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Abstract
In this paper, an innovative dynamic observer is applied to complex nonlinear
interconnected systems with matched and mismatched uncertainties. This dynamic
observer can estimate system states, which can not be achieved during the design
process for nonlinear interconnected systems with uncertainties. The proposed
method has great identification ability with small estimated errors for the states of
nonlinear interconnected systems with matched and mismatched uncertainties. It
should be pointed out that the considered uncertainties of nonlinear interconnected
systems have general forms, which means that the proposed method can be
effectively used in more generalised nonlinear interconnected systems. Finally,
simulation results for the lateral flight control system are presented to ensure the
effectiveness of this strategy.
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Introduction

In recent years, systems in both industry and daily life have become larger and more
complex. They are usually not simple which just has a single function. Most of these
complex systems are composed of several subsystems, and all subsystems are interacted
with each other (Rtibi et al. (2019); Feydi et al. (2019); Ghali et al. (2020)). This kind
of complex systems can be named as interconnected systems. Interconnected systems
which widely exist in practical world consist of many subsystems with various functions
and structures. For instance, quadrotors, smart cars and electronic monitoring systems
are all typical interconnected systems, which are popular in daily life (Attia et al. (2021);
Abbasi and Javad (2018); Huong (2023)). Because of nonlinearity, uncertainties, high
dimensions and complex components in these interconnected systems, it is very hard to
get the accurate values of system states (Trinh et al. (2019)). So, it is difficult to analyse
and control the interconnected systems effectively.

In practical application, the states of practical systems are unavailable due to inaccurate
modelling or poor operating environment. Many classic control theories based on the
accurate values of states in systems can not achieve high performance in this situation.
In the case, when system states are not available, one way is to establish an observer to
estimate the system states, and then the estimated states are used to form feedback loop if
possible (Tlili (2019)). The observer is a kind of dynamic system which is dependent on
the inputs and outputs of the original system. With the development of control theory,
there are many different kinds of observers which are applied to practical systems,
such as unknown input observers, deadbeat observers, SMC observers and backstepping
observers etc (Liu (2011); Vafaei and Yazdanpanah (2016); Khalil (2017); Li et al.
(2018)). State observers whose convergence rate was faster than the standard asymptotic
observers for reaction systems were presented (Ortega et al. (2019)). A sensor-less
speed estimator based on an adaptive non-linear high gain observer which only used
the measured stator currents and control voltages was presented to estimate the speed
of an induction motor (Kadrine et al. (2020)). Event-triggered observers were designed
for output-sampled nonlinear state affine systems (Song et al. (2021)). A strategy related
to the reduced-order observer of the Boolean control networks for fault diagnosis using
the semi-tensor product of matrices was proposed (Zhang et al. (2022)). State estimation
using a network of distributed observers with unknown inputs for a class of linear time-
invariant systems was presented (Yang et al. (2022)). The output feedback SMC based on
dynamic gain observer for an uncertain linear system with unstable zeros was considered
(Yeh (2022)). It should be noted that these observers mentioned above are only for
general nonlinear control systems and may not applicable to nonlinear interconnected
systems.

It is a common situation that states are not available for complex nonlinear
interconnected systems. Therefore, the observer is required to identify/estimate state
variables for interconnected systems (Chen et al. (2015); Zuo et al. (2023)). In recent
years, there are some achievements in this field, but they all have their own limitations
to some extent. A full-order nonlinear observer-based control for interconnected power
systems was proposed (Mahmud et al. (2012)). The approach of feedback linearisation
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Smith and Wittkopf 3

was used to design the nonlinear observer when the power system was fully linearised.
However, the linearisation of the nonlinear interconnected systems could greatly reduce
the accuracy as well as the resulting performance. A novel distributed observer for
interconnected multi-rate systems was presented and achieved great results (Orihuela
et al. (2017)). But the interconnection of the system was in linear form, which could not
be applied to nonlinear form. The new method for designing distributed reduced-order
functional observers of a class of interconnected systems with time delays was considered
(Trinh and Huong (2018)). In this strategy, interconnected systems without matched
uncertainty were not fully nonlinear. Besides that, it had several restrictive conditions due
to using the reduced-order observer, but these conditions may not be satisfied in practical
applications. Observer-based fuzzy adaptive optimal stabilization control for completely
unknown nonlinear interconnected systems was presented (Wang and Tong (2018)).
This strategy did not consider the matched uncertainty, and the interconnections had
the specific form which needed to satisfy the conditions of fuzzy logic. A decentralised
tracking control problem for a class of strict-feedback interconnected systems with
unknown parameters was investigated (Guo and Zhang (2021)). This interconnected
systems needed to meet several conditions which might not be used in the complex
interconnected systems. Based on these reasons above, there are very few excellent
research achievements on such complex nonlinear interconnected systems with matched
and mismatched uncertainties, and the dynamic observer design for this class of systems
is full of challenges and meaningful.

