
Mondon, Pierre and de Lemos, Rogério (2024) Detecting Cryptographic Functions
for String Obfuscation. In: 2024 IEEE International Conference on Cyber Security
and Resilience (CSR). 2024 IEEE International Conference on Cyber Security
and Resilience (CSR). 97. pp. 315-320. IEEE ISBN 979-8-3503-7537-4. E-ISBN
979-8-3503-7536-7.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/107434/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/csr61664.2024.10679462

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,

for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/107434/
https://doi.org/10.1109/csr61664.2024.10679462
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Detecting Cryptographic Functions
for String Obfuscation

Pierre Mondon
School of Computing

University of Kent, UK
Email: ppm5@kent.ac.uk

Rogério de Lemos
School of Computing

University of Kent, UK
Email: r.delemos@kent.ac.uk

Abstract—Analysing complex evasion and obfuscation tech-
niques is crucial for creating more robust defences against
malware. String obfuscation is an easy-to-implement technique
that hides information, such as domain names, registry keys, etc.
Its detection and removal allow malware to be more accurately
analysed. This paper proposes a new method for generating
detectors for string obfuscation in binary executables. This is
achieved by combining features extracted from the assembly of
a binary, and its respective control flow graph and the directed
graph derived from the control flow graph. Our method generates
highly efficient detectors tailored for string obfuscation achieving
more than 90% across all evaluation metrics.

Index Terms—malware, string obfuscation, decryption, static
analysis

I. INTRODUCTION

The analysis of malware fulfils multiple purposes, such
as malware detection, threat hunting, and forensic analysis.
Malware authors tend to rely heavily on obfuscation1 since
it slows the analysis process and evades some detection
mechanisms.

A particular type of obfuscation is string encryption. Its
objective is to hide the strings used during the program exe-
cution, which may include domain names, file names, etc. This
process makes it impossible to see the actual string used in
the binary code since all strings are encoded or encrypted. For
manipulating strings, the program should include a function for
decrypting the string before its use. This obfuscation technique
embeds in the program, the encrypted strings together with
a function that decrypts the strings at run-time, which often
relies on a cryptographic or encoding algorithm. Although
encoding algorithms, like Base64, are not cryptographic, in
this paper, we refer to them as cryptographic algorithms for
the sake of readability.

Hence the term decryption function refers to the function
that implements the algorithm responsible for decrypting the
obfuscated strings. Since string obfuscation, according to
MITRE ATT&CK 2, is often performed using XOR, Base64
and RC4, this paper takes an innovative approach to the
generation of effective and efficient string obfuscation de-
tectors. In particular, our focus is on MS Windows exe-
cutables generated from C source code, and this contrasts

1Obfuscation is referred to as any mechanism that aims to harden the
process of understanding a program while conserving its logic.

2https://attack.mitre.org/

with similar contributions in the area that mainly focus on
Android [3, 11, 12]. These approaches either rely on detecting
the strings themselves [11, 12] rather than the decryption
function, which can be extremely challenging to locate in
binary executables, or rely on features that are not present
in native binaries (for example, variables type).

The key contribution of this paper is a new method for gen-
erating detectors for string obfuscation decryption functions in
binary executables. An advantage of our approach is the fact
that the dataset creation is guided by the MITRE ATT&CK
and follows real APT and malware trends. The generated
detectors are machine learning models trained on features
extracted by performing static analysis on the assembly of
a binary, its respective control flow graph (CFG), and the
directed graph derived from the CFG. Moreover, since the
proposed approach relies on static analysis, there is no need
to execute programs, which is less time consuming [16]. For
the generation and evaluation of our detectors, we have created
datasets compiled with GCC, Clang and Microsoft Visual C++
(MSVC) compilers capturing different optimisation levels. We
show that our approach, under the assumption that no other
obfuscation technique is applied, achieves results above 90%
across all metrics and outperforms current detection methods.

The rest of the paper is structured as follows. To contextu-
alise our contribution, the next section describes the challenges
associated with the detection of decryption functions in string
obfuscation. Then, Section III presents some related work. The
following section (Section IV) describes how our datasets were
generated. Section V details the machine learning method for
generating detectors for detecting string decryption functions.
Section VI details the experiments performed and the results
obtained. Section VII reflects on the perceived limitations of
the overall method for generating detectors. Finally, in Section
VIII, we present some concluding remarks and potential
directions for future research.

