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Abstract: This paper presents the formal semantics of concurrency in Core Erlang, an intermediate
language for Erlang, along with a notion of program equivalence (based on barbed bisimulation)
that is able to model equivalence between programs that have different communication structures
but the same observable behaviour. The novelty in our formalisation is its extent: it includes
semantics for messages and exit and link signals, in addition to most of Core Erlang’s sequential
features. Furthermore, unlike previous studies, this work formalises message receipt using primitive
operations, consistent with the standard as of Erlang/OTP 23. In this novel formalisation, we show
some generally applicable program equivalences (such as process identifier renaming and silent
evaluation) and present a practical case study featuring the equivalence of sequential and concurrent
list processing.

Keywords: formal semantics; program equivalence; Erlang; barbed bisimulation; concurrency; Coq

1. Introduction

The main motivation of this work is to provide formal basis for reasoning about
refactoring transformations of Erlang programs. Code refactoring is the process of im-
proving the internal structure of a program without affecting its observable behaviour [1].
Admittedly, one of the main challenges of refactoring is correctness [2,3] as “refactoring
might not always be behaviour-preserving in practice” [4]. Most refactoring tools lack
a precise specification of how they affect the code, are only verified via testing, and in
peculiar circumstances they can introduce bugs. Therefore, the majority of developers do
not even use automated tools specifically designed for refactoring [2,3].

We aim to break the status quo and develop trustworthy refactoring tools with for-
mal guarantees of behaviour-preservation, fostering tool-assisted refactoring. By using
mathematical definitions of program behaviour and program equivalence, we can achieve
high levels of assurance by carrying out machine-checked, formal proofs about behaviour-
preservation of program transformations.

1.1. Our Target Language

This paper extends our previous work on the formalisation of (Core) Erlang [5,6],
an impure, concurrent functional programming language featuring strict evaluation, un-
curried function abstraction and application. In particular, our work here targets the
concurrent subset of Core Erlang, by defining a modular formal semantics and program
equivalence definitions for it, as a milestone towards reasoning about the correctness of
refactoring concurrent programs. The language features we cover in this paper allow us
to express and prove the behavioural equivalence of sequential and parallel algorithmic
skeletons (such as map and pmap), a formal result strongly motivated and encouraged in [7].

(Core) Erlang implements and extends the actor model [8] to express concurrency.
An Erlang node consists of processes (actors) which execute in their own memory. Commu-
nication between processes is achieved via asynchronous message passing; the messages
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sent from a process are placed at the end of the receiver’s mailbox and the receiver can select
messages to handle (i.e., messages do not need to be processed in the order of their arrival).

In addition to messages, Erlang processes communicate via signals such as link, unlink,
or exit [9]. These signals potentially modify the state of the process upon their arrival,
without being placed into the mailbox. Links can be established and removed between
processes with link and unlink signals. These links are bidirectional and serve as a way
to notify a process with an exit signal when a linked process has terminated. Exit signals
express termination, and, upon their arrival, a process can terminate, drop the signal,
or convert it into a message and place it at the end of its mailbox. Processes also have
different process flags. In this formalisation, we address the trap_exit flag; whenever
this flag is set, exit signals will be converted into messages (except in very particular
circumstances). Links and trapping exit signals are the main ingredients of building fault-
tolerant Erlang systems.

1.2. Contributions

In this paper, we investigate the actor model of Core Erlang with the extensions
mentioned above. Namely, we make the following contributions:

• An upgrade to the modular, frame stack style semantics for concurrent Core Erlang [10,11]
(including a more refined semantics of message reception and exceptions);

• A notion of program equivalence for concurrent Core Erlang, based on bisimulation,
that is able to model equivalence between programs that have different communication
structures but the same observable behaviour;

• Concurrent program equivalence examples: We show that silent evaluation and
process identifier renaming produce equivalent programs, and that transforming lists
sequentially is equivalent to doing it concurrently;

• A machine-checked formalisation of the semantics and results concerning it in the Coq
proof management system (we establish the link between the code and this paper in
Appendix C).

The paper is structured as follows. In Section 2, we briefly summarise related and previ-
ous work, then Section 3 presents the formal semantics of concurrent Core Erlang. Section 4
defines bisimulations to argue about program equivalence, and shows some examples.
Section 5 highlights theoretical and technical challenges, discusses the Coq implementation,
and compares our work to tightly related research. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we briefly summarise the related and our previous work on formal
semantics for (Core) Erlang and program equivalence in the concurrent setup.

2.1. Erlang Semantics

Fredlund’s influential work [12] set the state of the art in the formal definition of
the Erlang programming language. It follows the documentation [5] faithfully, including
signals (such as exit and link), similar to our approach. However, unlike our definition,
Fredlund’s semantics handles signal-passing as an atomic operation, while according to
the “signal ordering guarantee” [9], this is not necessarily the case.

The work of Lanese et al. [13–16] defines the semantics of Core Erlang for a small
subset of sequential Core Erlang expressions, messages, primitives for message-passing,
and process creation. They express message-passing as non-atomic; however, the order
of messages between a source and destination is not preserved in the ether, potentially
violating Erlang’s semantics on signal ordering [9]. They also impose a restriction on their
semantics: process identifiers can only appear as computation results (i.e., when evaluating
self or spawn actions); however, the main limitation of their work is the language coverage
of the semantics, for both the sequential and concurrent features.

Harrison’s [17] formalisation of Core Erlang is minimal, but it is implemented in
Isabelle, which aided our Coq development. There is also related research on Core Erlang
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with the goal of causal debugging of concurrent programs [18], which defines a semantics
of similar coverage to ours.

All the related work mentioned above models receive expressions as language primi-
tives, while (as of OTP 23 [19]) message receipts are expressed with primitive operations.
In this work, we address this change, but this comes with a number of drawbacks which
we discuss in Section 5.

2.2. Bisimulation Approaches

The original notion of bisimulation has a long history [20–22]. Since then, multiple vari-
ants of bisimulations have been proposed. We rely on the notion of barbed bisimulation [23].
Barbed bisimulation explicitly defines what should be observed, and its weak variants do
not compare how many and what steps the bisimilar systems take.

This notion of observational equivalence was successfully applied to Erlang-like
languages: by Lanese et al. [16] to prove that PID renaming and evaluation without message
arrives provide bisimilar Core Erlang nodes, and by Bocchi et al. [24] in an actor model
variant with failures. There are also a number of proof techniques based on bisimulation
(e.g., bisimulation up-to) [21], some of which were also discussed in [16]. In the future, we
plan to adopt these ideas to aid in bisimulation proofs for Erlang refactorings.

2.3. Previous Work

In our previous work [11], we defined a frame stack semantics for the sequential
sublanguage of Core Erlang, and investigated several program equivalence concepts in the
sequential setup. Moreover, we also investigated the concurrency model of Core Erlang
with a minimal sublanguage [10], also based on a frame stack semantics.

A frame stack semantics is essentially a small-step [25], reduction-style [26] semantics
where the reduction context is split into a stack of basic evaluation frames [27]. In this
semantics style, there are explicit rules to decompose the reduction context around a redex
into a stack which represents the continuation of the evaluation. This semantics style is
simpler to use in proof assistants because the reduction context does not need to be inferred;
the aforementioned rules construct it explicitly.

This paper unites our two previous results [10,11], extends the formalisation for better
language coverage (based on Fredlund’s work [12]), and adapts the techniques used by
Lanese et al. [16] to argue about program equivalence. Although the theorems we discuss
here were also proved by Lanese et al. [16], their proofs are mathematical, high-level proofs
(for a restricted sublanguage of Core Erlang), whilst our results are also implemented in
Coq as formal, machine-checked proofs.

Compared to our previous work, our semantics is extended with the formalisation of ex-
ceptions in the concurrent setup, spawn_link (spawning a process while creating a link) and
expresses message receipt with primitive operations (as introduced in Erlang/OTP 23 [19]).
We also define a more faithful representation of mailboxes and links which was necessary
to handle the above-mentioned primitive operations correctly. In fact, to best of our knowl-
edge, our formalisation is the first one to address this major change in message receipts.

3. Concurrent Formal Semantics

In this section, we describe the syntax and semantics of Core Erlang. The semantics
presented here is modular and consists of three layers (see Table 1).

Table 1. The layers of the semantics.

Layer Name Notation Description

Inter-process (Section 3.5) ι:a−→O System-level reductions
Process-local (Section 3.4) a−→ Process-level reductions

Sequential (Section 3.3) −→ Computational reductions
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Reductions denoted with −→ are computational steps performed by the sequential
frame stack semantics defined in our previous work [11]. Informally, ⟨K, r⟩ −→ ⟨K′, r′⟩
means that in the frame stack (continuation) K, a redex r is rewritten to r′ while the
stack changes to K′. Reductions denoted with p a−→ p′ are the process-local steps, which
involve one single process and communicate with the inter-process semantics by the actions.
The inter-process semantics (denoted with N ι:a−→O N′) describes how communication is
carried out between processes.

This section is structured as follows. In Section 3.1 we describe the formal syntax of
Core Erlang, then in Sections 3.3–3.5 we define the semantics following the structure in
Table 1. Section 3.6 discusses an example evaluation (on which we build a program equiva-
lence proof in Example 2), and Section 3.7 presents substantial properties of the semantics.

3.1. Language Syntax

First, we recall the syntax of Core Erlang from our previous work [11] in Figure 1.
We reuse the same notations and shorthands: lists from the metatheory are denoted with
e1, ..., en, and non-empty lists with e1, e2, ..., en. Appending an element to the front of a list
is denoted with x :: l, and for concatenation we use l1 ++ l2.

p ∈ Pattern ::= i | a | x | [p1|p2] | [] | {p1, ..., pn} | ∼{pk
1 ⇒ pv

1, ..., pk
n ⇒ pv

n}∼
ps ∈ list(Pattern) ::= <p1, ..., pn>

cl ∈ Clause ::= ps when eg → eb

cli ∈ ClosItem ::= f /k = fun(x1, ..., xk) → e
fdefs ∈ list(ClosItem) ::= cli1, ..., clin

v ∈ Val ::= i | a | x | f /k | ι | clos(fdefs, [x1, ..., xn], e) | [v1|v2] | [] | {v1, ..., vn}
| ∼{vk

1 ⇒ vv
1, ..., vk

n ⇒ vv
n}∼

nv ∈ NonVal ::= fun(x1, ..., xn) → e | <e1, ..., en> | [e1|e2] | {e1, ..., en}
| ∼{ek

1 ⇒ ev
1, ..., ek

n ⇒ ev
n}∼ | call em:e f (e1, ..., en) | primop a(e1, ..., en)

| apply e(e1, ..., en) | case e1 of cl1; ...; cln end | let <x1, ..., xn> = e1 in e2 | do e1 e2

| letrec fdefs in e | try e1 of <x1, ..., xk> → e2 catch <xk+1, ..., xk+n> → e3

e ∈ Exp ::= nv | v
vs ∈ ValSeq ::= <v1, ..., vn>

c ∈ ExcClass ::= ’throw’ | ’exit’ | ’error’
exc ∈ Exception := {c, vr, vd}X

res ∈ Result := exc | vs

Figure 1. Syntax of Core Erlang.

We use i to range over integers, a, f over atoms, and k over natural numbers. We
use superscripts to denote the roles of expressions. Furthermore, x ranges over variables
and ι over process identifiers. Integers (denoted with numbers), atoms (enclosed in single
quotation marks), variables, empty and non-empty lists, tuples, and maps (tilde-enclosed
tuples of key-value pairs, denoted with superscripts) form the patterns of the language.
The set of values essentially consists of the same elements with the addition of function
identifiers ( f /k atom-arity pairs), process identifiers (PIDs), and function closures (which
include a list of functions fdefs that can be applied recursively in the closure’s body).

In Core Erlang, the result of the evaluation is either a value sequence (denoted with
<v1, ..., vn> or vs) or an exception. While most expressions of the language evaluate to
singleton value sequences, one can use value list expressions (<e1, ..., en>) in binding
expressions (such as case, let, letrec, or try) to bind multiple names simultaneously.
Pattern-matching is expressed with case expressions; each case clause consists of a list of
patterns to be matched, a guard, and a body expression (denoted with superscripts).
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The set of expressions of Core Erlang also contains the values, lists, tuples, and maps
containing expressions, sequencing (do), uncurried function abstraction (fun) and applica-
tion (apply), inter-module function calls (call), and primitive operations (primop). Cur-
rently, the module system is not formalised; thus, inter-module calls only express standard
and built-in functions (BIFs) [28] and their semantics is simulated in the metatheory.