In this paper, the dynamic observer is applied to complex nonlinear interconnected
systems in the presence of both matched and mismatched uncertainties. If the uncertain
parts are covered by control inputs, this uncertainty is called matched uncertainty; if the
parts of uncertainty cannot be completely covered by the control input, this uncertainty
can be called mismatched uncertainty. In other words, matched uncertainty is in the
direction of the control input, and mismatched uncertainty is not in the direction of the
control input, it means that the negative effects of mismatched uncertainty can not be
eliminated directly by control input. This dynamic observer can estimate the states which
may not be available for control design. The proposed method has great identification
ability with small estimated state errors for nonlinear interconnected systems with
both matched and mismatched uncertainties. It is pointed out that the uncertainties of
nonlinear interconnected systems considered in this paper have general structures, which
indicates that the presented strategy can be effectively used in generalised nonlinear
interconnected systems with uncertainties, and the full-order observer adopted in this
paper reduces the conservatism of the algorithm compared to some results using the
reduced-order observer. In the other words, the proposed dynamic observer has several
advantages as follows:

1. This dynamic observer is applied to complex nonlinear interconnected systems in
the presence of both matched and mismatched uncertainties, many existed results
ignored one of them (Trinh and Huong (2018)).

2. The uncertainties of nonlinear interconnected systems considered in this paper
are nonlinear and have general structures, which indicates that the presented
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strategy can be effectively used in generalised nonlinear interconnected systems
with uncertainties. The uncertainties in many existed results are linear or have
the specific structure which cannot be applied to general interconnected systems
(Mahmud et al. (2012), Orihuela et al. (2017), Guo and Zhang (2021)).

3. This paper adopted the full-order observer which can reduce the conservatism
of the algorithm compared to some results using the reduced-order observer.
Some results which adopted the reduced-order observer often have more stringent
restrictions for the system (Trinh and Huong (2018)), and these restrictions may
not be satisfied in practical applications.

The remainder of this paper is organized as follows. Section ‘System description and
preliminaries’ describes the mathematical model of nonlinear interconnected systems
with uncertainties and gives some assumptions. Likewise, section ‘Dynamic observer
design’ describes the detailed steps to design a novel dynamic observer for nonlinear
interconnected systems with uncertainties. Then, simulation results for a class of practical
systems demonstrate the effectiveness of the presented strategy in section ‘Simulations
for the lateral flight control system’. Finally, the section ‘Conclusion’ summarizes the
entire paper.

System description and preliminaries
Consider a nonlinear interconnected system with uncertainties

ẋi = Aixi +Bi(ui +Wiσi(xi, t)) + Jiκi(xi, t) +

n∑
j=1

Ξij(xj , t) (1)

yi = Cixi, i = 1, 2, · · · , n (2)

where xi ∈ Γi ⊂ Rni (Γi is a neighbourhood of the origin), ui ∈ Rmi and yi ∈ Rqi with
mi ≤ qi < ni are the state, input and output of the i-th subsystem, respectively. Ai, Bi,
Ci, Wi and Ji are known constant matrices with appropriate dimensions. Wiσi(xi, t)
and Jiκi(xi, t) are matched uncertainty and mismatched uncertainty, respectively, where
σi(xi, t) and κi(xi, t) are unknown functions with appropriate dimensions, and the
matrices Wi and Ji present the structure of matched and mismatched uncertainties,
respectively.

∑n
j=1 Ξij(xj , t) is the known nonlinear interconnection of the i-th

subsystem. It is assumed that all nonlinear terms involved in this paper are continuous in
the considered domain to guarantee the existence of the solutions of the interconnected
system (1)-(2).

Assumption 1. The unknown functions κi(xi, t) and σi(xi, t) satisfy

∥κi(xi, t)∥ ≤ ηi(xi, t) (3)
∥σi(xi, t)∥ ≤ δi(xi, t) (4)

where ηi(xi, t) and δi(xi, t) are known Lipschitz functions with respect to xi in
the domain Γi ⊂ Rni and uniformly about t. The known nonlinear interconnection
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Ξij(xj , t) is Lipschitz with respect to xj in the domain Γj ⊂ Rnj and uniformly about t
for i, j = 1, 2, · · · , n.