II. CRYPTOGRAPHIC ALGORITHMS IN STRING
OBFUSCATION

String obfuscation relies on the use of cryptographic or en-
coding algorithms for obfuscating strings, which are embedded
in the program. In addition, the program should also include a
function for decrypting the obfuscated string before its usage.
There are three major categories of cryptographic algorithms:

symmetric, asymmetric and hashing. Symmetric algorithms
are the most commonly used in string obfuscation according
to MITRE ATT&CK. The exception is Base64, which is
an encoding algorithm. Our work focuses on two categories
(referred to as “techniques” on MITRE ATT&CK). In “Obfus-
cated Files or Information” (T1027), the most popular algo-
rithms are XOR, Base64, RC4 and AES. “Deobfuscate/Decode
Files or Information” (T1140) lists similar algorithms, but
with two exceptions. Table I summarises the cryptographic
algorithms used for categories T1027 and T1140. The last
column of Table I (“String obfuscation”) includes the number
of times an algorithm is used in T1027 and T1140 when the
description specifically mentions “string obfuscation”. Both in
T1027 and T1140, AES is popular, however, when the focus
is made on string obfuscation, AES is rarely used.

Asymmetric algorithms tend to be more complex and less
popular in string obfuscation. Hashing algorithms are not
usable in string obfuscation since they are destructive.

TABLE I
CRYPTOGRAPHIC ALGORITHMS USED IN STRING OBFUSCATION

Algorithm T1027* T1140* String obfuscation
Base64 73 34 27
XOR 77 47 30
DES/3DES 7 2 2
Custom 16 13 16
RC4 32 9 10
AES 28 26 3
ChaCha 1 0 0
RSA 7 1 1
Caesar 1 0 0
RC5 1 0 0
Salsa20 1 0 0
ECDHP256 1 0 0
RC6 1 0 0
Rijndael 3 2 2
LEA 0 1 0

*T1027: Obfuscated Files or Information
*T1140: Deobfuscate/Decode Files or Information

From this analysis, we conclude that the algorithms mostly
used for string obfuscation are XOR, Base64, RC4 and some
custom made algorithms. This accentuates the need for detec-
tors specialised in string obfuscation.

III. RELATED WORK

The literature on detecting cryptographic functions specif-
ically designed for string obfuscation is limited. In cryp-
tographic function detection, approaches are inadequate for
string obfuscation that often employ simple cryptography
algorithms (as shown in section II). On the other hand, most
of the work on string obfuscation has been done on Android
programs [11, 12]. Hence, the motivation to take a broader
view of the literature on both cryptographic function detection
and string obfuscation.

A. Cryptographic function detection in binaries

As string obfuscation aims at hiding strings from static
analysis, we focus on static approaches for detection. Static
approaches for detecting cryptographic functions in binaries
have been proposed in the literature [1, 10]. These rely on the
ratio of cryptographic related instructions since cryptographic

functions use arithmetic and bit-shift operations. However,
there is no fixed ratio among the different approaches, each
proposes a different threshold: 70% [1] and 40% [10]. Al-
though these approaches show good results in complex cryp-
tographic functions, they fail in the case of algorithms that
tend to have less arithmetic and bit-shift operations [18].

Jia et al. [5] published a method based on natural language
processing for cryptographic function detection. Li et al. [8]
also uses graph embedding in deep neural networks. However,
dataset labelling relies on the KANAL plugin for PEiD which
is not usable for algorithms without specific signatures, such
as those used in string obfuscation. This makes it impractical
to tailor algorithms that are specific to string obfuscation.

FLARE Obfuscated String Solver 3 is a practical tool that
has looked into automatically extracting obfuscated strings
from malware in MS Windows binaries using emulation. This
tool uses simple rules to rank functions by the likelihood of be-
ing cryptographic without a detection mechanism. Moreover,
most of the work is done during the dynamic analysis.

B. Android string obfuscation

The majority of the research in string obfuscation is concen-
trated on Android platforms [3, 11, 12], which is not directly
applicable to MS Windows binary executables. However, there
are some similarities in the techniques used, such as instruc-
tion count and control flow graph. Glanz et al. [3], Mirzaei
et al. [11], Mohammadinodooshan et al. [12] have proposed
machine learning approaches for detecting string obfuscation
that rely on extracting features directly from strings. This is
possible in Android because strings are directly accessible.
However, in MS Windows binary executables, it is invalid to
assume that a string can be statically accessed since its address
may be resolved at run-time, and there is no access to variable
types, hence for our approach to focus on detecting decryption
functions.

