either a b

or1 x = Left x

or2 : ∀ a b . b → Either a b

or2 x = Right x

4. ⊕-Elim:

data Either a b = Left a | Right b

or3 : ∀ { a b c : Type }

. (a → c) [0..1]

→ (b → c) [0..1]

→ (Either a b)
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→ c

or3 [u] [v] (Right x6) = v x6;

or3 [u] [v] (Left x5) = u x5

5. SKI:

s : ∀ { a b c : Type }

. (a → (b → c))

→ (a → b)

→ a [2]

→ c

s x y [u] = (x u) (y u)

k : ∀ { a b : Type } . a → b [0..1] → a

k x [z] = x

i : ∀ { a : Type } . a → a

i x = x

a.1.2 Comp

1. 0/1:

comp-01 : ∀ { a b c : Type }

. (a [] → b []) []

→ (b [] → c []) []

→ (a [] → c) []

comp-01 [z] [u] =

[λv →
let [w] = v in

let [q] = z [w] in

let [x9] = u [q] in

let [x11] = z [w] in x9]

2. CBN:

comp-cbn : ∀ { a b c : Type }

. (a [] → b) []

→ (b [] → c) [] → a [] → c

comp-cbn [u] [w] [v] = w [u [v]]

3. CBV:

comp-cbv : ∀ { a b c : Type } .

(a [] → b []) []

→ (b [] → c []) []

→ (a [] → c []) []

comp-cbv [z] [u] =

[λv →
(λ [w] →

[(λ [q] → q) (u [(λ [x9] → x9) (z [w])])]

) v]
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4. coK-R:

compGen : ∀ {k : Coeffect, n m : k, a b c : Type}

. (a [m] → b) [n]

→ (b [n] → c)

→ a [n * m]

→ c

compGen [u] y [v] = y [u [v]]

5. coK-N:

compNat : ∀ {n m : Nat, a b c : Type}

. (a [m] → b) [n]

→ (b [n] → c)

→ a [n * m]

→ c

compNat [u] y [v] = y [u [v]]

6. lin:

lin : ∀ { a b c : Type }

. (a → b)

→ (b → c)

→ a

→ c

lin x y z = y (x z)

a.1.3 Dist

1. ⊗-!:

pull : ∀ { a b : Type } . (a [], b []) → (a, b) []

pull ([u], [v]) = [(u, v)]

2. ⊗-N:

pull : ∀ {a b : Type, n : Nat}

. (a [n], b [n])

→ (a, b) [n]

pull ([u], [v]) = [(u, v)]

3. ⊗-R:

pull : ∀ {a b : Type, k : Coeffect, c : k}

. (a [c], b [c])

→ (a, b) [c]

pull ([u], [v]) = [(u, v)]

4. ⊕-!:

data Either a b = Left a | Right b

pull : ∀ { a b : Type }
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. Either (a []) (b [])

→ (Either a b) []

pull (Right [v]) = [Right v];

pull (Left [z]) = [Left z]

5. ⊕-N:

data Either a b = Left a | Right b

pull : ∀ {a b : Type, n : Nat}

. Either (a [n]) (b [n])

→ (Either a b) [n]

pull (Right [v]) = [Right v];

pull (Left [z]) = [Left z]

6. ⊕-R:

data Either a b = Left a | Right b

pull : ∀ { a b : Type, k : Coeffect, c : k }

. Either (a [c]) (b [c])

→ (Either a b) [c]

pull (Right [v]) = [Right v];

pull (Left [z]) = [Left z]

7. ⊸-!:

push : ∀ { a b : Type }

. (a → b) []

→ a []

→ b []

push [z] [u] = [z u]

8. ⊸-N:

push : ∀ {a b : Type, c : Nat}

. (a → b) [c]

→ a [c]

→ b [c]

push [z] [u] = [z u]

9. ⊸-R:

push : ∀ { a b : Type, k : Coeffect, c : k }

. (a → b) [c]

→ a [c]

→ b [c]

push [z] [u] = [z u]

a.1.4 Vec

1. vec5:
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vec5 : ∀ { a b : Type }

. (a → b) [5]

→ ((((a, a), a), a), a)

→ ((((b, b), b), b), b)

vec5 [z] ((((x9, x10), x8), x6), x4) =

((((z x9, z x8), z x6), z x4), z x10)

2. vec10:

vec10 : ∀ { a b : Type }

. (a → b) [10]

→ (((((((((a, a), a), a), a), a), a), a), a), a)

→ (((((((((b, b), b), b), b), b), b), b), b), b)

vec10 [z] (((((((((x19, x20), x18), x16), x14), x12),

x10), x8), p), v) =

(((((((((z x20, z v), z p), z x8), z x10), z x12), z

x14), z x16), z x18), z x19)

3. vec15:

vec15 : ∀ { a b : Type }

. (a → b) [15]

→ ((((((((((((((a, a), a), a), a), a), a), a), a)

, a), a), a), a), a), a)

→ ((((((((((((((b, b), b), b), b), b), b), b), b)

, b), b), b), b), b), b)

vec15 [z] ((((((((((((((x29, x30), x28), x26), x24), x22

), x20), x18), x16), x14), x12), x10), x8), p), v) =

((((((((((((((z x30, z v), z p), z x8), z x10), z

x12), z x14), z x16), z x18), z x20), z x22), z x24)

, z x26), z x28), z x29)

4. vec20:

vec20 : ∀ { a b : Type }

. (a → b) [20]

→ (((((((((((((((((((a, a), a), a), a), a), a), a

), a), a), a), a), a), a), a), a), a), a), a), a)

→ (((((((((((((((((((b, b), b), b), b), b), b), b

), b), b), b), b), b), b), b), b), b), b), b), b)

vec20 [z] (((((((((((((((((((x39, x40), x38), x36), x34)

, x32), x30), x28), x26), x24), x22), x20), x18),

x16), x14), x12), x10), x8), p), v) =

(((((((((((((((((((z x40, z v), z p), z x8), z x10),

z x12), z x14), z x16), z x18), z x20), z x22), z

x24), z x26), z x28), z x30), z x32), z x34), z x36)

, z x38), z x39)

a.1.5 Misc

1. split⊕:
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data Either a b where Left a | Right b

splitPlus : ∀ { a b c : Type }

. b [2..3]

→ Either a c

→ Either (a, b [2..2]) (c, b [3..3])

splitPlus [z] (Right x4) = Right (x4, [z]);

splitPlus [z] (Left x3) = Left (x3, [z])

2. split⊗:

splitPair : ∀ { a : Type }

. (a → a → a) [0..2]

→ a [10..10]

→ (a [2..2], a [6..6])

splitPair [z] [u] = ([(z u) u], [u])

3. share:

share : ∀ { a : Type }

. (a → a → a) [0..2]

→ a [10..10]

→ (a [2..2], a [6..6])

share [z] [u] = ([(z u) u], [u])

4. Exm. 3.1.2:

dontLeak : ∀ { a b : Type }

. (a [Public], a [Private])

→ ((a, ()) [Public] → b)

→ b

dontLeak ([w], [v]) y = y [(w, ())]

a.2 synthesised programs for the fully graded synthe-
sis calculus

This section includes the synthesised programs, their synthesis con-
texts, and examples used for the benchmarking problems in Section 4.5.
The context of each synthesised program is listed by the program’s
spec. If the program has no spec, then synthesis is occurring in an
empty context.

For each program we list the examples required to synthesise the
correct result in the Graded case, and the additional examples required
to synthesise the same program without grades (i.e. in the Cartesian
setting). See Section 4.5 for further details.

a.2.1 List

1. append:
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language GradedBase

data List a = Nil | Cons a (List a)

append : ∀ { a : Type }

. (List a) %1

→ a %1

→ List a

append x y = (Cons y) x

with no Graded examples and Cartesian example(s):

append (Cons 1 Nil) 2 = (Cons 2 (Cons 1 Nil));

2. concat:

language GradedBase

data List a = Cons a (List a) | Nil

concat : ∀ { a : Type }

. (List a) %1..∞
→ (List a) %1..∞
→ List a

spec

concat %0..∞
concat Nil y = y;

concat (Cons z u) y = (Cons z) ((concat u) y)

with no Graded examples and Cartesian examples(s):

concat (Cons 0 Nil) Nil = (Cons 0 Nil);

concat (Cons 0 Nil) (Cons 1 Nil) = (Cons 0 (Cons 1 Nil))

;

concat (Cons 0 (Cons 1 (Cons 2 Nil))) (Cons 3 (Cons 4

Nil)) = Cons 0 (Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))

));

3. empty:

language GradedBase

data List a = Nil | Cons a (List a)

empty : ∀ { a b : Type } . () → List a

empty () = Nil

4. snoc:

language GradedBase

data List a = Nil | Cons a (List a)

data N = S N | Z
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snoc : ∀ { a : Type }

. (List a) %1..∞
→ a %1..∞
→ List a

spec

snoc %0..∞
snoc x y =

(case x of

Nil → (Cons y) x;

Cons z u → (Cons z) ((snoc u) y))

with Graded example(s):

snoc (Cons Z Nil) (S Z) = (Cons Z (Cons (S Z) Nil));

5. drop:

language GradedBase

data List a = Cons a (List a) | Nil

data N = S N | Z

drop : ∀ { a : Type } . N %0..∞ → List (a) %0..∞ →
List a

spec

drop % 0..∞
drop x y =

(case y of

Nil →
(case x of

Z → y;

S z → (drop z) y);

Cons p q →
(case x of

Z → q;

S x8 → q))

with Graded example(s):

drop (S Z) (Cons (S Z) (Cons Z Nil)) = Cons Z Nil;

6. flatten:

language GradedBase

data List a = Cons a (List a) | Nil

append : ∀ { a : Type }

. (List a) %1..∞
→ (List a) %1..∞
→ List a
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append Nil y = y;

append (Cons z u) y = (Cons z) ((append u) y)

flatten : ∀ { a : Type } . (List (List a)) %0..∞ → (

List a)

spec

flatten % 0..∞ , append %0..∞
flatten Nil = (append Nil) Nil;

flatten (Cons u v) = (append u) (flatten v)

with Graded example(s):

flatten (Cons (Cons 1 Nil) (Cons (Cons 1 Nil) Nil)) =

Cons 1 (Cons 1 Nil);

7. bind:

language GradedBase

data List a = Nil | Cons a (List a)

data N = S N | Z

data Bool = True | False;

append : ∀ { a : Type }

. (List a) %1..∞
→ (List a) %1..∞
→ List a

append Nil y = y;

append (Cons z u) y = (Cons z) ((append u) y)

concat : ∀ { a : Type } . (List (List a)) %1..∞ → (

List a)

concat Nil = Nil;

concat (Cons u v) = (append u) (concat v)

map : ∀ { a b : Type }

. (a %1..∞ → b) %0..∞
→ List a %1..∞
→ List b

map x Nil = Nil;

map x (Cons z u) = (Cons (x z)) ((map x) u)

isEven : N %1..∞ → List N

isEven Z = Nil;

isEven (S Z) = Cons (S Z) Nil;

isEven (S (S z)) = concat (Cons (isEven z) Nil)

bind : ∀ { a b : Type }

. List a %1..∞
→ (a %1..∞ → List b) %0..∞
→ List b
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spec

map %1..∞, concat %1..∞
bind x y = concat ((map (λw → w)) x)

with no Graded examples and Cartesian example(s):

bind (Cons Z Nil) isEven = Nil;

bind (Cons (S Z) Nil) isEven = (Cons (S Z) Nil);

8. return:

language GradedBase

data List a = Cons a (List a) | Nil

return : ∀ { a b : Type } . a → List a

return x = (Cons x) Nil

with no Graded examples and Cartesian example(s):

return 1 = Cons 1 Nil;

9. inc:

language GradedBase

data List a = Cons a (List a) | Nil

data N = S N | Z

map : (List N) %1..∞
→ (N %1..∞ → N) %0..∞
→ (List N)

map Nil f = Nil;

map (Cons x xs) f = (Cons (f x) (map xs f))

inc : ∀ a . (List N) %1..∞ → (List N)

spec

map %1..∞
inc x = (map x) (λu → S u)

with Graded example(s):

inc (Cons (S Z) Nil) = (Cons (S (S Z)) Nil);

10. head:

language GradedBase

data List a = Cons a (List a) | Nil

head : ∀ { a : Type } . (List a) %0..1 → a %0..1 → a

head Nil y = y;

head (Cons z u) y = z
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with Graded example(s):

head (Cons 1 (Cons 2 Nil)) 2 = 1;

11. tail:

language GradedBase

data List a = Cons a (List a) | Nil

tail : ∀ { a : Type } . List a %0..1 → List a

tail Nil = Nil;

tail (Cons y z) = z

with Graded example(s):

tail (Cons 1 (Cons 2 Nil)) = Cons 2 Nil;

12. last:

language GradedBase

data List a = Cons a (List a) | Nil

data Maybe a = Just a | Nothing

last : ∀ { a : Type } . (List a) %0..∞ → Maybe a

spec

last %0..∞
last Nil = Nothing;

last (Cons y z) =

(case z of

Nil → last z;

Cons v w → Just v)

with Graded example(s):

last (Cons 1 (Cons 2 Nil)) = Just 2;

and Cartesian example(s):

last (Cons 1 Nil) = Just 1;

13. length:

language GradedBase

data List a = Cons a (List a) | Nil

data N = S N | Z

length : ∀ { a : Type } . List a %0..∞ → N

spec

length %0..∞
length Nil = Z;

length (Cons y z) = S (length z)
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with Graded example(s):

length (Cons 1 (Cons 1 Nil)) = S (S Z);

14. map:

language GradedBase

data List a = Nil | Cons a (List a)

data Bool = True | False;

neg : Bool %1..∞ → Bool

neg True = False;

neg False = True

map : ∀ { a b : Type }

. (a % 1..∞ → b) %0..∞
→ List a %1..∞
→ List b

spec

map % 0..∞
map x Nil = Nil;

map x (Cons z u) = (Cons (x z)) ((map x) u)

with no Graded examples and Cartesian example(s):

map neg (Cons True Nil) = Cons False Nil;

15. replicate5:

language GradedBase

data List a = Cons a (List a) | Nil

replicate5 : ∀ { a : Type } . a %5 → List a

replicate5 x = (Cons x) ((Cons x) ((Cons x) ((Cons x) ((

Cons x) Nil))))

with no Graded examples and Cartesian example(s):

replicate5 1 = Cons 1 (Cons 1 (Cons 1 (Cons 1 (Cons 1

Nil))));

16. replicate10:

language GradedBase

data List a = Cons a (List a) | Nil

replicate10 : ∀ { a : Type } . a %10 → List a

replicate10 x = (Cons x) ((Cons x) ((Cons x) ((Cons x)

((Cons x) ((Cons x) ((Cons x) ((Cons x) ((Cons x) ((

Cons x) Nil)))))))))
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with no Graded examples and Cartesian example(s);

replicate10 1 = (Cons 1 (Cons 1 (Cons 1 (Cons 1 (Cons 1

(Cons 1 (Cons 1 (Cons 1 (Cons 1 (Cons 1 Nil)))))))))

);

17. replicateN:

language GradedBase

data List a = Cons a (List a) | Nil

data N = S N | Z

replicateN : ∀ { a : Type }

. N %0..∞
→ a %0..∞
→ List a

spec

replicateN % 0..∞
replicateN Z y = Nil;

replicateN (S z) y = (Cons y) ((replicateN z) y)

with Graded example(s):

replicateN (S (S Z)) 2 = (Cons 2 (Cons 2 Nil));

18. stutter:

language GradedBase

data List a = Cons a (List a) | Nil

stutter : ∀ { a : Type } . List (a [2]) %1..∞ → List a

spec

stutter % 0..∞
stutter Nil = Nil;

stutter (Cons [u] z) = (Cons u) ((Cons u) (stutter z))

19. sum:

language GradedBase

data N = S N | Z

data List a = Cons a (List a) | Nil

fold : List N %0..∞
→ (N % 1..∞
→ N % 1..∞ → N) %0..∞
→ N %0..∞ → N

fold Nil f acc = acc;

fold (Cons x xs) f acc = fold xs f (f acc x)
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add : N %1..∞ → N %1..∞ → N

add Z n2 = n2;

add (S n1) n2 = S (add n1 n2)

sum : List N %0..∞ → N

spec

fold %0..∞, add %0..∞
sum x = ((fold x) (λp → λq → (add p) q)) ((add Z) Z)

with Graded example(s):

sum (Cons (S Z) (Cons (S Z) Nil)) = (S (S Z));

and Cartesian example(s):

sum (Cons (S Z) (Cons (S Z) (Cons (S Z) Nil))) = (S (S (

S Z)));

a.2.2 Stream

1. build:

language CBN

language GradedBase

data Stream a = Next a (Stream a)

ones : () %1..1 → Stream Int

ones () = Next 1 (ones ())

head : ∀ { a : Type } . Stream a %0..1 → a

head (Next x xs) = x

build : ∀ { a : Type } . a %1..1 → (Stream a) %1..1 →
Stream a

build x y = (Next x) y

with no Graded examples and Cartesian example(s):

head (build 2 (ones ())) = 2;

2. map:

language CBN

language GradedBase

data Stream a = Next a (Stream a)

data Bool = True | False

trues : () %1..∞ → Stream Bool

trues () = Next True (trues ())
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neg : Bool %1..∞ → Bool

neg True = False;

neg False = True

head : ∀ { a : Type } . Stream a %0..∞ → a

head (Next x xs) = x

map : ∀ { a b : Type }

. Stream a %1..∞
→ (a %1..∞ → b) %1..∞
→ Stream b

spec

map % 1..∞
map (Next z u) y = (Next (y z)) ((map_stream u) y)

with no Graded examples and Cartesian example(s):

head (map_stream (trues ()) neg) = False;

3. take1:

language CBN

language GradedBase

data Stream a = Next a (Stream a)

data Bool = True | False

ones : () %1..1 → Stream Int

ones () = Next 1 (ones ())

head : ∀ { a : Type } . (Stream a) %0..1 → a

head (Next x _) = x

take1 : ∀ { a : Type } . Stream a %0..1 → a

take1 (Next y z) = y

with no Graded examples and Cartesian example(s):

take1 (Next 2 (ones ())) = 2;

4. take2:

language CBN

language GradedBase

data Stream a = Next a (Stream a)

data Bool = True | False

ones : () %1..1 → Stream Int

ones () = Next 1 (ones ())

head : ∀ { a : Type } . (Stream a) %0..1 → a
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head (Next x _) = x

take2 : ∀ { a : Type } . Stream a %0..1 → (a, a)

take2 (Next y (Next u v)) = (u, y)

with no Graded examples and Cartesian example(s):

take2 (Next 2 (ones ())) = (2, 1);

5. take3:

language CBN

language GradedBase

data Stream a = Next a (Stream a)

data Bool = True | False

ones : () %1..1 → Stream Int

ones () = Next 1 (ones ())

head : ∀ { a : Type } . (Stream a) %0..1 → a

head (Next x _) = x

take3 : ∀ { a : Type } . Stream a %0..1 → (a, (a, a))

take3 (Next y (Next u (Next w p))) = (y, (w, u))

with no Graded examples and Cartesian example(s):

take3 (Next 3 (Next 2 (ones ()))) = (3, (2, 1));

a.2.3 Bool

1. neg:

language GradedBase

data Bool = True | False

neg : Bool %1 → Bool

neg True = False;

neg False = True

with Graded example(s):

neg True = False;

neg False = True;

2. and:

language GradedBase

data Bool = True | False
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and : Bool %1 → Bool %1 → Bool

and True True = True;

and False True = False;

and True False = False;

and False False = False

with Graded example(s):

and True True = True;

and False True = False;

and True False = False;

and False False = False;

3. impl:

language GradedBase

data Bool = True | False

impl : Bool %1 → Bool %1 → Bool

impl True True = True;

impl True False = False;

impl False True = True;

impl False False = True

with Graded example(s):

impl True True = True;

impl True False = False;

impl False True = True;

impl False False = True;

