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 Carter-Morley Jones and simplified Gielis equations describe avian eggs geometries. 

 Nonlinear least squares methods are used to fit egg-shape equations to actual data. 

 Relative curvature measures of nonlinearity reflect linear approximation efficacy. 
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ABSTRACT 

Two-dimensional (2D) egg-shape equations are potent mathematical tools, facilitating the 

description of avian egg geometries in their applied mathematical modelling and poultry science 

implementations. They aid in the precise quantification of avian egg sizes, including traits such as 

volume (V) and surface area (S). Despite their potential, however, polar coordinate egg-shape 

equations have received relatively little attention for practical applications in oomorphology. This 

may be attributed to their complex model structure and the absence of explicit geometric 

interpretations for the equation parameters. In the present study, two distinct polar equations, 

namely the Carter-Morley Jones equation (CMJE) and simplified Gielis equation (SGE), were used 

to fit the profile geometries of 415 domestic pigeon (Columba livia domestica) eggs based on 

nonlinear least squares regression methods. The adequacy of goodness-of-fit for each nonlinear 

egg-shape equation was evaluated through the adjusted root-mean-square error (RMSEadj), while 

relative curvature measures of nonlinearity were utilized to assess the nonlinear behavior of 

equations. All of the RMSEadj values of the two polar equations were lower than 0.05, which 

demonstrated the validity of CMJE and SGE in depicting the shapes of C. livia egg profiles. 

Moreover, the two egg-shape equations showed good nonlinear behavior across all 415 C. livia 

eggs. Wilcoxon signed rank tests relative to RMSEadj values between CMJE and SGE revealed that 

CMJE displayed inferior fits to empirical data when compared to SGE. CMJE, however, had a 

better linear approximation performance than SGE at the global level. At the individual parameter 

level, all of the parameters of CMJE or SGE exhibited good close-to-linear behavior. This study 

provides an instrumental mathematical tool for the practical application of polar egg-shape 

equations, such as non-destructively estimating V and S of avian eggs. Additionally, it offers 

valuable insights into assessing nonlinear regression models for accurately describing the 

geometries of 2D egg profiles. 

 

Keywords: Pigeon eggs; Close-to-linear behavior; Goodness of fit; Linear approximation and 

nonlinear regression; Polar egg-shape equation  
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INTRODUCTION 

Birds′ eggs have been of great interest to the scientific community through the centuries as they 

have long been a major food source in the history of human nutrition (Romanov et al., 2009). The 

added interest for ecological modelling (Narushin and Romanov, 2000; Heming and Marini, 2015; 

Biggins et al., 2018; Duursma et al., 2018), conservation (Henderson, 2007; Moula et al., 2009) and 

developmental biology studies (Narushin et al., 1997, 2016, 2023b; Narushin and Romanov, 2001; 

2002a,b), as well as hobbyists such as bird watchers and breeders (Preston, 1953; Todd and Smart, 

1984; Baker, 2002; Troscianko, 2014; Biggins et al., 2022) widen their appeal for a range of 

scientific disciplines including poultry science. As such, egg shapes and sizes have been subject of 

many studies, and numerous mathematical equations to describe the oomorphology, i.e., the profiles 

of bird eggs (Narushin et al., 2021a, 2023a), have been proposed. For example, these include 

Preston′s universal formula (Preston, 1953) and the polar formula proposed by Carter and Morley 

Jones (1970), henceforth denoted as CMJE. Todd and Smart′s re-expression of Preston′s universal 

formula (Todd and Smart, 1984), Baker′s equation (Baker, 2002), Troscianko′s equation 

(Troscianko, 2014), the Hügelschäffer model (Narushin et al., 2020, 2021b, 2022), the 

four-diameter equation introduced by Biggins et al. (2022), and the simplified Gielis′ equation (Shi 

et al., 2022a), denoted hereafter as SGE, are more recent examples. Among the above models, the 

five-parameter CMJE and the three-parameter SGE models stand out as they are created in a polar 

coordinate system. 

 

Previous studies demonstrated the efficacy of numerous egg-shape models in accurately 

representing avian egg shapes based on empirical data (Biggins et al., 2018, 2022; Shi et al., 2022a). 