IV. DATASET

Since no dataset is publicly available targeting string obfus-
cation, we created a dataset by gathering source codes in C
language from GitHub repositories. The dataset contains two
classes of functions: cryptographic and non-cryptographic. The
non-cryptographic part contains functions without any cryp-
tographic algorithm implementation. On the other hand, the
cryptographic part contains only implementations of crypto-
graphic algorithms represented by the most popular algorithms
used in string obfuscation (Section II), namely: XOR, Base64
and RC4.

For the non-cryptographic part, we used the Google Code
Jam dataset 4, downloaded from the respective GitHub reposi-
tory 5. The Google Code Jam contains several C functions with
different programming styles, given that several participants
are from various programming backgrounds. Functions in this

3https://github.com/mandiant/flare-floss/
4https://codingcompetitions.withgoogle.com/codejam/archive
5https://github.com/Jur1cek/gcj-dataset

dataset predominantly consist of algorithmic solutions to com-
plex problems, without any cryptographic algorithms, making
them ideal non-cryptographic code. The variety in coding
styles and complexity levels across different solutions provides
a robust base for testing binary analysis methodologies. For
the cryptographic part, we created a dataset by gathering C
source code implementation of the XOR, Base64 and RC4
algorithms from GitHub.

Similar to Li et al. [8], we leverage cross compilation to
enlarge the dataset size. This is convenient since different
compilers and compiler optimisations produce different binary
code but preserve program semantics. Furthermore, cross
compilation increases resistance to compiler optimisations. In
our case, this takes the dataset size from 61 cryptographic
source code functions to 787 functions in binary code. This
is achieved by using three different compilers: GCC with 5
optimisation levels, Microsoft Visual C++ (MSVC) with 2
optimisation levels, and Clang with 5 optimisation levels. For
labelling, we appended an identifier to the function names.

Table II shows a breakdown of the dataset used for this
research. The numbers differ slightly for each compiler and
compiler optimisations within an algorithm category. This
is because some source codes do not compile for certain
optimisations and compilers inject functions in the binary
during compilation. The dataset presents imbalanced classes,
which is realistic for this class of problem [15].

TABLE II
GENERATED DATASET FOR EACH COMPILER AND OPTIMISATIONS

XOR Base64 RC4 non-crypto

GCC

O0 19 22 20 1067
O1 19 22 20 1073
O2 18 21 18 1064
O3 19 22 20 1071

Ofast 19 22 20 1062

Clang

O0 19 22 20 4724
O1 19 22 20 2462
O2 19 22 20 1743
O3 19 22 20 1765

Ofast 19 22 20 1745

MSVC
O0 19 22 19 2529
O1 19 22 20 2483
O2 19 22 19 2489

Sub-total 246 285 256 25277
Total 787 25277

V. METHOD FOR DETECTING CRYPTOGRAPHIC FUNCTIONS

In this section, we present our method for detecting cryp-
tographic functions in binary code, which relies on features
generated from the assembly code of the function, and its
control flow graph (CFG). An overview of the proposed
method is presented in Figure 1, which is partitioned into
three major steps. Binary Pre-processing transforms the binary
code into a high-level representation of the functions, that is,
assembly code, control flow graph and directed graph. Feature
Extraction extracts features from the three binary representa-
tions. Cryptographic Function Detection classifies functions,
based on a machine learning model, as either cryptographic
or not.

Fig. 1. Method for detecting cryptographic functions

A. Binary pre-processing

Once the binary code input is disassembled, the control flow
graph (CFG) for each of its functions can be extracted. A
CFG represents the possible execution paths of a function.
Its nodes capture basic blocks, grouping contiguous assembly
instructions. The directed edges represent the possible jumps
in the execution. The entry node is the entry point of the
function, and the exit node is the return point of the function.
The CFG is then converted into a directed graph from which
features associated with general graph theory are extracted.

B. Feature extraction

For each function, features are extracted by analysing the
code in terms of its assembly instructions, and the code’s
respective CFG. Table III describes all the features used for
detecting cryptographic functions. The features extracted from
the assembly code are named as Asm *, with the symbol
* corresponding to the assembly instruction. Similarly, the
features extracted from the directed graph are named as G *.
The last feature type Asm G * denotes features extracted
from the CFG. This naming convention allows us to identify
feature types, and where these are extracted.