4. or:

language GradedBase

data Bool = True | False

or : Bool %1 → Bool %1 → Bool

or True True = True;

or False True = True;

or True False = True;

or False False = False

with Graded example(s):

or True True = True;

or False True = True;

or True False = True;

or False False = False

5. xor:
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language GradedBase

data Bool = True | False

xor : Bool %1 → Bool %1 → Bool

xor True True = False;

xor False True = True;

xor True False = True;

xor False False = False

with Graded example(s):

xor True True = False;

xor False True = True;

xor True False = True;

xor False False = False

a.2.4 Maybe

1. bind:

language GradedBase

data Maybe a = Just a | Nothing

data N = S N | Z

data Bool = True | False;

isEven : N %1..∞ → Maybe N

isEven Z = Nothing;

isEven (S Z) = Just (S Z);

isEven (S (S z)) =

case isEven z of

Nothing → Nothing;

Just (S Z) → Just (S Z)

bind : ∀ { a b : Type }

. Maybe a %1..1

→ (a %1..1 → Maybe b) %0..1

→ Maybe b

bind Nothing y = Nothing;

bind (Just z) y = y z

with no Graded example(s) and Cartesian example(s):

bind (Just (S Z)) isEven = Just (S Z);

2. fromMaybe:

language GradedBase
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data Maybe a = Nothing | Just a

fromMaybe : ∀ { a : Type } . Maybe a %(1..1) → a

%(0..1) → a

fromMaybe Nothing y = y;

fromMaybe (Just z) y = z

with no Graded example(s) and Cartesian example(s):

fromMaybe Nothing 1 = 1;

fromMaybe (Just 1) 2 = 1;

3. return:

language GradedBase

data Maybe a = Nothing | Just a

return : ∀ { a : Type } . a → Maybe a

return x = Just x

4. isJust:

language GradedBase

data Maybe a = Just a | Nothing

data Bool = True | False

isJust : ∀ { a : Type } . (Maybe a) %0..1 → Bool

isJust Nothing = False;

isJust (Just y) = True

with Graded example(s):

isJust (Just 1) = True;

isJust Nothing = False;

5. isNothing:

language GradedBase

data Maybe a = Just a | Nothing

data Bool = True | False

isNothing : ∀ { a : Type } . (Maybe a) %0..1 → Bool

isNothing Nothing = True;

isNothing (Just y) = False

with Graded example(s):

isNothing (Just 1) = False;

isNothing Nothing = True;
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6. map:

language GradedBase

data Maybe a = Nothing | Just a

data N = S N | Z

data Bool = True | False

isOne : N %0..1 → Bool

isOne (S Z) = True;

isOne _ = False

map : ∀ { a b : Type }

. (a → b) %(0..1)

→ (Maybe a) %(1..1)

→ Maybe b

map x Nothing = Nothing;

map x (Just z) = Just (x z)

with no Graded examples and Cartesian example(s):

map isOne (Just (S Z)) = Just True;

7. mplus:

language GradedBase

data Maybe a = Nothing | Just a

mplus : ∀ { a b : Type }

. Maybe a %(0..1)

→ Maybe b %(0..1)

→ Maybe (a, b)

mplus Nothing Nothing = Nothing;

mplus (Just z) Nothing = Nothing;

mplus Nothing (Just v) = Nothing;

mplus (Just w) (Just v) = Just (w, v)

with Graded example(s):

mplus (Just 1) (Just 2) = Just (1, 2);

a.2.5 Nat

1. isEven:

language GradedBase

data N = S N | Z

data Bool = True | False
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isEven : N %1..∞ → Bool

spec

isEven % 0..∞
isEven Z = True;

isEven (S Z) = False;

isEven (S (S z)) = isEven z

with Graded example(s):

isEven (S (S Z)) = True;

isEven (S (S (S Z))) = False;

2. pred:

language GradedBase

data N = S N | Z

pred : N %1 → N

pred Z = Z;

pred (S y) = y

with Graded example(s):

pred (S (S Z)) = (S Z);

3. succ:

language GradedBase

data N = S N | Z

succ : N %1 → N

succ x = S x

with Graded example(s):

succ Z = (S Z);

4. sum:

language GradedBase

data N = S N | Z

sum : N %1..∞ → N %1..∞ → N

spec

sum % 0..∞
sum Z y = y;

sum (S z) y = S ((sum z) y)

with Graded example(s):

sum (S Z) (S Z) = (S (S Z));
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and Cartesian example(s):

sum (S Z) Z = (S Z);

sum (S (S (S (S Z)))) (S (S Z)) = (S (S (S (S (S (S Z)))

)));

a.2.6 Tree

1. map:

language GradedBase

data Tree a = Leaf | Node (Tree a) a (Tree a)

data Bool = True | False

neg : Bool %1..∞ → Bool

neg True = False;

neg False = True

map : ∀ { a b : Type }

. Tree a %1..∞
→ (a %1..∞ → b) %0..∞
→ Tree b

spec

map %0..∞
map Leaf y = Leaf;

map (Node z u v) y = ((Node ((map z) y)) (y u)) ((map v)

y)

with no Graded examples and Cartesian example(s):

map (Node Leaf True Leaf) neg = (Node Leaf False Leaf);

2. sutter:

language GradedBase

data Tree a = Leaf | Node (Tree a) a (Tree a)

stutter : ∀ { a b : Type } . Tree (a [2]) %1..∞ → Tree

(a, a)

spec

stutter %0..∞
stutter Leaf = Leaf;

stutter (Node y [v] u) = ((Node (stutter y)) (v, v)) (

stutter u)

with no Graded examples and Cartesian example(s):

stutter (Node Leaf [1] Leaf) = (Node Leaf (1, 1) Leaf);

3. sum:



A.2 synthesised programs for the fully graded synthesis calculus 162

language GradedBase

data N = S N | Z

:W

data Tree a = Leaf | Node (Tree a) a (Tree a)

add : N %1..∞ → N %1..∞ → N

add Z y = y;

add (S z) y = S ((add z) y)

fold : Tree N %0..∞
→ (N %1..∞ → N %1..∞ → N) %0..∞
→ N %0..∞
→ N

fold Leaf f acc = acc;

fold (Node l x r) f acc =

fold l f (f x (fold r f acc))

sum : ∀ { a : Type } . Tree N %0..∞ → N

spec

fold %1..∞, add %1..∞
sum x = (add Z) (((fold x) (λp → λq → (add p) q)) Z)

with Graded example(s):

sum Leaf = Z;

sum (Node Leaf (S (S Z)) Leaf) = (S (S Z));

sum (Node (Node Leaf (S Z) (Node Leaf (S Z) Leaf)) (S (S

Z)) Leaf) = (S (S (S (S Z))));

a.2.7 Misc

1. compose:

language GradedBase

comp : ∀ {k : Coeffect, n m : k, a b c : Type}

. (a %m → b) %n

→ (b %n → c) %(1 : k)

→ a %(n * m)

→ c

comp x y z = y (x z)

2. copy:

language GradedBase

copy : ∀ { a : Type } . a %2 → (a, a)

copy x = (x, x)

3. push:
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language GradedBase

push : ∀ { a b : Type, k : Coeffect, c : k }

. (a → b) %c

→ a %c

→ b [c]

push x y = [x y]



B
P R O O F S

b.1 proofs for the linear-base calculi

This section gives the proofs of Lemma 3.3.1 and Lemma 3.4.1, along
with soundness results for the additive pruning variant.

We first state and prove some intermediate results about context
manipulations which are needed for the main lemmas.

Definition B.1.1 (Context approximation). For contexts Γ1, Γ2 then:

∅ ⊑ ∅
Γ1 ⊑ Γ2

Γ1, x : A ⊑ Γ2, x : A

Γ1 ⊑ Γ2 r ⊑ s
Γ1, x :r A ⊑ Γ2, x :s A

Γ1 ⊑ Γ2 0 ⊑ s
Γ1 ⊑ Γ2, x :s A

This is actioned in type checking by iterative application of Approx.

Lemma B.1.1 (Γ + (Γ′ − Γ′′) ⊑ (Γ + Γ′)− Γ′′).

Proof. Induction over the structure of both Γ′ and Γ′′. The possible
forms of Γ′ and Γ′′ are considered in turn:

1. Γ′ = ∅ and Γ′′ = ∅
We have:

(Γ + ∅)− ∅ = Γ + (∅ − ∅)

From definitions 2.3.3 and 3.3.1, we know that on the left hand
side:

(Γ + ∅)− ∅ = Γ + ∅

= Γ

and on the right-hand side:

Γ + (∅ − ∅) = Γ + ∅

= Γ

making both the left and right hand sides equivalent:

Γ = Γ

164
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2. Γ′ = Γ′, x : A and Γ′′ = ∅
We have

(Γ + Γ′, x : A)− ∅ = Γ + (Γ, x : A − ∅)

From definitions 2.3.3 and 3.3.1, we know that on the left hand
side we have:

(Γ + Γ′, x : A)− ∅ = (Γ, Γ′), x : A − ∅

= (Γ, Γ′), x : A

and on the right hand side:

Γ + (Γ, x : A − ∅) = Γ + Γ′, x : A

= (Γ, Γ′, x : A)

making both the left and right hand sides equal:

(Γ, Γ′), x : A = (Γ, Γ′), x : A

3. Γ′ = Γ′, x : A and Γ′′ = Γ′′, x : A
We have

(Γ + Γ′, x : A)− Γ′′, x : A = Γ + (Γ′, x : A − Γ′′, x : A)

From definitions 2.3.3 and 3.3.1, we know that on the left hand
side we have:

(Γ + Γ′, x : A)− Γ′′, x : A = (Γ, Γ′), x : A − Γ′′, x : A

= Γ, Γ′ − Γ′′

and on the right hand side:

Γ + (Γ′, x : A − Γ′′, x : A) = Γ + (Γ′ − Γ′′)

= Γ, Γ′ − Γ′′

making both the left and right hand sides equivalent:

Γ, Γ′ − Γ′′ = Γ, Γ′ − Γ′′

4. Γ′ = Γ′, x :r A and Γ′′ = ∅
We have

(Γ + Γ′, x :r A)− ∅ = Γ + (x :r A − ∅)

From definitions 2.3.3 and 3.3.1, we know that on the left hand
side we have:

(Γ + Γ′, x :r A)− ∅ = (Γ + Γ′, x :r A)

= (Γ, Γ′), x :r A
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and on the right hand side:

Γ + (Γ′, x :r A − ∅) = Γ + (Γ′, x :r A) = (Γ, Γ′), x :r A

making both the left and right hand sides equivalent:

(Γ, Γ′), x :r A = (Γ, Γ′), x :r A

5. Γ′ = Γ′, x :r A and Γ′′ = Γ′′, x :s A

Thus we have (for the LHS of the inequality term):

Γ + (Γ′, x :r A − Γ′′, x :s A)

which by context subtraction yields:

Γ + (Γ′, x :r A − Γ′′, x :s A) = Γ + (Γ′ − Γ′′), x :q′ A

where:

∃q′.r ⊒ q′ + s ∀q̂′.r ⊒ q̂′ + s =⇒ q′ ⊒ q̂′ (2)

And for the LHS of the inequality, from definitions 2.3.3 and 3.3.1
we have:

(Γ + Γ′, x :r A)− Γ′′, x :s A = (Γ + Γ′), x :r A − Γ′′, x :s A

= ((Γ + Γ′)− Γ′′), x :r A − x :s A

= ((Γ + Γ′)− Γ′′), x :q A

where:

∃q.r ⊒ q + s ∀q̂.r ⊒ q̂ + s =⇒ q ⊒ q̂ (1)

Applying ∃q.r ⊒ q + s to maximality (2) (at q̂′ = q) then yields
that q ⊑ q′.

Therefore, applying induction, we derive:

(Γ + (Γ′ − Γ′′)) ⊑ ((Γ + Γ′)− Γ′′) q ⊑ q′

(Γ + (Γ′ − Γ′′)), x :q A ⊑ ((Γ + Γ′)− Γ′′), x :q′ A

satisfying the lemma statement.

Lemma B.1.2 ((Γ − Γ′) + Γ′ ⊑ Γ).

Proof. The proof follows by induction over the structure of Γ′. The
possible forms of Γ′ are considered in turn:



B.1 proofs for the linear-base calculi 167

1. Γ′ = ∅
We have:

(Γ − ∅) + ∅ = Γ

From definition 3.3.1, we know that:

Γ − ∅ = Γ

and from definition 2.3.3, we know:

Γ + ∅ = Γ

giving us:

Γ = Γ

2. Γ′ = Γ′′, x : A
and let Γ = Γ′, x : A.

(Γ′, x : A − Γ′′, x : A) + Γ′′, x : A = Γ

From definition 2.3.3, we know that:

(Γ′, x : A − Γ′′, x : A) + Γ′′, x : A = ((Γ′ − Γ′′) + Γ′′), x : A

induction = Γ′, x : A

= Γ

thus satisfying the lemma statement by equality.

3. Γ′ = Γ′′, x :r A
and let Γ = Γ′, x :s A.

We have:

(Γ′, x :s A − Γ′′, x :r A) + Γ′′, x :r A

From definition 3.3.1, we know that:

(Γ′, x :s A − Γ′′, x :r A) + Γ′′, x :r A

= (Γ′ − Γ′′), x :q A + Γ′′, x :r A

= ((Γ′ − Γ′′) + Γ′′), x :q+r A

where s ⊒ q + r and ∀q′.s ⊒ q′ + r =⇒ q ⊒ q′.

Then by induction we derive the ordering:

((Γ′ − Γ′′) + Γ′′) ⊑ Γ′ q + r ⊑ s
((Γ′ − Γ′′) + Γ′′), x :q+r A ⊑ Γ′, x :s A

which satifies the lemma statement.
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Lemma B.1.3 (Context negation). For all contexts Γ:

∅ ⊑ Γ − Γ

Proof. By induction on the structure of Γ:

• Γ = ∅ Trivial.

• Γ = Γ′, x : A then (Γ′, x : A)− (Γ′, x : A) = Γ′ − Γ′ so proceed by
induction.

• Γ = Γ′, x :r A then ∃q. (Γ′, x :r A)− (Γ′, x :r A) = (Γ − Γ′), x :q A

such that r ⊒ q + r and ∀q′.r ⊒ q′ + r =⇒ q ⊒ q′.

Instantiating maximality with q′ = 0 and reflexivity then we
have 0 ⊑ q. From this, and the inductive hypothesis, we can
construct:

∅ ⊑ (Γ − Γ′) 0 ⊑ q
∅ ⊑ (Γ − Γ′), x :q A

Lemma B.1.4. For all contexts Γ1, Γ2, where [Γ2] (i.e., Γ2 is all graded)
then:

Γ2 ⊑ Γ1 − (Γ1 − Γ2)

Proof. By induction on the structure of Γ2.

• Γ2 =⊑
Then Γ1 − (Γ1 − ∅) = Γ1 − Γ1.

By Lemma B.1.3, then ∅ ⊑ (Γ1 − Γ1) satisfying this case.

• Γ2 = Γ′
2, x :s A

By the premises Γ1 ⊑ Γ2 then we can assume x ∈ Γ1 and thus
(by context rearrangement) Γ′

1, x :r A.

Thus we consider (Γ′
1, x :r A)− ((Γ′

1, x :r A)− (Γ′
2, x :s A)).

(Γ′
1, x :r A)− ((Γ′

1, x :r A)− (Γ′
2, x :s A))

= (Γ′
1, x :r A)− ((Γ′

1 − Γ′
2), x :q A)

= (Γ′
1 − (Γ′

1 − Γ′
2)), x :q′ A

where (1) ∃q. r ⊒ q + s with (2) (∀q̂.r ⊒ q̂ + s =⇒ q ⊒ q̂)

and (3) ∃q′. r ⊒ q′ + q with (4) (∀q̂′.r ⊒ q̂′ + s =⇒ q′ ⊒ q̂′).
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Apply (1) to (4) by letting q̂′ = s and by commutativity of + then
we get that q′ ⊒ s.

By induction we have that

Γ′
1 ⊑ Γ′

1 − (Γ′
1 − Γ′

2) (ih)

Thus we get that:

s ⊑ q′ Γ′
1 ⊑ Γ′

1 − (Γ′
1 − Γ′

2)

Γ′
1, x :s A ⊑ (Γ′

1 − (Γ′
1 − Γ′

2)), x :q′ A

• Γ2 = Γ′
2, x : A Trivial as it violates the grading condition of the

premise.

b.1.1 Soundness of the Subtractive Graded Linear Typing Calculus

Lemma 3.3.1 (Subtractive synthesis soundness). For all Γ and A then:

Γ ⊢ A ⇒− t | ∆ =⇒ Γ − ∆ ⊢ t : A

i.e. t has type A under context Γ − ∆, that contains just those linear
and graded variables with grades reflecting their use in t.

Proof. Structural induction over the synthesis rules. Each of the possi-
ble synthesis rules are considered in turn.

1. Case LinVar
−

In the case of linear variable synthesis, we have the derivation:

Γ, x : A ⊢ A ⇒− x | Γ
LinVar

−

By the definition of context subtraction, (Γ, x : A)− Γ = x : A,
thus we can construct the following typing derivation, matching
the conclusion:

x : A ⊢ x : A
Var

2. Case GrVar
−

Matching the form of the lemma, we have the derivation:

∃s. r ⊒ s + 1

Γ, x :r A ⊢ A ⇒− x | Γ, x :s A
GrVar

−

By the definition of context subtraction, (Γ, x :r A)− (Γ, x :s A) =

x :q A where (1) ∃q. r ⊒ q + s and ∀q′.r ⊒ q′ + s =⇒ q ⊒ q′.
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Applying maximality (1) with q = 1 then we have that 1 ⊑ q (*)

Thus, from this we can construct the typing derivation, matching
the conclusion:

x : A ⊢ x : A
Var

x :1 A ⊢ x : A 1 ⊑ q (∗)
Der

x :q A ⊢ x : A
Approx

3. Case⊸−
R

We thus have the derivation:

Γ, x : A ⊢ B ⇒− t | ∆ x ̸∈ |∆|
Γ ⊢ A⊸ B ⇒− λx.t | ∆

⊸−
R

By induction we then have that:

(Γ, x : A)− ∆ ⊢ t : B

Since x ̸∈ |∆| then by the definition of context subtraction we
have that (Γ, x : A) − ∆ = (Γ − ∆), x : A. From this, we can
construct the following derivation, matching the conclusion:

(Γ − ∆), x : A ⊢ t : B

Γ − ∆ ⊢ λx.t : A⊸ B
Abs

4. Case⊸−
L

Matching the form of the lemma, the application derivation is:

Γ, x2 : B ⊢ C ⇒− t1 | ∆1 x2 ̸∈ |∆1| ∆1 ⊢ A ⇒− t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒− [(x1 t2)/x2]t1 | ∆2
⊸−

L

By induction, we have that:

(Γ, x2 : B)− ∆1 ⊢ t1 : C (ih1)

∆1 − ∆2 ⊢ t2 : A (ih2)

By the definition of context subtraction and since x2 ̸∈ |∆1| then
(ih1) is equal to:

(Γ − ∆1), x2 : B ⊢ t1 : C (ih1’)

We can thus construct the following typing derivation, making
use of of the admissibility of linear substitution (Lemma 4.1.1):

(Γ − ∆1), x2 : B⊸ C ⊢ t1 : C
Γ − ∆1 ⊢ λx2.t1 : B⊸ C

abs

x1 : A⊸ B ⊢ x1 : A⊸ B
var

∆1 − ∆2 ⊢ t2 : A
(∆1 − ∆2), x1 : A⊸ B ⊢ x1 t2 : B

app

(Γ − ∆1) + (∆1 − ∆2), x1 : A⊸ B ⊢ [(x1 t2)/x2]t1 : C
app
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From Lemma B.1.1, we have that

((Γ − ∆1) + (∆1 − ∆2)), x1 : A⊸ B ⊑ (((Γ − ∆1) + ∆1)− ∆2), x1 : A⊸ B

and from Lemma B.1.2, that:

(((Γ − ∆1) + ∆1)− ∆2), x1 : A⊸ B ⊑ (Γ − ∆2), x1 : A⊸ B

which, since x1 is not in ∆2 (as x1 is not in Γ) (Γ − ∆2), x1 :
A ⊸ B = (Γ, x1 : A ⊸ B) − ∆2. Applying these inequalities
with Approx then yields the lemma’s conclusion (Γ, x1 : A ⊸
B)− ∆2 ⊢ [(x1 t2)/x2]t1 : C.