Exceptions in Erlang implementations are represented by a triple: an exception class
(which is an atom), and two values describing the reason of the exception and additional
details about the exception (these are denoted with superscripts). These three values
are bound in a catch clause of a try expression. For further details, see the language
specification [6].

Compared to our previous work [11], the only syntactical addition is the syntax for
PIDs; our previous results on the sequential sublanguage [11] still hold for this extension.
The other concurrent features of the language (e.g., message sending and receiving) are
expressed with BIF calls and primitive operations. As of Erlang/OTP 23 [19], receive
expressions are defined as syntactic sugar on top of primitive operations (Figure 2), which
are described in Section 3.4.

receive
ps1 when g1 -> e1
...
psn when gn -> en

after et -> ea

→

letrec ’receive ’/0 = fun() ->
let <Success , Msg > =

primop ’recv_peek_message ’() in
case Success of

<’true’> when ’true’ ->
case Msg of

ps1 when g1 ->
do primop ’remove_message ’()

e1
...
psn when gn ->

do primop ’remove_message ’()
en

<X> when ’true’ ->
do primop ’recv_next ’()

apply ’receive ’/0()
<’false ’> when ’true’ ->

let <TimeOut > =
primop ’recv_wait_timeout ’(et) in

case TimeOut of
<’true’> when ’true’ -> ea
<’false ’> when ’true’ ->

apply ’receive ’/0()
in

apply ’receive ’/0()

ecase

ereccase

Figure 2. Receive expression in Core Erlang since Erlang/OTP 23 [19]. Note that the actual variable
names (and the function identifier for letrec) used in the translated version are always generated
based on the expressions and patterns present in the original version to avoid name clashes. Also,
note that the labelled code segments are intended to ease understanding of Example 1 later, and they
are not relevant at this point.

3.2. Running Example

As an example, we show that sequential and concurrent maps over lists behave in
the same way: the expression in Figure 3 computes this mapping sequentially, while the
code in Figure 4 splits the list into two parts, computes the transformation concurrently,
then appends the two sub-lists. Hence, the reason both expressions send the transformed
list to a particular PID ι as the final step of their evaluation: in Example 2 we reason about
the equivalence of these expressions based on their observable behaviour, i.e., the outward
communication they carry out.
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letrec ’map’/2 = fun(F,L) ->
case <L> of

<[]> when ’true’ -> []
<[H|T]> when ’true’ ->

[apply F(H) | apply ’map’/2(F,T)]
in

call ’erlang ’:’!’(
ι, apply ’map’/2(e f , el)

)

cl1

cl2

Figure 3. Sequential definition for list mapping for any PID ι and expressions e f , el .

case call ’lists’:’split’(i, el) of
<{L1, L2}> when ’true’ ->

let <S> = call ’erlang ’:’self’() in
do call ’erlang ’:’spawn’(

fun(S, L) ->
call ’erlang ’:’!’(S,

apply cmap(e f ,L)),
[S|[L1|[]]])

let <M2> = apply cmap(e f ,L2) in
receive

<M1> when ’true’ ->
call ’erlang ’:’!’(

ι, call ’erlang ’:’++’(M1, M2)
)

after ’infinity ’ -> []

epmap

cchild

elet

Figure 4. Concurrent definition for list mapping for any PID ι, non-negative integer i, and
expressions e f , el .

Note that we use cmap to denote the closure of the sequential list transforming function
(inside letrec) in Figure 3. Also note that the labelled code segments are intended to ease
understanding of Example 1 later, and they are not relevant at this point.

3.3. Sequential Semantics

For the sequential semantics, we reuse the frame stack semantics from our previous
work [11] (also described in Appendix A) and we build the process-local and inter-process
semantics on top of it, based on the prototype described in [10]. A sequential configuration
consists of a frame stack and a redex. The syntax of redexes, frame stacks, and frames is
described in Figure 5. Essentially, a frame is a compound expression with a hole in place of
one of its subexpressions.

r ∈ Redex ::= vs | exc | e | □
id ∈ FrameId ::= tuple | values | map | call(vm, v f ) | primop(a) | app(v f )

F ∈ Frame ::= id(v1, ..., vi−1,□, ei+1 ..., en) | [e1|□] | [□|v2]

| call □:e f (e1, ..., en) | call vm:□(e1, ..., en) | apply □(e1, ..., en)

| case □ of cl1; ...; cln end | let <x1, ..., xn> = □ in e2

| case vs of ps when □ → eb; cl2; ...; cln end | do □ e2

| try □ of <x1, ..., xn> → e2 catch <xk+1, xk+2, xk+3> → e3

K ∈ FrameStack ::= ε | F :: K

Figure 5. Syntax of redexes, frames, frame stacks.

The frames for language elements, that include a list of subexpressions (i.e., tuples,
value lists, maps, inter-module calls, primitive operations, and function applications) are
expressed with parameter list frames id(v1, ..., vi−1,□, ei+1, ..., en). The frame identifier id
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determines which language element the frame corresponds to. This way, the evaluation of
a list of parameter expressions is expressed uniformly, without repeating the rules for each
expression type.

The sequential reductions are denoted with ⟨K, r⟩ −→ ⟨K′, r′⟩. In Figure 6, we only
recall the evaluation rules for inter-module calls and primitive operations from our previous
work. The complete definition can be found in [11] and Appendix A.

⟨K, call em:e f (e1, ..., en)⟩ −→ ⟨call □:e f (e1, ..., en) :: K, em⟩ (SCALLMOD)

⟨K, primop a(e1, ..., en)⟩ −→ ⟨primop(a)(□, e1, ..., en) :: K,□⟩ (SPRIMOP)

⟨call □:e f (e1, ..., en) :: K,<vm>⟩ −→ ⟨call vm:□(e1, ..., en) :: K, e f ⟩ (SCALLFUN)

⟨call vm:□(e1, ..., en) :: K,<v f>⟩ −→ ⟨call(vm, v f )(□, e1, ..., en) :: K,□⟩ (SCALLPARAM)

⟨id(□, e1, e2, ..., en) :: K,□⟩ −→ ⟨id(□, e2, ..., en) :: K, e1⟩ (if id ̸= map) (SPARAMS0)

⟨id(v1, ..., vi−1,□, ei+1, ei+2, ..., en) :: K,<vi>⟩ −→
⟨id(v1, ..., vi−1, vi,□, ei+2, ..., en) :: K, ei+1⟩ (SPARAMS)

⟨id(v1, ..., vn,□) :: K,□⟩ −→ ⟨K, eval(id, v1, ..., vn)⟩ (if id ̸= map) (PPARAMS0)

⟨id(v1, ..., vn−1,□) :: K,<vn>⟩ −→ ⟨K, eval(id, v1, ..., vn)⟩ (PPARAMS)

Figure 6. Frame stack semantics rules for calls and primops.

3.4. Process-Local Semantics

The process-local semantics describes the behaviour of a single process in response to
an action. First, we define Core Erlang processes.

Definition 1 (Core Erlang processes). A process (denoted with p ∈ Process) is either dead
or alive.

• A live process is a quintuple (K, r, q, L, b), where K denotes its frame stack, r is the redex
currently evaluated, and q is the mailbox. L is the set of linked process identifiers, and b is a
metatheoretical boolean value denoting the status of the trap_exit flag.

• A terminated (or dead) process (denoted with T) is a finite map of (linked) process identifiers
to values.

Compared to related studies [10,12,16], we do not formalise the mailbox of a process
as a single list of values but, rather, split it into seen and unseen messages (denoted with
[v1, ..., vm ▶ vm+1, ..., vn] where vm+1 is the first unseen message). This change was needed
to correctly express the meaning of the primitive operations of message receipts [19], while
it also narrows gap between the formalisation and the standard Erlang/OTP compiler. We
formally define the mailbox operations on Figure 7. Incoming messages are placed at the
end of the unseen message list. We can check the first unseen message (and its existence)
in a mailbox. The first unseen message can be placed into the seen section of the mailbox.
When a message is received, it is removed from the mailbox, and the remaining elements
should all be scanned again for the next message receipt (i.e., they all become unseen).
With this formalism, the entire mailbox can be pictured as follows:

[v1, ..., vm] ++ [vm+1, ..., vn]

As mentioned before, the concurrent sublanguage of (Core) Erlang is based on the
actor model [8]. Processes of (Core) Erlang communicate with asynchronous message-
passing and signals; in fact, messages are just one particular kind of signal. In this paper,
we consider four signal types, while there are several others [9].



Computers 2024, 13, 276 8 of 32

push([v1, ..., vm ▶ vm+1, ..., vn], v) def
= [v1, ..., vm ▶ vm+1, ..., vn, v]

hasNew([v1, ..., vm ▶ vm+1, ..., vn])
def
= n > m

peek([v1, ..., vm ▶ vm+1, ..., vn])
def
=

{
Some(vm+1) if n > m
None otherwise

recvNext([v1, ..., vm ▶ vm+1, ..., vn])
def
=

{
Some([v1, ..., vm, vm+1 ▶ vm+2, ..., vn]) if n > m
None otherwise

removeMsg([v1, ..., vm ▶ vm+1, ..., vn])
def
=

{
Some([▶ v1, ..., vm, vm+2, ..., vn]) if n > m
None otherwise

Figure 7. Mailbox operations.

Definition 2 (Signals).

s ∈ Signal ::= msg(v) | exit(v, b) | link | unlink

• Messages are values that are sent from one process and placed into the mailbox of
another process.

• Link signals communicate that two processes should be linked. Links are bidirectional;
when one of the processes terminates, it will notify the other process with an exit signal.

• Unlink signals indicate that the link between two processes should be removed.
• Exit signals are used to indicate runtime errors. Terminated processes send them to

their links, but they can be created and sent manually (with the ‘exit’/2 BIF) too.
Exit signals include a value describing the reason of termination and a boolean flag of
whether they have been triggered by a link.

Actions represent the effects that characterise concurrency; they unambiguously define
the next reduction a process should take, while they also include the necessary data from
the context to make this step (e.g., in the case of message sending, these data consist of PID
of the sender, PID of the receiver, and the message value). The syntax of signals and actions
are shown below.

Definition 3 (Actions).

a ∈ Action ::= send(ιs, ιd, s) | arr(ιs, ιd, s) | self(ι) | spawn(ι, v1, v2, b) | τ | ε

We call τ and self(ι) silent actions. We use ιs to emphasise that this PID is a source of a signal,
while ιd denotes target (destination) PIDs.

• Signals can be sent, and they can arrive at processes. These actions include the
sender’s (ιs) and receiver’s (ιd) PIDs. Note that signal-passing is not instantaneous;
signals reside in “the ether” before their arrival. This behaviour is expressed with the
inter-process semantics (we refer to Section 3.5).

• A process can obtain its PID with self(ι) from the inter-process semantics.
• A process can spawn another process to evaluate a function with spawn(ι, v1, v2, b).

ι is the PID of the spawned process given by the inter-process semantics, v1 should
be a closure value, and v2 should be a (Core) Erlang list of parameters. The flag b
denotes whether the spawned process should be linked to its parent (when evaluating
spawn_link).

• We use τ actions to denote reductions of the computational (sequential) layer and
some process-local steps for which the system is strongly confluent (formally defined
in Theorem 4).
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• The local reduction steps are denoted with ε actions. These steps affect either the
mailbox, the set of links, or the process flag (besides the frame stack and the redex) of
a process, and they are not confluent with the other actions.

Before delving into discussing the rules of the process-local semantics, we introduce
the following notations for readability.

• λx ⇒ b is used to denote functions of the metatheory.
• ff denotes metatheoretical false, and tt denotes metatheoretical true.
• map( f , l) is a higher-order function of the metatheory, transforming all elements of the

(metatheoretical) container l (list or set) by applying the (metatheoretical) function f
to them.

• to_obj(y) is used to transform the metatheoretical (list or boolean) value y to a Core
Erlang value (a list or ‘true’ or ‘false’ atoms).

• to_meta(v) is used to transform the Core Erlang value v to its metatheoretical counter-
part. The result of this function is of option type; it is None for unsuccessful conversion,
or the metatheoretical counterpart enclosed in Some.

• M[k] denotes the value enclosed in Some associated with the key k in a finite map M,
if it exists. Otherwise, the result is None.

• M \ k denotes removing the value associated with the key k from the finite map M.