The choice of feature from the assembly code was based
on field knowledge. Since cryptographic functions perform
arithmetic and bit-shift operations on string bytes, the corre-
sponding instructions were selected as features. An exception
has been made for the instruction xor: only the non-zero xor
instructions are considered since compilers often xor a register
with itself to assign the value zero. By filtering the zeroing xor,
meaningful xor operations can be captured. In addition, we
considered instructions cmp, jmp and push that, respectively,
perform a comparison, jump the instruction pointer, and push
data to the stack. Another feature extracted from the assembly
code is the number of instructions per function (Asm nbins).

The features extracted from the directed graph were inspired
by Liu et al. [9]. We analysed the relevance of these features
using a Random Forest classifier and selected the five best
features. The feature G VcEBool represents the ratio between
nodes and directed edges. The value taken by this feature can
be one of three possibilities: 1 when there are more edges

TABLE III
FEATURE NAMES AND DESCRIPTION

Feature name Description
Asm xor Number of non-zeroing xor in the function
Asm or Number of instruction or in the function
Asm shl Number of instruction shl in the function
Asm shr Number of instruction shr in the function
Asm sal Number of instruction sal in the function
Asm sar Number of instruction sar in the function
Asm shld Number of instruction shld in the function
Asm rol Number of instruction rol in the function
Asm rcl Number of instruction rcl in the function
Asm rcr Number of instruction rcr in the function
Asm shrd Number of instruction shrd in the function
Asm and Number of instruction and in the function
Asm add Number of instruction add in the function
Asm sub Number of instruction sub in the function
Asm mul Number of instruction mul in the function
Asm div Number of instruction div in the function
Asm imul Number of instruction imul in the function
Asm idiv Number of instruction idiv in the function
Asm dec Number of instruction dec in the function
Asm inc Number of instruction inc in the function
Asm ror Number of instruction ror in the function
Asm cmp Number of instruction cmp in the function
Asm push Number of instruction push in the function
Asm jmp Number of instruction jmp in the function
Asm nbins Total number of instructions per function
G QtyVertex Number of nodes in the CFG per function
G QtyEdge Number of edge in the CFG per function
G QtyCC Number of connected components
G DAG 1 if the first connected component is directed acyclic graph; 0 otherwise
G VcEBool Relationship between the numbers of nodes and directed edges
Asm G avrblocksize Average number of instruction per basic block per function

than nodes, 0.5 when there is an equal number of vertices
and edges, and 0 when there are more nodes than edges. The
subtype G Qty* represents a quantity of a certain attribute
in the graph: G QtyVertex the number of vertices (nodes),
G QtyEdge the number of edges, and G QtyCC the number
of connected components (CC). G DAG takes as value 1 if the
function does not contain a loop, and 0 otherwise. Only one
feature was generated from the CFG (Asm G avrblocksize),
which captures the average number of instructions per basic
block.

C. Function classifier

For classifying a function as either cryptographic or non-
cryptographic, we leverage pre-processing techniques with
machine learning algorithms for generating a binary classifier.
The data model, characterising the function classifier, is gen-
erated by extracting the features from the dataset described in
section IV. We use pre-processing techniques to re-balance the
dataset that is heavily imbalanced between classes. Different
techniques have been experimented with, which are further
described in section VI. This re-balanced dataset is then used
to train a machine learning algorithm, resulting in a model
that can detect cryptographic functions.

VI. EXPERIMENTS

To demonstrate the effectiveness of our method for detect-
ing cryptographic functions, in the following, we describe
the practical setup of the proposed method and present the
results of several experiments using different pre-processing
techniques and machine learning algorithms.

A. Experimental setup

Experiments were conducted with an Intel i5-9300H proces-
sor and 16 GB RAM. We adopted K-fold cross validation (10

folds) on the dataset described in section IV. A pipeline tool
was built to train and test a combination of all the identified
pre-processing techniques and machine learning algorithms.

1) Feature extraction: For the implementation, we used
IDA Pro [4] for disassembling the binary code and generating
the control flow graph (CFG). To transform the CFG into
a directed graph, we use NetworkX 6, which facilitates the
extraction of graph-based features.