5. Case □−
R

The synthesis rule for boxing can be constructed as:

Γ ⊢ A ⇒− t | ∆

Γ ⊢ □rA ⇒− [t] | Γ − r · (Γ − ∆)
□−

R

By induction on the premise we get:

Γ − ∆ ⊢ t : A

Since we apply scalar multipication ih the conclusion of the
rule to Γ − ∆ then we know that all of Γ − ∆ must be graded
assumptions.

From this, we can construct the typing derivation:

[Γ − ∆] ⊢ t : A

r · [Γ − ∆] ⊢ [t] : □rA
Pr

Via Lemma B.1.4, we then have that (r · Γ − ∆) ⊑ (Γ − (Γ −
(r · (Γ − ∆)))) thus, we can derived:

[Γ − ∆] ⊢ t : A

r · [Γ − ∆] ⊢ [t] : □rA Lem. B.1.4
Pr

Γ − (Γ − (r · (Γ − ∆))) ⊢ [t] : □rA
Approx

Satisfying the goal of the lemma.

6. Case □−
L

The synthesis rule for unboxing has the form:

Γ, x2 :r A ⊢ B ⇒− t | ∆, x2 :s A 0 ⊑ s

Γ, x1 : □rA ⊢ B ⇒− let [x2] = x1 in t | ∆
□−

L

By induction on the premise we have that:

(Γ, x2 :r A)− (∆, x2 :s A) ⊢ t : B
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By the definition of context subtraction we get that ∃q and:

(Γ, x2 :r A)− (∆, x2 :s A) = (Γ − ∆), x2 :q A

such that r = q + s

We also have that 0 ⊑ s.

By monotonicity with q ⊑ q (reflexivity) and 0 ⊑ s then q ⊑ q+ s.

By context subtraction we have r = q + s therefore q ⊑ r (*).

From this, we can construct the typing derivation:

x1 : □rA ⊢ x1 : □rA
Var

(Γ − ∆), x2 :q A ⊢ t : B (∗)
(Γ − ∆), x2 :r A ⊢ t : B

approx

(Γ − ∆), x1 : □rA ⊢ let [x2] = x1 in t : B
Let

Which matches the goal.

7. Case ⊗−
R

The synthesis rule for pair introduction has the form:

Γ ⊢ A ⇒− t1 | ∆1 ∆1 ⊢ B ⇒− t2 | ∆2

Γ ⊢ A ⊗ B ⇒− (t1, t2) | ∆2
⊗−

R

By induction we get:

Γ − ∆1 ⊢ t1 : A (ih1)

∆1 − ∆2 ⊢ t2 : B (ih2)

From this, we can construct the typing derivation:

Γ − ∆1 ⊢ t1 : A ∆1 − ∆2 ⊢ t2 : B

(Γ − ∆1) + (∆1 − ∆2) ⊢ (t1, t2) : A ⊗ B
Pair

From Lemma B.1.1, we have that:

(Γ − ∆1) + (∆1 − ∆2) ⊑ ((Γ − ∆1) + ∆1)− ∆2

and from Lemma B.1.2, that:

((Γ − ∆1) + ∆1)− ∆2 ⊑ Γ − ∆2

From which we then apply Approx to the above derivation,
yielding the goal Γ − ∆2 ⊢ (t1, t2) : A ⊗ B.
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8. Case ⊗−
L

The synthesis rule for pair elimination has the form:

Γ, x1 : A, x2 : B ⊢ C ⇒− t2 | ∆ x1 ̸∈ |∆| x2 ̸∈ |∆|
Γ, x3 : A ⊗ B ⊢ C ⇒− let (x1, x2) = x3 in t2 | ∆

⊗−
L

By induction we get:

(Γ, x1 : A, x2 : B)− ∆ ⊢ t2 : C

since x1 ̸∈ |∆| ∧ x2 ̸∈ |∆| then (Γ, x1 : A, x2 : B)−∆ = (Γ−∆), x1 :
A, x2 : B.

From this, we can construct the following typing derivation,
matching the conclusion:

x3 : A ⊗ B ⊢ x3 : A ⊗ B
Var

(Γ − ∆), x1 : A, x2 : B ⊢ t2 : C

(Γ − ∆), x3 : A ⊗ B ⊢ let (x1, x2) = x3 in t2 : C
Case

which matches the conclusion since (Γ − ∆), x3 : A ⊗ B = (Γ, x3 :
A ⊗ B)− ∆ since x3 ̸∈ |∆| by its disjointness from Γ.

9. Case ⊕1−R and ⊕2−R
The synthesis rules for sum introduction are straightforward.
For ⊕1−R we have the rule:

Γ ⊢ A ⇒− t | ∆

Γ ⊢ A ⊕ B ⇒− inl t | ∆
⊕1−R

By induction we have:

Γ − ∆ ⊢ t : A (ih1)

from which we can construct the typing derivation, matching
the conclusion:

Γ − ∆ ⊢ t : A

Γ − ∆ ⊢ inl t : A ⊕ B
⊕1−R

Matching the goal. And likewise for ⊕2−R .

10. Case ⊕−
L The synthesis rule for sum elimination has the form:

Γ, x2 : A ⊢ C ⇒− t1 | ∆1 Γ, x3 : B ⊢ C ⇒− t2 | ∆2 x2 ̸∈ |∆1| x3 ̸∈ |∆2|
Γ, x1 : A ⊕ B ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊓ ∆2

⊕−
L

By induction:

(Γ, x2 : A)− ∆1 ⊢ t1 : C (ih)

(Γ, x3 : B)− ∆2 ⊢ t2 : C (ih)
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From this we can construct the typing derivation, matching the
conclusion:

x1 : A ⊕ B ⊢ t1 : A ⊕ B
Var

(Γ − ∆1), x2 : A ⊢ t2 : C (Γ − ∆2), x3 : B ⊢ t3 : C

(Γ, x1 : A ⊕ B)− (∆1 ⊓ ∆2) ⊢ case x1 of inl x2 → t1; inr x3 → t2 : C
Case

11. Case Unit−R

Γ ⊢ Unit ⇒− () | Γ
Unit−R

By Lemma B.1.3 we have that ∅ ⊑ Γ − Γ then we have:

∅ ⊢ () : Unit
Unit

Γ − Γ ⊢ () : Unit
Approx

Matching the goal

12. Case Unit−L

Γ ⊢ C ⇒− t | ∆

Γ, x : Unit ⊢ C ⇒− let () = x in t | ∆
Unit−L

By induction we have:

Γ − ∆ ⊢ t : C (ih)

Then we make the derivation:

x : Unit ⊢ x : Unit
Var

Γ − ∆ ⊢ t : C

(Γ − ∆), x : Unit ⊢ let () = x in t : C
LetUnit

where the context is equal to (Γ, x : Unit)− ∆.

13. Case der
−

Γ, x :s A, y : A ⊢ B ⇒− t | ∆, x :s′ A y ̸∈ |∆| ∃s. r ⊒ s + 1

Γ, x :r A ⊢ B ⇒− [x/y]t | ∆, x :s′ A
der

−

By induction:

(Γ, x :s A, y : A)− (∆, x :s′ A) ⊢ t : B (ih)
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By the definition of context subtraction we have (since also
y ̸∈ |∆|)

(Γ, x :s A, y : A)− (∆, x :s′ A)

= (Γ − ∆), x :q A, y : A

where ∃q. s ⊒ q + s′ (1) and ∀q̂.s ⊒ q̂ + s′ =⇒ q ⊒ q̂ (2)

The goal context is computed by:

(Γ, x :r A)− (∆, x :s′ A)

= (Γ − ∆), x :q′ A

where r ⊒ q′ + s′ (3) and ∀q̂′.r ⊒ q̂′ + s′ =⇒ q′ ⊒ q̂′ (4)

From the premise of der
−we have r ⊒ (s + 1).

congruence of + and (1) =⇒ s + 1 ⊒ q + s′ + 1 (5)

transitivity with der
−premise and (5) =⇒ r ⊒ q + s′ + 1 (6)

+ assoc./comm. on (6) =⇒ r ⊒ q + 1 + s′ (7)

apply (8) to (4) with q̂′ = q + 1 =⇒ q′ ⊒ q + 1 (8)

Using this last result we derive:

(Γ − ∆), x :q A, y : A ⊢ t : B

(Γ − ∆), x :q A, y :1 A ⊢ t : B
Der

(Γ − ∆), x :q+1 A ⊢ [x/y]t : B
contraction

(8)

(Γ − ∆), x :q′ A ⊢ [x/y]t : B
approx

Which matches the goal.

b.1.2 Soundness of the Additive Graded Linear Typing Calculus

Lemma 3.4.1 (Additive synthesis soundness). Given a particular pre-
ordered semiring R parametrising the calculi, then, for all contexts Γ
and ∆, types A and terms t:

Γ ⊢ A ⇒+ t | ∆ =⇒ ∆ ⊢ t : A

Proof. 1. Case LinVar
+

In the case of linear variable synthesis, we have the derivation:

Γ, x : A ⊢ A ⇒+ x | x : A
LinVar

+
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Therefore we can construct the following typing derivation,
matching the conclusion:

x : A ⊢ x : A
var

2. Case GrVar
+

Matching the form of the lemma, we have the derivation:

Γ, x :r A ⊢ A ⇒+ x | x :1 A
GrVar

+

From this we can construct the typing derivation, matching the
conclusion:

x : A ⊢ x : A
Var

x :1 A ⊢ x : A
Der

3. Case⊸+
R

We thus have the derivation:

Γ, x : A ⊢ B ⇒+ t | ∆, x : A

Γ ⊢ A⊸ B ⇒+ λx.t | ∆
⊸+

R

By induction on the premise we then have:

∆, x : A ⊢ t : B

From this, we can construct the typing derivation, matching the
conclusion:

∆, x : A ⊢ t : B

∆ ⊢ λx.t : A⊸ B
abs

4. Case⊸+
L

Matching the form of the lemma, the application derivation can
be constructed as:

Γ, x2 : B ⊢ C ⇒+ t1 | ∆1, x2 : B Γ ⊢ A ⇒+ t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒+ [(x1 t2)/x2]t1 | (∆1 + ∆2), x1 : A⊸ B
⊸+

L

By induction on the premises we then have the following typing
judgments:

∆1, x2 : B ⊢ t1 : C

∆2 ⊢ t2 : A
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We can thus construct the following typing derivation, making
use of the admissibility of linear substitution (Lemma 4.1.1):

x1 : A⊸ B ⊢ x1 : A⊸ B
var

∆2 ⊢ t2 : A

∆2, x1 : A⊸ B ⊢ x1 t2 : B
app

∆1, x2 : B ⊢ t1 : C

(∆1 + ∆2), x1 : A⊸ B ⊢ [(x1 t2)/x2]t1 : C
(L. 4.1.1)

5. Case □+
R

The synthesis rule for boxing can be constructed as:

Γ ⊢ A ⇒+ t | ∆

Γ ⊢ □rA ⇒+ [t] | r ·∆
□+

R

By induction we then have:

∆ ⊢ t : A

In the conclusion of the above derivation we know that r ·∆ is
defined, therefore it must be that all of ∆ are graded assumptions,
i.e., we have that [∆] holds. We can thus construct the following
typing derivation, matching the conclusion:

[∆] ⊢ t : A

r · [∆] ⊢ [t] : □rA
Pr

6. Case der
+

From the dereliction rule we have:

Γ, x :s A, y : A ⊢ B ⇒+ t | ∆, y : A

Γ, x :s A ⊢ B ⇒+ [x/y]t | ∆ + x :1 A
der

+

By induction we get:

∆, y : A ⊢ t : B (ih)

Case on x ∈ ∆

• x ∈ ∆, i.e., ∆ = ∆′, x :s′ A.

Then by admissibility of contraction we can derive:

∆′, x :s′ A, y : A ⊢ t : B

∆′, x :s′ A, y :1 A ⊢ t : B
Der

(∆′, x :s′ A) + x :1 A ⊢ [x/y]t : B

Satisfying the lemma statment.
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• x ̸∈ ∆. Then again from the admissiblity of contraction, we
derive the typing:

∆, y : A ⊢ t : B

∆, y :1 A ⊢ t : B
Der

∆ + x :1 A ⊢ [x/y]t : B

which is well defined as x ̸∈ ∆ and gives the lemma conclu-
sion.

7. Case □+
L

The synthesis rule for unboxing has the form:

Γ, x2 :r A ⊢ B ⇒+ t | ∆ if x2 :s A ∈ ∆ then s ⊑ r else 0 ⊑ r

Γ, x1 : □rA ⊢ B ⇒+ let [x2] = x1 in t | (∆\x2), x1 : □rA
□+

L

By induction we have that:

∆ ⊢ t : B (ih)

Case on x2 :s A ∈ ∆

• x2 :s A ∈ ∆, i.e., s ⊑ r.
From this, we can construct the typing derivation, matching
the conclusion:

x1 : □rA ⊢ x1 : □rA
var

∆, x2 :r A ⊢ t : B

∆, x1 : □rA ⊢ let [x2] = x1 in t : B
let□

• x2 :s A /∈ ∆, i.e., 0 ⊑ r.
From this, we can construct the typing derivation, matching
the conclusion:

x1 : □rA ⊢ x1 : □rA
var

∆ ⊢ t : B

∆, x2 :0 A ⊢ t : B
Weak

0 ⊑ r

∆, x2 :r A ⊢ t : B
Approx

∆, x1 : □rA ⊢ let [x2] = x1 in t : B
let□

8. Case ⊗+
R

The synthesis rule for pair introduction has the form:

Γ ⊢ A ⇒+ t1 | ∆1 Γ ⊢ B ⇒+ t2 | ∆2

Γ ⊢ A ⊗ B ⇒+ (t1, t2) | ∆1 + ∆2
⊗+

R
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By induction on the premises we have that:

∆1 ⊢ t1 : A (ih1)

∆2 ⊢ t2 : B (ih2)

From this, we can construct the typing derivation, matching the
conclusion:

∆1 ⊢ t1 : A ∆2 ⊢ t2 : B

∆1 + ∆2 ⊢ (t1, t2) : A ⊗ B
pair

9. Case ⊗+
L

The synthesis rule for pair elimination has the form:

Γ, x1 : A, x2 : B ⊢ C ⇒+ t2 | ∆, x1 : A, x2 : B

Γ, x3 : A ⊗ B ⊢ C ⇒+ let (x1, x2) = x3 in t2 | ∆, x3 : A ⊗ B
⊗+

L

By induction on the premises we have that:

∆1 ⊢ t1 : A (ih1)

∆2 ⊢ t2 : B (ih2)

From this, we can construct the typing derivation, matching the
conclusion:

x3 : A ⊗ B ⊢ x3 : A ⊗ B
Var

∆, x1 : A, x2 : B ⊢ t2 : C

∆, x3 : A ⊗ B ⊢ let (x1, x2) = x3 in t2 : C
LetPair

10. Case ⊕1+R and ⊕2+R
The synthesis rules for sum introduction are straightforward.
For ⊕1+R we have the rule:

Γ ⊢ A ⇒+ t | ∆

Γ ⊢ A ⊕ B ⇒+ inl t | ∆
⊕1+R

By induction on the premises we have that:

∆ ⊢ t : A (ih)

From this, we can construct the typing derivation, matching the
conclusion:

∆ ⊢ t : A

∆ ⊢ inl t : A ⊕ B
Inl

Likewise, for the ⊕2+R we have the synthesis rule:

Γ ⊢ B ⇒+ t | ∆

Γ ⊢ A ⊕ B ⇒+ inr t | ∆
⊕2+R
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By induction on the premises we have that:

∆ ⊢ t : B (ih)

From this, we can construct the typing derivation, matching the
conclusion:

∆ ⊢ t : B

∆ ⊢ inl t : A ⊕ B
Inr

11. Case ⊕+
L

The synthesis rule for sum elimination has the form:

Γ, x2 : A ⊢ C ⇒+ t1 | ∆1, x2 : A
Γ, x3 : B ⊢ C ⇒+ t2 | ∆2, x3 : B

Γ, x1 : A ⊕ B ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊔ ∆2, x1 : A ⊕ B
⊕+

L

By induction on the premises we have that:

∆1, x2 : A ⊢ t1 : C (ih1)

∆2, x3 : B ⊢ t2 : C (ih2)

From this, we can construct the typing derivation, matching the
conclusion:

x1 : A ⊕ B ⊢ x1 : A ⊕ B
Var

∆1, x2 : A ⊢ t1 : C ∆2, x3 : B ⊢ t2 : C

(∆1 ⊔ ∆2), x1 : A ⊕ B ⊢ case x1 of inl x2 → t1; inr x3 → t2 : C
Case

12. Case Unit+R
The synthesis rule for unit introduction has the form:

Γ ⊢ Unit ⇒+ () | ∅
Unit+R

From this, we can construct the typing derivation, matching the
conclusion:

∅ ⊢ () : Unit
Unit

13. Case Unit+L
The synthesis rule for unit elimination has the form:

Γ ⊢ C ⇒+ t | ∆

Γ, x : Unit ⊢ C ⇒+ let () = x in t | ∆, x : Unit
Unit+L

By induction on the premises we have that:

∆ ⊢ t : C (ih)
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From this, we can construct the typing derivation, matching the
conclusion:

x : Unit ⊢ x : Unit
Var

∆ ⊢ t : C

∆, x : Unit ⊢ let () = x in t : C
LetUnit

b.1.3 Soundness of the Additive Pruning Graded Linear Typing Calculus

Lemma 3.4.2 (Additive pruning synthesis soundness). For all Γ and
A:

Γ ⊢ A ⇒± t | ∆ =⇒ ∆ ⊢ t : A

Proof. The cases for the rules in the additive pruning synthesis calculus
are equivalent to lemma (3.4.1), except for the cases of the ⊸±

L and
⊗±

R rules which we consider here:

1. Case⊸±
L

Matching the form of the lemma, the application derivation can
be constructed as:

Γ, x2 : B ⊢ C ⇒± t1 | ∆1, x2 : B Γ − ∆1 ⊢⇒± t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒± [(x1 t2)/x2] | (∆1 + ∆2), x1 : A⊸ B
⊸±

L

By induction on the premises we then have the following typing
judgments:

∆1, x2 : B ⊢ t1 : C

∆2 ⊢ t2 : A

We can thus construct the following typing derivation, making
use of the admissibility of linear substitution (Lemma 4.1.1):

x1 : A⊸ B ⊢ x1 : A⊸ B
var

∆2 ⊢ t2 : A

∆2, x1 : A⊸ B ⊢ x1 t2 : B
app

∆1, x2 : B ⊢ t1 : C

(∆1 + ∆2), x1 : A⊸ B ⊢ [(x1 t2)/x2]t1 : C
(L. 4.1.1)

2. Case ⊗±
R

The synthesis rule for the pruning alternative for pair introduc-
tion has the form:
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Γ ⊢ A ⇒± t1 | ∆1 Γ − ∆1 ⊢ B ⇒± t2 | ∆2

Γ ⊢ A ⊗ B ⇒± (t1, t2) | ∆1 + ∆2
⊗±

R

By induction on the premises we have that:

∆1 ⊢ t1 : A (ih1)

∆2 ⊢ t2 : B (ih2)

From this, we can construct the typing derivation, matching the
conclusion:

∆1 ⊢ t1 : A ∆2 ⊢ t2 : B

∆1 + ∆2 ⊢ (t1, t2) : A ⊗ B
pair

b.1.4 Soundness of Focusing for the Subtractive Linear Graded Synthesis
Calculus

Lemma 3.5.1 (Soundness of focusing for subtractive synthesis). For all
contexts Γ, Ω and types A, B then:

1. Right Async: Γ; Ω ⊢ A ⇑ ⇒− t | ∆ ⇐⇒ Γ, Ω ⊢ A ⇒− t | ∆

2. Left Async: Γ; Ω ⇑ ⊢ B ⇒− t | ∆ ⇐⇒ Γ, Ω ⊢ B ⇒− t | ∆

3. Right Sync: Γ; ∅ ⊢ A ⇓ ⇒− t | ∆ ⇐⇒ Γ ⊢ A ⇒− t | ∆

4. Left Sync: Γ; x : A ⇓ ⊢ B ⇒− t | ∆ ⇐⇒ Γ, x : A ⊢ B ⇒− t | ∆

5. Focus Right: Γ; ∅ ⇑ ⊢ B ⇒− t | ∆ ⇐⇒ Γ ⊢ B ⇒− t | ∆

6. Focus Left: Γ, x : A; ∅ ⇑ ⊢ C ⇒− t | ∆ ⇐⇒ Γ, x : A ⊢ B ⇒− t | ∆

i.e. t has type A under context ∆, which contains assumptions with
grades reflecting their use in t.