Next, we briefly discuss the rules of the process-local semantics, categorised into 4 groups:

1. Semantics of signal arrival (Figure 8);
2. Semantics of signal sending (Figure 9);
3. Semantics of spawn and self (Figure 10);
4. Semantics of local actions (Figure 11).

(K, r, q, L, b)
arr(ιs ,ιd ,msg(v))−−−−−−−−−→ (K, r, push(q, v), L, b) (MSG)

ιs ̸= ιd ∧ ((b = ff ∧ v = ’normal’) ∨ (ιs /∈ L ∧ be = tt))

(K, r, q, L, b)
arr(ιs ,ιd ,exit(v,be))−−−−−−−−−−→ (K, r, q, L, b)

(EXITDROP)

(v = ’kill’∧ be = ff ∧ v′ = ’killed’)∨
(b = ff ∧ v = ’normal’ = v′ ∧ ιs = ιd)∨

(b = ff ∧ v ̸= ’normal’∧ v′ = v ∧ (be = tt → ιs ∈ L) ∧ (be = ff → v ̸= ’kill’))

(K, r, q, L, b)
arr(ιs ,ιd ,exit(v,be))−−−−−−−−−−→ map(λι ⇒ (ι, v′), L)

(EXITTERM)

b = tt ∧ ((be = ff ∧ v ̸= ’kill’) ∨ (be = tt ∧ ιs ∈ L))

(K, r, q, L, b)
arr(ιs ,ιd ,exit(v,be))−−−−−−−−−−→ (K, r, push(q, {’EXIT’,ιs,v}), L, b)

(EXITTRAP)

(K, r, q, L, b)
arr(ιs ,ιd ,link)−−−−−−−→ (K, r, q, {ιs} ∪ L, b) (LINKARR)

(K, r, q, L, b)
arr(ιs ,ιd ,unlink)−−−−−−−−→ (K, r, q, L \ {ιs}, b) (UNLINKARR)

Figure 8. Semantics of signal arrival (group 1).

We start the explanation with the rules about signal arrival. We note that the Erlang
reference manual [9] does not express the behaviour of signal arrival precisely (although,
there are no inconsistencies). Thus we determined the sufficient premises of the following
rules by testing the reference implementation (also reported in [10]).

• Rule MSG shows that incoming messages are appended to the list of unseen messages
in the mailbox.

• Rules EXITDROP, EXITTERM, and EXITTRAP describe the arrival of an exit signal.
Based on the set of links L, the state of the trap_exit flag b, the reason value v, and
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the link flag be of the exit signal, and the source ιs and destination ιd PIDs, there are
three different behaviours.

– Rule EXITDROP drops the exit signal if its reason was ‘normal’ or it came from
an unlinked process and was triggered by a link.

– Rule EXITTERM terminates the process, by transforming it into a dead process
which will notify its links with the reason of the termination (each linked PID is
associated with this reason value). This rule can be applied in three scenarios:
(a) the exit’s reason is ‘kill’ and it was sent manually (in this case, the reason is
changed to ‘killed’); (b) exits are not trapped, and a non-‘normal’ exit either
came from a linked process or was sent manually with a non-‘kill’ reason;
(c) exits are not trapped, and the process terminated itself with an exit signal with
‘normal’ reason.

– Rule EXITTRAP “traps” the exit signal by converting it into a message that is
appended to the mailbox. This rule can be used if the process traps exits, the in-
coming signal is either triggered by a link, or its reason is not ‘kill’.

• Rule LINKARR and UNLINKARR describe the arrival of link and unlink signals, which
modify the set of the linked PIDs.

(call(’erlang’, ’!’)(ιd,□) :: K,<v>, q, L, b)
send(ιs ,ιd ,msg(v))−−−−−−−−−→ (K,<v>, q, L, b) (SEND)

(call(’erlang’, ’exit’)(ιd,□) :: K,<v>, q, L, b)
send(ιs ,ιd ,exit(v,ff))−−−−−−−−−−→ (K,<’true’>, q, L, b) (EXIT)

(call(’erlang’, ’link’)(□) :: K,<ιd>, q, L, b)
send(ιs ,ιd ,link)−−−−−−−→ (K,<’ok’>, q, {ιd} ∪ L, b) (LINK)

(call(’erlang’, ’unlink’)(□) :: K,<ιd>, q, L, b)
send(ιs ,ιd ,unlink)−−−−−−−−−→ (K,<’ok’>, q, L \ {ιd}, b)

(UNLINK)

T[ιd] = Some(v)

T
send(ιs ,ιd ,exit(v,tt))−−−−−−−−−−→ T \ {ιd}

(DEAD)

Figure 9. Semantics of signal sending (group 2).

Next, we discuss rules about signal sending (Figure 9). Note that all the first frames
in the following rules use frame identifiers from Figure 5 inside a parameter list frame
id(v1, ..., vi−1,□) which includes the normal forms of its subexpressions.

• Rule SEND describes message sending. This BIF reduces to the message value which
is also communicated to the inter-process semantics inside the send action.

• Rule EXIT describes manual exit signal sending. In this case, the result is ‘true’ while
the exit signal is communicated to the inter-process semantics. The link flag of the
signal is ff, since it is sent manually.

• Rules LINK and UNLINK describe sending link and unlink signals. Both evaluate to
‘ok’ while adding or removing a PID from the set of links, and communicating the
corresponding action to the inter-process level.

• Rule DEAD describes the communication of a dead process. Dead processes send an
exit signal to all the linked processes with the given reason value. The flag of the signal
is tt, since it is triggered by a link.

Thereafter, we describe how self and spawn BIFs evaluate.

• Rule SELF reduces to the PID of the current process which is obtained from the inter-
process level in the action self.

• Rules SPAWN and SPAWNLINK describe process spawning. The spawned process will
evaluate the given function applied to the given parameters, which are communicated
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to it within the spawn action. To be able to evaluate this function application, the pa-
rameters of spawn are required to be a closure and a proper Core Erlang list. The result
is the PID of the spawned process which is obtained from the inter-process semantics
in the spawn action. In the case of rule SPAWNLINK, the flag in the spawn action is also
set, and a link is established to the spawned PID.

(call(’erlang’, ’self’)(□) :: K,□, q, L, b)
self(ι)−−−→ (K,<ι>, q, L, b) (SELF)

vl = [v1|...[vk|[]]...] v f = clos(fdefs, [x1, ..., xk], e)

(call(’erlang’, ’spawn’)(v f ,□) :: K,<vl>, q, L, b)
spawn(ι,v f ,vl ,ff)−−−−−−−−→ (K,<ι>, q, L, b)

(SPAWN)

vl = [v1|...[vk|[]]...] v f = clos(fdefs, [x1, ..., xk], e)

(call(’erlang’, ’spawn_link’)(v f ,□) :: K,<vl>, q, L, b)
spawn(ι,v f ,vl ,tt)−−−−−−−−−→ (K,<ι>, q, {ι} ∪ L, b)

(SPAWNLINK)

Figure 10. Semantics of spawn and self (group 3).

⟨K, r⟩ → ⟨K′, r′⟩

(K, r, q, L, b) τ−→ (K′, r′, q, L, b)
(SEQ)

to_meta(v) = Some(b′) v′ = to_obj(b)

(call(’process_flag’, ’trap_exit’)(□) :: K,<v>, q, L, b) ε−→ (K,<v′>, q, L, b′)
(FLAG)

to_meta(v) ̸= Some(b′)

(call(’process_flag’, ’trap_exit’)(□) :: K,<v>, q, L, b)
ε−→ (K, {’error’, ’badarg’, v}X , q, L, b)

(FLAGEXC)

(ε, v, q, L, b) ε−→ map(λι ⇒ (ι, ’normal’), L) (TERM)

(ε, {c, vr, vd}X , q, L, b) ε−→ map(λι ⇒ (ι, vr), L) (TERMEXC)

peek(q) = Some(v)

(primop(’recv_peek_message’)(□) :: K,□, q, L, b) τ−→ (K,<’true’, v>, q, L, b)
(PEEK)

peek(q) = None

(primop(’recv_peek_message’)(□) :: K,□, q, L, b) ε−→ (K,<’false’, ’error’>, q, L, b)
(PEEKFAIL)

recvNext(q) = Some(q′)

(primop(’recv_next’)(□) :: K,□, q, L, b) τ−→ (K,<’ok’>, q′, L, b)
(RECVNEXT)

removeMsg(q) = Some(q′)

(primop(’remove_message’)(□) :: K,□, q, L, b) τ−→ (K,<’ok’>, q′, L, b)
(REMOVEMSG)

hasNew(q)

(primop(’recv_wait_timeout’)(□) :: K,<’infinity’>, q, L, b) τ−→ (K,<’false’>, q, L, b)
(WAITINF)

(primop(’recv_wait_timeout’)(□) :: K,<0>, q, L, b) τ−→ (K,<’true’>, q, L, b) (WAIT0)

v ̸= 0 v ̸= ’infinity’

(primop(’recv_wait_timeout’)(□) :: K,<v>, q, L, b)
τ−→ (K, {’error’, ’timeout_value’, v}X , q, L, b)

(WAITEXC)

Figure 11. Semantics of local actions (group 4).
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Finally, we describe rules about process-local steps (Figure 11). Unlike in previous
work [10,12,16], we express rules about message receipts with primitive operations; since
receive expressions have been removed from the primitives of Core Erlang in OTP 23 [19],
they are automatically expanded to the primitive operations.

• Rule SEQ lifts the sequential steps to the process-local level.
• Rule FLAG changes the state of the trap_exit flag of the process to the provided

boolean value, and its result is the original value of the flag. Rule FLAGEXC raises an
exception, if a non-boolean value was provided.

• Rule TERM describes the normal termination. The links are notified with exit signals
with ‘normal’ reason.

• Rule TERMEXC describes the behaviour when an exception terminates the process.
Each linked process is notified with an exit signal which includes the exception’s rea-
son.

• Rule PEEK checks the first unseen message (if it exists). The result is a value sequence
consisting of ‘true’ and the said message.

• Rule PEEKFAIL is used if there are no unseen messages in the mailbox. The result
is a value sequence consisting of ‘false’ and an error value (which can be neither
observed in the implementations, nor in the generated BEAM code).

• Rule RECVNEXT moves the first unseen message into the list of seen messages (if it
exists).

• Rule REMOVEMSG removes the first unseen message from the mailbox and sets all
messages as unseen hereafter.

• Rule WAITINF describes the semantics of unblocking. This rule is used if there is an
unseen message, otherwise the process is blocked until one arrives. The result ‘false’
indicates that the timeout (‘infinity’) was not reached.

• Rule WAIT0 always evaluates to ‘true’, indicating that a timeout was reached. Cur-
rently, we have not formalised the timing; thus, only 0 and ‘infinity’ timeouts are
modelled; however, we plan to change this in the future.

• Rule WAITEXC evaluates to an exception when an invalid timeout value (i.e., non-
integer and non-infinity) was used.

3.5. Inter-Process Semantics

After having the process-local semantics defined, we turn our attention to the inter-
process (node-level) semantics, which defines how actions should be propagated among
processes. The main advantage of this semantics is its simplicity—it is described with only
four rules. First, we define the notion of process pools.

Definition 4 (Process pool). A (process) pool Π is a finite map (associative list) which assigns
PIDs to processes.

In (Core) Erlang, signal passing is not atomic. According to the reference manual [9]
“The amount of time that passes between the time a signal is sent and the arrival of the
signal at the destination is unspecified but positive”; thus, we need to store these signals in
an ether until they arrive. Moreover, this ether should respect the signal-ordering, i.e., “if
an entity sends multiple signals to the same destination entity, the order is preserved” [9].

Definition 5 (Ether). An ether is a finite map (associative list) which assigns a pair of PIDs
(representing the source and destination of signals) to a list of signals. We denote ethers with ∆.

Definition 6 (Node). A Core Erlang node N is a pair of a process pool and an ether. We use NΠ

and N∆ for the pool and ether of N.

Before discussing the four rules of the inter-process semantics, we introduce a number
of notations for ethers and process pools.
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• ι : p ∥ Π denotes the pool consisting of process p (associated with PID ι) and pool Π.
• ∆[(ιs, ιd) 7→ l] updates the ether ∆ by binding the pair of PIDs (ιs, ιd) to the list of

signals l.
• ∆[(ιs, ιd) 7→+ s] appends a signal s to the end of the list associated with (ιs, ιd) in the

ether ∆. If there is nothing associated with the given source and destination, this
function creates a singleton list associated with the given PIDs.