2) Pre-processing for imbalance dataset: For dealing with
imbalanced data, different pre-processing techniques were
employed, namely, SMOTE [2], SMOTE SVM [13], and
Random Undersampling 7. For their implementation, we lever-
age the imbalanced-learn [7] library, which contains special
implementations for imbalanced datasets. The main parameter
is the sampling strategy, which captures the proportion
between classes after pre-processing. The choice of SMOTE
and SMOTE SVM parameters is: sampling strategy: 0.1. For
Random Undersampling: sampling strategy: auto.

3) Classification algorithm: We have experimented with
several machine learning algorithms, namely, Support Vector
Machines (SVM), Gaussian Naive Bayes (NB), Multi-layer
Perceptron (MLP) and Random Forest (RF). We use for their
implementation the Python library Sklearn [14].

B. Evaluation metrics

The imbalanced nature of our datasets led us to choose
the metrics used in imbalanced-learn [7] for evaluating our
results: precision, recall, specificity, F1, and G-mean [6]. The
index balance accuracy (IBA) of the G-mean is calculated
with the default Alpha setting of imbalanced-learn by applying
equation (1). These metrics were averaged across the 10 folds
of the cross validation.

G−mean =
√
Recall ∗ Specificity (1)

C. Experimental results

In the following, we present and analyse results obtained by
applying different machine learning algorithms. The results of
the experiments are then analysed in terms of pre-processing
techniques, and these are compared in the context of different
machine learning algorithms.

1) Results for Random Forest: For Random Forest, the
following parameters were used: number of trees: 200;
criterion: entropy; class weight (automatically adjust weights
inversely proportional to class frequencies in the input data for
each bootstrap sample of each tree): balanced sub-samples;
max features (the number of features potentially used in each
tree split is the total number of features): None.

The results, presented in Table IV, are high across all
metrics for all pre-processing techniques except from Random
Undersampling for which precision and F1 score lower. This is
explained by a high number of false positives which means a
non-cryptographic function classified as a cryptographic func-
tion. Out of SMOTE, SVM SMOTE and No pre-processing,

6https://github.com/networkx/networkx
7https://imbalanced-learn.org/

we have stable results across all metrics ranging from 94% to
99+%. SVM SMOTE outperforms No pre-processing by 1%
on average across all metrics.

Random Forest is a suitable algorithm as it provides good
results across all metrics. Furthermore, SMOTE SVM can be
used to improve the results.

TABLE IV
EXPERIMENTAL RESULTS FOR DIFFERENT MACHINE LEARNING

ALGORITHMS AND PRE-PROCESSING TECHNIQUES

pre-processing technique precision recall specificity F1 G-mean

Multi Layer Perceptron

No Pre-processing 96.60 96.06 99.89 96.29 97.95
Under Sampling 58.37 96.31 97.84 72.62 97.07

SMOTE 94.38 95.31 99.80 94.63 97.51
SMOTE SVM 95.28 94.92 99.85 95.05 97.34

Random Forest

No Pre-processing 94.58 96.19 99.92 96.87 98.04
Under Sampling 58.90 98.86 97.83 73.74 98.34

SMOTE 96.85 96.57 99.90 96.70 98.22
SMOTE SVM 97.37 97.33 99.92 97.34 98.61

Support Vector Machines

No Pre-processing 45.33 95.05 96.42 61.35 95.73
Under Sampling 44.10 95.05 96.22 60.19 95.63

SMOTE 48.55 94.54 96.87 64.11 95.69
SMOTE SVM 48.38 94.28 96.86 63.92 95.56

Gaussian Naive Bayes

No Pre-processing 37.38 56.41 97.04 44.84 73.87
Under Sampling 29.90 57.03 94.77 35.78 73.34

SMOTE 35.42 58.06 96.70 43.93 74.82
SMOTE SVM 37.20 59.20 96.89 45.59 75.60

2) Results for Support Vector Machines (SVM): The follow-
ing parameters were used: class weight (automatically adjust
weights inversely proportional to class frequencies in the input
data): balanced; linear kernel: linear; gamma scale: scale.

Table IV demonstrates that this algorithm performs above
94% for each pre-processing technique on three of the five
metrics: recall, specificity, and G-mean. However, this al-
gorithm yields high false positives regardless of the pre-
processing technique used as precision and F1 score shows.