However, comparatively few studies have focused on the polar coordinate egg-shape models, 

perhaps due to the lack of explicit geometric interpretations for the parameters within the polar 

equations. They do, nonetheless, possess certain unique advantages: CMJE features a generalized 

linear structure, making it conducive to parameter estimation through multiple linear regression 

methods. Conversely, the complex equation structure of SGE, also a polar coordinate equation, 
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renders linear regression methods unsuitable for parameter estimation. In such cases, nonlinear 

optimization serves as a viable alternative, albeit with lower efficiency. Our previous findings (Shi 

et al., 2022a; Wang et al., 2022a) support this observation. Moreover, when estimating parameters 

of a nonlinear model, optimization methods generally offer greater flexibility and achieve superior 

goodness of fit (Shi et al., 2023b). A comparison between equations of the same type often yields 

more equitable evaluation results. Biggins and colleagues′ study assessed the fitting effects of 

various egg-shaped equations, including CMJE (Biggins et al., 2018). However, their study 

encompassed both rectangular and polar equations, utilizing “error about y” as a criterion for fitting 

effects. This approach may unfairly bias against polar equations that adopt “error about r” as the 

criterion. Exploring the use of polar equations for modeling bird egg shapes thus warrants further 

investigation as the two-dimensional contour of bird eggs invariably forms a closed curve, aligning 

with the rotation of the pole radius around the pole in polar equations for closed curves. 

 

Generally, polar egg-shape equations have been derived from fundamental geometric shapes such 

as a circle or ellipse, or from trigonometric series. For example, CMJE in this context involves nine 

measurements of an egg, including its length (L) and maximum breadth (B), utilized to obtain an 

equation describing the profile of the egg in polar coordinates, as a sum of cosine and sine terms up 

to third order (analogous to the Preston (1953) equation). The Gielis equation is an extension of 

circle and ellipse, two of the four classic conic sections (Gielis, 2003, 2017) and prior studies have 

affirmed its efficacy in depicting a wide range of actual biological geometries relevant to applied 

mathematical modelling, among other applications (Shi et al., 2015, 2020; Lin et al., 2016; Tian et 

al., 2020; Li et al., 2022; Wang et al., 2022a). Recently, SGE (Shi et al. 2022a) was employed to fit 

the boundary geometries of eggs from nine bird species, achieving superior goodness of fit 

compared to a complex egg-shape model. Nevertheless, research focusing on polar equations 

(including CMJE and SGE) for describing avian egg profiles, particularly in quantifying extensive 

empirical egg data, remains limited. Consequently, a comparative assessment of the effectiveness of 

different polar egg-shape equations in capturing egg features is noticeably lacking, despite its 

potential to yield valuable insights into physiological and mechanical factors influencing egg-shape 
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formation. In this respect, it is noted that one advantage of the polar equations is that development 

from a pole (center) can be modelled. This has also led to highly efficient methods for solving 

boundary value problems using the original Fourier Projection method by generalizing the 

Laplacian (Natalini et al., 2008; Example 2 in this reference is an egg shape). 

 

To address this gap in our knowledge, we used here the two polar egg-shape equations (CMJE and 

SGE) to fit the profile shapes of 415 eggs of domestic pigeon (Columba livia domestica). This 

species was of particular interest to us as they have general egg-shaped characteristics specific to 

most other species; they are easy to obtain and thus ensure the sufficient amount of data used in an 

experiment in addition to being a reasonably well-known foodstuff. 

 

In this study, the root-mean-square error and the relative curvature measures of nonlinearity were 

used to determine which one of the two egg-shape models referred provided the best description of 

the shapes of two-dimensional (2D) pigeon egg contours. The objective of this study was therefore 

twofold: first, to ascertain the validity of employing relative curvature measures of nonlinearity 

within nonlinear regression analyses; and second, to introduce a novel methodology for the future 

assessment of avian egg-shape models relevant to poultry science and other disciplines. 

 

MATERIALS AND METHODS 

Data acquisition 

A total of 415 fresh C. livia eggs were collected in October 2022, from a commercial pigeon 

breeding farm located at the county of Zhengding (38°8′38.3″ N, 114°33′47.7″ E), Hebei, China, as 

the main validation data for this study, mainly due to the availability of the eggs in large numbers. 