• remFirst(∆, ιs, ιd) removes the first signal from the list associated with (ιs, ιd) from ∆.
Its result is of option type, if there is a signal to remove, the result is this signal and
the modified ether enclosed in Some, otherwise None.

• PIDsOf(∆) and PIDsOf(Π) denote the PIDs that appear in ∆ or Π, respectively. A PID
appears in an ether if it is used as a source or destination of a signal, or if it appears
syntactically in one of the signals stored in the ether. Respectively, a PID appears in a
pool if there is a process associated with it, or it appears inside a process syntactically.

• eval(v f , v1, ..., vk) notation is taken from [11]; here, we only use it to express beta-
reduction of v f with the parameters v1, ..., vk. For more details, refer to Appendix A
and [11].

Next, we discuss the semantics rules (shown in Figure 12). In general, all rules
propagate an action to one of the processes inside the process pool, potentially changing
the ether or creating new processes.

p
send(ιs ,ιd ,s)−−−−−−→ p′

(∆, ιs : p ∥ Π)
ιs :send(ιs ,ιd ,s)−−−−−−−→O (∆[(ιs, ιd) 7→+ s], ιs : p′ ∥ Π)

(NSEND)

p
arr(ιs ,ιd ,s)−−−−−→ p′ remFirst(∆, ιs, ιd) = Some(s, ∆′)

(∆, ιd : p ∥ Π)
ιd :arr(ιs ,ιd ,s)−−−−−−→O (∆′, ιd : p′ ∥ Π)

(NARRIVE)

p
spawn(ι2,v f ,vl ,b)−−−−−−−−−→ p′

L = if b then {ι1} else ∅
ι2 /∈ O ∪ PIDsOf(∆) ∪ PIDsOf(ι1 : p ∥ Π)

(∆, ι1 : p ∥ Π)
ι1 :spawn(ι2,v f ,[v1|... [vk |[]]... ],b)−−−−−−−−−−−−−−−−−−→O (∆, ι2 : ([], eval(v f , v1, ..., vk), [▶], L, ff) ∥ ι1 : p′ ∥ Π)

(NSPAWN)

p a−→ p′ a ∈ {self(ι), ε, τ}

(∆, ι : p ∥ Π)
ι:a−→O (∆, ι : p′ ∥ Π)

(NLOCAL)

Figure 12. Formal semantics of communication between processes.

Remark 1. The rules of the inter-process semantics are decorated with a set of PIDs O; these PIDs
are considered as observed, and no processes can be spawned on them. The communication to the
PIDs in O is used to express the observable behaviour in bisimulation definitions in Section 4.

• Rule NSEND describes signal sending. When a process (associated with ιs) sends a
signal to ιd, this signal is placed into the ether with the source ιs and destination ιd.

• Rule NARRIVE removes the first signal from the ether (with some source ιs) to deliver
to the process with PID ιd.

• Rule NSPAWN describes process creation. When a process reduces with a spawn action,
the inter-process semantics assigns a fresh and unobserved PID ι2 to the new process
which will evaluate the given closure applied to the given parameters of the spawn
action. If the flag in the spawn action is set (i.e., spawn_link has been evaluated in the
process), a link to the parent process is also established. Whether v f is a closure and
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the third parameter of spawn is a proper Core Erlang list of values are checked in the
process-local semantics (in rules SPAWN and SPAWNLINK).

• Rule NLOCAL defines that every other action should be only propagated to the
process-local level without modifying the ether, or creating new processes.

We use N l−→∗
O N′ to denote the reflexive transitive closure of the semantics, where l

is the evaluation trace of PID-action pairs. We write N a−→∗
O N′ if the trace only consists of

actions a (and its length is irrelevant), and omit the trace entirely if it is not relevant.

3.6. Example Evaluation

In this section, we show example evaluations for our running example presented
in Figure 4, where we instantiate the metavariables in the following way (we keep ι
as arbitrary):

el := [1|[2|[3|[4|[]]]]] i := 2

e f := fun(X) → call ‘erlang’:‘+’(X, 1)

We remind the reader that the closure of the sequential list processing (cmap evaluated
as the result closure of the letrec expression in Figure 3) is already substituted correctly.

Example 1 (Concurrent map evaluation). We use the following shorthands for the evaluation.
We note that we also labelled the code presented in Figures 2–4 with the following shorthands to
ease understanding.

• epmap denotes the expression presented in Figure 4;
• cchild denotes the closure for the spawned process:

clos(∅, [S, L], call ‘erlang’:‘!’(S, apply cmap(e f , L)));

• elet denotes the second subexpression of the do expression from Figure 4, which processes the
list suffix sequentially, and receives the result from the child process;

• ecase denotes the outermost case expression (checking the result of peeking the mailbox) from
Figure 2 substituted with the two cases of the receive expression in Figure 4;

• ereccase denotes the innermost case expression (substituted with the concrete values in the
receive expression of Figure 4) from Figure 2 which checks the result of the timeout;

• cl1, cl2 denote the clauses of the case expression of Figure 3.
• vl is used for the transformed list [2|[3|[4|[5|[]]]]], and vl

1 for the transformed prefix
[2|[3|[]]].

Next, we present multiple ways to evaluate concurrent list transformation. For brevity, we
show the sequential configurations, since the set of linked processes and the process flag does not
influence this evaluation (i.e., they can be arbitrary for both the parent and the child process),
and show the mailbox separately. First, we show the configurations for the parent in which a
non-silent reduction can happen or happened, and the initial state:

⟨ε, epmap⟩ (pstart)

⟨call(‘erlang’, ‘spawn’)(cchild,□) :: do □ elet :: ε, [1|[2|[]]]⟩ (pspawn)

⟨do □ elet :: ε,<ιc>⟩ (pdo)

⟨primop(‘recv_peek_message’)(□) ::

:: let <Success, Msg> = □ in ecase :: ε,□⟩ (ppeek)

⟨let <Success, Msg> = □ in ecase :: ε,<‘false’, ‘error’>⟩ (pfail)

⟨primop(‘recv_wait_timeout’)(□) ::

:: let = □ in ereccase :: ε,<‘infinity’>⟩ (pwait)

⟨call(‘erlang’, ‘!’)(ι,□) :: ε,<[2|[3|[4|[5|[]]]]]>⟩ (psend)
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⟨ε,<[2|[3|[4|[5|[]]]]]>⟩ (pfinal)

The child process can also be in three such states where non-silent actions can happen. We
present these and the child’s initial state:

⟨ε, case [1|[2|[]]] of cl1; cl2 end⟩ (cstart)

⟨call(‘erlang’, ‘!’)(ιp,□) :: ε,<vl
1>⟩ (csend)

⟨ε,<vl
1>⟩ (cfinal)

∅ (cterm)

We highlight possible execution paths for the concurrent list transforming function. In Figure 13,
we show the decision points where it matters which action to evaluate first. The semantics is strongly
confluent for silent actions according to Theorems 3 and 4; thus, the order of silent reductions does
not matter. For this reason, we do not discuss these steps (but refer to Appendix B for an example).
In Figure 13, we use the notations below for the states of the node and denote silent reduction
chains with (*). In the following list of pairs, the first component denotes the ether, the second the
process pool consisting of at most the parent and child process, and the parent’s mailbox is explicitly
described (the child’s mailbox is empty in all steps). The node’s subscripts highlight the next BIF
that the parent has to evaluate, while the superscripts denote the remaining actions that can happen
in the given configuration.

• Nstart = (∅, (pstart, [▶]))
• Nspawn = (∅, (pspawn, [▶]))
• Nspawned = (∅, (pdo, [▶]) ∥ cstart)

• Nsend
peek = (∅, (ppeek, [▶]) ∥ csend)

• Nsend
peekfail = (∅, (pfail, [▶]) ∥ csend)

• Nmsg, term
peek = (∅[(ιc, ιp) 7→+ vl

1], (ppeek, [▶]) ∥ cfinal)

• Nmsg, term
peekfail = (∅[(ιc, ιp) 7→+ vl

1], (pfail, [▶]) ∥ cfinal)

• Nsend
wait = (∅, (pwait, [▶]) ∥ csend)

• Nmsg
peekfail = (∅[(ιc, ιp) 7→+ vl

1], (pfail, [▶]) ∥ cterm)

• Nmsg
peek = (∅[(ιc, ιp) 7→+ vl

1], (ppeek, [▶]) ∥ cterm)

• Nterm
peek = (∅, (ppeek, [▶ vl

1]) ∥ cfinal)

• Nterm
wait = (∅, (pwait, [▶ vl

1]) ∥ cfinal)

• Nmsg, term
wait = (∅[(ιc, ιp) 7→+ vl

1], (pwait, [▶]) ∥ cfinal)

• Npeek = (∅, (ppeek, [▶ vl
1]) ∥ cterm)

• Nterm
send = (∅, (psend, [▶]) ∥ cfinal)

• Nmsg
wait = (∅[(ιc, ιp) 7→+ vl

1], (pwait, [▶]) ∥ cterm)
• Nsend = (∅, (psend, [▶]) ∥ cterm)

• Nterm = (∅[(ιp, ι) 7→+ vl ], (pfinal, [▶]) ∥ cfinal)

• Nwait = (∅, (pwait, [▶ vl
1]) ∥ cterm)

• Nfinal = (∅[(ιp, ι) 7→+ vl ], (pfinal, [▶]) ∥ cterm)

The evaluation starts with the parent splitting the list in half (since i = 2), and spawning
the child process (Nstart, Nspawn, Nspawned). Next, both the parent and child process evaluate the
map function sequentially for their list segments reaching Nsend

peek (for this evaluation, we refer to
Appendix B, Example A1). At this point, either the child sends its result to the parent, or the parent
fails to evaluate ‘recv_peek_message’. Actually, the child can even send the message (Nmsg, term

peekfail ),

and terminate (Nmsg
peekfail), while the parent still fails on ‘recv_peek_message’, because the message

has not been delivered yet (with MSG).
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Nstart

Nspawn

Nspawned

Nsend
peek

Nsend
peekfail

Nmsg, term
peek

Nmsg, term
peekfail

Nsend
wait

Nmsg
peek

Nterm
peek

Nterm
wait

Nmsg, term
wait

Nmsg
peekfail

Npeek

Nterm
send

Nmsg
wait

Nsend

Nterm

Nwait

Nfinal

*

ιp : SPAWN with ι := ιc

*

ιp : PEEKFAIL

ιc : SEND

*

ιp : PEEKFAIL

ιc : TERM

ιp : MSG

*

ιc : SEND

*

ιp : MSG

ιp : PEEKFAIL

ιp : MSG

*

ιc : TERM

*

ιc : TERM

ιp : SEND

ιp : MSG

ιp : SEND

ιc : TERM

*

*

Figure 13. Evaluation of concurrent map (Figure 4).

If the parent failed in either of the previous steps, it becomes stuck on an infinite timeout,
until the message from the child arrives. Next, the parent continues the evaluation of the message
receipt recursively (see Figure 2), and retries peeking into the mailbox. This leads to Nterm

peek (if the
child is not yet terminated) or Npeek (if the child is already terminated). If the parent tried peeking
into the mailbox only after the message had arrived (i.e., peeking had never failed), then one of the
previous two states was reached, too.

Finally, the parent successfully receives the transformed list from the child (reaching either
Nterm

send or Nsend); then it appends the two segments and sends the result to the observed PID ι.

3.7. Semantic Properties

Next, we show a number of properties of the concurrent semantics, and for their
proofs, we refer to the formalisation [29], and to Appendix C, which connects the concepts
of this paper, to the code. First, we state that our semantics respects the signal ordering
guarantee [9].

Theorem 1 (Signal ordering guarantee). For all nodes N1, N2, N3, PIDs ι, ι′, and unique
signals (i.e., they are different from any other signal in the starting configuration). s1 ̸= s2,

if N1
ι:send(ι,ι′ ,s1)−−−−−−→O N2 and N2

ι:send(ι,ι′ ,s2)−−−−−−→O N3, then for all nodes N4 and action traces l which

satisfy N3
l−→∗

O N4 and also (ι′, arr(ι, ι′, s1)) /∈ l then ̸ ∃N5 : N4
ι′ :arr(ι,ι′ ,s2)−−−−−−→O N5 (i.e., there is no

node at which s2 can arrive).