Based on Assumption 1, it follows that for any xi, x̂i, xj and x̂j in the considered
domain,

∥ηi(xi, t)− ηi(x̂i, t)∥ ≤ Lηi(t)∥xi − x̂i∥ (5)

∥δi(xi, t)− δi(x̂i, t)∥ ≤ Lδi(t)∥xi − x̂i∥ (6)

∥Ξij(xj , t)− Ξij(x̂j , t)∥ ≤ LΞij
(t)∥xj − x̂j∥ (7)

where Lηi
(t), Lδi(t) and LΞij

(t) are nonnegative functions in R+ = {t|t ≥ 0}.

Remark 1. The matrices Wi and Ji are employed to describe the structural characteristics
of the nonlinear matched and mismatched uncertainties, respectively. σi(xi, t) and
κi(xi, t) are unknown functions with known bounds which will be used in analysis and
observer design later. The specific values of uncertainties may be difficultly achieved, but
based on practical experience and data statistics, the approximate bounds of uncertainties
can generally be obtained. This situation is very consistent with the practical application
of nonlinear interconnected systems with uncertainties.

Assumption 2. The matrix pair (Ai, Ci) is observable for i = 1, 2, · · · , n.

Assumption 2 is a basic limitation for the matrix pair (Ai, Ci). An innovative dynamic
observer is to be designed in next part.

Dynamic observer design
In view of the observability of the pair (Ai, Ci) in Assumption 2, there exists a matrix Li

such that (Ai − LiCi) is stable and thus for any Qi > 0 the following Lyapunov equation
has a unique solution Pi > 0,

(Ai − LiCi)
TPi + Pi(Ai − LiCi) = −Qi (8)

Assumption 3. Known matrices Ni, Si and Pi exist such that [Ji BiWi]
TPi =

[Ni Si]Ci holds, where Pi satisfies (8), and the matrices Bi, Ci, Wi and Ji are given
in the interconnected system (1)-(2).

Consider the following dynamic system

˙̂xi = Aix̂i +Bi(ui +Φi(x̂i, yi, t)) + Li(yi − Cix̂i) + Ωi(x̂i, yi, t) +

n∑
j=1

Ξij(x̂j , t)

(9)
where x̂i ∈ Rni , Li ∈ Rni×qi satisfy (8), and

Ωi(x̂i, yi, t) =

Ji
Ni(yi − Cix̂i)

∥Ni(yi − Cix̂i)∥
ηi(x̂i, t), Ni(yi − Cix̂i) ̸= 0 (10)

0, Ni(yi − Cix̂i) = 0 (11)
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Φi(x̂i, yi, t) =

Wi
Si(yi − Cix̂i)

∥Si(yi − Cix̂i)∥
δi(x̂i, t), Si(yi − Cix̂i) ̸= 0 (12)

0, Si(yi − Cix̂i) = 0 (13)

where matrices Ji, Ni, Wi and Si satisfy Assumption 3, the known functions ηi(·) and
δi(·) are given in Assumption 1.

Let state estimated error ei = xi − x̂i. It follows from (1) and (9) that the error
dynamic is given by

ėi =(Ai − LiCi)ei + (Jiκi(xi, t)− Ωi(x̂i, yi, t)) +Bi(Wiσi(xi, t)− Φi(x̂i, yi, t))

+

n∑
j=1

(Ξij(xj , t)− Ξij(x̂j , t))

(14)
The following results are presented to underpin subsequent analysis.

Lemma 1. Suppose that Assumptions 1-3 are satisfied, the following results hold:
(i) eTi Pi(Jiκi(xi, t)− Ωi(x̂i, yi, t)) ≤ Lηi

(t)∥NiCi∥∥ei∥2
(ii) eTi PiBi(Wiσi(xi, t)− Φi(x̂i, yi, t)) ≤ Lδi(t)∥SiCi∥∥ei∥2
(iii) eTi Pi

∑n
j=1(Ξij(xj , t)− Ξij(x̂j , t)) ≤

∑n
j=1 λ̄(Pi)LΞij (t)∥ej∥∥ei∥

where Lηi
(t), Lδi(t) and LΞij

(t) are satisfied (5), (6) and (7), respectively. λ̄(Pi) is the
maximum eigenvalue of the matrix Pi.