Proof. 1. Case 1. Right Async:

a) Case⊸−
R

In the case of the right asynchronous rule for abstraction
introduction, the synthesis rule has the form:

Γ; Ω, x : A ⊢ C ⇑ ⇒− t | ∆ x ̸∈ |∆|
Γ; Ω ⊢ A⊸ B ⇑ ⇒− λx.t | ∆

⊸−
R

By induction on the first premise, we have that:

(Γ, Ω), x : A ⊢ A ⇒− t | ∆ (ih)
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from case 1 of the lemma. From which, we can construct
the following instantiation of the⊸−

R synthesis rule in the
non-focusing calculus:

(Γ, Ω), x : A ⊢ B ⇒− t | ∆ x ̸∈ |∆|
Γ, Ω ⊢ A⊸ B ⇒− λx.t | ∆

⊸−
R

b) Case ⇑−
R

In the case of the right asynchronous rule for transition to
a left asynchronous judgement, the synthesis rule has the
form:

Γ; Ω ⇑ ⊢ C ⇒− t | ∆ C not Right Async

Γ; Ω ⊢ C ⇑ ⇒− t | ∆
⇑−

R

By induction on the first premise, we have that:

Γ, Ω ⊢ C ⇒− t | ∆

from case 2 of the lemma.

2. Case 2. Left Async:

a) Case ⊗−
L

In the case of the left asynchronous rule for pair elimination,
the synthesis rule has the form:

Γ; Ω, x1 : A, x2 : B ⇑ ⊢ C ⇒− t2 | ∆
x1 ̸∈ |∆| x2 ̸∈ |∆|

Γ; Ω, x3 : A ⊗ B ⇑ ⊢ C ⇒− let (x1, x2) = x3 in t2 | ∆
⊗−

L

By induction on the first premise, we have that:

(Γ, Ω), x1 : A, x2 : B ⊢ C ⇒− t | ∆ (ih)

from From which, we can construct the following instantia-
tion of the ⊗−

R synthesis rule in the non-focusing calculus:

(Γ, Ω), x1 : A, x2 : B ⊢ C ⇒− t | ∆
x1 ̸∈ |∆| x2 ̸∈ |∆|

Γ, (Ω, x3 : A ⊗ B) ⊢ C ⇒− let (x1, x2) = x3 in t | ∆2
⊗−

L

b) Case ⊕−
L

In the case of the left asynchronous rule for sum elimination,
the synthesis rule has the form:

Γ; Ω, x2 : A ⇑ ⊢ C ⇒− t1 | ∆1 Γ; Ω, x3 : B ⇑ ⊢ C ⇒− t2 | ∆2 x2 ̸∈ |∆1| x3 ̸∈ |∆2|
Γ; Ω, x1 : A ⊕ B ⇑ ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊓ ∆2

⊕−
L
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By induction on the first and second premises, we have
that:

(Γ, Ω), x2 : A ⊢ C ⇒− t1 | ∆1 (ih1)

(Γ, Ω), x3 : B ⊢ C ⇒− t2 | ∆2 (ih2)

from case 2 of the lemma. From which, we can construct
the following instantiation of the ⊕−

L synthesis rule in the
non-focusing calculus:

(Γ, Ω), x2 : A ⊢ C ⇒− t1 | ∆1 (Γ, Ω), x3 : B ⊢ C ⇒− t2 | ∆2 x2 ̸∈ |∆1| x3 ̸∈ |∆2|
Γ, (Ω, x1 : A ⊕ B) ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2∆1 ⊓ ∆2

⊕−
L

c) Case Unit−L
In the case of the left asynchronous rule for unit elimination,
the synthesis rule has the form:

Γ; ∅ ⊢ C ⇒− t | ∆

Γ; x : Unit ⊢ C ⇒− let () = x in t | ∆
Unit−L

By induction on the premise, we have that:

Γ ⊢ C ⇒− t | ∆ (ih)

from case 2 of the lemma. From which, we can construct
the following instantiation of the Unit−L synthesis rule in the
non-focusing calculus matching the conclusion:

Γ ⊢ C ⇒− t | ∆

Γ, x : Unit ⊢ C ⇒− let () = x in t | ∆
Unit−L

d) Case □−
L

In the case of the left asynchronous rule for graded modality
elimination, the synthesis rule has the form:

Γ; Ω, x2 :r A ⇑ ⊢ B ⇒− t | ∆, x2 :s A 0 ⊑ s

Γ; Ω, x1 : □rA ⇑ ⊢ B ⇒− let [x2] = x1 in t | ∆
□−

L

By induction on the first premise, we have that:

(Γ, Ω), x2 :r A ⊢ B ⇒− t | ∆, x2 :s A (ih)

from case 2 of the lemma. From which, we can construct
the following instantiation of the □−

L synthesis rule in the
non-focusing calculus:

(Γ, Ω), x2 :r A ⊢ B ⇒− t | ∆, x2 :s A 0 ⊑ s

Γ, (Ω, x1 : □rA) ⊢ B ⇒− let [x2] = x1 in t | ∆
□−

L
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e) Case ⇑−
L

In the case of the left asynchronous rule for transitioning an
assumption from the focusing context Ω to the non-focusing
context Γ, the synthesis rule has the form:

Γ, x : A; Ω ⇑ ⊢ C ⇒− t | ∆ A not Left Async

Γ; Ω, x : A ⇑ ⊢ C ⇒− t | ∆
⇑−

L

By induction on the first premise, we have that:

Γ, x : A, Ω ⊢ C ⇒− t | ∆ (ih)

from case 2 of the lemma.

3. Case 3. Right Sync:

a) Case ⊗−
R

In the case of the right synchronous rule for pair introduc-
tion, the synthesis rule has the form:

Γ; ∅ ⊢ A ⇓ ⇒− t1 | ∆1 ∆1; ∅ ⊢ B ⇓ ⇒− t2 | ∆2

Γ; ∅ ⊢ A ⊗ B ⇓ ⇒− (t1, t2) | ∆2
⊗−

R

By induction on the first and second premises, we have
that:

Γ ⊢ A ⇒− t1 | ∆1 (ih1)

∆1 ⊢ B ⇒− t2 | ∆2 (ih2)

from case 3 of the lemma. From which, we can construct
the following instantiation of the ⊗−

R synthesis rule in the
non-focusing calculus:

Γ ⊢ A ⇒− t1 | ∆1 ∆1 ⊢ B ⇒− t2 | ∆2

Γ ⊢ A ⊗ B ⇒− (t1, t2) | ∆2
⊗−

R

b) Case ⊕1−R and ⊕2−R
In the case of the right synchronous rules for sum introduc-
tion, the synthesis rules has the form:

Γ; ∅ ⊢ A ⇓ ⇒− t | ∆

Γ; ∅ ⊢ A ⊕ B ⇓ ⇒− inl t | ∆
⊕1+L

Γ; ∅ ⊢ B ⇓ ⇒− t | ∆

Γ; ∅ ⊢ A ⊕ B ⇓ ⇒− inr t | ∆
⊕2+L

By induction on the premises of these rules, we have that:

Γ ⊢ A ⇒− t | ∆ (ih1)
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Γ ⊢ B ⇒− t | ∆ (ih2)

from case 3 of the lemma. From which, we can construct
the following instantiations of the ⊕1−R and ⊕2−R rule in the
non-focusing calculus, respectively:

Γ ⊢ A ⇒− t | ∆

Γ ⊢ A ⊕ B ⇒− inl t | ∆
⊕1−R

Γ ⊢ B ⇒− t | ∆

Γ ⊢ A ⊕ B ⇒− inr t | ∆
⊕2−R

c) Case Unit−R
In the case of the right synchronous rule for unit introduc-
tion, the synthesis rule has the form:

Γ; ∅ ⊢ Unit ⇓ ⇒− () | Γ
Unit−R

From which, we can construct the following instantiation
of the Unit−R synthesis rule in the non-focusing calculus:

Γ, Ω ⊢ Unit ⇒− () | Γ
Unit−R

d) Case □−
R

In the case of the right synchronous rule for graded modal-
ity introduction, the synthesis rule has the form:

Γ; ∅ ⊢ A ⇓ ⇒− t | ∆

Γ; ∅ ⊢ □rA ⇓ ⇒− t | Γ − r · (Γ − ∆)
□−

R

By induction on the premise, we have that:

Γ ⊢ A ⇒− t | ∆ (ih)

from case 1 of the lemma. From which, we can construct
the following instantiation of the □−

R synthesis rule in the
non-focusing calculus:

Γ ⊢ A ⇒− t | ∆

Γ ⊢ □rA ⇒− [t] | Γ − r · (Γ − ∆)
□−

R

e) Case ⇓−
R

In the case of the right synchronous rule for transitioning
back to an asynchronous judgement, the synthesis rule has
the form:

Γ; ∅ ⊢ A ⇑ ⇒− t | ∆

Γ; ∅ ⊢ A ⇓ ⇒− t | ∆
⇓−

R
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By induction on the premise, we have that:

Γ ⊢ A ⇒− t | ∆ (ih)

from case 1 of the lemma.

4. Case 4. Left Sync

a) Case⊸−
L

In the case of the left synchronous rule for application, the
synthesis rule has the form:

Γ; x2 : B ⇓ ⊢ C ⇒− t1 | ∆1 x2 ̸∈ |∆1| ∆1; ∅ ⊢ A ⇓ ⇒− t2 | ∆2

Γ; x1 : A⊸ B ⇓ ⊢ C ⇒− [(x1 t2)/x2]t1 | ∆2
⊸−

L

By induction on the first premise, we have that:

Γ, x2 : B ⊢ C ⇒− t1 | ∆1 (ih1)

from case 4 of the lemma. By induction on the third premise,
we have that:

∆1 ⊢ A ⇒− t2 | ∆2 (ih2)

from case 3 of the lemma. From which, we can construct
the following instantiation of the⊸−

L synthesis rule in the
non-focusing calculus:

Γ, x2 : B ⊢ C ⇒− t1 | ∆1 x2 ̸∈ |∆1| ∆1 ⊢ A ⇒− t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒− [(x1 t2)/x2]t1 | ∆2
⊸−

L

b) Case der
−

In the case of the left asynchronous rule for dereliction, the
synthesis rule has the form:

Γ; x :s A, y : A ⇓ ⊢ B ⇒− t | ∆, x :s′ A
y ̸∈ |∆| ∃s. r ⊒ s + 1

Γ; x :r A ⇓ ⊢ B ⇒− [x/y]t | ∆, x :s′ A
der

−

By induction on the first premise, we have that:

Γ, x :s A, y : A ⊢ B ⇒− t | ∆, x :s′ A (ih)

from case 4 of the lemma. From which, we can construct
the following instantiation of the der

−synthesis rule in the
non-focusing calculus:

Γ, x :s A, y : A ⊢ B ⇒− t | ∆, x :s′ A
y ̸∈ |∆| ∃s. r ⊒ s + 1

Γ, x :r A ⊢ B ⇒− [x/y]t | ∆, x :s′ A
der

−
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c) Case LinVar
−

In the case of the left synchronous rule for linear variable
synthesis, the synthesis rule has the form:

Γ; x : A ⇓ ⊢ A ⇒− x | Γ
LinVar

−

From which, we can construct the following instantiation
of the LinVar

− synthesis rule in the non-focusing calculus:

Γ, x : A ⊢ A ⇒− x | Γ
LinVar

−

d) Case GrVar
−

In the case of the left synchronous rule for graded variable
synthesis, the synthesis rule has the form:

∃s. r ⊑ s + 1

Γ; x :r A ⇓ ⊢ A ⇒− x | Γ, x :s A
GrVar

−

From which, we can construct the following instantiation
of the GrVar

− synthesis rule in the non-focusing calculus:

∃s. r ⊑ s + 1

Γ, x :r A ⊢ A ⇒− x | Γ, x :s A
GrVar

−

e) Case ⇓−
L

In the case of the left synchronous rule for transitioning
back to an asynchronous judgement, the synthesis rule has
the form:

Γ; x : A ⇑ ⊢ C ⇒− t | ∆
A not atomic and not Left Sync

Γ; x : A ⇓ ⊢ C ⇒− t | ∆
⇓−

L

By induction on the premise, we have that:

Γ, x : A ⊢ C ⇒− t | ∆ (ih)

from case 2 of the lemma.

5. Case 5. Focus Right: focus−R
In the case of the focusing rule for transitioning from a left
asynchronous judgement to a right synchronous judgement, the
synthesis rule has the form:

Γ; ∅ ⊢ C ⇓ ⇒− t | ∆ C not atomic

Γ; ∅ ⇑ ⊢ C ⇒− t | ∆
focus

−
R

By induction on the first premise, we have that:

Γ ⊢ C ⇒− t | ∆ (ih)

from case 2 of the lemma.
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6. Case 6. Focus Left focus−L
In the case of the focusing rule for transitioning from a left
asynchronous judgement to a left synchronous judgement, the
synthesis rule has the form:

Γ; x : A ⇓ ⊢ C ⇒− t | ∆

Γ, x : A; ∅ ⇑ ⊢ C ⇒− t | ∆
focus

−
L

By induction on the first premise, we have that:

Γ, x : A ⊢ C ⇒− t | ∆ (ih)

from case 2 of the lemma.

b.1.5 Soundness of Focusing for the Additive Linear Graded Synthesis
Calculus

Lemma 3.5.2 (Soundness of focusing for additive synthesis). For all
contexts Γ, Ω and types A, B then:

1. Right Async: Γ; Ω ⊢ A ⇑ ⇒+ t | ∆ ⇐⇒ Γ, Ω ⊢ A ⇒+ t | ∆

2. Left Async: Γ; Ω ⇑ ⊢ A ⇒+ t | ∆ ⇐⇒ Γ, Ω ⊢ B ⇒+ t | ∆

3. Right Sync: Γ; ∅ ⊢ A ⇓ ⇒+ t | ∆ ⇐⇒ Γ ⊢ A ⇒+ t | ∆

4. Left Sync: Γ; x : A ⇓ ⊢ B ⇒+ t | ∆ ⇐⇒ Γ, x : A ⊢ B ⇒+ t | ∆

5. Focus Right: Γ; ∅ ⇑ ⊢ A ⇒+ t | ∆ ⇐⇒ Γ ⊢ B ⇒+ t | ∆

6. Focus Left: Γ, x : A; ∅ ⇑ ⊢ B ⇑ ⇒+ t | ∆ ⇐⇒ Γ, x : A | B ⇒+ t | ∆

i.e. t has type A under context ∆, which contains assumptions with
grades reflecting their use in t.

Proof. 1. Case 1. Right Async:

a) Case⊸+
R

In the case of the right asynchronous rule for abstraction
introduction, the synthesis rule has the form:

Γ; Ω, x : A ⊢ B ⇑ ⇒ t | ∆, x : A

Γ; Ω ⊢ A⊸ B ⇑ ⇒ λx.t | ∆
⊸+

R

By induction on the premise, we have that:

(Γ, Ω), x : A ⊢ B ⇒+ t | ∆, x : A (ih)

from case 1 of the lemma. From which, we can construct
the following instantiation of the⊸+

R synthesis rule in the
non-focusing calculus:

(Γ, Ω), x : A ⊢ B ⇒+ t | ∆, x : A

Γ, Ω ⊢ A⊸ B ⇒+ λx.t | ∆
⊸+

R
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b) Case ⇑+
R In the case of the right asynchronous rule for tran-

sition to a left asynchronous judgement, the synthesis rule
has the form:

Γ; Ω ⇑ ⊢ C ⇒ t | ∆ C not Right Async

Γ; Ω ⊢ C ⇑ ⇒ t | ∆
⇑+

R

By induction on the first premise, we have that:

Γ, Ω ⊢ C ⇒+ t | ∆

from case 2 of the lemma.

2. Case 2. Left Async:

a) Case ⊗+
L

In the case of the left asynchronous rule for pair elimination,
the synthesis rule has the form:

Γ; Ω, x1 : A, x2 : B ⊢ C ⇒ t2 | ∆, x1 : A, x2 : B

Γ; Ω, x3 : A ⊗ B ⊢ C ⇒ let (x1, x2) = x3 in t2 | ∆, x3 : A ⊗ B
⊗+

L

By induction on the premise, we have that:

(Γ, Ω), x1 : A, x2 : B ⊢ C ⇒+ t2 | ∆, x1 : A, x2 : B (ih)

from case 2 of the lemma. From which, we can construct
the following instantiation of the ⊗+

L synthesis rule in the
non-focusing calculus:

(Γ, Ω), x1 : A, x2 : B ⊢ C ⇒+ t2 | ∆, x1 : A, x2 : B

Γ, (Ω, x3 : A ⊗ B) ⊢ C ⇒+ let (x1, x2) = x3 in t2 | ∆, x3 : A ⊗ B
⊗+

L

b) Case ⊕+
L

In the case of the left asynchronous rule for sum elimination,
the synthesis rule has the form:

Γ; Ω, x2 : A ⇑ ⊢ C ⇒ t1 | ∆1, x2 : A
Γ; Ω, x3 : B ⇑ ⊢ C ⇒ t2 | ∆2, x3 : B

Γ; Ω, x1 : A ⊕ B ⇑ ⊢ C ⇒− case x1 of inl x2 → t1; inr x3 → t2 | ∆1 ⊔ ∆2, x1 : A ⊕ B
⊕+

L

By induction on the premises, we have that:

(Γ, Ω), x2 : A ⊢ C ⇒+ t1 | ∆1, x2 : A (ih1)

(Γ, Ω), x3 : B ⊢ C ⇒+ t2 | ∆2, x3 : B (ih2)

from case 2 of the lemma. From which, we can construct
the following instantiation of the ⊕+

L synthesis rule in the
non-focusing calculus:

(Γ, Ω), x2 : A ⊢ C ⇒+ t1 | ∆1, x2 : A
(Γ, Ω), x3 : B ⊢ C ⇒+ t2 | ∆2, x3 : B

Γ, (Ω, x1 : A ⊕ B) ⊢ C ⇒+ case x1 of inl x2 → t1; inr x3 → t2 | (∆1 ⊔ ∆2), x1 : A ⊕ B
⊕+

L
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c) Case Unit+L
In the case of the left asynchronous rule for unit elimination,
the synthesis rule has the form:

Γ; ∅ ⊢ C ⇒ t | ∆

Γ; x : Unit ⊢ C ⇒ let () = x in t | ∆, x : Unit
Unit+L

By induction on the premise, we have that:

Γ ⊢ C ⇒+ t | ∆ (ih)

from case 2 of the lemma. From which, we can construct
the following instantiation of the Unit+L synthesis rule in the
non-focusing calculus:

Γ ⊢ C ⇒+ t | ∆

Γ, x : Unit ⊢ C ⇒+ let () = x in t | ∆, x : Unit
Unit+L

d) Case □+
L

In the case of the left asynchronous rule for graded modality
elimination, the synthesis rule has the form:

Γ; Ω, x2 :r A ⇑ ⊢ B ⇒ t | ∆
if x2 :s A ∈ ∆ then s ⊑ r else 0 ⊑ r

Γ; Ω, x1 : □rA ⊢ B ⇒ let [x2] = x1 in t | (∆\x2), x1 : □rA
□+

L

By induction on the first premise, we have that:

(Γ, Ω), x2 :r A ⊢ B ⇒+ t | ∆ (ih)

from case 2 of the lemma. From which, we can construct
the following instantiation of the □+

L synthesis rule in the
non-focusing calculus:

(Γ, Ω), x2 :r A ⊢ B ⇒+ t | ∆
if x2 :s A ∈ ∆ then s ⊑ r else 0 ⊑ r

Γ, (Ω, x1 : □rA) ⊢ B ⇒+ let [x2] = x1 in t | (∆\x2), x1 : □rA
□+

L

e) Case ⇑+
L

In the case of the left asynchronous rule for transitioning an
assumption from the focusing context Ω to the non-focusing
context Γ, the synthesis rule has the form:

Γ, x : A; Ω ⇑ ⊢ C ⇒ t | ∆ A not Left Async

Γ; Ω, x : A ⇑ ⊢ C ⇒ t | ∆
⇑+

L

By induction on the first premise, we have that:

Γ, x : A, Ω ⊢ C ⇒+ t | ∆ (ih)

from case 2 of the lemma.
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3. Case 3. Right Sync:

a) Case ⊗+
R

In the case of the right synchronous rule for pair introduc-
tion, the synthesis rule has the form:

Γ; ∅ ⊢ A ⇓ ⇒ t1 | ∆1 Γ; ∅ ⊢ B ⇓ ⇒ t2 | ∆2

Γ; ∅ ⊢ A ⊗ B ⇓ ⇒ (t1, t2) | ∆1 + ∆2
⊗+

R

By induction on the premises, we have that:

Γ ⊢ A ⇒+ t1 | ∆1 (ih1)

Γ ⊢ B ⇒+ t2 | ∆2 (ih2)

from case 3 of the lemma. From which, we can construct
the following instantiation of the ⊗+

R synthesis rule in the
non-focusing calculus:

Γ ⊢ A ⇒+ t1 | ∆1 Γ ⊢ B ⇒+ t2 | ∆2

Γ ⊢ A ⊗ B ⇒+ (t1, t2) | ∆1 + ∆2
⊗+

R

b) Case ⊕1+R and ⊕2+R
In the case of the right synchronous rules for sum introduc-
tion, the synthesis rules have the form:

Γ; ∅ ⊢ A ⇓ ⇒ t | ∆

Γ; ∅ ⊢ A ⊕ B ⇓ ⇒ inl t | ∆
⊕1+L

Γ; ∅ ⊢ B ⇓ ⇒ t | ∆

Γ; ∅ ⊢ A ⊕ B ⇓ ⇒ inr t | ∆
⊕2+L

By induction on the premises of the rules, we have that:

Γ ⊢ A ⇒+ t | ∆ (ih1)

Γ ⊢ B ⇒+ t | ∆ (ih2)

from case 3 of the lemma. From which, we can construct
the following instantiations of the ⊕1+R and ⊕2+R synthesis
rules in the non-focusing calculus, respectively:

Γ ⊢ A ⇒+ t | ∆

Γ ⊢ A ⊕ B ⇒+ inl t | ∆
⊕R1+

Γ ⊢ B ⇒+ t | ∆

Γ ⊢ A ⊕ B ⇒+ inr t | ∆
R⊕R2+
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c) Case Unit+R
In the case of the right synchronous rule for unit introduc-
tion, the synthesis rule has the form:

Γ; ∅ ⊢ Unit ⇒ () | ∅
Unit+R

From which, we can construct the following instantiation
of the Unit+R synthesis rule in the non-focusing calculus:

Γ ⊢ Unit ⇒+ () | ∅
Unit+R

d) Case □+
R

In the case of the right synchronous rule for graded modal-
ity introduction, the synthesis rule has the form:

Γ; ∅ ⊢ A ⇓ ⇒ t | ∆

Γ; ∅ ⊢ □rA ⇓ ⇒ [t] | r ·∆
□+

R

By induction on the premise, we have that:

Γ ⊢ A ⇒+ t | ∆ (ih)

from case 1 of the lemma. From which, we can construct
the following instantiation of the □+

R synthesis rule in the
non-focusing calculus:

Γ ⊢ A ⇒+ t | ∆

Γ ⊢ □rA ⇒+ [t] | r ·∆
□+

R

e) Case ⇓+
R

In the case of the right synchronous rule for transitioning
back to an asynchronous judgement, the synthesis rule has
the form:

Γ; ∅ ⊢ A ⇑ ⇒ t | ∆

Γ; ∅ ⊢ A ⇓ ⇒ t | ∆
⇓+

R

By induction on the premise, we have that:

Γ ⊢ A ⇒+ t | ∆ (ih)

from case 1 of the lemma.

4. Case 4. Left Sync
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a) Case⊸+
L

In the case of the left synchronous rule for application, the
synthesis rule has the form:

Γ; x2 : B ⇓ ⊢ C ⇒ t1 | ∆1, x2 : B Γ; ∅ ⊢ A ⇓ ⇒ t2 | ∆2

Γ; x1 : A⊸ B ⇓ ⊢ C ⇒ [(x1 t2)/x2]t1 | (∆1 + ∆2), x1 : A⊸ B
⊸+

L

By induction on the first premise, we have that:

Γ, x2 : B ⊢ C ⇒+ t1 | ∆1, x2 : B (ih1)

from case 4 of the lemma. By induction on the second
premise, we have that:

Γ ⊢ A ⇒+ t2 | ∆2 (ih2)

from case 3 of the lemma. From which, we can construct
the following instantiation of the⊸+

L synthesis rule in the
non-focusing calculus:

Γ, x2 : B ⊢ C ⇒+ t1 | ∆1, x2 : B Γ ⊢ A ⇒+ t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒+ [(x1 t2)/x2]t1 | (∆1 + ∆2), x1 : A⊸ B
⊸+

L

b) Case der
+

In the case of the left asynchronous rule for dereliction, the
synthesis rule has the form:

Γ; x :s A, y : A ⇓ ⊢ B ⇒ t | ∆, y : A

Γ; x :s A ⇓ ⊢ B ⇒ [x/y]t | ∆ + x :1 A
der

+

By induction on the premise, we have that:

Γ, x :s A, y : A ⊢ B ⇒+ t | ∆, y : A (ih)

from case 4 of the lemma. From which, we can construct
the following instantiation of the der

+ synthesis rule in the
non-focusing calculus:

Γ, x :s A, y : A ⊢ B ⇒+ t | ∆, y : A

Γ, x :s A ⊢ B ⇒+ [x/y]t | ∆ + x :1 A
der

+

c) Case LinVar
+

In the case of the left synchronous rule for linear variable
synthesis, the synthesis rule has the form:

Γ; x : A ⊢ A ⇒ x | x : A
LinVar

+

From which, we can construct the following instantiation
of the LinVar

+ in the non-focusing calculus:

Γ, x : A ⊢ A ⇒+ x | x : A
LinVar

+
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d) Case GrVar
+

In the case of the left synchronous rule for graded variable
synthesis, the synthesis rule has the form:

Γ; x :r A ⊢ A ⇒ x | x :1 A
GrVar

+

From which, we can construct the following instantiation
of the GrVar

+ synthesis rule in the non-focusing calculus:

Γ, x :r A ⊢ A ⇒+ x | x :1 A
GrVar

+

e) Case ⇓+
L

In the case of the left synchronous rule for transitioning
back to an asynchronous judgement, the synthesis rule has
the form:

Γ; x : A ⇑ ⊢ C ⇒ t | ∆
A not atomic and not Left Sync

Γ; x : A ⇓ ⊢ C ⇒ t | ∆
⇓+

L

By induction on the premise, we have that:

Γ, x : A ⊢ C ⇒+ t | ∆ (ih)

from case 2 of the lemma.

5. Case 5. Focus Right: focus+R
In the case of the focusing rule for transitioning from a left
asynchronous judgement to a right synchronous judgement, the
synthesis rule has the form:

Γ; ∅ ⊢ C ⇓ ⇒ t | ∆ C not atomic

Γ; ∅ ⇑ ⊢ C ⇒ t | ∆
focus

+
R

By induction on the first premise, we have that:

Γ ⊢ C ⇒+ t | ∆ (ih)

from case 2 of the lemma.

6. Case 6. Focus Left: focus+L
In the case of the focusing rule for transitioning from a left
asynchronous judgement to a left synchronous judgement, the
synthesis rule has the form:

Γ; x : A ⇓ ⊢ C ⇒ t | ∆

Γ, x : A; ∅ ⇑ ⊢ C ⇒ t | ∆
focus

+
L

By induction on the first premise, we have that:

Γ, x : A ⊢ C ⇒+ t | ∆ (ih)

from case 2 of the lemma.



B.1 proofs for the linear-base calculi 196

b.1.6 Soundness of Focusing for the Additive Pruning Linear Graded Syn-
thesis Calculus

Lemma 3.5.3 (Soundness of focusing for additive pruning synthesis).
For all contexts Γ, Ω and types A, B then:

1. Right Async: Γ; Ω ⊢ A ⇑ ⇒± t | ∆ ⇐⇒ Γ, Ω ⊢ A ⇒± t | ∆

2. Left Async: Γ; Ω ⇑ ⊢ A ⇒± t | ∆ ⇐⇒ Γ, Ω ⊢ B ⇒± t | ∆

3. Right Sync: Γ; ∅ ⊢ A ⇓ ⇒± t | ∆ ⇐⇒ Γ ⊢ A ⇒± t | ∆

4. Left Sync: Γ; x : A ⇓ ⊢ B ⇒± t | ∆ ⇐⇒ Γ, x : A ⊢ B ⇒± t | ∆

5. Focus Right: Γ; ∅ ⇑ ⊢ A ⇒± t | ∆ ⇐⇒ Γ ⊢ B ⇒± t | ∆

6. Focus Left: Γ, x : A; ∅ ⇑ ⊢ B ⇑ ⇒± t | ∆ ⇐⇒ Γ, x : A | B ⇒± t | ∆

i.e. t has type A under context ∆, which contains assumptions with
grades reflecting their use in t.

Proof. 1. Case: 1. Right Async: The proofs for right asynchronous
rules are equivalent to those of lemma (3.5.2)

2. Case 2. Left Async: The proofs for left asynchronous rules are
equivalent to those of lemma (3.5.2)

3. Case 3. Right Sync: The proofs for right synchronous rules are
equivalent to those of lemma (3.5.2), except for the case of the
⊗±

R rule:

a) Case ⊗±
R

In the case of the right synchronous rule for pair introduc-
tion, the synthesis rule has the form:

Γ; ∅ ⊢ A ⇓ ⇒± t1 | ∆1 Γ − ∆1 ⊢ B ⇓ ⇒± t2 | ∆2

Γ; ∅ ⊢ A ⊗ B ⇓ ⇒± (t1, t2) | ∆1 + ∆2
⊗±

R

By induction on the premises, we have that:

Γ ⊢ A ⇒+ t1 | ∆1 (ih1)

Γ − ∆1 ⊢ B ⇒+ t2 | ∆2 (ih2)

from case 3 of the lemma. From which, we can construct
the following instantiation of the ⊗±

R synthesis rule in the
non-focusing calculus:

Γ ⊢ A ⇒+ t1 | ∆1 Γ − ∆1 ⊢ B ⇒+ t2 | ∆2

Γ ⊢ A ⊗ B ⇒+ (t1, t2) | ∆1 + ∆2
⊗±

R
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4. Case 4. Left Sync: The proofs for left synchronous rules are
equivalent to those of lemma (3.5.2), except for the case of the
⊸±

L rule:

a) Case⊸±
L

In the case of the left synchronous rule for application, the
synthesis rule has the form:

Γ; x2 : B ⇓ ⊢ C ⇒± t1 | ∆1, x2 : B
Γ − ∆1; ∅ ⊢ A ⇓ ⇒± t2 | ∆2

Γ; x1 : A⊸ B ⇓ ⊢ C ⇒± [(x1 t2)/x2] | (∆1 + ∆2), x1 : A⊸ B
⊸±

L

By induction on the first premise, we have that:

Γ, x2 : B ⊢ C ⇒+ t1 | ∆1, x2 : B (ih1)

from case 4 of the lemma. By induction on the second
premise, we have that:

Γ ⊢ A ⇒+ t2 | ∆2 (ih2)

from case 3 of the lemma. From which, we can construct
the following instantiation of the⊸±

L synthesis rule in the
non-focusing calculus:

Γ, x2 : B ⊢ C ⇒+ t1 | ∆1, x2 : B Γ − ∆1 ⊢ A ⇒+ t2 | ∆2

Γ, x1 : A⊸ B ⊢ C ⇒+ [(x1 t2)/x2]t1 | (∆1 + ∆2), x1 : A⊸ B
⊸±

L

5. Case 5. Right Focus: focus+R - The proof for right focusing rule is
equivalent to that of lemma (3.5.2)

6. Case 6. Left Focus: focus+L - The proof for left focusing rule is
equivalent to that of lemma (3.5.2)

b.2 proofs for the deriving mechanism

This section contains the proofs relating to Chapter 5. We begin by
presenting a typed equational theory for use in the proofs that push and
pull are the inverse of each other (Section B.2.1). The type soundness
proofs of push and pull then follow in Section B.2.3, followed by the
aforementioned inverse proofs in Section B.2.4.
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b.2.1 Typed Equational Theory

Figure B.1 defines an equational theory for the linear base Granule
typing calculus used in Chapter 5. The equational theory is typed, and
we provide the typed forms of the rules also. For those rules which are
type restricted, we include the full typed-equality judgment here. The
type-ability of these equations relies on previous work on the Granule
language which proves that pattern matching and substitution are
well typed Orchard et al. [2019].

β : (λx.t2) t1 ≡ t2[t1/x]

η : λx.t x ≡ t (x#t)

βLet : letrec x = t1 in t2 ≡ t2[letrec x = t1 in t1/x]

DistLet : f (letrec x = t1 in t2) ≡ letrec x = t1 in (f t2)

βCase : case t of pi → ti ≡ (t▷ pj)tj (minimal(j))

ηCase : case t1 of pi → [pi/z]t2 ≡ [t1/z]t2

AssocCase : case (case t of pi → ti) of p′i → t′i

≡ case t of pi → (case ti of p′i → t′i)

DistCase : f (case t of pi → ti) ≡ case t of pi → (f ti)

Assoc□ : case [case t of pi → ti] of [p′i] → t′i

≡ case [t] of [pi] → case [ti] of [p′i] → t′i (lin(pi))

Figure B.1: Equational theory for linear base Granule

The β and η rules follow the standard rules from the λ-calculus,
where # is a freshness predicate, denoting that variable x does not
appear inside term t.

For recursive letrec bindings, the βletrec rule substitutes any occur-
rence of the bound variable x in t2 with letrec x = t1 in t1, ensuring
that recursive uses of x inside t1 can be substituted with t1 through
subsequent βletrec reduction. The LetRecDistrib rule allows distribu-
tivity of functions over letrec expressions, stating that if a function f
can be applied to the entire letrec expression, then this is equivalent
to applying f to just the body term t2.

Term elimination is via case, requiring rules for both β- and η-
equality on case expressions, as well as rules for associativity and
distributivity. In βcase, a term t is matched against a pattern pj in
the context of the term tj through the use of the partial function
(t ▷ pj)tj = t′ which may substitute terms bound in pj into tj to
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yield t′ if the match is successful. This partial function is defined
inductively:

(t▷ _)t′ = t′
▷−

(t▷ x)t′ = [t/x]t′
▷var

(t▷ p)t′ = t′′

([t]▷ [p])t′ = t′′
▷□

(ti▷ pi)t′i = t′i+1

(C t1...tn ▷ C p1 ... pn)t′1 = t′n+1
▷C

As a predicate to the βcase rule, we require that j be minimal, i.e. the
first pattern pj in p1...pn for which (t ▷ pj)tj = t′ is defined. Rule ηcase

states that if all branches of the case expression share a common term
t2 which differs between branches only in the occurrences of terms
that match the pattern used, then we can substitute t1 for the pattern
inside t2.

Associativity of case expressions is provided by the CaseAssoc rule.
This rule allows us to restructure nested case expressions such that the
output terms ti of the inner case may be matched against the patterns
of the outer case, to achieve the same resulting output terms t′i. The
[CaseAssoc] rule provides a graded alternative to the CaseAssoc rule,
where the nested case expression is graded, provided that the patterns
p′i of the outer case expression are also graded. Notably, this rule
only holds when the patterns of the inner case expression are linear
(i.e., variable or constant) so that there are no nested box patterns,
represented via the lin(pi) predicate. As with letrec, distributivity of
functions over a case expression is given by CaseDistrib.

Lastly generalisation of an arbitrary boxed pattern to a variable
is permitted through the CaseGen rule. Here, a boxed pattern [pi]

and the output term of the case may be converted to a variable if the
output term is equivalent to the pattern inside the box. The term t
being matched against must therefore have a grade approximatable
by 1, as witnessed by the predicate 1⊑ r in the typing derivation.

In AssocCase the predicate lin(p) classifies those patterns which
are linear, which are those which are variables or constructor patterns
only.

b.2.1.1 Derived Rules

Proposition B.2.1 (‘Case push’ property).

Γ ⊢ t : A r ⊢ pi : A ▷ ∆i Γ′, ∆i ⊢ ti : B

s · r · Γ + s · Γ′ ⊢ [case t of [pi] → ti] ≡ case [t] of [pi] → [ti] : □sB
Push

Proof. Applying βcase and congruence over promotion, to the left-hand
side of the case push equation yields:

[case t of [pi] → ti] = [(t▷ pj)tj]



B.2 proofs for the deriving mechanism 200

Γ1, x : A ⊢ t2 : B Γ2 ⊢ t1 : A
Γ1 + Γ2 ⊢ (λx.t2) t1 ≡ [t1/x]t2 : B

β

Γ ⊢ t : A⊸ B [x#t]
Γ ⊢ λx.t x ≡ t : A⊸ B

η

Γ1, x : A ⊢ t1 : A Γ2, x : A ⊢ t2 : B
Γ1 + Γ2 ⊢ letrec x = t1 in t2 ≡ [letrec x = t1 in t1/x]t2 : B

βLet

Γ1, x : A ⊢ t1 : A Γ2 ⊢ t2 : B Γ3 ⊢ f : B⊸W
Γ1 + Γ2 + Γ3 ⊢ f (letrec x = t1 in t2) ≡ letrec x = t1 in (f t2) : W

DistLet

Γ1 ⊢ t : A − ⊢ pi : A ▷ ∆i

Γ2, ∆i ⊢ ti : B
Γ1 + Γ2 ⊢ case t of pi → ti ≡ (t▷ pj)tj : B

βCase

Γ1 ⊢ t1 : A − ⊢ pi : A ▷ ∆i

Γ2, z : A ⊢ t2 : B

Γ1 + Γ2 ⊢ case t1 of pi → [pi/z]t2 ≡ [t1/z]t2 : B
ηCase

Γ ⊢ t : □rA r ⊢ pi : A ▷ ∆i ∆i ⊢ pi : A 1⊑ r

Γ ⊢ case t of [pi] → pi ≡ case t of [x] → x : A
GenCase

Γ ⊢ t : A − ⊢ pi : A ▷ ∆i Γ′, ∆′
i ⊢ ti : B − ⊢ p′i : B ▷ ∆′

i Γ′′, ∆′
i ⊢ t′i : W

Γ + Γ′ + Γ′′ ⊢ case (case t of pi → ti) of p′i → t′i ≡ case t of pi → (case ti of p′i → t′i) : W
AssocCase

Γ ⊢ t : A − ⊢ pi : A ▷ ∆i Γ′, ∆′
i ⊢ ti : B

r ⊢ p′i : B ▷ ∆′
i Γ′′, ∆′

i ⊢ t′i : W lin(p)

r · (Γ + Γ′) + Γ′′ ⊢ case [case t of pi → ti] of [p′i ] → t′i ≡ case [t] of [pi] → case [ti] of [p′i ] → t′i : W
Assoc□

Γ1 ⊢ t : A − ⊢ pi : A ▷ ∆i Γ2, ∆i ⊢ ti : B Γ3 ⊢ f : B⊸W

Γ1 + Γ2 + Γ3 ⊢ f (case t of pi → ti) ≡ case t of pi → (f ti) : W
DistCase

Figure B.2: Typed equational theory for linear base Granule
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for the smallest j. Applying βcase to the right-hand side of the case
push equation yields:

case [t] of [pi] → [ti] = ([t]▷ [pi])[tj]

for the same smallest j (since the patterns pi are the same).
By patSemunbox, then we have the derivation of pattern matching:

(t▷ pi)[tj]= t′′

([t]▷ [pi])[tj]= t′′
patSemunbox

therefore case [t] of [pi] → [ti] = ([t]▷ [pi])[tj] = (t▷ pi)[tj].
Then by Proposition B.2.2 (below), (t▷ pi)[tj] = [(t▷ pj)tj], yielding

case push.