To reason about process creation in later sections, it is inevitable to reason about PID
renaming. We use renaming when arguing about process spawns because in most cases,
the freshness criteria imposed by NSPAWN is too weak as it depends only on O and the
node the spawn is evaluated in. In some cases, there could be other PIDs that should be
distinct from the spawned one (e.g., when reasoning about node equivalence).

Definition 7 (PID renaming). We denote PID renaming with r[ι1 7→ ι2], which syntactically
replaces all occurrences of ι1 with ι2 inside a redex r. For simplicity, we use the same notation for
frame stacks, mailboxes, lists, and live processes.

We denote PID renaming for finite maps (dead processes, ethers, process pools, and nodes) with
N[ι1 ↔ ι2]. For these syntactical constructs, renaming is the syntactical exchange of the given two
PIDs. With this notion, we avoid accidental overwriting of existing bindings in a finite map.

Given a list of PID pairs [(ι1, ι′1), ..., (ιn, ι′n)], we use r[ι1 7→ ι′1, ..., ιn 7→ ι′n] (and N[ι1 ↔
ι′1, ..., ιn ↔ ι′n]) for sequential renaming, i.e., r[ι1 7→ ι′1]...[ιn 7→ ι′n] (N[ι1 ↔ ι′1]...[ιn ↔ ι′n],
respectively).

PIDs cannot be renamed freely while reasoning about program equivalence; we have
to make sure that we do not bind observed or used PIDs while renaming. This property is
expressed with the following two compatibility definitions. Node-compatibility ensures
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that a renaming satisfies the freshness conditions, and action-compatibility ensures that
this freshness condition is respected by the reductions with the given actions.

Definition 8 (Node-compatible renaming). A list of PID pairs [(ι1, ι′1), ..., (ιn, ι′n)] is compatible
with a node N and observable PIDs O, if for all indices i the following points are all satisfied:

• ιi, ι′i /∈ O;
• ι′i /∈ PIDsOf(N∆[ι1 ↔ ι′1, ..., ιi−1 ↔ ι′i−1]);
• ι′i /∈ PIDsOf(NΠ[ι1 ↔ ι′1, ..., ιi−1 ↔ ι′i−1]).

Definition 9 (Action-compatible renaming). A list of PID pairs [(ι1, ι′1), ..., (ιn, ι′n)] is compati-
ble with an action a, if for all indices i, ι′i /∈ PIDsOf(a[ι1 7→ ι′1, ..., ιi−1 7→ ι′i−1]).

We note that we can always define a compatible renaming for a node or action
based on fresh PIDs. Next, we show that node and action-compatible renamings pre-
serve the semantics.

Theorem 2 (Renaming preserves reduction). For all lists of PID pairs [(ι1, ι′1), ..., (ιn, ι′n)]

which are compatible with nodes N with observable PIDs O, and actions a, all reductions N ι:a−→O N′

are preserved by the compatible renaming, i.e.,

N[ι1 ↔ ι′1, ..., ιn ↔ ι′n]
ι[ι1↔ι′1,... ,ιn↔ι′n ]:a[ι1 7→ι′1,... ,ιn 7→ι′n ]−−−−−−−−−−−−−−−−−−−−→O N′[ι1 ↔ ι′1, ..., ιn ↔ ι′n].

In addition to renaming, the other important property of the semantics is confluence,
on which some of our equivalence examples depend. We proved two confluence properties:
a diamond property for reasoning about different processes, and a strong confluence
property for reasoning about silent actions. For the first theorem, we need to define the
compatibility of actions.

Definition 10 (Compatibility between actions). Two actions are compatible, if neither of them is
a spawn action, or if one is a spawn(ι, v1, v2, b) action, the other one is not spawn(ι, v3, v4, b′) or
send(ιs, ι, v) (i.e., in case of spawn or send, the used (and target) PIDs are different).

The previous definition can always be satisfied by using PID renaming for the spawn actions.

Theorem 3 (Commutativity of reductions (a restricted diamond property)). For all nodes
N1, N2, N′

2, compatible actions a1, a2, and PIDs ι1 ̸= ι2, if N1
ι1 :a1−−→O N2 and N1

ι2 :a2−−→O N′
2, there

exists a node N3, which satisfies both N2
ι2 :a2−−→O N3 and N′

2
ι1 :a1−−→O N3.

Theorem 4 (Strong confluence with silent actions). For all nodes N1, N2, N′
2, silent actions as,

actions a, and PIDs ι, if N1
ι:as−→O N2 and N1

ι:a−→O N′
2, then one of the following cases is satisfied:

• as = a and N′
2 = N2; or

• a is an arrive action, there is a node N3, such that N2
ι:a−→O N3, and either N′

2
ι:as−→O N3 or

N3 = N′
2 (in the latter case, the process with PID ι was terminated).

4. Program Equivalence

In this section, we investigate a number of definitions for program equivalence based
on barbed bisimulation [30]. This section is structured as follows. In Section 4.1, we
introduce the usual notion of strong and weak (barbed) bisimulations, and argue why they
are insufficient to reason about (Core) Erlang nodes. Next, in Section 4.2, we introduce
a refined program equivalence concept based on barbed bisimulation, which is suitable
to argue about refactoring correctness on concurrent programs. Finally, in Section 4.3,
we enumerate a number of bisimulation examples which can be considered as correct
concurrent refactorings.
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4.1. Restrictive Notions of Program Equivalence

Practically, two concurrent programs are equivalent, if an external observer cannot
distinguish their behaviour. For us, the communication (i.e., the signals sent) of a node
can be observed from the outside. For barbed bisimulations, we have to characterise
this property. First, we define the observable behaviour as the signals in a node’s ether
targeting some PID in the set O (i.e., O is the observer, and the signals sent to it define the
observed behaviour). Based on this thought, we can define when two nodes agree on the
observed signals:

Definition 11 (Nodes agree on observed signals). Two nodes N1, N2 weakly agree on O, when
for all PIDs ιs, ιd, if ιd ∈ O implies that there exists a PID ιs2 such that N∆

1 [(ιs, ιd)] ≃ N∆
2 [(ι

s
2, ιd)],

where ≃ denotes syntactical equality up to PIDs.
Two nodes strongly agree on O, if they weakly agree on O; moreover, ιs2 = ιs in the

previous definition.

The first definition we investigate is barbed strong bisimulation, which relates two
nodes whenever they can make the same reductions, and they agree on the signals sent to
observed PIDs.

Definition 12 (Barbed strong bisimulation). A relation R on nodes is a barbed strong bisimula-
tion observing O if given two nodes N1, N2, R(N1, N2) implies the following:

• For all nodes N′
1, actions a, and PIDs ι, if N1

ι:a−→O N′
1 then ∃N′

2 : N2
ι:a−→O N′

2 and
R(N′

1, N′
2);

• The converse of the previous point for reductions from N2;
• N1 and N2 strongly agree on O (note that this property is symmetric).

We use N1 ∼O N2 to denote that N1 and N2 are related by a relation R which is a barbed
strong bisimulation.

Proving strong bisimilarity even between simple nodes is impossible in most prac-
tical cases. Consider a node consisting of one process which computes the expression
call ’erlang’:’+’(1, 2) and a node with a process computing 3. The first node can take
some τ computation steps, which could not be taken by the second one. To loosen this
notion of program equivalence, we can introduce weak bisimulations.

Definition 13 (Barbed weak bisimulation). A relation R on nodes is a weak barbed bisimulation
observing O if given two nodes N1, N2, R(N1, N2) implies the following:

• For all nodes N′
1, actions a, and PIDs ι, if N1

ι:a−→O N′
1 then ∃N′

2, N′′
2 , N′′′

2 : N2
τ−→∗

O N′
2

ι:a−→
O

N′′
2

τ−→∗
O N′′′

2 and R(N′
1, N′′′

2 );
• The converse of the previous point for reductions from N2;
• N1 and N2 strongly agree on O.

We use N1 ≈O N2 to denote that N1 and N2 are related by a relation R which is a weak
barbed bisimulation.

Remark 2. There is no need to include silent reduction steps from N2 in the third point of Defini-
tion 13 as τ actions do not affect the ether.

With this definition, we can prove examples like the previous one, which only differ
in computational steps, but cannot prove equivalence between nodes that communicate or
spawn processes differently. In particular, with this notion, we cannot prove the equivalence
between the two list processing functions from the running example (Figures 3 and 4). This
is because the sequential variant only communicates the result of the computation, while
the parallel version spawns a child process and also performs communication between the
child and parent processes.
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4.2. Alternative Notion for Weak Barbed Bisimulation

We borrow another idea of (weak) barbed bisimulation used for related research on
Core Erlang [16], and tailor it to our needs. In this definition, we do not compare the actions
that induce the reductions made by the nodes, and only focus on the observables. If a
reduction is taken by one node, the other one has to simulate it, but there is no restriction
on what and how many steps this simulation should take.

Definition 14 (Barbed bisimulation). A relation R on nodes is a barbed bisimulation observing
O, if given two nodes N1, N2, R(N1, N2) implies the following:

• For all nodes N′
1, actions a, and PIDs ι, if N1

ι:a−→O N′
1 then ∃N′

2 : N2 −→∗
O N′

2 and R(N′
1, N′

2);
• ∃N′

2 : N2 −→∗
O N′

2 and N1 and N′
2 weakly agree on O;

• The converse of the previous points for reductions and observables of N2.

We use N1≈≈ON2 to denote that N1 and N2 are related by a relation R which is a barbed bisimulation.
Hereafter, whenever we write bisimulation, we mean this definition.

After defining the suitable notion of program equivalence, we state the basic properties
of this relation: reflexivity, symmetry, and transitivity. We furthermore highlight that this
notion is less restrictive than the previous two definitions (for the proofs, refer to the
formalisation [29]).

Theorem 5 (Equivalence relation). For all sets of PIDs O, the relation ≈≈O is reflexive, symmetric,
and transitive.

Theorem 6 (Correspondence between bisimulations). For all sets of PIDs O, ∼O⊂≈O⊂ ≈≈O.

4.3. Bisimulation Examples

Next, we show some bisimilar node pairs. For complete proofs, we refer to the
formalisation [29], while we also give some insights here. In general, to prove these
lemmas, we relied on coinduction, and case distinction based on the four rules of the
inter-process semantics (Figure 12). To reason about spawn actions, in most cases, we also
had to use renaming (either with Theorem 7 or with the coinductive hypothesis).

Theorem 7 (PID-renaming is a barbed bisimulation). For all lists [(ι1, ι′1), ..., (ιn, ι′n)] contain-
ing PID pairs which are compatible with the node N and sets of PIDs O, N≈≈ON[ι1 ↔ ι′1, ..., ιn ↔ ι′n].

Proof. We proceed with coinduction. We need to prove the four conditions of the bisimu-
lation (Definition 14). The proof of the third and fourth points is based on the symmetric
properties of bisimulations, and equality; thus, we only briefly explain the proof of the first
two points. For readability, we use l to denote the list of renamings ι1 ↔ ι′1, ..., ιn ↔ ι′n (or
ι1 7→ ι′1, ..., ιn 7→ ι′n depending on the context).

Suppose that N ι:a−→O N′. We need to show N[l]
ι[l]:a[l]−−−→O N′[l]. According to

Theorem 2, if the renaming is compatible with action a, we can show that the renam-
ing preserves the reduction, and by the coinductive hypothesis, the reached nodes are
bisimilar. Since the renaming is compatible with the initial node, it is also compatible with
almost all actions, because the PIDs that appear in the actions originated either from the
ether or the process pool. On the other hand, spawn actions involve a fresh PID (ιspawn),
which could collide with the PIDs used for renaming. In this case, we can extend the list of
renamings with a new renaming: (ιspawn, ι f resh) :: l. Since ι f resh is chosen arbitrarily, we can
ensure that it does not appear in the node or the action, and this extended list is compatible

with action a, thus N[ιspawn ↔ ι f resh, l]
ι[ιspawn 7→ι f resh ,l]:a[ιspawn 7→ι f resh ,l]
−−−−−−−−−−−−−−−−−−→O N′[ιspawn ↔ ι f resh, l],

and we can use the coinductive hypothesis for this extended list to prove that the reached
nodes are bisimilar.
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The proof of the second point is mostly technical. If there are signals targeting ιd ∈ O
in the ether of N (e.g., with the source ιs), we can show that there are signals targeting ιd in
N[l] too, with the source ιs[l]. Moreover, these signals are equal up to the PIDs.