Regarding pre-processing techniques, using either SVM or
SMOTE SVM lowers the false positive rate, which raises
precision and F1 score by 3-4%. Still, SVM is not a very
good algorithm for our proposed method since it produces a
larger number of false positives even when improved by pre-
processing techniques.

3) Results for Multi-Layer Perceptron (MLP): The follow-
ing parameters were used: activation: Relu; solver: Adam;
learning rate: constant; learning rate init: 0.001; epochs:
200.

The results related to this algorithm are shown in Table IV.
These are excellent on metrics across all pre-processing tech-
niques except Random Undersampling since it presents a high
false positive rate. The other three pre-processing techniques
have stable results across all metrics ranging from 94% to
99+%. No pre-processing is slightly better than SMOTE and
SVM SMOTE by less than one per cent on average.

MLP effectively and consistently delivers excellent results
across all metrics. No pre-processing is necessary as neither
SMOTE nor SMOTE SVM enhances the results and would
significantly reducing the training time.

4) Results for Gaussian Naive Bayes : The following
parameters were used var smoothing: 1e−9; priors: None.

The results for the Gaussian Naive Bayes algorithm are
presented in Table IV. Although this algorithm performs
poorly on most metrics, we included the results for comparison
and transparency.

5) Results and discussion: The results display variations
depending on the machine learning algorithm for generating
the function classifier. Notably, Random Forest and Multi-
Layer Perceptron (MLP) demonstrate high efficacy. Regarding
pre-processing techniques, the results slightly lean towards
SMOTE SVM, but more importantly, rule out Random Un-
dersampling.

When assessing the optimal combination of pre-processing
techniques and machine learning algorithms, we computed the
average and median values for all metrics associated with each
pre-processing technique. This allowed us to identify the most
effective combination for our method. When considering the
Random Forest algorithm, SVM SMOTE emerges as the most
effective technique, boasting a mean score of 98.81% and a
median score of 99.84%. In contrast, when employing MLP
without pre-processing, the median score is 99.78%, with a
mean score of 98.31%. These findings indicate a combined
use of Random Forest with SVM SMOTE for our approach.

D. Comparison

As mentioned in section III, most approaches in the litera-
ture fall short when considering string obfuscation. Still, we
implemented the approach by Matenaar et al. [10] that claims
to detect arbitrary cryptographic algorithms in binary code.
They propose heuristics based on the ration of cryptographic
related instructions. However, this method does not provide
any positive results for string obfuscation since RC4, XOR
and Base64 are simple and contain few operations, the ratio
of cryptographic instructions is low. This furthers the motiva-
tion for this paper providing a method specialised for string
obfuscation.

VII. LIMITATIONS

This section discusses the threats to the validity of our
research according to the categories listed by Wohlin et al.
[17].

Internal validity. In our study, a potential threat is the
overfitting of the detectors towards a certain programming
style. This threat has been avoided by collecting data from
various repositories and authors. We included multiple im-
plementations of an algorithm, when possible, to reduce that
threat.

Construct validity. In our study, a threat could be our
dataset misrepresenting string obfuscation. To mitigate this,
we have used guidance from MITRE ATT&CK to identify
the most used cryptographic algorithms in string obfuscation.
Another potential threat is that we rely on external software
to disassemble binaries and generate their respective control
flow graphs.

External validity. In our study, despite our efforts, we
still have a relatively small dataset which may be seen as a
limitation compared to real-world applications. Also, we do
not consider any other types of obfuscation on top of the string
obfuscation.

VIII. CONCLUSIONS AND FUTURE WORK

This paper has proposed a new static method for detecting
cryptographic functions in binary code for string obfuscation.
This method uses machine learning algorithms, leveraging
features extracted from the assembly code, its associated
control flow graph and the directed graph. As part of our
study, we have examined the most prevalent cryptographic
algorithms used for string obfuscation by analysing MITRE
ATT&CK obfuscation techniques. Based on these findings,
we have created a dataset containing binary code examples of
these cryptographic algorithms. The results of the experiments
have shown that the generated detectors can achieve a high
level of efficacy: across all metrics, the generated detectors
are specifically tailored for string obfuscation algorithms in
binary executables.

There are several initiatives for future research. First, we
need to identify a method that generates generic detectors
capable of handling a broader spectrum of cryptographic algo-
rithms. Additionally, eliminating the assumption that no other
obfuscation techniques have been applied to the binary code
is crucial, as it will enhance the method’s applicability to real-
world malware. One possibility for removing this limitation is
creating a dataset containing multiple layers of obfuscation.