Proof. From Assumptions 1 and 3, combining with equations (10) and (11), if NiCiei ̸=
0,

eTi Pi(Jiκi(xi, t)− Ωi(x̂i, yi, t))

= (NiCiei)
Tκi(xi, t)−

(NiCiei)
TNiCiei

∥NiCiei∥
ηi(x̂i, t)

≤ ∥NiCiei∥ηi(xi, t)− ∥NiCiei∥ηi(x̂i, t)

≤ Lηi
(t)∥NiCi∥∥ei∥2 (15)

Otherwise if NiCiei = 0, then from JT
i Pi = NiCi in Assumption 3, there is

eTi PiJi = (JT
i Piei)

T = (NiCiei)
T = 0 (16)

Therefore, from analysis above,

eTi Pi(Jiκi(xi, t)− Ωi(x̂i, yi, t)) ≤ Lηi
(t)∥NiCi∥∥ei∥2 (17)

Hence the conclusion (i) follows.
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From Assumptions 1 and 3, combining with the equations (12) and (13), if SiCiei ̸= 0,

eTi PiBi(Wiσi(xi, t)− Φi(x̂i, yi, t))

= (SiCiei)
Tσi(xi, t)−

(SiCiei)
TSiCiei

∥SiCiei∥
δi(x̂i, t)

≤ ∥SiCiei∥δi(xi, t)− ∥SiCiei∥δi(x̂i, t)

≤ Lδi(t)∥SiCi∥∥ei∥2 (18)

Otherwise if SiCiei = 0, then from (BiWi)
TPi = SiCi in Assumption 3, there is

eTi PiBiWi = ((BiWi)
TPiei)

T = (SiCiei)
T = 0 (19)

Therefore, from analysis above,

eTi PiBi(Wiσi(xi, t)− Φi(x̂i, yi, t)) ≤ Lδi(t)∥SiCi∥∥ei∥2 (20)

Hence the conclusion (ii) follows.
Based on (7), it follows

eTi Pi

n∑
j=1

(Ξij(xj , t)− Ξij(x̂j , t))

≤ ∥ei∥λ̄(Pi)

n∑
j=1

(LΞij
(t)∥xj − x̂j∥)

=

n∑
j=1

λ̄(Pi)LΞij
(t)∥ej∥∥ei∥ (21)

Hence conclusion (iii) follows.

Theorem 1. Suppose that Assumptions 1-3 are satisfied. Then, there exists positive
constants β1 and β2 such that

∥ei∥ ≤ β2exp{−β1t} (22)

if (Υ + ΥT ) is positive definite with Υ = (υij)n×n defined by

υij =

{
λ(Qi)− 2Lηi

(t)∥NiCi∥ − 2Lδi(t)∥SiCi∥ − 2λ(Pi)LΞij
(t), i = j (23)

−2λ(Pi)LΞij
(t), i ̸= j (24)

where Qi is satisfied in equation (8), Ni and Si are defined in Assumption 3. λ(Qi) is
the minimum eigenvalue of the matrix Qi, λ(Pi) is the maximum eigenvalue of the matrix
Pi.
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Proof. For the system (14), consider a Lyapunov function candidate V1 =
∑n

i=1 e
T
i Piei.

Then, the time derivative of V1 along the trajectories of system (14) is given by

V̇1 =

n∑
i=1

(
− eTi Qiei + 2eTi Pi(Jiκi(xi, t)− Ωi(x̂i, yi, t)) + 2eTi PiBi(Wiσi(xi, t)

− Φi(x̂i, yi, t)) + 2eTi Pi

n∑
j=1

(Ξij(xj , t)− Ξij(x̂j , t))

)
where equation (8) is used above. From conclusions (i)-(iii) of Lemma 1, it follows that

V̇1 ≤
n∑

i=1

(−λ(Qi)∥ei∥2 + 2Lηi
(t)∥NiCi∥∥ei∥2

+ 2Lδi(t)∥SiCi∥∥ei∥2 + 2

n∑
j=1

λ̄(Pi)LΞij
(t)∥ei∥∥ej∥)