While PID renaming seems to be an obvious (and often implicitly used) property, in a
machine-checked formalisation, we need to be rigorous and explicit both in its proof and in
its uses. Without renaming, there is no way to reason about nodes that use different PIDs,
and also spawn some new processes, since the spawned PID is potentially not fresh in the
other node. We mitigate this problem by renaming the spawned PID to a fresh(er) one.

Next, we state two technical lemmas to reason about elements of the ether and pro-
cess pool which do not affect the evaluation. With these lemmas, we can remove irrele-
vant signals and terminated processes from a node during bisimulation proofs. The first
lemma states that signals originating from, or targeting, terminated processes do not
distinguish nodes.

Lemma 1 (Ether update for terminated processes). For all nodes N, sets of PIDs O, and PIDs
ιs, ιd which satisfies ιd /∈ O, if both NΠ[ιs] and NΠ[ιd] are terminated processes, then for any list of
signals l, N≈≈O(N∆[(ιs, ιd) 7→ l], NΠ), and N≈≈O(N∆ \ (ιs, ιd), NΠ).

Proof. We proceed by coinduction. We need to prove the four conditions of the bisimulation
(Definition 14). The points about observables trivially hold since the update in the ether
does not affect observed PIDs.

Suppose that N ι:a−→O N′, then we have to show that we can perform an equivalent
step with the updated ether.

• If NLOCAL or NARRIVE was used, then the same step can be made in the updated
node (since these actions could not have been taken by terminated processes), and we
can use the coinductive hypothesis.

• If NSPAWN was used (which could not have been performed by a terminated process),
we have to rename the PID of the spawned process to a fresh PID (so that it does
not appear anywhere in the modified configuration, nor in the set of PIDs used in
l), and we can perform the same reduction step with the fresh PID, since it satisfies
the side condition of NSPAWN. We finish this case by using the transitivity of barbed
bisimulation with Theorem 7 and the coinductive hypothesis.

• In the case of NSEND, we can make the same reduction in the updated node, regardless
of which process sent the message. Supposing that a = send(ιs, ιd, s), we can use the
coinductive hypothesis with the list of signals chosen as l ++ [s] (or just [s], if we prove
the second part of the theorem).

For the converse direction, we can use the fact that any ether E can be expressed with
two updates:

• If E[(ιs, ιd)] = Some(l′), then E = E[(ιs, ιd) 7→ l][(ιs, ιd) 7→ l′].
• If E[(ιs, ιd)] = None, then E = E[(ιs, ιd) 7→ l] \ (ιs, ιd).

Therefore, we can use the same train of thought as described above to conclude
the proof.

The following lemma states that adding unlinked terminated processes (we denote
empty maps with ∅) to a node creates an equivalent node.

Lemma 2 (Terminated process). For all nodes N, sets of PIDs O, and PIDs ι, if ι /∈ O and
ι /∈ dom(NΠ), then N≈≈O(N∆, ι 7→ ∅ ∥ NΠ).

Proof. This proof is also constructed with coinduction. The main idea is that the terminated
process ∅ cannot take any reduction; thus, the same reductions can be made in both nodes,
and this way, the ether is not affected either (i.e., observables remain the same).
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The next theorem states that if a node can be reduced with τ steps or self actions,
the result is equivalent to the original node. It is useful to reason about concrete node
equivalences since it reduces the problem of proving bisimulation to proving evaluation.
Together with the transitivity of ≈≈O, in bisimulation proofs, we can discharge reasoning
about silent steps.

Theorem 8 (Silent evaluation). For all nodes N, N′, sets of PIDs O, if N l−→∗
O N′ for some action

trace l, which contains only silent (i.e., τ or self) actions, N≈≈ON′ holds.

Proof. For this theorem, it is sufficient to prove that one single silent step creates bisimilar
nodes, since based on this fact and the transitivity of the barbed bisimulation (Theorem 5),
we can prove the original property by induction on the action trace l.

To prove that a single silent step creates bisimilar nodes, we use coinduction, and prove
the four requirements for barbed bisimulation. Suppose that a = τ ∨ ∃ι, a = self(ι),
and N ι:a−→O N′. We prove N≈≈ON′ :.

First, we check what other possible reductions can be made from N based on the first
point in Definition 14. Suppose that for some action a′, PID ι′ and node N′′, there is a

reduction N ι′ :a′−−→O N′′. We have to show that

∃N f inal , N′ −→∗
O N f inal ∧ N′≈≈ON f inal .

There are the following options:

• If ι′ = ι, then there are two options:

– If a′ = a, i.e., the same step is taken, then N′ = N′′ and we can choose N f inal = N′

and use the reflexivity of the bisimulation.
– If a′ ̸= a, then a′ can only be an arrive action (Theorem 4). Supposing that the

arrive action does not terminate the process, it can be postponed after making the

reduction with a; thus, there is a node N′′′ to which N′ ι:a′−→O N′′′ and N′′ ι:a−→O
N′′′. We choose N f inal = N′′′, which is reachable from N′ based on the first
reduction, and prove N′≈≈ON′′′ based on the coinductive hypothesis and the
second reduction.

– If a′ ̸= a, a′ is an arrive action, and it terminates the process, then the process is
also if the action arrives in N′, since silent actions do not modify either of the
properties (linked PIDs, source and destination, exit reason, process flag) used

in the semantics for arrives (see Figure 8); thus, N′ ι:a′−→O N′′. We can choose
N f inal = N′′ and use the reflexivity of the bisimulation.

• If for some action a′, PID ι′ and node N′′, there is a reduction N ι′ :a′−−→O N′′, then we

can use Theorem 3 to derive the existence of a node N′′′ to which N′ ι′ :a′−−→O N′′′ and
N′′ ι:a−→O N′′′. We choose N f inal = N′′′, which is reachable from N′ based on the
first reduction, and prove N′≈≈ON′′′ based on the coinductive hypothesis and the
second reduction.

To prove that for all reductions N′ ι′ :a′−−→O N′′, the result N′′ is bisimilar to a node
which is reachable from N, we can chain this reduction after the assumption of N ι:a−→O N′,
and use the reflexivity of the bisimulation (Theorem 5).

The observables are not modified in the ether by silent actions; thus, the requirements
on them of Definition 14 hold.

We highlight that this theorem is more restrictive than the normalisation theorem
of [16], which also considers message sending and process spawning in this bisimulation
(we refer the reader to Section 5 for a discussion of why this is not the case for us). Finally,
we show a concrete program equivalence based on barbed bisimulation.
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Example 2 (Equivalence of sequential and concurrent map). Consider the expressions from
Figure 3 (denoted with emap) and Figure 4 (denoted with epmap). For all values vl , v f , natural
numbers i, PIDs ι which appear as the metavariables in Figures 3 and 4, and for all PIDs ιbase,
(∅, ιbase 7→ (ε, emap, [▶], ∅, ff) ∥ ∅)≈≈{ι}(∅, ιbase 7→ (ε, epmap, [▶], ∅, ff) ∥ ∅), if the following
conditions hold:

• ιbase ̸= ι.
• The closure value v f computes a metatheoretical function f , that is, for all values v, we can

prove ⟨ε, apply v f (v)⟩ −→∗ < f (v)> in the sequential layer.
• vl is a proper Core Erlang list, i.e., it is constructed as [v1|[v2|...[vn|[]]]...], and i ≤ n.
• vl does not contain any PIDs; moreover, the application of v f does not introduce any PIDs.

Proof Sketch. The proof of this theorem is quite involved; thus, we refer to the formal-
isation [29] for all details, and only describe the main idea here. We avoided using the
definition of the bisimulation manually since it takes many reductions to evaluate both
sequential and parallel list transformation, and reasoning about the four conditions of
Definition 14 generates unnecessary, tremendous overhead. Instead, we heavily rely on
Theorem 8 and the transitivity of bisimulation (Theorem 5) to discharge silent evaluation
steps from the reasoning.

There are two main points to prove: there is an evaluation of the parallel list process-
ing that behaves the same way as the sequential one, and vice versa. The former point
follows from the fact that the sequential map can be only evaluated deterministically (see
Example A1 for more insights) and from Example 1 where (all) paths lead to the same final
configuration. The latter point is more challenging, since all evaluation paths in Figure 13
have to be simulated by the sequential list processing. To prove this, we need to manually
apply the definition of bisimulation in all states from Figure 13 from where a non-silent
reduction happens.

5. Discussion

In this section, we describe the novelty of this work with respect to our previous work
we build on. We also discuss some major theoretical and technical challenges originating
from the formalised signals, the absence of atomic receive expressions, and the fact that
our formalisation is mechanized in Coq.

5.1. Novelty

As mentioned before, this paper builds on, and extends, our previous work de-
scribed in [10,11]. Namely, we reused the sequential semantics of [11] (which we recall
in Appendix A), and built the process-local and inter-process semantics on top of it based
on [10]. However, note that we do not repeat the definitions presented there; in particular,
this current paper not only extends our previous work but defines the communication
primitives with a different granularity (i.e., with the new primitives implemented in Er-
lang/OTP version 23 [19]), which required changes in the underlying representations
compared to [10] (such as that of mailboxes, process pools, and the ether), the semantic
rules, and the proofs of the fundamental properties. Since the implementation of the new
communication primitives does not fully conform with the old language specification, our
work is essential, and it sets the state-of-the-art regarding the formal definition of the actor
model of Erlang, providing a rigorous and solid basis for future research on the most recent
communication model.

5.2. Theoretical Challenges

The first challenge we encountered was the definition of the inter-process semantics,
which had to satisfy both the signal-ordering guarantee and the fact that message passing
is not atomic (as explained in Section 3.5). These conditions make it necessary to define
an ether that includes the sent but not delivered signals in an ordered way. In addition
to making the semantics more complex, this decision also makes some reductions impossi-
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ble, which would have been carried out if the signal-ordering guarantee was not enforced.
On the other hand, this simplifies reasoning about signal arrival, since only the first signals
need to be considered from the ether (from the ordered list of signals) targeting a process.

Next, the formalisation of exit signals comes with a number of challenges. Since exit
signals can potentially terminate a process, they also limit the confluence properties of
the semantics. This is also one of the reasons why Theorem 8 is more restricted than
“normalisation” (from [16]) which also allows send and ε actions in the reduction chain.
Whether an exit signal terminates a process depends on a number of factors: which are the
linked PIDs, how the trap_exit flag is set, what is the reason value, and the source of the
signal. If the process for which the exit is arriving can also make a step which modifies
either of these, the process will behave in a different way if the signal arrives before or after
this step, and this breaks the confluence property.

A similar argument can be made about the correlation between primitive operations
for message receipts and arrival. For example, if a message arrives before evaluating
recv_peek_message, then the first component of its result is the atom ‘true’, while if
the message arrives later, the same component could be ‘false’ (if there are no unseen
messages in the mailbox). This means that Lemma 9 of [16]—saying that any reduction
that can be made with a process can also be made if a new message is appended at the
end of the mailbox—cannot be proved; this lemma only holds for receive expressions that
evaluate in an atomic way. To handle the maximum number of reductions with Theorem 8
when reasoning about bisimulations, we decided to label all reductions with τ (not just
steps of the sequential layer) for which the semantics is strongly confluent.

5.3. Formalisation

As mentioned before, all of our results are machine-checked with Coq [29] (around
35,000 lines of code). We briefly explain the main design decisions we made.

• We deeply embedded the syntax of Core Erlang into Coq as an inductive definition,
so that we can use induction to reason about substitutions, PID renamings, and
variable scoping.

• We encoded variables (and function identifiers) of Core Erlang with the nameless
variable representation, i.e., all variables are de Bruijn indices. Using a nameless
encoding simplifies reasoning about alpha-equivalence to checking equality, and fresh
variable generation is simply expressed with addition of natural numbers. This way,
the syntax is less readable for the human eye, but it is much simpler to define parallel
capture-avoiding substitutions and use them in proofs [31].

• We did not use a similar, nameless encoding for PIDs. While process pools behave
like binders, PIDs generally do not behave as variables: PIDs are dynamically created,
and we do not apply substitutions for them. Moreover, in some cases, we might
need to depend on the exact value of a PID in the program (e.g., for PID comparison).
In addition, alpha-equivalence of PIDs cannot be reduced to equality checking with
a nameless encoding. Suppose that we have several process spawns that can be
executed in any order. After executing all process spawns in all possible orders,
the result systems will be alpha-equivalent, but never equal, since the spawned PIDs
(as de Bruijn indices) would depend on the particular execution path.