Proposition B.2.2 (Pattern matching distributes with promotion). For
all t, p, t′ then:

(t▷ p)[t′] = [(t▷ p)t′]

Proof. By induction on syntactic pattern matching:

• (wild) (t▷ _)[t′] = [t′] and [(t▷ _)t′] = [t′].

• (var) (t▷ x)[t′] = [t/x][t′] = [[t/x]t′] and [(t▷ x)t′] = [[t/x]t′]

• (unbox)

(t▷ p)t′= t′′

([t]▷ [p])t′= t′′
patSemunbox

By induction then (t▷p)[t′] = [(t▷p)t′] therefore ([t]▷ [p])[t′] =
[([t]▷ [p])t′] since this rule preserves its result in the conclusion.

• (constr)

(ti▷ pi)ti= ti+1

(C t0 .. tn▷ C p0 .. pn)t0= tn+1
patSemconstr

By induction, similarly to the above case, but across multiple
terms.
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b.2.2 Functor Derivation

Definition B.2.1 (Deriving functor). Given a function f : α⊸ β then
there is a function JFαKfmap( f ) : F α⊸ F β derived from the type Fα

as follows:

JUnitKΣ
fmap( f ) z = case z of () → ()

JαKΣ
fmap( f ) z = f z

JXKΣ
fmap( f ) z = (Σ(X) f ) z

J□r AKfmap( f ) z = case z of [y] → [JAKfmap( f ) y]

JA ⊕ BKΣ
fmap( f ) z = case z of inl x → inl JAKΣ

fmap( f ) x;

inr y → inr JBKΣ
fmap( f ) y

JA ⊗ BKΣ
fmap( f ) z = case z of (x, y) → (JAKΣ

fmap( f ) x, JBKΣ
fmap( f ) y)

JA⊸ BKΣ
fmap( f ) z = λx.JBKΣ

fmap( f ) (z x)

JµX.AKΣ
fmap( f ) z = letrec g = JAKΣ,X 7→g:(α⊸β)⊸µX.A⊸(µX.A)

−−−→
[α/β]

fmap ( f ) in g z

b.2.3 Type Soundness of push and pull

The following shows that the calculation of push and pull distributive
laws is well-typed.

Proposition 1 (Type soundness of JF αiKΣ
push). JFαiKΣ

push : □rFαi →
F(□rαi)

Proof.

• JUnitKΣ
push : □rUnit → Unit (i.e. F αi = Unit).

∅ ⊢ () : Unit
con

|Unit| = 1

r ⊢ () : Unit ▷ ∅
[pcon]

− ⊢ [()] : Unit ▷ ∅
[pbox]

z : □rUnit ⊢ case z of [()] → () : Unit
case

• JXKΣ
push : □rX → X

−−−−−→
[□rαi/αi] (i.e. F αi = X).

X : □r(µX.A)⊸ (µX.A)
−−−−−→
[□rαi/αi] ∈ Σ

Σ ⊢ Σ(X) : □r(µX.A)⊸ (µX.A)
−−−−−→
[□rαi/αi]

lookup

z : □r(µX.A) ⊢ z : □r(µX.A)
var

Σ, z : □r(µX.A) ⊢ Σ(X) z : (µX.A)
−−−−−→
[□rαi/αi]

app

• JαjKΣ
push : □rj αj → □rj αj (i.e. F αi = α).

z : □rj αj ⊢ z : □rj αj
var
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• JA ⊕ BKΣ
push : □r(A ⊕ B) → (A

−−−−−→
[□rαi/αi] ⊕ B

−−−−−→
[□rαi/αi])

∅ ⊢ JAKΣ
push : □rA⊸ A

−−−−−→
[□rαi/αi]

push

x : A ⊢ x : A
var

x :1 A ⊢ x : A
der

x :r A ⊢ [x] : □rA
Pr

x :r A ⊢ JAKΣ
push([x]) : A

−−−−−→
[□rαi/αi]

app

x :r A ⊢ inr JAKΣ
push([x]) : A

−−−−−→
[□rαi/αi] ⊕ B

−−−−−→
[□rαi/αi]

Con

(B.1)

∅ ⊢ JBKΣ
push : □rB⊸ B

−−−−−→
[□rαi/αi]

push

y : B ⊢ y : B
var

y :1 B ⊢ y : B
der

y :r B ⊢ [y] : □rB
Pr

y :r B ⊢ JBKΣ
push([y]) : B

−−−−−→
[□rαi/αi]

app

y :r B ⊢ inr JBKΣ
push([y]) : A

−−−−−→
[□rαi/αi] ⊕ B

−−−−−→
[□rαi/αi]

Con

(B.2)

r ⊢ x : A ▷ x :r A
[Pvar]

|A ⊕ B| > 1 ⇒ 1⊑ r

r ⊢ inl (x) : A ⊕ B ▷ x :r A
[Pcon]

− ⊢ [inl (x)] : □rA ⊕ B ▷ x :r A
[Pbox]

(B.3)

r ⊢ y : B ▷ y :r B
[Pvar]

|A ⊕ B| > 1 ⇒ 1⊑ r

r ⊢ inr (y) : A ⊕ B ▷ y :r B
[Pcon]

− ⊢ [inr (y)] : □rA ⊕ B ▷ y :r B
[Pbox]

(B.4)

case z of [inl (x)] → inl JAKΣ
push([x]); [inr (y)] → inr JBKΣ

push([y]) (B.5)

(B.1) (B.2) (B.3) (B.4)

z : □r(A ⊕ B) ⊢ (B.5) : A
−−−−−→
[□rαi/αi] ⊕ B

−−−−−→
[□rαi/αi]

Case

• JA ⊗ BKΣ
push : □r(A ⊗ B) → (A

−−−−−→
[□rαi/αi] ⊗ B

−−−−−→
[□rαi/αi])

∅ ⊢ JAKΣ
push : □rA⊸ A

−−−−−→
[□rαi/αi]

push

x : A ⊢ x : A
var

x :1 A ⊢ x : A
der

x :r A ⊢ [x] : □rA
pr

x :r A ⊢ JAKΣ
push([x]) : A

−−−−−→
[□rαi/αi]

app
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(B.6)

∅ ⊢ JBKΣ
push : □rB⊸ B

−−−−−→
[□rαi/αi]

push

y : B ⊢ y : B
var

y :1 B ⊢ y : B
der

y :r B ⊢ [y] : □rB
pr

y :r B ⊢ JBKΣ
push([y]) : B

−−−−−→
[□rαi/αi]

app

(B.7)

(B.6) (B.7)

x :r A, y :r B ⊢ (JAKΣ
push([x]), JBKΣ

push([y])) : A
−−−−−→
[□rαi/αi] ⊗ B

−−−−−→
[□rαi/αi]

Con

(B.8)

r ⊢ x : A ▷ x :r A
[Pvar]

r ⊢ y : B ▷ y :r B
[Pvar]

|A ⊗ B| = 1

r ⊢ (x, y) : A ⊗ B ▷ x :r A, y :r B
[PCon]

− ⊢ [(x, y)] : □rA ⊗ B ▷ x :r A, y :r B
[Pbox]

(B.9)

case z of [(x, y)] → (JAKΣ
push([x]), JBKΣ

push([y])) (B.10)

(B.8) (B.9)

z : □r(A ⊗ B) ⊢ (B.10) : A
−−−−−−→
[□ri αi/αi] ⊗ B

−−−−−−→
[□ri αi/αi]

Case

• JA⊸ BKΣ
push : □r(A⊸ B) → (A

−−−−−→
[□rαi/αi]⊸ B

−−−−−−→
[□ri αi/αi])

f : A⊸ B ⊢ f : A⊸ B
var

f :1 A⊸ B ⊢ f : A⊸ B
der

x : A ⊢ x : A
var

x :1 A ⊢ x : A
der

f :1 A⊸ B, x :1 A ⊢ f x : B
app

f :r A⊸ B, x :dn
1 ri

A ⊢ [f x] : □rB
Pr

(B.11)

∅ ⊢ JBKΣ
push : □rB⊸ B

−−−−−→
[□rαi/αi]

push

(B.11)

f :r A⊸ B, x :dn
1 ri

A ⊢ JBKΣ
push[f x] : B

−−−−−→
[□rαi/αi]

app

(B.12)

nl

1

ri ⊢ x : A ▷ x :dn
1 ri

A

[Pvar]

− ⊢ [x] : □rA ▷ x :dn
1 ri

A
[Pbox]

(B.13)



B.2 proofs for the deriving mechanism 205

∅ ⊢ JAKΣ
pull : A⊸□dn

1 ri
A

pull

y : A ⊢ y : A
var

y : A ⊢ JAKΣ
pull(y) : □dn

1 ri
A

app

(B.12) (B.13)

y : A, f :r A⊸ B ⊢ case JAKΣ
pull(y) of [x] → JBKΣ

push[f x] : B
−−−−−→
[□rαi/αi]

Case

(B.14)

r ⊢ f : (A⊸ B) ▷ f :r A⊸ B
[Pvar]

− ⊢ [f ] : □r(A⊸ B) ▷ f :r A⊸ B
[Pbox]

(B.15)

case z of [f ] → case JAKΣ
pull(y) of [x] → JBKΣ

push[f x] (B.16)

(B.14) (B.15)

z : □r(A⊸ B), y : A ⊢ (B.16) : B
−−−−−→
[□rαi/αi]

Case

z : □r(A⊸ B) ⊢ λy.(B.16) : A
−−−−−→
[□rαi/αi]⊸ B

−−−−−→
[□rαi/αi]

abs

• JµX.AKΣ
push : (µX.□rA) → (µX.A

−−−−−−→
[□ri αi/αi]) (i.e. F αi = µX.A).

Σ, f : µX.□rA⊸ (µX.A
−−−−−→
[□rαi/αi]) ⊢ f : µX.□rA⊸ (µX.A

−−−−−→
[□rαi/αi])

var

(B.17)

(B.17) Σ, z : µX.□rA ⊢ z : µX.□rA
var

Σ, f : µX.□rA⊸ (µX.A
−−−−−→
[□rαi/αi]), z : µX.□rA ⊢ f z : (µX.A

−−−−−→
[□rαi/αi])

app

(B.18)

Σ ⊢ JAKΣ,X 7→ f µX.□rA⊸(µX.A
−−−−−→
[□rαi/αi])

push : µX.□rA⊸ (µX.A
−−−−−→
[□rαi/αi])

push

(B.31)

Σ, z : (µX.□rA) ⊢ letrec f = JAKΣ,X 7→ f µX.□rA⊸(µX.A
−−−−−→
[□rαi/αi])

push in f z : µX.A
−−−−−→
[□rαi/αi]

letrec

Proposition 2 (Type soundness of JF αiKpull). F (□ri αi) → □dn
i=1 ri

(F αi)

Proof.

• JUnitKΣ
pull : Unit → □(

dn
1 ri)

Unit (i.e. F αi = Unit).

∅ ⊢ () : Unit
con

∅ ⊢ [()] : □dn
1 ri

Unit
pr

|Unit = 1|
− ⊢ () : Unit ▷ ∅

Pcon

z : Unit ⊢ case z of () → [()] : □dn
1 ri

Unit
case
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• JXKΣ
pull : X → □(

dn
1 ri)

X (i.e. F αi = X).

X : µX.A
−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A) ∈ Σ

Σ ⊢ Σ(X) : µX.A
−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

lookup

z : (µX.A)
−−−−−−→
[□ri αi/αi] ⊢ z : (µX.A)

−−−−−−→
[□ri αi/αi]

var

Σ, z : (µX.A)
−−−−−−→
[□ri αi/αi] ⊢ Σ(X) z : □dn

1 ri
(µX.A)

app

• JαjKpull : □rj αj → □(
dn

1 ri)
αj (i.e. F αi = α).

Σ, z : □rj αj ⊢ z : □rj αj
var

Σ, z : □rj αj ⊢ z : □(
dn

1 ri)
αj

approx

• J(A ⊕ B)
−−−−−−→
[□ri αi/αi]KΣ

pull : A ⊕ B → □(
dn

1 ri)
A ⊕ B (i.e. F αi = A ⊕ B).

x′ : A ⊢ x′ : A
var

x′ :1 A ⊢ x′ : A
der

x′ :1 A ⊢ inl (x′) : A ⊕ B
Con

x′ :dn
1 ri

A ⊢ [inl (x′)] : □dn
1 ri

A ⊕ B
pr

(B.19)

∅ ⊢ JAKΣ
pull : A⊸□dn

1 ri
A

pull

x : A
−−−−−−→
[□ri αi/αi] ⊢ x : A

−−−−−−→
[□ri αi/αi]

var

x : A
−−−−−−→
[□ri αi/αi] ⊢ JAKΣ

pull(x) : □dn
1 ri

A
app

(B.19)

nl

1

ri ⊢ x′ : A ▷ x′ :dn
1 ri

A

[pvar]

− ⊢ [x′] : □dn
1 ri

A ▷ x′ :dn
1 ri

A
[pbox]

x : A
−−−−−−→
[□ri αi/αi] ⊢ case JAKΣ

pull(x) of [x′] → [inl (x′)] : □dn
1 ri

A ⊕ B
case

(B.20)

y′ : B ⊢ y′ : B
var

y′ :1 B ⊢ y′ : B
der

y′ :1 B ⊢ inr (y′) : A ⊕ B
Con

y′ :dn
1 ri

B ⊢ [inr (y′)] : □dn
1 ri

A ⊕ B
pr

(B.21)

∅ ⊢ JBKΣ
pull : B⊸□dn

1 ri
B

pull

y : B
−−−−−−→
[□ri αi/αi] ⊢ y : B

−−−−−−→
[□ri αi/αi]

var

y : B
−−−−−−→
[□ri αi/αi] ⊢ JBKpull(y) : □dn

1 ri
B

app

(B.21)

nl

1

ri ⊢ y′ : B ▷ y′ :dn
1 ri

B

[pvar]

− ⊢ [y′] : □dn
1 ri

B ▷ y′ :dn
1 ri

B
[pbox]

y : B
−−−−−−→
[□ri αi/αi] ⊢ case JBKΣ

pull(y) of [y′] → [inr (x′2)] : □dn
1 ri

A ⊕ B
case

(B.22)

− ⊢ x : A
−−−−−−→
[□ri αi/αi] ▷ x : A

−−−−−−→
[□ri αi/αi]

pvar

− ⊢ inl (x) : (A ⊕ B)
−−−−−−→
[□ri αi/αi] ▷ x : A

−−−−−−→
[□ri αi/αi]

Pcon

(B.23)
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− ⊢ y : B
−−−−−−→
[□ri αi/αi] ▷ y : B

−−−−−−→
[□ri αi/αi]

pvar

− ⊢ inr (x) : (A ⊕ B)
−−−−−−→
[□ri αi/αi] ▷ y : B

−−−−−−→
[□ri αi/αi]

Pcon

(B.24)

case z of inl (x) → (case JAKΣ
pull(x) of [x′] → [inl (x′)]); inr (y) → (case JBKΣ

pull(y) of [y′] → [inr (y′)])

(B.25)

(B.20) (B.22) (B.23) (B.24)

z : A ⊕ B
−−−−−−→
[□ri αi/αi] ⊢ (B.25) : □dn

1 ri
A ⊕ B

case

• JA ⊗ BKΣ
pull : (A ⊗ B)

−−−−−−→
[□ri αi/αi] → □(

dn
1 ri)

(A ⊗ B) (i.e. F αi = A ⊗ B).

x′ : A ⊢ x′ : A
var

x′ :1 A ⊢ x′ : A
der

y′ : B ⊢ y′ : B
var

y′ :1 B ⊢ y′ : B
der

x′ :1 A, y′ :1 B ⊢ (x′, y′) : A ⊗ B
Con

x′ :dn
1 ri

A, y′ :dn
1 ri

B ⊢ [(x′, y′)] : □dn
1 ri

A ⊗ B
pr

(B.26)

nl

1

ri ⊢ x′ : A ▷ x′ :dn
1 ri

A

[pvar]

− ⊢ [x′] : □dn
1 ri

A ▷ x′ :dn
1 ri

A
[pbox]

nl

1

ri ⊢ y′ : B ▷ y′ :dn
1 ri

B

[pvar]

|A ⊗ B| = 1

− ⊢ [y′] : □dn
1 ri

B ▷ y′ :dn
1 ri

B
[pbox]

− ⊢ ([x′], [y′]) : (□dn
1 ri

A) ⊗ (□dn
1 ri

B) ▷ x′ :dn
1 ri

A, y′ :dn
1 ri

B
[Pcon]

(B.27)

∅ ⊢ JAKΣ
pull : A⊸□dn

1 ri
A

pull

x : A
−−−−−−→
[□ri αi/αi] ⊢ x : A

−−−−−−→
[□ri αi/αi]

var

x : A
−−−−−−→
[□ri αi/αi] ⊢ JAKΣ

pull(x) : □dn
1 ri

A
app

(B.28)

∅ ⊢ JBKΣ
pull : B⊸□dn

1 ri
B

pull

y : B
−−−−−−→
[□ri αi/αi] ⊢ y : B

−−−−−−→
[□ri αi/αi]

var

y : B
−−−−−−→
[□ri αi/αi] ⊢ JBKΣ

pull(y) : □dn
1 ri

B
app

(B.29)
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(B.28) (B.29)

x : A
−−−−−−→
[□ri αi/αi], y : B

−−−−−−→
[□ri αi/αi] ⊢ (JAKΣ

pull(x), JBKΣ
pull(y)) : (□dn

1 ri
A) ⊗ (□dn

1 ri
B)

pair

(B.26) (B.27)

x : A
−−−−−−→
[□ri αi/αi], y : B

−−−−−−→
[□ri αi/αi] ⊢ case (JAKΣ

pullx, JBKΣ
pully) of ([x′], [y′]) → [(x′, y′)] : □dn

1 ri
A ⊗ B

case

(B.30)

(B.30)

− ⊢ x : A
−−−−−−→
[□ri αi/αi] ▷ x : A

−−−−−−→
[□ri αi/αi]

pvar

− ⊢ y : B
−−−−−−→
[□ri αi/αi] ▷ y : B

−−−−−−→
[□ri αi/αi]

pvar

− ⊢ (x, y) : (A ⊗ B)
−−−−−−→
[□ri αi/αi] ▷ x : A

−−−−−−→
[□ri αi/αi], y : B

−−−−−−→
[□ri αi/αi]

pcon

z : (A ⊗ B)
−−−−−−→
[□ri αi/αi] ⊢ case z of (x, y) → (case (JAKΣ

pullx, JBKΣ
pully) of ([x′], [y′]) → [(x′, y′)]) : □dn

1 ri
A ⊗ B

case

• JµX.AKΣ
pull : (µX.A)

−−−−−−→
[□ri αi/αi] → □(

dn
1 ri)

(µX.A) (i.e. F αi = µX.A).