AVAILABILITY

All the source codes and datasets can be found here: https:
//github.com/pmondon/string-obfuscation-detection

REFERENCES

[1] J. Caballero, P. Poosankam, C. Kreibich, and D. Song,
“Dispatcher: Enabling active botnet infiltration using
automatic protocol reverse-engineering,” in Proceedings
of the 16th ACM conference on Computer and commu-
nications security, 2009, pp. 621–634.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling
technique,” Journal of artificial intelligence research,
vol. 16, pp. 321–357, 2002.

[3] L. Glanz, P. Müller, L. Baumgärtner, M. Reif, S. Amann,
P. Anthonysamy, and M. Mezini, “Hidden in plain sight:
Obfuscated strings threatening your privacy,” in Proceed-
ings of the 15th ACM Asia Conference on Computer and
Communications Security, 2020, pp. 694–707.

[4] hex rays, “Ida pro,” https://hex-rays.com/ida-pro/.
[5] L. Jia, A. Zhou, P. Jia, L. Liu, Y. Wang, and L. Liu,

“A neural network-based approach for cryptographic
function detection in malware,” IEEE Access, vol. 8, pp.
23 506–23 521, 2020.

[6] M. Kubat, S. Matwin et al., “Addressing the curse of
imbalanced training sets: one-sided selection,” in Icml,
vol. 97, no. 1. Citeseer, 1997, p. 179.

[7] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas,
“Imbalanced-learn: A python toolbox to tackle the
curse of imbalanced datasets in machine learning,”
Journal of Machine Learning Research, vol. 18, no. 17,
pp. 1–5, 2017.

[8] X. Li, Y. Chang, G. Ye, X. Gong, and Z. Tang, “Genda:
A graph embedded network based detection approach
on encryption algorithm of binary program,” Journal
of Information Security and Applications, vol. 65, p.
103088, 2022.

[9] H. Liu, C. Guo, Y. Cui, G. Shen, and Y. Ping, “2-spiff:
a 2-stage packer identification method based on func-
tion call graph and file attributes,” Applied Intelligence,
vol. 51, no. 12, pp. 9038–9053, 2021.

[10] F. Matenaar, A. Wichmann, F. Leder, and E. Gerhards-
Padilla, “Cis: The crypto intelligence system for auto-
matic detection and localization of cryptographic func-
tions in current malware,” in 2012 7th International Con-
ference on Malicious and Unwanted Software. IEEE,
2012, pp. 46–53.

[11] O. Mirzaei, J. de Fuentes, J. Tapiador, and L. Gonzalez-
Manzano, “Androdet: An adaptive android obfuscation
detector,” Future Generation Computer Systems, vol. 90,
pp. 240–261, 2019.

[12] A. Mohammadinodooshan, U. Kargén, and N. Shah-
mehri, “Robust detection of obfuscated strings in android
apps,” in Proceedings of the 12th ACM Workshop on
Artificial Intelligence and Security, ser. AISec’19. New
York, NY, USA: Association for Computing Machinery,
2019, p. 25–35.

[13] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Border-
line over-sampling for imbalanced data classification,”
International Journal of Knowledge Engineering and Soft
Data Paradigms, vol. 3, no. 1, pp. 4–21, 2011.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[15] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and
L. Cavallaro, “{TESSERACT}: Eliminating experimen-
tal bias in malware classification across space and time,”
in 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 729–746.

[16] P. Shijo and A. Salim, “Integrated static and dynamic
analysis for malware detection,” Procedia Computer Sci-
ence, vol. 46, pp. 804–811, 2015.

[17] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell, and A. Wesslén, Experimentation in Software Engi-
neering, 1st ed. Springer: Springer, 2012.

[18] C. Zarate, S. Garfinkel, A. Heffernan, S. Horras, and
K. Gorak, “Analysis of the Use of XOR as an Obfus-
cation Technique in a Real Data Corpus,” in Advances
in Digital Forensics X, G. Peterson and S. Shenoi, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
vol. 433, pp. 117–132, series Title: IFIP Advances in
Information and Communication Technology.

https://github.com/pmondon/string-obfuscation-detection
https://github.com/pmondon/string-obfuscation-detection
https://hex-rays.com/ida-pro/