• We expressed all semantic layers as inductive judgements in order so that we could
more easily use Coq’s tactics (inversion and constructor) to handle semantic reduc-
tions in proofs.

• We formalised process pools, ethers and dead processes as finite maps so that the used
PIDs inside such constructs can be collected by a recursive function. Based on the
collection result, we can come up with fresh PIDs for spawned processes. If we used
functions instead of finite maps, showing that a concrete PID does not appear inside
process of a process pool would have required much more complex proofs (potentially
based on induction).
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• For an implementation of finite maps and freshness, we relied on the Iris project’s
stdpp [32] library, which also includes the set_solver tactic that can be used to
automatically discharge statements about sets and finite maps.

• The formalisation depends only on one standard axiom; we use functional extension-
ality for reasoning about parallel substitutions.

Having a machine-checked formalisation also comes with some drawbacks. Firstly,
a proof assistant forces the proof engineer to be more precise compared to writing math-
ematical proofs on paper. For our project, this creates technical difficulties whenever
reasoning about spawn actions is needed, because (in most cases) at these steps, we have
to rely on renaming with fresh PIDs. After defining the necessary fresh PIDs, we have to
manually simplify these renamings, and in equivalence proofs, based on the transitivity of
the bisimulation (Theorem 5), we use Theorem 7 to reach the desired results.

However, relying on the transitivity of the bisimulation (or any other bisimulation-
transforming proof) comes with another drawback: in a coinductive proof, the guardedness
checker of Coq does not accept proofs that use transitivity on the coinductive hypothesis,
since it is often unsound (for now, we turned off the guardedness checker for these proofs
and relied on existing approaches [16] to carry out the proofs; we intend to investigate
other approaches to this). However, the violations of the guardedness only originate from
the following two proof strategies.

1. In Theorem 7, we used bisimulation’s symmetry to justify the first clause of Def-
inition 14 for the derivations starting from N2 (i.e., for the node with renamings);
however, we are certain that this could be replaced by several analogous helper
lemmas, ultimately discharging the potential of invalidity.

2. For every other case (including Lemmas 1 and 2), we used bisimulation’s transitivity
with Theorem 7 for injective alpha-renaming (based on the soundness results of [33]).

6. Conclusions and Future Work

We have defined formal semantics for the concurrent subset of Core Erlang, building
on earlier work [10,11], extending the sequential syntax with process identifiers (PIDs),
and defining the concurrent (process-local and inter-process) semantics by defining the
meaning of concurrent built-in functions and primitive operations.

We defined three concepts of concurrent program equivalence based on barbed bisim-
ulations. We argued that the usual notions of strong and weak bisimulations are too
restrictive to reason about program equivalence. In order to model equivalence between
programs that have different communication structure but the same observable behaviour,
we introduced a weaker variant of barbed bisimulation (following the footsteps of [16,24]),
with which we proved a number of program equivalences (such as PID renaming, executing
computation steps, list processing sequentially or concurrently), reaching beyond previous
and related work. The results presented here are formalised in the Coq proof assistant.

In the future, we aim to generalize the equivalence proof for sequential and concur-
rent list processing to include exit signals and message source validation. We then aim
to generalize and create new approaches for reasoning about bisimulations to make it
simpler to show concrete Core Erlang programs equivalent, to fulfil our goal of verifying
Erlang refactorings.
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Appendix A. Rules of the Sequential Semantics

In this section, we recall the rules of the sequential semantics from our previous
work [11]. The rules are categorised into four groups:

1. Rules that deconstruct an expression by extracting its first redex while putting the rest
of the expression in the frame stack (Figure A1).

2. Rules that modify the top frame of the stack by extracting the next redex and putting
back the currently evaluated value into this top frame (Figure A2).

3. Rules that remove the top frame of the stack and construct the next redex based on
this removed frame (Figure A3). We also included rules here which immediately
reduce an expression without modifying the stack (e.g., PFUN).

4. Rules that express concepts of exception creation, handling, or propagation (Figure A4).

Next, we recall some of the auxiliary definitions, which are necessary to understand
the semantics rules.

• r[x1 7→ v1, ..., xn 7→ vn]: substitutes names (variables or function identifiers) x1, ..., xn
in the the redex r with the given values v1, ..., vn. In some cases, we use the same
notation (r[l]) for substituting a list containing name–value pairs in the same way.

• mk_closlist(fdefs): creates a list of function identifier–closure pairs from the list fdefs.
Every function definition f /k = fun(x1, ..., xk) → e in the list is mapped to the
following pair in the result list: ( f /k, clos(fdefs, [x1, ..., xk], e)).

• is_match(ps, vs): decides whether a pattern list ps matches pairwise a value list vs (of
the same length). A pattern matches a value, when they are constructed from the same
elements, while pattern variables match every value.

• match(ps, vs): defines the variable-value binding (as a list of pairs) resulted by success-
fully matching the patterns ps with the values vs.

We provide an informal overview of eval(id, v1, ..., vn) here. If

• id = app(v) and v = clos(fdefs, [x1, ..., xn], e), then
eval(app(v), v1, ..., vn) = e[mk_closlist(fdefs), x1 7→ v1, ..., xn 7→ vn].

• id = app(v) and v is not a closure, or has an incorrect number of formal parameters,
the result is an exception.

• id = tuple, then eval(tuple, v1, ..., vn) = {v1, ..., vn}.
• id = values, then eval(values, v1, ..., vn) = <v1, ..., vn>.
• id = map and n is an even number, then

eval(map, v1, ..., vn) = ∼{v1 ⇒ v2, ..., vk−1 ⇒ vk}∼,

where the k ≤ n result values inside the map are obtained by eliminating duplicate
keys and their associated values.

• id = call(am, a f ), then eval(call(am, a f ), v1, ..., vn) simulates the behaviour of sequential
built-in functions of (Core) Erlang.

• id = primop(a), then eval(primop(a), v1, ..., vn) simulates the behaviour of sequential
primitive operations of Core Erlang.

We highlight a few points of this semantics but refer to [11] for all further details.



Computers 2024, 13, 276 26 of 32

⟨K, [e1|e2]⟩ −→ ⟨[e1|□] :: K, e2⟩ (SCONSTAIL)

⟨K, let <x1, ..., xn> = e1 in e2⟩ −→ ⟨let <x1, ..., xn> = □ in e2 :: K, e1⟩ (SLET)

⟨K, do e1 e2⟩ −→ ⟨do □ e2 :: K, e1⟩ (SSEQ)

⟨K, apply e(e1, ..., en)⟩ −→ ⟨apply □(e1, ..., en) :: K, e⟩ (SAPP)

⟨K, call em :e f (e1, ..., en)⟩ −→ ⟨call □:e f (e1, ..., en) :: K, em⟩ (SCALLMOD)

⟨K, primop a(e1, ..., en)⟩ −→ ⟨primop(a)(□, e1, ..., en) :: K,□⟩ (SPRIMOP)

⟨K,<e1, ..., en>⟩ −→ ⟨values(□, e1, ..., en) :: K,□⟩ (SVALS)

⟨K, {e1, ..., en}⟩ −→ ⟨tuple(□, e1, ..., en) :: K,□⟩ (STUPLE)

⟨K,∼{ek
1 ⇒ ev

1 , ek
2 ⇒ ev

2 ..., ek
n ⇒ ev

n}∼⟩ −→ ⟨map(□, ev
1 , ek

2, ev
2 , ..., ek

n, ev
n) :: K, ek

1⟩ (SMAP)

⟨K, case e of cl1; ...; cln end⟩ −→ ⟨case □ of cl1; ...; cln end :: K, e⟩ (SCASE)

Figure A1. Frame stack semantics rules of 1.

⟨[e1|□] :: K,<v2>⟩ −→ ⟨[□|v2] :: K, e1⟩ (SCONSHEAD)

⟨call □:e f (e1, ..., en) :: K,<vm>⟩ −→ ⟨call vm :□(e1, ..., en) :: K, e f ⟩ (SCALLFUN)

⟨call vm :□(e1, ..., en) :: K,<v f >⟩ −→ ⟨call(vm, v f )(□, e1, ..., en) :: K,□⟩ (SCALLPARAM)

⟨apply □(e1, ..., en) :: K,<v>⟩ −→ ⟨apply(v)(□, e1, ..., en) :: K,□⟩ (SAPPPARAM)

⟨case □ of ps when eg → eb; cl2; ...; cln end :: K, vs⟩ −→
⟨case □ of cl2; ...; cln end :: K, vs⟩ (if ¬is_match(ps, vs))

(SCASEFAIL)

⟨case □ of ps when eg → eb; cl2; ...; cln end :: K, vs⟩ −→

⟨case vs of ps when □ → eb[match(ps, vs)]; cl2; ...; cln end :: K, eg[match(ps, vs)]⟩
(if is_match(ps, vs))

(SCASESUCCESS)

⟨case vs of ps when □ → eb; cl2; ...; cln end :: K,<’false’>⟩ −→ ⟨case □ of cl2; ...; cln end :: K, vs⟩
(SCASEFALSE)

⟨id(□, e1, e2, ..., en) :: K,□⟩ −→ ⟨id(□, e2, ..., en) :: K, e1⟩ (if id ̸= map) (SPARAMS0)

⟨id(v1, ..., vi−1,□, ei+1, ei+2, ..., en) :: K,<vi>⟩ −→ ⟨id(v1, ..., vi−1, vi,□, ei+2, ..., en) :: K, ei+1⟩
(SPARAMS)

Figure A2. Frame stack semantics rules of 2.

⟨K,∼{}∼⟩ −→ ⟨K,<∼{}∼>⟩ (PMAP0)

⟨K, fun(x1, ..., xn) → e⟩ −→ ⟨K,<clos(∅, [x1, ..., xn], e)>⟩ (PFUN)

⟨K, letrec fdefs in e⟩ −→ ⟨K, e[mk_closlist(fdefs)]⟩ (PLETREC)

⟨K, v⟩ −→ ⟨K,<v>⟩ (PVALUE)

⟨id(v1, ..., vn,□) :: K,□⟩ −→ ⟨K, eval(id, v1, ..., vn)⟩ (if id ̸= map) (PPARAMS0)

⟨id(v1, ..., vn−1,□) :: K,<vn>⟩ −→ ⟨K, eval(id, v1, ..., vn)⟩ (PPARAMS)

⟨[□|v2] :: K,<v1>⟩ −→ ⟨K,<[v1|v2]>⟩ (PCONS)

⟨case vs of ps when □ → eb; cl2; ...; cln end :: K,<’true’>⟩ −→ ⟨K, eb⟩ (PCASETRUE)

⟨let <x1, ..., xn> = □ in e2 :: K,<v1, ..., vn>⟩ −→ ⟨K, e2[x1 7→ v1, ..., xn 7→ vn]⟩ (PLET)

⟨do □ e2 :: K,<v1>⟩ −→ ⟨K, e2⟩ (PSEQ)

Figure A3. Frame stack semantics rules of group 3.
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⟨case □ of ∅ end :: K, vs⟩ −→ ⟨K, {error, if_clause, {}}X⟩ (EXCCASE)

⟨K, try e1 of <x1, ..., xn> → e2 catch <xk+1, ..., xk+n> → e3⟩ −→
⟨try □ of <x1, ..., xn> → e2 catch <xk+1, ..., xk+n> → e3 :: K, e1⟩

(STRY)

⟨try □ of <x1, ..., xn> → e2 catch <xk+1, ..., xk+n> → e3 :: K,<v1, ..., vn>⟩ −→
⟨K, e2[x1 7→ v1, ..., xn 7→ vn]⟩

(PTRY)

⟨try □ of <x1, ..., xn> → e2 catch <xk+1, ..., xk+3> → e3 :: K, {c, vr, vd}X⟩ −→

⟨K, e3[xk+1 7→ c, xk+2 7→ vr, xk+3 7→ vd]⟩
(EXCTRY)

⟨F :: K, {c, vr, vd}X⟩ −→ ⟨K, {c, vr, vd}X⟩
(if F ̸= try □ of <x1, ..., xn> → e2 catch <xk+1, ..., xk+n> → e3)

(EXCPROP)

Figure A4. Frame stack semantics rules of group 4.