Importantly, this species of bird has a typical, representative egg shape. Figure 1 shows an example 

C. livia egg image. An adjustable tabletop phone mount was employed to hold a smartphone 
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(Huawei P30Pro, Huawei, Dongguan, China) to photograph eggs. In order to make the mid-line of 

the egg as parallel to the horizontal desktop as possible, we used a concave base to support eggs, 

such as a test tube rack (Fig. 1A), before placing the egg for imaging (Shi et al., 2023a). In addition, 

to calibrate the deviation of the image size of each egg from its actual size, we measured L of the 

egg using a vernier caliper (zero to 150 mm; Shanghai Accurate Measuring Tools Co. Ltd., 

Shanghai, China; measure accuracy: 0.02 mm). Adobe Photoshop CS2 (version 9.0; Adobe, San 

Jose, CA, USA) was used to convert the egg images into black and white bitmap files at a resolution 

of 600 dpi (see Fig. 1B). The MATLAB (version 2009a; MathWorks, Natick, MA, USA) 

procedures developed by Shi et al. (2018) and Su et al. (2019) were used to extract the planar 

coordinates of each egg profile. Then, the function adjdata in the biogeom package (version 1.4.3; 

Shi et al. 2022b) based on R (version 4.2.1; R Core Team, 2022) was utilized to obtain 2000 

approximately equidistant data points from the boundary coordinate data (Table S1). 

 

Models 

The empirical data of 2D egg profiles were subsequently fitted using the following equations: 

(i) The five-parameter CMJE model (Carter and Morley Jones, 1970): 

    3 2 3

1 2 3 4 5cos2φ cos φ sin 2φ sin 2φ,r K K K K K        (1) 

where r and φ are the polar radius and polar angle, respectively; and K1, K2, K3, K4, and K5 are 

constants to be estimated. Carter and Morley Jones (1970) pointed out that for a given egg-shape 

curve generated by CMJE, the line φ = 0 corresponds to the long axis of the egg and the line φ = π/2 

corresponds to the line of B. Therefore, L and B can be calculated as: 

 
 

 

1 2

1 2

2 ,

2 .

L K K

B K K

 

 
 (2) 

Given values of the constants of K1, K2, K3, K4, and K5, the value of r can be calculated for any 

value of φ. Conversely, for sufficient number of points of egg profile in the Euclidean coordinate 
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system, the values of r and φ for each point can be obtained through the transformation of 

coordinates    cos φ , sin φx r y r  , and then the values of the parameters K1, K2, K3, K4, and K5 

can be estimated by multiple regression of r on cos 2φ, −cos
3 

φ, −sin
2
 2φ, and sin

3
 2φ: 

 1 2 1 3 2 4 3 5 4~ ε,r K K m K m K m K m      (3) 

where m1 = cos 2φ, m2 = −cos
3 

φ, m3 = −sin
2
 2φ, and m4 = sin

3
 2φ; and ε is an additive random error 

representing errors of measurement. 

(ii) The three-parameter SGE model (Shi et al., 2022a): 

 
2 2 1

1

φ φ
cos sin ,

4 4

n n n

r a



 
  

 
 

 (4) 

where r and φ are the polar radius and polar angle, respectively; and a, n1, and n2 are parameters to 

be estimated. Similarly, the abscissa and ordinate of egg shape in the Euclidean coordinate system 

can be calculated as  cos φx r  and  sin φy r , respectively. Based on the theoretical study of 

the Gielis equation by Wang et al. (2022b), L can be obtained as follows: 

 

2

1

1

1
2

1 2 .
2

n

n
n

L a




 
  

     
  

 

 (5) 

In general, the parameters a, n1, and n2 within SGE were estimated by the nonlinear regression 

protocols. Additionally, Shi et al. (2022a) introduced three location parameters x0, y0, and θ into 

SGE when performed the nonlinear regression. Herewith, x0 and y0 represent the coordinates of the 

polar point of SGE in the Euclidean coordinate system, and θ represents the angle between the 

scanned egg length axis and the x-axis. Therefore, a total of six parameters, including three model 

parameters a, n1, and n2 and three location parameters x0, y0, and θ, need to be estimated within the 

SGE model. 
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Data fitting and model assessment 

The two egg-shape models, namely CMJE and SGE, were used to fit the 2D egg profiles based on 

the empirical data. The Nelder–Mead optimization algorithm (Nelder and Mead, 1965) was 

employed to minimize the fitting criterion of nonlinear regression. The parameters within egg-shape 

models were estimated by minimizing the residual sum of squares (RSS) between the actual 

distances from the polar point to the data points on the scanned perimeter of the egg shape and the 

distances from the polar point to the data points on the predicted perimeter of the egg shape: 

  
2

1

ˆRSS ,
n

i i

i

r r


   (6) 

where ri represents the observed distance from the polar point to the i-th point on the scanned 

perimeter of egg shape; îr  represents the predicted distance from the polar point to the i-th point 

on the predicted perimeter of egg shape based on the CMJE or SGE; and n represents the number of 

data points on the scanned perimeter of egg shape. 