Σ, f : µX.A
−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A) ⊢ f : µX.A

−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

var

Σ, z : µX.A
−−−−−−→
[□ri αi/αi] ⊢ z : µX.A

−−−−−−→
[□ri αi/αi]

var

Σ, f : µX.A
−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A), z : µX.A

−−−−−−→
[□ri αi/αi] ⊢ f z : □dn

1 ri
(µX.A)

app

(B.31)

Σ ⊢ JAK
Σ,X 7→ f µX.A

−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull : µX.A
−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull

(B.31)

Σ, z : (µX.A)
−−−−−→
[ri αi/αi] ⊢ letrec f = JAK

Σ,X 7→ f µX.A
−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in f z : □dn
1 ri

µX.A

letrec

b.2.4 Inverse Property of the Distributive Laws

Proposition 5.3.1 (Pull is right inverse to push). For all n-arity types F
which do not contain function types, then for type variables (αi)i∈1≤i≤n and
for all grades r ∈ R where 1⊑ r if |Fαi| > 1, then:

JF αiKpull(JF αiKpush) = id : □rFαi ⊸□rFαi

Proof. By induction on the syntax of the type Fαi which we denote by T
in the following. We first prove a subresult that for JTKΣ′

pull(JTKΣ
push z) ≡

z, which by function extensionality then gives us JTKΣ′
pull(JTKΣ

push) ≡ id,
under the assumption that for all X, every f ∈ Σ(X) and g ∈ Σ′(X)

then g ◦ f = id, in order to apply the recursive argument.
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• T = Unit

JUnitKΣ′
pull(JUnitK

Σ
push z)

≡ JUnitKΣ′
pull(case z of [()] → ()) {defn. JUnitKΣ

push}
≡ case (case z of [()] → ()) of () → [()] {defn. JUnitKΣ′

pull}
≡ case z of [()] → case () of () → [()] {case assoc.}
≡ case z of [()] → [()] {βcase}
≡ z {ηcase}

• T = α

JαKΣ′
pull(JαKΣ

push z)

≡ JαKΣ′
pull(z) {defn. JαKΣ

push}
≡ z {defn. JαKΣ′

pull}

• T = X

JXKΣ′
pull(JXKΣ

push z)

≡ JXKΣ′
pull(Σ(X)z) {defn. JXKΣ

push}
≡ Σ′(X)(Σ(X)z) {defn. JXKΣ′

pull}
≡ z {recursion assumption}

• T = A ⊕ B:

JA ⊕ BKΣ′
pull(JA ⊕ BKΣ

push z)

≡ JA ⊕ BKΣ′
pull(case z of [inl x] → inl JAKΣ

push[x]; [inr y] → inr JBKΣ
push[y] ) {defn. JA ⊕ BKΣ

push}
≡ case (case z of [inl x] → inl JAKΣ

push[x]; [inr y] → inr JBKΣ
push[y] ) of

inl x → case JAKΣ′
pull x of [u] → [inl u];

inr y → case JBKΣ′
pull y of [v] → [inr v]

{defn. JA ⊕ BKΣ′
pull}

≡ case z of [inl x] → case inl JAKΣ
push[x] of inl x → case JAKΣ′

pull x of [u] → [inl u];

inr y → case JBKΣ′
pull y of [v] → [inr v]

;

[inr y] → case inr JBKΣ
push[y] of inl x → case JAKΣ′

pull x of [u] → [inl u];

inr y → case JBKΣ′
pull y of [v] → [inr v]

{case assoc.}

≡ case z of [inl x] → case JAKΣ′
pull JAKΣ

push[x] of [u] → [inl u];

[inr y] → case JBKΣ′
pull JBKΣ

push[y] of [v] → [inr v]

{βcase}

≡ case z of [inl x] → case [x] of [u] → [inl u];

[inr y] → case [y] of [v] → [inr v]

{induction}

≡ case z of [inl x] → [inl x]; [inr y] → [inr y] {βcase}
≡ z {ηcase}

T = A ⊗ B:

JA ⊗ BKΣ′
pull(JA ⊗ BKΣ

push z)

≡ JA ⊗ BKΣ′
pull(case z of [(x, y)] → (JAKΣ

push[x], JBKΣ
push[y])) {defn. JA ⊗ BKΣ

push}
≡ case (case z of [(x, y)] → (JAKΣ

push[x], JBKΣ
push[y])) of (x, y) →

case (JAKΣ′
pull x, JBKΣ′

pull y) of ([u], [v]) → [(u, v)] {defn. JA ⊗ BKΣ′
pull}

≡ case z of [(x, y)] → case (JAKΣ
push[x], JBKΣ

push[y]) of (x, y) →
case (JAKΣ′

pull x, JBKΣ′
pull y) of ([u], [v]) → [(u, v)] {case assoc.}

≡ case z of [(x, y)] → (case (JAKΣ′
pullJAKΣ

push [x], JBKΣ′
pullJBKΣ

push [y]) of ([u], [v]) → [(u, v)]) {βcase}
≡ case z of [(x, y)] → (case ([x], [y]) of ([u], [v]) → [(u, v)]) {induction}
≡ case z of [(x, y)] → [(x, y)] {βcase}
≡ z {ηcase}
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T = µX.A:

JµX.AKΣ′
pull(JµX.AKΣ

push z)

≡ JµX.AKΣ′
pull(letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)

−−−−−→
[□rαi/αi]

push in f z) {defn. JµX.AKΣ
push}

≡ letrec f ′ = JAK
Σ′,X 7→ f ′ :µX.A

−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in

f ′(letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in f z) {defn. JµX.AKΣ′
pull}

≡ letrec f ′ = JAK
Σ′,X 7→ f ′ :µX.A

−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in

letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in f ′( f z) {let dist. }

≡ letrec f ′ = JAK
Σ′,X 7→ f ′ :µX.A

−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in

letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in f ′(JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push z) {βletrec}
≡ letrec f ′ = JAKΣ′,X 7→ f ′

pull in

letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in JAKΣ′,X 7→ f ′
pull (JAKΣ,X 7→ f

push z) {βletrec}
≡ letrec f ′ = JAKΣ′,X 7→ f ′

pull in

JAKΣ′,X 7→ f ′
pull (JAK

Σ,X 7→letrec f = JAKΣ,X 7→f
push in f

push z) {βletrec}

≡ JAK
Σ′,X 7→letrec f ′ = JAKΣ′ ,X 7→f ′

pull in f ′

pull (JAK
Σ,X 7→letrec f = JAKΣ,X 7→f

push in f
push z) {βletrec}

≡ z {induction}

Proposition 5.3.2 (Pull is left inverse to push). For all n-arity types F
which do not contain function types, then for type variables (αi)i∈1≤i≤n and
for all grades r ∈ R where 1⊑ r if |Fαi| > 1, then:

JF αiKpush(JF αiKpull) = id : F(□rαi)⊸ F(□rαi)

Proof. By induction on the syntax of the type Fαi which we denote by
T in the following. The following proof is for JTKΣ

push(JTKΣ
pull z) ≡ z,

which by function extensionality then gives us JTKΣ
push(JTKΣ

pull) ≡ id,
under the assumption that for all X, every f ∈ Σ(X) and g ∈ Σ′(X)

then g ◦ f = id, in order to apply the recursive argument.

• T = 1

JUnitKΣ
push(JUnitK

Σ′
pull z)

≡ JUnitKΣ
push(case z of () → [()]) {defn. JUnitKΣ′

pull}
≡ case (case z of () → [()]) of [()] → () {defn. J1KΣ

push}
≡ case z of () → case [()] of [()] → () {case assoc.}
≡ case z of () → () {βcase}
≡ z {ηcase}

• T = α

JαKΣ
push(JαKΣ′

pull z)

≡ JαKΣ
push(z) {defn. JαKΣ′

pull}
≡ z {defn. JαKΣ

push}
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• T = X

JXKΣ
push(JXKΣ′

pull z)

≡ JXKΣ
push(Σ

′(X)z) {defn. JXKΣ′
pull}

≡ Σ(X)(Σ′(X)z) {defn. JXKΣ
push}

≡ z {recursion assumption}

• T = A ⊕ B

JA ⊕ BKΣ
push(JA ⊕ BKΣ′

pull z)

≡ JA ⊕ BKΣ
pushcase z of inl x → case JAKΣ′

pull x of [u] → [inl u];

inr y → case JBKΣ′
pull y of [v] → [inr v]

{defn. JA ⊕ BKΣ′
pull}

≡ case (case z of inl x → case JAKΣ′
pull x of [u] → [inl u];

inr y → case JBKΣ′
pull y of [v] → [inr v]

) of [inl x] → inl JAKΣ
push[x];

[inr y] → inr JBKΣ
push[y]

{defn. JA ⊕ BKΣ
push}

≡ case z of inl x → case case JAKΣ′
pull x of [u] → [inl u] of [inl x] → inl JAKΣ

push[x];

[inr y] → inr JBKΣ
push[y]

;

inr y → case case JBKΣ′
pull y of [v] → [inr v] of [inl x] → inl JAKΣ

push[x];

[inr y] → inr JBKΣ
push[y]

{case assoc.}

≡ case z of inl x → inl JAKΣ
pushJAKΣ′

pull x;

inr y → inr JBKΣ
pushJBKΣ′

pull y

{βcase}

≡ case z of inl x → inl x;

inr y → inr y

{induction}

≡ z {ηcase}

• T = A ⊗ B

JA ⊗ BKΣ
push(JA ⊗ BKΣ′

pull z)

≡ JA ⊗ BKΣ
push(case z of (x, y) → case (JAKΣ′

pull x, JBKΣ′
pull y) of ([u], [v]) → [(u, v)]) {defn. JA ⊗ BKΣ′

pull}
≡ case (case z of (x, y) →

case (JAKΣ′
pull x, JBKΣ′

pull y) of ([u], [v]) → [(u, v)]) of [(x, y)] → (JAKΣ
push[x], JBKΣ

push[y]) {defn. JA ⊗ BKΣ
push}

≡ case z of (x, y) →
case (JAKΣ′

pull x, JBKΣ′
pull y) of ([u], [v]) → case [(u, v)] of [(x, y)] → (JAKΣ

push[x], JBKΣ
push[y]) {case assoc.}

≡ case z of (x, y) → (JAKΣ
pushJAKΣ′

pull x, JBKΣ
pushJBKΣ′

pull y) {βcase}
≡ case z of (x, y) → (x, y) {induction}
≡ z {ηcase}

• T = µX.A
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JµX.AKΣ
push(JµX.AKΣ′

pull z)

≡ JµX.AKΣ
push(letrec f ′ = JAK

Σ′,X 7→ f ′ :µX.A
−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in f ′ z) {defn. JµX.AKΣ′
pull}

≡ letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in

f (letrec f ′ = JAK
Σ′,X 7→ f ′ :µX.A

−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in f ′ z) {defn. JµX.AKΣ
push}

≡ letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in

letrec f ′ = JAK
Σ′,X 7→ f ′ :µX.A

−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in f ( f ′ z) {let dist. }

≡ letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in

letrec f ′ = JAK
Σ′,X 7→ f ′ :µX.A

−−−−−−→
[□ri αi/αi]⊸□dn

1 ri
(µX.A)

pull in f (JAKΣ′,X 7→ f ′
pull z) {βletrec}

≡ letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in

letrec f ′ = JAKΣ′,X 7→ f ′
pull in JAKΣ,X 7→ f :µX.□rA⊸(µX.A)

−−−−−→
[□rαi/αi]

push (JAKΣ′,X 7→ f ′
pull z) {βletrec}

≡ letrec f = JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push in

JAKΣ,X 7→ f :µX.□rA⊸(µX.A)
−−−−−→
[□rαi/αi]

push (JAK
Σ′,X 7→letrec f ′ = JAKΣ′ ,X 7→f ′

pull in f ′

pull z) {βletrec}

≡ JAK
Σ,X 7→letrec f = JAKΣ,X 7→f

push in f
push (JAK

Σ′,X 7→letrec f ′ = JAKΣ′ ,X 7→f ′
pull in f ′

pull z) {βletrec}
≡ z {induction}

b.3 proofs for the fully graded synthesis calculus

This section contains the soundness proof for the fully graded synthe-
sis calculus presented in Chapter 4, as well as the proof of soundness
for focusing this calculus.

b.3.1 Soundness of the Fully Graded Synthesis Calculus

Theorem 4.2.1 (Soundness of synthesis). Given a particular pre-ordered
semiring R parametrising the calculi, then:

1. For all contexts Γ and ∆, types A, terms t:

Σ; Γ ⊢ A ⇒ t | ∆ =⇒ Σ; ∆ ⊢ t : A

i.e. t has type A under context ∆ whose grades capture variable
use in t.

2. At the top-level, for all type schemes ∀α : κ.A and terms t then:

∅; ∅ ⊢ ∀α : κ.A ⇒ t | ∅ =⇒ ∅; ∅ ⊢ t : ∀α : κ.A

Proof. Induction on the synthesis rules. We consider the cases of the
lemma in order, first proving soundness for synthesis of open terms
from types, followed by soundness of synthesis for closed term from
type schemes.

1. a) Case Var

For synthesis of a variable term, we have the derivation:

Σ ⊢ A : Type
Σ; Γ, x :r A ⊢ A ⇒ x | 0 · Γ, x :1 A

Var
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From the premise, we have that:

Σ ⊢ A : Type

from which we can construct the following typing deriva-
tion, matching the above conclusion:

Σ ⊢ A : Type
Σ; 0 · Γ, x :1 A ⊢ x : A

Var

b) Case Def

For synthesis of a top-level definition usage, we have the
derivation:

(x : ∀α : κ.A′) ∈ D Σ ⊢ A = inst(∀α : κ.A′)

Σ; Γ ⊢ A ⇒ x | 0 · Γ
Def

From the premise, we have that:

Σ ⊢ A = inst(∀α : κ.A′)

from which we can construct the following typing deriva-
tion, matching the above conclusion:

(x : ∀α : κ.A′) ∈ D Σ ⊢ A = inst(∀α : κ.A′)

Σ; 0 · Γ ⊢ x : A
Def

c) Case →R

For synthesis of an abstraction term, we have the derivation:

Σ; Γ, x :q A ⊢ B ⇒ t | ∆, x :r A r⊑ q
Σ; Γ ⊢ Aq → B ⇒ λx.t | ∆

→R

By induction on the premise, we have:

Σ; ∆, x :r A ⊢ t : B (ih)

and that:

r⊑ q

from which we can construct the following typing deriva-
tion, matching the conclusion:

Σ; ∆, x :r A ⊢ t : B r⊑ q

Σ; ∆, x :q A ⊢ t : B
Approx

Σ; ∆ ⊢ λx.t : Aq → B
Abs
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d) Case →L

For synthesising an application, we have the derivation:

Σ; Γ, x1 :r1 Aq → B, x2 :r1 B ⊢ C ⇒ t1 | ∆1, x1 :s1 Aq → B, x2 :s2 B

Σ; Γ, x1 :r1 Aq → B ⊢ A ⇒ t2 | ∆2, x1 :s3 Aq → B Σ ⊢ Aq → B : Type
Σ; Γ, x1 :r1 Aq → B ⊢ C ⇒ [(x1 t2)/x2]t1 | (∆1 + s2 · q ·∆2), x1 :s2+s1+(s2 · q · s3) Aq → B

→L

By induction on the premises, we obtain the following
typing judgements:

Σ; ∆1, x1 :s1 Aq → B, x2 :s2 B ⊢ t1 : C (ih)

Σ; ∆2, x1 :s3 Aq → B ⊢ t2 : A (ih)

and from the premises, we have that:

Σ ⊢ Aq → B : Type

from which we can construct the following derivation, mak-
ing use of the admissibility of substitution:

Σ ⊢ Aq → B : Type

Σ; x1 :1 Aq → B ⊢ x1 : Aq → B
Var

Σ; ∆2, x1 :s3 Aq → B ⊢ t2 : A

Σ; q ·∆2, x1 :1+(q · s3) Aq → B ⊢ x1 t2 : B
App

(B.32)

(B.32) Σ; ∆1, x1 :s1 Aq → B, x2 :s2 B ⊢ t1 : C

Σ; (∆1 + s2 · q ·∆2), x1 :s2+s1+(s2 · q · s3) Aq → B ⊢ [(x1 t2)/x2]t1 : C
Subst

making use of the distributivity property of semirings,
along with unitality of 1 and commutativity of +, such
that s1 + s2 · (1 + (q · s3)) = s1 + (s2 · 1) + (s2 · q · s3) = s2 +

s1 + (s2 · q · s3).

e) Case CR

For synthesising a constructor introduction, we have the
derivation:

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; Γ ⊢ Bi ⇒ ti | ∆i

Σ; Γ ⊢ K A⃗ ⇒ C t1 ... tn | 0 · Γ + (q1 ·∆1) + ... + (qn ·∆n)
CR

By induction on the premises, we obtain the following
typing judgements:

Σ; ∆1 ⊢ t1 : B1 , ..., Σ; ∆n ⊢ tn : Bn (ih)
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from which we can construct the following derivation,
matching the above conclusion:

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D
Σ ⊢ B1

q1 → ...→ Bn
qn → K A⃗ = inst(∀α : κ.B′

1
q1 → ...→ B′

n
qn → K A⃗′)

Σ; 0 · Γ ⊢ C : B1
q1 → ...→ Bn

qn → K A⃗
Con

(B.33)

(B.33) Σ; ∆1 ⊢ t1 : B1

Σ; 0 · Γ + q1 ·∆1 ⊢ C t1 : B2
q1 → ...→ Bn

qn → K A⃗
App

··
Σ; 0 · Γ + q1 ·∆1 + ... + qn−1 ·∆n−1 ⊢ C t1 ... tn−1 : Bn

qn → K A⃗
App

(B.34)

(B.34) Σ; ∆n ⊢ tn : Bn

Σ; 0 · Γ + q1 ·∆1 + ... + qn ·∆n ⊢ C t1 ... tn : K A⃗
App

f) Case CL

For synthesising a case statement, we have the derivation:

(Ci : ∀α : κ.B′
1

qi
1 → ... → B′

n
qi

n → K A⃗′) ∈ D Σ ⊢ K A⃗ : Type

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; Γ, x :r K A⃗, yi
1 :r · qi

1
B1, ..., yi

n :r · qi
1

Bn ⊢ B ⇒ ti | ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn

∃s′ij. si
j ⊑ s′ij · qi

j ⊑ r · qi
j si = s′i1 ⊔ ... ⊔ s′in |K A⃗| > 1 ⇒ 1 ⊑ s1 ⊔ ... ⊔ sm

Σ; Γ, x :r K A⃗ ⊢ B ⇒ case x of Ci yi
1...yi

n 7→ ti | (∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm)+(s1⊔...⊔sm) K A⃗
CL

By induction on the premises we obtain the following typ-
ing judgements:

Σ; ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn ⊢ ti : B (ih)

We have by the definition of ⊔:

i. ∆i ⊑ (∆1 ⊔ ... ⊔ ∆m)

ii. ri ⊑ r1 ⊔ ... ⊔ rm

and from the premises of the synthesis rule:

iii. s′ij ⊑ s1 ⊔ ... ⊔ sm

iv. si
j ⊑ s′ij · qi

j

v. |K A| > 1 ⇒ 1 ⊑ s1 ⊔ ... ⊔ sm

vi. Σ ⊢ K A⃗ : Type
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and from rule κ→ we have that

Σ ⊢ K A⃗ : Type ⇒ B1
qi

1 → ... → Bn
qi

n → K A⃗ : Type

thus we have that

vii. Σ ⊢ Bj : Type

We then construct the following three derivations towards
the goal:

(g)

Σ; qi
j · s1 ⊔ ... ⊔ sm ⊢ yi

j : Bj ▷ yi
j :qi

j · s1⊔...⊔sm
Bj

PVar

(B.35)

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D
Σ ⊢ B1

q1 → ...→ Bn
qn → K A⃗ = inst(∀α : κ.B′

1
q1 → ...→ B′

n
qn → K A⃗′)

(B.35) (e)

Σ; s1 ⊔ ... ⊔ sm ⊢ Ci yi
1...yi

n : K A⃗ ▷ yi
j :qi

j · s1⊔...⊔sm
Bj, ..., yi

n :qi
n · s1⊔...⊔sm

Bn
PCon

(B.36)

and

Σ; ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn ⊢ ti : B
induction

(d)

Σ; ∆i, x :ri K A⃗, yi
1 :qi

1 · s′ ij
B1, ..., yi

n :qi
n · s′ ij

Bn ⊢ ti : B (c)

Σ; ∆i, x :ri K A⃗, yi
1 :qi

1 · s1⊔...⊔sm
B1, ..., yi

n :qi
n · s1⊔...⊔sm

Bn ⊢ ti : B (b)

Σ; ∆i, x :(r1⊔...⊔rm) K A⃗, yi
1 :qi

1 · s1⊔...⊔sm
B1, ..., yi

n :qi
n · s1⊔...⊔sm

Bn ⊢ ti : B (a)
Approx

Approx

Approx

Σ; (∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm) K A⃗, yi
1 :qi

1 · s1⊔...⊔sm
B1, ..., yi

n :qi
n · s1⊔...⊔sm

Bn ⊢ ti : B
Approx

(B.37)

( f )

Σ; x :1 K A⃗ ⊢ x : K A
Var

(B.36) (B.37)

Σ; ((∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm) K A⃗) + x :(s1⊔...⊔sm · 1) K A⃗ ⊢ case x of Ci yi
1...yi

n 7→ ti : B

Σ; (∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm)+(s1⊔...⊔sm) K A⃗ ⊢ case x of Ci yi
1...yi

n 7→ ti : B
≡

Case

g) Case □R

For synthesising a promotion, we have the derivation:

Σ; Γ ⊢ A ⇒ t | ∆
Σ; Γ ⊢ □rA ⇒ [t] | r ·∆

□R

By induction on the premise we have:

Σ; ∆ ⊢ t : A
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From which we can construct the following derivation,
matching the above conclusion:

Σ; ∆ ⊢ t : A

r ·∆ ⊢ [t] : □rA
Pr

h) Case □L

For synthesising an unboxing, we have the derivation:

Σ; Γ, y :r · q A, x :r □qA ⊢ B ⇒ t | ∆, y :s1 A, x :s2 □qA

∃s3. s1 ⊑ s3 · q ⊑ r · q Σ ⊢ □qA : Type
Σ; Γ, x :r □qA ⊢ B ⇒ case x of [y] → t | ∆, x :s3+s2 □qA

□L

By induction on the premise we have:

Σ; ∆, y :s1 A, x :s2 □qA ⊢ t : B (ih)

and from the premises we have that:

viii. s1 ⊑ s3 · q

ix. Σ ⊢ □qA : Type

and through the κ□ rule, we have that:

Σ ⊢ □qA : Type ⇒ Σ ⊢ A : Type

From this we can construct the following derivation, to-
wards the goal:

(i)

Σ; x :1 □qA ⊢ x : □qA
Var

(B.38)

Σ ⊢ A : Type

Σ; s3 · q ⊢ y : A ▷ y :s3 · q A
PVar

Σ; s3 ⊢ [y] : □qA ▷ y :s3 · q A
PBox

(B.38)

Σ; ∆, y :s1 A, x :s2 □qA ⊢ t : B s1 ⊑ s3 · q

Σ; ∆, y :s3 · q A, x :s2 □qA ⊢ t : B
Approx

Σ; ∆, x :s3+s2 □qA ⊢ case x of [y] → t : B
Case

i) Case µR
For synthesising a recursive data type introduction form,
we have the derivation:

D; Σ; Γ ⊢ A[µX.A/X] ⇒ t | ∆

D; Σ; Γ ⊢ µX.A ⇒ t | ∆
µR

By induction on the premise we have:

D; Σ; ∆ ⊢ t : A[µX.A/X] (ih)
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from which we can construct the derivation, matching the
form of the lemma, leveraging the equirecursivity of our
types:

D; Σ; ∆ ⊢ t : A[µX.A/X]

D; Σ; ∆ ⊢ t : µX.A
µ1

j) Case µL
For synthesising a recursive data type elimination form, we
have the derivation:

D; Σ; Γ, x :r A[µX.A/X] ⊢ B ⇒ t | ∆

D; Σ; Γ, x :r µX.A ⊢ B ⇒ t | ∆
µL

By induction on the premise we have:

D; Σ; ∆, x :r A[µX.A/X] ⊢ t : B (ih)

from which we can construct the derivation:

Σ ⊢ µX.A : Type

D; Σ; x :r µX.A ⊢ x :1 µX.A
Var

D; Σ; x :r µX.A ⊢ x :1 A[µX.A]
µ2

and by using lemma 4.1.1 on :

D; Σ; x : A[µX.A/X] ⊢ t : B

we obtain the following, matching the above conclusion:

D; Σ; D, x : µX.A ⊢ [x/x]t : B = D; Σ; D, x : µX.A ⊢ t : B

2. a) Case TopLevel

For the top-level of synthesis, we have the derivation:

α : κ; ∅ ⊢ A ⇒ t | ∅
∅; ∅ ⊢ ∀α : κ.A ⇒ t | ∅

TopLevel

from induction on the premise, we have that:

α : κ; ∅ ⊢ t : A (ih)

from which we can construct the following typing deriva-
tion, matching the above conclusion:

α : κ; ∅ ⊢ t : A

∅; ∅ ⊢ t : ∀α : κ.A
TopLevel
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b.3.2 Soundness of Focusing for the Fully Graded Synthesis Calculus

Lemma 4.4.1 (Soundness of focusing for graded-base synthesis). For
all contexts Γ, Ω and types A:

1. Right Async : D; Σ; Γ; Ω ⊢ A ⇑ ⇒ t | ∆ ⇐⇒ D; Σ; Γ, Ω ⊢ A ⇒ t | ∆

2. Left Async : D; Σ; Γ; Ω ⇑ ⊢ B ⇒ t | ∆ ⇐⇒ D; Σ; Γ, Ω ⊢ B ⇒ t | ∆

3. Right Sync : D; Σ; Γ; ∅ ⊢ A ⇓ ⇒ t | ∆ ⇐⇒ D; Σ; Γ ⊢ A ⇒ t | ∆

4. Left Sync : D; Σ; Γ; x :r A ⇓ ⊢ B ⇒ t | ∆ ⇐⇒ D; Σ; Γ, x :r A ⊢ B ⇒ t | ∆

5. Focus Right : D; Σ; Γ; ∅ ⇑ ⊢ B ⇒ t | ∆ ⇐⇒ D; Σ; Γ ⊢ B ⇒ t | ∆

6. Focus Left : D; Σ; Γ, x :r A; ∅ ⇑ ⊢ B ⇒ t | ∆ ⇐⇒ D; Σ; Γ, x :r A ⊢ B ⇒ t | ∆

i.e. t has type A under context ∆, which contains variables with grades
reflecting their use in t.

Proof. 1. Case: 1. TopLevel:

a) Case TopLevel

In the case of the right asynchronous rule for abstraction
introduction, the synthesis rule has the form:

D; α : κ; ∅; ∅ ⊢ A ⇑ ⇒ t | ∅
D; ∅; ∅; ∅ ⊢ ∀α : κ.A ⇑ ⇒ t | ∅

TopLevel

By induction on the first premise, we have that:

α : κ; ∅ ⊢ A ⇒ t | ∅ (ih)

from case 1 of the lemma. From which, we can construct
the following instantiation of the TopLevel synthesis rule
in the non-focusing calculus:

α : κ; ∅ ⊢ A ⇒ t | ∅

∅; ∅ ⊢ ∀α : κ.A ⇒ t | ∅
TopLevel

2. Case: 2. Right Async:

a) Case →R

In the case of the right asynchronous rule for abstraction
introduction, the synthesis rule has the form:

D; Σ; Γ; Ω, x :q A ⊢ B ⇑ ⇒ t | ∆, x :r A r⊑ q
D; Σ; Γ; Ω ⊢ Aq → B ⇑ ⇒ λx.t | ∆

→R

By induction on the premise, we have that:

Σ; (Γ, Ω), x :q A ⊢ B ⇒ t | ∆, x :r A (ih)
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from case 2 of the lemma. From which, we can construct
the following instantiation of the →R synthesis rule in the
non-focusing calculus:

Σ; (Γ, Ω), x :q A ⊢ B ⇒ t | ∆, x :r A r⊑ q

Σ; Γ, Ω ⊢ A → B ⇒ λx.t | ∆
→R

b) Case ⇑R

In the case of the right asynchronous rule for transition to
a left asynchronous judgement, the synthesis rule has the
form:

D; Σ; Γ; Ω ⇑ ⊢ B ⇒ t | ∆ B not right async

D; Σ; Γ; Ω ⊢ B ⇑ ⇒ t | ∆
⇑R

By induction on the first premise, we have that:

Σ; Γ, Ω ⊢ B ⇒ t | ∆ (ih)

from case 3 of the lemma.

3. Case 3. Left Async:

a) Case ConL

In the case of the left asynchronous rule for constructor
elimination, the synthesis rule has the form:

(Ci : ∀α : κ.B′
1

qi
1 → ... → B′

n
qi

n → K A⃗′) ∈ D Σ ⊢ K A⃗ : Type

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

D; Σ; Γ; Ω, x :r K A⃗, yi
1 :r · qi

1
B1, ..., yi

n :r · qi
1

Bn ⇑ ⊢ B ⇒ ti | ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn

∃s′ij. si
j ⊑ s′ij · qi

j ⊑ r · qi
j si = s′i1 ⊔ ... ⊔ s′in |K A⃗| > 1 ⇒ 1 ⊑ s1 ⊔ ... ⊔ sm

D; Σ; Γ; Ω, x :r K A⃗ ⇑ ⊢ B ⇒ case x of Ci yi
1...yi

n 7→ ti | (∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm)+(s1⊔...⊔sm) K A⃗
CL

By induction on the second premise, we have that:

Σ; (Γ, Ω), x :r K A⃗, yi
1 :r · qi

1
B1, ..., yi

n :r · qi
1

Bn ⇑ ⊢ B ⇒ ti | ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn

(ih)

from case 3 of the lemma. From the second premise, we
have that:

Σ ⊢ K A⃗ : Type
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From which we can construct the following instantiation of
the ConL rule in the non-focusing calculus:

(Ci : ∀α : κ.B′
1

qi
1 → ... → B′

n
qi

n → K A⃗′) ∈ D
Σ ⊢ K A⃗ : Type

Σ ⊢ B1
q1 → ...→ Bn

qn → K A⃗ = inst(∀α : κ.B′
1

q1 → ...→ B′
n

qn → K A⃗′)

Σ; (Γ, Ω), x :r K A⃗, yi
1 :r · qi

1
B1, ..., yi

n :r · qi
1

Bn ⊢ B ⇒ ti | ∆i, x :ri K A⃗, yi
1 :si

1
B1, ..., yi

n :si
n

Bn

∃s′ij. si
j ⊑ s′ij · qi

j ⊑ r · qi
j

si = s′i1 ⊔ ... ⊔ s′in |K A⃗| > 1 ⇒ 1 ⊑ s1 ⊔ ... ⊔ sm

Σ; (Γ, Ω), x :r K A⃗ ⊢ B ⇒ case x of Ci yi
1...yi

n 7→ ti | (∆1 ⊔ ... ⊔ ∆m), x :(r1⊔...⊔rm)+(s1⊔...⊔sm) K A⃗
ConL

b) Case □L

In the case of the left asynchronous rule for graded modality
elimination, the synthesis rule has the form:

D; Σ; Γ; Ω, y :r · q A, x :r □qA ⇑ ⊢ B ⇒ t | ∆, y :s1 A, x :s2 □qA

∃s3. s1 ⊑ s3 · q ⊑ r · q Σ ⊢ □qA : Type
D; Σ; Γ; Ω, x :r □qA ⇑ ⊢ B ⇒ case x of [y] → t | ∆, x :s3+s2 □qA

□L

By induction on the first premise, we have that:

Σ; (Γ, Ω), y :r · q A, x :r □qA ⊢ B ⇒ t | ∆, y :s1 A, x :s2 □qA

(ih)

from case 3 of the lemma. From the third premise, we have
that:

Σ ⊢ □qA : Type

From which, we can construct the following instantiation
of the □L synthesis rule in the non focusing calculus:

Σ; (Γ, Ω), y :r · q A, x :r □qA ⊢ B ⇒ t | ∆, y :s1 A, x :s2 □qA
∃s3. s1 ⊑ s3 · q ⊑ r · q Σ ⊢ □qA : Type

Σ; (Γ, Ω), x :r □qA ⊢ B ⇒ case x of [y] → t | ∆, x :s3+s2 □qA
□L

c) Case µL

In the case of the left asynchronous rule for recursive data
type elimination, the synthesis rule has the form:

D; Σ; Γ; Ω, x :r A[µX.A/X] ⇑ ⊢ B ⇒ t | ∆

D; Σ; Γ; Ω, x :r µX.A ⇑ ⊢ B ⇒ t | ∆
µL

By induction on the first premise, we have that:

Σ; (Γ, Ω), x :r A[µX.A/X] ⊢ B ⇒ t | ∆ (ih)



B.3 proofs for the fully graded synthesis calculus 222

from case 3 of the lemma. From which, we can construct
the following instantiation of the µL synthesis rule in the
non focusing calculus:

Σ; (Γ, Ω), x :r A[µX.A/X] ⊢ B ⇒ t | ∆

Σ; (Γ, Ω), x :r µX.A ⊢ B ⇒ t | ∆
µL

d) Case ⇑L

In the case of the left asynchronous rule for transitioning an
assumption from the focusing context Ω to the non-focusing
context Γ, the synthesis rule has the form:

D; Σ; Γ, x :r A; Ω ⇑ ⊢ B ⇒ t | ∆ A not left async

D; Σ; Γ; Ω, x :r A ⇑ ⊢ B ⇒ t | ∆
⇑L

By induction on the first premise, we have that:

Σ; Γ, x : A, Ω ⊢ C ⇒ t | ∆ (ih)

from case 3 of the lemma.

4. Case 4. Right Sync:

a) Case CR
In the case of the right synchronous rule for constructor
introduction, the synthesis rule has the form:

(C : ∀α : κ.B′
1

q1 → ... → B′
n

qn → K A⃗′) ∈ D
Σ ⊢ B1

q1 → ...→ Bn
qn → K A⃗ = inst(∀α : κ.B′

1
q1 → ...→ B′

n
qn → K A⃗′)

Σ; Γ; ∅ ⊢ Bi ⇓ ⇒ ti | ∆i

Σ; Γ; ∅ ⊢ K A⃗ ⇓ ⇒ C t1 ... tn | ∆1 + ... + ∆n
CR

By induction on the second premise, we have that:

Σ; Γ ⊢ Bi ⇒ ti | ∆i (ih)

from case 4 of the lemma. From which, we can construct the following
instantiation of the CR synthesis rule in the non-focusing calculus:

(C : ∀α : κ.B1
q1 → ... → Bn

qn → K A⃗) ∈ D
Σ ⊢ B1

q1 → ...→ Bn
qn → K A⃗ = inst(∀α : κ.B′

1
q1 → ...→ B′

n
qn → K A⃗′)

Σ; Γ ⊢ Bi ⇒ ti | ∆i

Σ; Γ ⊢ K A⃗ ⇒ C t1 ... tn | 0 · Γ + (q1 ·∆1) + ... + (qn ·∆n)
ConR

b) Case □R

In the case of the right synchronous rule for graded modality introduc-
tion, the synthesis rule has the form:

Σ; Γ; ∅ ⊢ A ⇓ ⇒ t | ∆

Σ; Γ; ∅ ⊢ □rA ⇓ ⇒ [t] | r ·∆
□R

By induction on the premises, we have that:

Σ; Γ ⊢ A ⇒ t | ∆ (ih)
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from case 4 of the lemma. From which, we can construct the following
instantiation of the µR synthesis rule in the non-focusing calculus:

Σ; Γ ⊢ A ⇒ t | ∆
Σ; Γ ⊢ □rA ⇒ [t] | r ·∆

□R

c) Case µR
In the case of the right synchronous rule for recursive data type intro-
duction, the synthesis rule has the form:

D; Σ; Γ; ∅ ⊢ A[µX.A/X] ⇓ ⇒ t | ∆

D; Σ; Γ; ∅ ⊢ µX.A ⇓ ⇒ t | ∆
µR

By induction on the premises, we have that:

Σ; Γ ⊢ A[µX.A/X] ⇒ t | ∆ (ih)

from case 4 of the lemma. From which, we can construct the following
instantiation of the µR synthesis rule in the non-focusing calculus:

D; Σ; Γ ⊢ A[µX.A/X] ⇒ t | ∆

D; Σ; Γ ⊢ µX.A ⇒ t | ∆
µR

d) Case ⇓R
In the case of the right synchronous rule for transitioning from the right
focusing phase to an asynchronous right phase, the synthesis rule has
the form:

D; Σ; Γ; ∅ ⊢ A ⇑ ⇒ t | ∆

D; Σ; Γ; ∅ ⊢ A ⇓ t | ∆
⇓R

By induction on the first premise, we have that:

Σ; Γ ⊢ A ⇒ t | ∆ (ih)

from case 4 of the lemma.

5. Case 5. Left Sync:

a) Case →L

In the case of the left synchronous rule for application, the
synthesis rule has the form:

Σ; Γ, x1 :r1 Aq → B; x2 :r1 B ⇓⊢ C ⇒ t1 | ∆1, x1 :s1 Aq → B, x2 :s2 B
Σ; Γ, x1 :r1 Aq → B; ∅ ⊢ A ⇓ ⇒ t2 | ∆2, x1 :s3 Aq → B

Σ ⊢ Aq → B : Type

Σ; Γ; x1 :r1 Aq → B ⇓⊢ C ⇒ [(x1 t2)/x2]t1 | (∆1 + s2 · q ·∆2), x1 :s2+s1+(s2 · q · s3) Aq → B

By induction on the first premise, we have that:

Σ; Γ, x1 :r1 Aq → B, x2 :r1 B ⊢ C ⇒ t1 | ∆1, x1 :s1 Aq → B, x2 :s2 B

from case 5 of the lemma. By induction on the second
premise, we have that:

Σ; Γ, x1 :r1 Aq → B ⊢ A ⇒ t2 | ∆2, x1 :s3 Aq → B (ih)
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from case 4 of the lemma. From the third premise, we have
that:

Σ ⊢ Aq → B : Type

From which, we can construct the following instantiation
of the →L synthesis rule in the non-focusing calculus:

Σ; Γ, x1 :r1 Aq → B, x2 :r1 B ⊢ C ⇒ t1 | ∆1, x1 :s1 Aq → B, x2 :s2 B
Σ; Γ, x1 :r1 Aq → B ⊢ A ⇒ t2 | ∆2, x1 :s3 Aq → B

Σ ⊢ Aq → B : Type

Σ; Γ, x1 :r1 Aq → B ⊢ C ⇒ [(x1 t2)/x2]t1 | (∆1 + s2 · q ·∆2), x1 :s2+s1+(s2 · q · s3) Aq → B
→L

b) Case Var

In the case of the left synchronous rule for variable synthe-
sis, the synthesis rule has the form:

Σ ⊢ A : Type
D; Σ; Γ; x :r A ⇓ ⊢ A ⇒ x | 0 · Γ, x :1 A

Var

From the premise, we have that:

Σ ⊢ A : Type

from which, we can construct the following instantiation of
the Var synthesis rule in the non-focusing calculus:

Σ ⊢ A : Type
Σ; Γ, x :r A ⊢ A ⇒ x | 0 · Γ, x :1 A

Var

c) Case Def

In the case of the left synchronous rule for synthesis of a
top-level definition usage, the synthesis rule has the form:

Σ ⊢ A = inst(∀α : κ.A′)

D, x : ∀α : κ.A′; Σ; Γ; ∅ ⇓ ⊢ A ⇒ x | 0 · Γ
Def

From the premise, we have that:

Σ ⊢ A : Type

from which, we can construct the following instantiation of
the Var synthesis rule in the non-focusing calculus:

(x : ∀α : κ.A′) ∈ D Σ ⊢ A = inst(∀α : κ.A′)

Σ; Γ ⊢ A ⇒ x | 0 · Γ
Def
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d) Case ⇓L

In the case of the left synchronous rule for transitioning
from the right focusing phase to an asynchronous left phase,
the synthesis rule has the form:

D; Σ; Γ; x :r A ⇑ ⊢ B ⇒ t | ∆
A not atomic and not left sync

D; Σ; Γ; x :r A ⇓ ⊢ B ⇒ t | ∆
⇓L

By induction on the first premise, we have that:

Σ; Γ, x :r A ⊢ B ⇒ t | ∆ (ih)

from case 5 of the lemma.

6. Case 6. Right Focus:
In the case of the focusing rule for transitioning from a left
asynchronous judgement to a right synchronous judgement, the
synthesis rule has the form:

D; Σ; Γ; ∅ ⊢ B ⇓ ⇒ t | ∆ B not atomic

D; Σ; Γ; ∅ ⇑ ⊢ B ⇒ t | ∆
FocR

By induction on the first premise, we have that:

Σ; Γ ⊢ C ⇒ t | ∆ (ih)

from case 3 of the lemma.

7. Case 7. Left Focus:
In the case of the focusing rule for transitioning from a left
asynchronous judgement to a left synchronous judgement, the
synthesis rule has the form:

D; Σ; Γ; x :r A ⇓ ⊢ B ⇒ t | ∆

D; Σ; Γ, x :r A; ∅ ⇑ ⊢ B ⇒ t | ∆
FocL

By induction on the first premise, we have that:

Σ; Γ, x :r A ⊢ C ⇒ t | ∆ (ih)

from case 3 of the lemma.
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