Appendix A.1. Parameter Lists

To avoid duplication of reduction rules for language elements involving parameter
lists (value lists, tuples, maps, applications, inter-module calls, and primitive operations),
we introduce parameter list frames Figure 5. These parameter lists are always evaluated
in the same leftmost, innermost way, which is reflected in SPARAMS. If there are no more
parameters to evaluate, we finish the evaluation with PPARAMS. Empty parameter lists are
handled separately with PPARAMS0 and SPARAMS0, since if there are no parameters, there
is no expression to be put into the second configuration cell of the semantics. This is also
the reason, why □ is used as a redex in SAPPPARAM, SCALLPARAM, STUPLE, SPRIMOP.

Appendix A.2. Map Frames

Maps are handled in a special way with parameter list frames. To ensure some
semantic properties, we have to make sure that the number of values and expressions in a
map parameter list frame is an odd number, so that together with the current redex, a valid
map expression can be reconstructed. This is the reason why empty maps are handled
separately with PMAP0.

Appendix B. Evaluation of Sequential Map
In this section, we show how to evaluate the sequential version of the map function

(Figure 3). We denote the function inside letrec with mapfun, its body with eb, and its
closure with cmap (which is clos([mapfun], [F, L], eb)), the entire expression with eletrec, and the
application of the map function closure with eapp. We use (+1) to denote the increment func-
tion from the metatheory. As an example, we are going to use the following instantiation of
the metavariables (ι is kept arbitrary):

el := [1|[2|[]]]

e f := fun(X) → call ‘erlang’:‘+’(X, 1)

cinc := clos(∅, [X], call ‘erlang’:‘+’(X, 1))

The steps to evaluate the sequential map function are all τ steps, except the very last
one which is a send(ιbase, ι, [2|[3|[]]]) (supposing that the PID of the process evaluating
the sequential map is ιbase). In the first steps, we evaluate the letrec expression with PLE-
TREC, and next the parameters of the call with SCALLMOD, SCALLFUN, SCALLPARAM,
SPARAMS0 and SPARAMS (the latter two are general parameter list evaluation rules).
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⟨ε, eletrec⟩ −→
⟨ε, call ‘erlang’:‘!’(ι, apply cmap(e f , [1|[2|[]]]))⟩ −→

⟨call(□, ‘!’)(ι, apply cmap(e f , [1|[2|[]]])) :: ε, ‘erlang’⟩ −→

⟨call □:‘!’(ι, apply cmap(e f , [1|[2|[]]])) :: ε,<‘erlang’>⟩ −→

⟨call ‘erlang’:□(ι, apply cmap(e f , [1|[2|[]]])) :: ε, ‘!’⟩ −→

⟨call ‘erlang’:□(ι, apply cmap(e f , [1|[2|[]]])) :: ε,<‘!’>⟩ −→

⟨call(‘erlang’, ‘!’)□, ι, apply cmap(e f , [1|[2|[]]]) :: ε,□⟩ −→

⟨call(‘erlang’, ‘!’)(□, apply cmap(e f , [1|[2|[]]])) :: ε, ι⟩ −→

⟨call(‘erlang’, ‘!’)(□, apply cmap(e f , [1|[2|[]]])) :: ε,<ι>⟩ −→

⟨call(‘erlang’, ‘!’)(ι,□) :: ε, apply cmap(e f , [1|[2|[]]])⟩

We denote the current frame stack with K. Next, with the same idea, we evaluate the
subexpressions of the application. For this, we use the following rules: SAPP, SAPPPARAM,
SPARAMS0 and SPARAMS (which were also used previously for the call’s parameter list).
Note that the list [1|[2|[]]] evaluates to itself (i.e., it becomes a value) in multiple steps
(with SCONSTAIL, SCONSHEAD, PCONS while the integers in it evaluate with PVALUE).

⟨K, apply cmap(e f , [1|[2|[]]])⟩ −→

⟨apply □(e f , [1|[2|[]]]) :: K, cmap⟩ −→

⟨apply □(e f , [1|[2|[]]]) :: K,<cmap>⟩ −→

⟨apply(cmap)(□, e f , [1|[2|[]]]) :: K,□⟩ −→

⟨apply(cmap :: K)(□, [1|[2|[]]]), e f ⟩ −→

⟨apply(cmap)(□, [1|[2|[]]]) :: K,<cinc>⟩ −→
⟨apply(cmap)(□) :: K, [1|[2|[]]]⟩ −→∗

⟨apply(cmap)(cinc,□) :: K,<[1|[2|[]]]>⟩

We denote the case clauses of the function in Figure 3 with cl1, cl2, respectively, and use
erec to denote the body of the second clause, after the successful pattern matching, i.e.,

[apply cinc(1)|apply cmap(cinc, [2|[]])].

In the next steps, we evaluate the first application of cmap. In this case, the pattern
matching of the first clause fails, and then the second succeeds. Thereafter, the guard
‘true’ is evaluated, followed by the body of the clause erec. Lists in Core Erlang evaluate
right-to-left; thus, the next step is to evaluate the recursive application.

⟨apply(cmap)(cinc,□) :: K,<[1|[2|[]]]>⟩ −→
⟨K, case [1|[2|[]]] of cl1, cl2 end⟩ −→
⟨case □ of cl1, cl2 end :: K, [1|[2|[]]]⟩ −→
⟨case □ of cl1, cl2 end :: K,<[1|[2|[]]]>⟩ −→
⟨case □ of cl2 end :: K,<[1|[2|[]]]>⟩ −→
⟨case [1|[2|[]]] of [H|T] when □ → erec, cl2 end :: K, ‘true’⟩ −→
⟨case [1|[2|[]]] of [H|T] when □ → erec, cl2 end :: K,<‘true’>⟩ −→
⟨K, [apply cinc(1)|apply cmap(cinc, [2|[]])]⟩ −→
⟨[apply cinc(1)|□] :: K, apply cmap(cinc, [2|[]])⟩

The recursive applications can be evaluated the same way as before; thus, we omit
them in the following equations. We note that in the last recursive application, the first
clause matches, terminating the recursion. In the following steps, we evaluate the first
elements of the lists, which were kept in the frame stack, and then reassemble the result list.
These steps involve the application of cinc (the closure of the increment function), which
we omit.
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⟨[apply cinc(1)|□] :: K, apply cmap(cinc, [2|[]])⟩ −→∗

⟨[apply cinc(2)|□] :: [apply cinc(1)|□] :: K, []⟩ −→
⟨[□|[]] :: [apply cinc(1)|□] :: K, apply cinc(2)⟩ −→∗

⟨[□|[]] :: [apply cinc(1)|□] :: K,<3>⟩ −→
⟨[apply cinc(1)|□] :: K,<[3|[]]>⟩ −→
⟨[□|[3|[]]] :: K, apply cinc(1)⟩ −→∗

⟨[□|[3|[]]] :: K,<2>⟩ −→
⟨K,<[2|[3|[]]]>⟩

Finally, the last step is to evaluate the message sending (for arbitrary set of linked
processes L and process flag for trapping exit signals b):

(call(‘erlang’, ‘!’)(ι,□) :: ε,<[2|[3|[]]]>, q, L, b)
send(ιs ,ι,[2|[3|[]]])−−−−−−−−−−→ (ε,<[2|[3|[]]]>, q, L, b)

We recall a theorem from previous work, saying that if a redex can be reduced in some
steps, then this reduction can be done with arbitrary frame stack (continuation).

Theorem A1 (Extend frame stack). For all frame stacks K1, K2, K′, redexes r1, r2, and step
counters n, if ⟨K1, r1⟩ −→n ⟨K2, r2⟩, then ⟨K1 ++ K′, r1⟩ −→n ⟨K2 ++ K′, r2⟩.

Proof. To prove this theorem, we use induction on the length of the reduction chain
(n). The base case is discharged by the reflexivity of −→∗, while in the second case, we
inspect how the semantics can take the first step, and use the same rule in the conclusion,
before using the induction hypothesis.

We can use this idea to continue the evaluation without handling the call frame while
evaluating the application. The reason we present the evaluation this way is that we can
refer to the application evaluation from our bisimulation proofs (Example 2), independently
of the current frame stack.

Next, we generalise this evaluation for any proper Core Erlang list and function expression.

Example A1 (Sequential map evaluation). Consider the expressions from Figure 3 (denoted
with eletrec). For all values vl , v f , value transforming functions f , PIDs ι which appear as the
metavariables in Figure 3, we can prove

⟨ε, apply cmap(v f , vl)⟩ −→ ⟨ε, to_obj(map( f , to_meta(vl)))⟩,

if the following conditions hold:

• ιbase ̸= ι.
• The value v f computes a metatheoretical function f , i.e., for all v values, we can prove

⟨ε, apply v f (v)⟩ −→∗ < f (v)> in the sequential semantics.
• vl is a proper Core Erlang list, i.e., it is constructed as [v1|[v2|...[vn|[]]]...], and i < n.
• vl does not contain any PIDs, moreover, the application of v f does not introduce any PIDs.

Proof. We proved this example by induction on to_meta(vl). In both cases, we just have
to use the semantics rules to reach the result. In the inductive case, first, we evaluate the
application of cmap for the first element of the list, then use the induction hypothesis (with
the transitivity of −→∗), and finish the evaluation by using the semantics rules.

Appendix C. Our Results in the Coq Implementation

In Table A1, we connect the concepts, theorems and lemmas presented in the paper to
the Coq implementation [29].
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Table A1. Connection of our results to the Coq implementation.

Figure 1 Syntax.v - Pat, Exp, Val and NonVal

Figure 2 Concurrent/ProcessSemantics.v - EReceive

Figure 3 Concurrent/MapPmap.v - map_clos

Figure 4 Concurrent/MapPmap.v - par_map

Figure 5 Syntax.v - Redex and Frames.v - FrameIdent and Frame

Figure 6 FrameStack/SubstSemantics.v - step

Definition 1 Concurrent/ProcessSemantics.v - Process

Figure 7 Concurrent/ProcessSemantics.v - removeMessage, peekMessage, recvNext,
and mailboxPush

Definition 2 Concurrent/ProcessSemantics.v - Signal

Definition 3 Concurrent/ProcessSemantics.v - Action

Figures 8–11 Concurrent/ProcessSemantics.v - processLocalStep

Definition 4 Concurrent/NodeSemantics.v - ProcessPool

Definition 5 Concurrent/NodeSemantics.v - Ether

Definition 6 Concurrent/NodeSemantics.v - Node

Figure 12 Concurrent/NodeSemantics.v - interProcessStep

Theorem 1 Concurrent/NodeSemanticsLemmas.v - signal_ordering

Example 1 The paths explored in the example are included in the proof of
Concurrent/MapPmap.v - map_pmap_empty_context_bisim

Definition 7 Concurrent/PIDRenaming.v, Concurrent/ProcessSemantics.v,
Concurrent/NodeSemanticsLemmas.v - Definitions with renamePID prefixes

Definition 8 Concurrent/BisimRenaming.v - PIDsRespectNode

Definition 9 Concurrent/BisimRenaming.v - PIDsRespectAction

Theorem 2 Concurrent/NodeSemanticsLemmas.v - renamePID_is_preserved

Definition 10 Concurrent/NodeSemanticsLemmas.v - We inline the uses of this definition
based on Concurrent/NodeSemanticsLemmas.v - compatiblePIDOf

Theorem 3 Concurrent/NodeSemanticsLemmas.v - confluence

Theorem 4 Concurrent/NodeSemanticsLemmas.v - internal_det

Definition 11 This definition is always inlined in the code

Definition 12 Concurrent/StrongBisim.v - strongBisim

Definition 13 Concurrent/WeakBisim.v - weakBisim

Definition 14 Concurrent/BarbedBisim.v - barbedBisim

Theorem 5 Concurrent/BarbedBisim.v - barbedBisim_refl, barbedBisim_sym,
and barbedBisim_trans

Theorem 6 Concurrent/WeakBisim.v - strong_is_weak and Concurrent/BarbedBisim.v -
weak_is_barbed

Theorem 7 Concurrent/BisimRenaming.v - rename_bisim

Lemma 1 Concurrent/BisimReductions.v - ether_update_terminated_bisim

Lemma 2 Concurrent/BisimReductions.v - terminated_process_bisim

Theorem 8 Concurrent/BisimReductions.v - silent_steps_bisim

Example 2 Concurrent/MapPmap.v - map_pmap_empty_context_bisim

https://github.com/harp-project/Core-Erlang-Formalization/blob/v1.0.7/src/Syntax.v
https://github.com/harp-project/Core-Erlang-Formalization/blob/v1.0.7/src/Concurrent/ProcessSemantics.v
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