 

Additionally, the adjusted root-mean-square error (RMSEadj) was then used to measure the 

goodness of fit between the observed and predicted data points: 

 adj

RSS / ( )
RMSE ,

/ π

n p

A


  (7) 

where p represents the number of parameters to be estimated within each egg-shape equation, A 

represents the area of the scanned egg profile. The RMSEadj represents the ratio of the mean 

absolute deviation (between the observed and predicted radii from the polar point to the egg profile) 

to the radius of a hypothetical circle whose area equals to that of the 2D egg profile, which can 

standardize the prediction error regardless of the egg profile size. As a rule of thumb, an RMSEadj 

value less than 0.05 usually indicates a good fit, i.e., the mean absolute deviation between the 

observed and predicted polar radius does not exceed 5% of the hypothetical radius. In addition, the 
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smaller the RMSEadj value, the better the model fits. Wilcoxon signed rank test (Wilcoxon, 1945) 

with a 0.05 significance level was employed in the present study to determine whether there were 

significant differences among RMSEadj values derived from different egg-shape models. 

 

In utilizing least squares methods to fit a mathematical model, it is crucial to incorporate a 

stochastic assumption. This assumption precisely defines the variability of the error term, which in 

this context represents the discrepancies between the observed and predicted polar radii as a 

function of changes in the polar angle. Theoretically, assuming the error term adheres to an 

independent and identically distributed normal distribution, the least squares estimators for 

parameters in a linear regression model are unbiased, jointly normally distributed, and exhibit 

minimum variance among estimators within the class of regular estimators (Ratkowsky and Reddy, 

2017). However, in the scenario of a nonlinear regression model, estimators obtained via least 

squares methods do not retain these advantageous properties, especially when contending with a 

small sample size. Only when the sample size is expanded to a sufficiently large scale, these least 

squares estimators begin to approach the esteemed asymptotic qualities. Fortunately, 2000 

approximately equidistant data points from the boundary coordinate data of each 2D egg profile 

were selected as our test data points. This meant that the sample size for each egg was sufficient 

enough in the present study. However, evaluating the assumptions of the two nonlinear models 

remains an essential step in the analytical process. 

 

Ratkowsky (1983) classified "close-to-linear" models as nonlinear models whose least squares 

estimators closely approached the mentioned asymptotic properties. Conversely, "far-from-linear" 

nonlinear models lacked these desirable asymptotic properties. In point of fact, the foundation of 

algorithms used for computing least squares estimates relies on a local linear approximation, which 

attained through the first-order Taylor expansion. This approximation hinges on two key 

assumptions: the planar assumption and the uniform coordinate assumption, as elucidated by Bates 

and Watts (1980, 1988). Geometrically, the planar assumption suggests that the solution locus (Box 
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and Lucas, 1959) is approximated by a tangent plane. Meanwhile, the uniform coordinate 

assumption entails the imposition of a linear coordinate system on this approximating tangent plane. 

Numerous measures of nonlinearity have been proposed to shed light on the adequacy or 

inadequacy of the linear approximation (Beale, 1960; Box, 1971; Bates and Watts, 1980; Hougaard, 

1985). For instance, Bates and Watts (1980, 1988) introduced the root-mean-square relative 

curvature, which included the root-mean-square relative intrinsic curvature (γ
RMS
N ) and the 

root-mean-square relative parameter-effects curvature (γ
RMS
T ). These measures provide a global 

assessment to ascertain whether a nonlinear model leans towards being "close-to-linear" or 

"far-from-linear". The two root-mean-square relative curvatures γ
RMS
N  and γ

RMS
T  were evaluated 

by the critical curvature (Kc), defined as 1 √F (p, n −  p; α)⁄ , where F represents the F-distribution, 

p is the number of the model parameters, n is the number of data points, and α is the confidence 

level equal to 0.05 (Bates and Watts, 1988). In the present study, the ratio of the root-mean-square 

relative curvature to the critical curvature was employed to determine the adequacy of the linear 

approximation. The expressions are as follows: 

 RMSγ
δ ,

N
N

cK
  (8) 

and 

 RMSγ
δ .

T
T

cK
  (9) 

Here, a value of δ
N
 not exceeding 1 suggests that the planar assumption can be confidently 

acceptable. Meanwhile, if δ
T
 is smaller than 1, then the uniform coordinate assumption holds true. 