=−
n∑

i=1

(λ(Qi)− 2Lηi(t)∥NiCi∥ − 2Lδi(t)∥SiCi∥ − 2λ(Pi)LΞij (t))∥ei∥2

+

n∑
i=1

n∑
j=1,j ̸=i

2λ(Pi)LΞij (t)∥ei∥∥ej∥

=− 1

2
[∥e1∥∥e2∥ . . . ∥en∥](Υ + ΥT )[∥e1∥∥e2∥ . . . ∥en∥]T

≤− 1

2
λ(Υ + ΥT )

n∑
i=1

∥ei∥2 (25)

Given that
n∑

i=1

eTi Piei ≤ maxi{λ(Pi)}
n∑

i=1

∥ei∥2 (26)

then, according to (25) and (26), it follows that

V̇1 ≤− λ(Υ + ΥT )

2maxi{λ(Pi)}

n∑
i=1

eTi Piei

=− λ(Υ + ΥT )

2maxi{λ(Pi)}
V1

=− 2β1V1

where

β1 ≡:
λ(Υ + ΥT )

4maxi{λ(Pi)}
> 0 (27)

Based on the analysis above, it follows that

V1(t) ≤ V1(0)exp{−2β1t}
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Since mini{λ(Pi)}∥ei∥2 ≤ eTi Piei ≤
∑n

i=1 e
T
i Piei = V1, the conclusion ∥ei∥ ≤

β2exp{−β1t} follows by letting

β2 >
√
V1(0)/mini{λ(Pi)} (28)

Hence, the result is obtained.

Remark 2. Theorem 1 shows that the dynamic observer in (9) is an exponential observer
for the interconnected system (1)-(2). This can be seen from the inequality (22). The
proof is also constructive and provides a method to determine the values of β1 and β2.

Simulations for the lateral flight control system
Consider a lateral flight control system, which is widely used in civil airliners. The
nominal aircraft lateral mode at the cruising flight condition can be presented as (see
Wu et al. (1998); Unal (2021))

ẋ1 =

−1.588 0 −0.883
1 0 0
0 0 −25

x11

x12

x13


+

 0
0
25

 (u1 + σ1) +

−0.2164 −0.1625
1 0.75
2 1.4

κ1(x1, t)

+

0.07x21 + 0.045x22 + 0.037x24

0
0

 (29)

y1 =

[
0 1 0
0 0 1

]x11

x12

x13

 (30)

ẋ2 =


−0.161 1 0 −0.052
−5.446 −0.386 0 −2.185
−5.446 −0.386 −0.5 −2.185

0 0 0 −20



x21

x22

x23

x24



+


0
0
0
20

u2 +


1 0.4

−3.685 −1.474
−5.741 −2.2964
1.2 1.9

κ2(x2, t) +


0.02x11 + 0.01x12

0.01x11

0.01x11

0

 (31)

y2 =

[
0 0 1 0
0 0 0 1

]
x21

x22

x23

x24

 (32)

where x1 = col(x11, x12, x13) and x2 = col(x21, x22, x23, x24) denote roll rate, bank
angle, aileron deflection, sideslip angle, yaw rate, washout filter output and rudder
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deflection, respectively. It is assumed that bank angle, aileron deflection, washout filter
output and rudder deflection are available which take as the outputs of the system (29)-
(32). Input signals u1 and u2 are the perturbed aileron deflection command and the
perturbed rudder deflection command, respectively. The dynamic coefficients represent
a Boeing 707 aircraft cruising at the specific speed (Wu et al. (1998); Unal (2021)). The
uncertainties are assumed to satisfy

∥κ1(·)∥ ≤ η1(·) = 0.045(sin(x11) + ∥x12∥) (33)
∥κ2(·)∥ ≤ η2(·) = 0.02(sin(x21) + sin(x22) + ∥x23∥) (34)
∥σ1(·)∥ ≤ δ1(·) = 0.08sin(x11) (35)
Lη1

(·) = 0.09 (36)
Lη2

(·) = 0.06 (37)
Lδ1(·) = 0.13 (38)

and

LΞ1j
(·) = 0.2 (39)

LΞ2j (·) = 0.07 (40)

where

Ξ1j(·) =

0.07x21 + 0.045x22 + 0.037x24

0
0

 (41)

Ξ2j(·) =


0.02x11 + 0.01x12

0.01x11

0.01x11

0

 (42)
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Figure 1. Time responses of the estimated states of the lateral flight control system.

In the lateral flight control system (29)-(32),

A1 =

−1.588 0 −0.883
1 0 0
0 0 −25

 (43)

A2 =


−0.161 1 0 −0.052
−5.446 −0.386 0 −2.185
−5.446 −0.386 −0.5 −2.185

0 0 0 −20

 (44)

B1 =

 0
0
25

 (45)

B2 =


0
0
0
20

 (46)

C1 =

[
0 1 0
0 0 1

]
(47)

C2 =

[
0 0 1 0
0 0 0 1

]
(48)
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By direct verification, (A1, C1) and (A2, C2) are observable, thus Assumption 2 is
satisfied.

Choose

L1 =

−0.0363 −0.8830
1.9120 0

0 −24.0000

 (49)

L2 =


−0.8884 −0.0520
4.0914 −2.1850
4.9530 −2.1850

0 −19.0000

 (50)
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Figure 2. Time responses of observation errors of the lateral flight control system.
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Figure 3. Time responses of control laws of the lateral flight control system.

By calculation, (A1 − L1C1) and (A2 − L2C2) are stable. For Q1 = I3 and Q2 = I4,
the solutions of Lyapunov equation (8) are

P1 =

0.3646 0.0789 0
0.0789 0.2630 0

0 0 0.5000

 (51)

P2 =


1.1772 −0.4134 0.4704 0
−0.4134 0.8277 −0.6033 0
0.4704 −0.6033 0.6210 0

0 0 0 0.5000

 (52)
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Let

J1 =

−0.2164 −0.1625
1 0.75
2 1.4

 (53)

N1 =

[
0.2459 1
0.1844 0.7

]
(54)

W1 = I (55)

S1 =
[
0 12.5

]
(56)

J2 =


1 0.4

−3.685 −1.474
−5.741 −2.2964
1.2 1.9

 (57)

N2 =

[
−0.8716 0.6
−0.3486 0.95

]
(58)

According to (23)-(24),

(Υ + ΥT ) =

[
1.1468 −0.4637
−0.4637 1.1378

]
(59)

where (Υ + ΥT ) is positive definite, thus Theorem 1 is satisfied. Based on (27) and (28),
β1 = 0.09 and β2 = 0.3.

Then, choose the control law for simulation as follows

u1 = −(−0.0850x̂11 − 0.1359x̂12 − 0.8835x̂13) (60)
u2 = −(0.4032x̂21 + 0.0057x̂22 − 0.1465x̂23 − 0.7024x̂24) (61)

The initial values of simulation are selected as x1 = col(2, 4, 2), x2 = col(3, 1, 2, 1.5),
x̂1 = col(1, 1, 0) and x̂2 = col(1, 0, 0, 0). κ1(·), κ2(·) and σ1(·) are selected as

κ1(·) = 0.0112(sin(x11) + ∥x12∥) (62)
κ2(·) = 0.005(sin(x21) + sin(x22) + ∥x23∥) (63)
σ1(·) = 0.04sin(x11) (64)

Fig 1 describes the time responses of the estimated states of the lateral flight control
system. It should be noted that x̄ = col(x̄11, x̄12, x̄13, x̄21, x̄22, x̄23, x̄24) presents the
estimated states of the lateral flight control system using the method in Trinh and Huong
(2018). Compared to the method in Trinh and Huong (2018), it can be found that the
estimated states in the proposed strategy have the greater tracking ability for the states
of this kind of interconnected systems with uncertainties. Fig 2 shows the time responses
of observation errors related to states of the lateral flight control system. Especially,
ē = col(ē11, ē12, ē13, ē21, ē22, ē23, ē24) presents the observation errors related to states of
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the lateral flight control system using the strategy in Trinh and Huong (2018). According
to Fig 2, compared to the previous approach, the observation errors in the presented
strategy are smaller and adjusted to 0 faster, it also demonstrates that this dynamic
observer has the great identification ability with small errors for nonlinear interconnected
systems with uncertainties. Fig 3 presents time responses of the control laws for the
lateral flight control system. The simulation results of the lateral flight control system
demonstrate that the proposed dynamic observer is effective.

Conclusion

In this paper, a novel dynamic observer is presented for complex nonlinear interconnected
systems with matched and mismatched uncertainties. This dynamic observer can estimate
the values of states which can not be accessed in general situation. The proposed
method has great identification ability with small estimated state errors for nonlinear
interconnected systems with uncertainties. It should be mentioned that the uncertainties
of nonlinear interconnected systems have general structures, which means that the
proposed method can be effectively used in generalised nonlinear interconnected
systems. In the future, the proposed dynamic observer will be combined with some
advanced control methods to improve the control performance and the robustness for
nonlinear interconnected systems with uncertainties.
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