Furthermore, the smaller the values of δ
N
 and δ

T
, the more close-to-linear the nonlinear model is 

(Bates and Watts, 1980, 1988). We used Wilcoxon signed rank test (Wilcoxon, 1945) with a 0.05 

significance level to compare δ
N
 (or δ

T
) values derived from the two egg-shape models in this study. 
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Nevertheless, γ
RMS
N  and γ

RMS
T  cannot provide substantial insights into individual model parameter 

performance on the linear approximation. In the present study, the percentage bias (Pb) of each 

parameter, as suggested by Box (1971) and Ratkowsky (1983), was used to evaluate the nonlinear 

behavior of the specific parameter within a nonlinear model. As a rule of thumb, an absolute value 

of Pb less than 1% indicates that the nonlinear model is close-to-linear. This illustrates that the 

estimators of parameters exhibit several asymptotic properties mentioned above, including 

proximity to unbiasedness, normal distribution, and minimization of variance (Ratkowsky, 1990). 

 

The function lm in the stats package (version 4.4.0) and the function fitGE in the biogeom package 

(version 1.4.3; Shi et al. 2022b) were utilized to estimate the model parameters within CMJE and 

SGE, respectively. The functions curvIPEC and biasIPEC in the IPEC package (version 1.1.0; Shi 

et al., 2024) were used to calculate the involved curvature measures of nonlinearity, γ
RMS
N , γ

RMS
T , 

Kc, and Pb. All calculations and figures were accomplished based on R (version 4.2.1; R Core 

Team, 2022). 

 

RESULTS 

Figure 2 illustrates the fitting of the egg profile using the two polar equations for one egg among the 

415. For the fitted results of all C. livia eggs, the RMSEadj values ranged from 0.002 to 0.033 with a 

median of 0.011 for CMJE, and from 0.002 to 0.012 with a median of 0.004 for SGE (Tables S2 

and S3, Fig. 3). The results of Wilcoxon signed rank test revealed that the RMSEadj values of SGE 

were significantly lower compared to CMJE (W = 164866, p < 0.001), which indicated that SGE 

displayed better goodness of fit than CMJE. 

 

The global nonlinearity of the nonlinear models was assessed by δ
N
 and δ

T
. The values of δ

N
 of the 

two egg-shape models for 415 C. livia eggs were all consistently far below 1 (Tables S2 and S3, 
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Fig. 4), which demonstrated exceptional adherence to the planar assumption. Meanwhile, all of the 

values of δ
T
 of the two egg-shape models applied to 415 C. livia eggs were far less than 1 (Tables 

S2 and S3, Fig. 4), indicating that the uniform coordinate assumption could be confidently 

acceptable for the two models. These results emphasize that the two polar egg-shape models 

exhibited good linear approximation. 

 

The results of Wilcoxon signed rank test, however, revealed that the values of δ
N
 derived from SGE 

were significantly higher compared to those derived from CMJE on a log-log scale (W = 0, p < 

0.001) (Fig. 4), and the values of δ
T
 derived from SGE were also significantly higher than CMJE on 

a log-log scale (W = 0, p < 0.001) (Fig. 4). The results indicated that CMJE had a better 

close-to-linear behavior compared to SGE at the global level. 

 

When considering the nonlinear behavior at the individual parameter level, analyzing the 

percentage bias (Pb) of each parameter within the nonlinear models can yield valuable insights. For 

CMJE, all of the absolute values of Pb for parameters K1, K2, K3, K4, and K5 were far below 1% 

(Table S2); and for SGE, all of the absolute values of Pb for a, n1, and n2 were also far less than 1% 

(Tables S3). The results revealed that the two tested nonlinear egg-shape models exhibited good 

close-to-linear behavior at the individual parameter level. 

 

DISCUSSION 

The application of polar egg-shape equations on egg volume and surface area estimation 

The notion that avian eggs possess rotational symmetry around their longest axis, i.e., the line 

connecting the egg′s two ends, is widely acknowledged and supported by numerous observations. 

Additionally, a previous study has proved that eggs are solids of revolution (Shi et al., 2023b), thus, 
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egg volume (V) and surface area (S) can be approximated through revolving the 2D egg profiles. 

The calculation formulae for V and S are as follows: 

    
π

3

0

2
π φ sin φ φ,

3
V r d   (10) 

and 

      
 

2
π

2

0

φ
2π sin φ φ φ φ,

φ

dr
S r r d

d

 
   

 
  (11) 

where r and φ are the polar radius and polar angle respectively in Eqs. (1) and (4). 

 

In actual fact, the curve derived from CMJE is not bilaterally symmetrical about x-axis, i.e., r (−φ) 

≠ r (φ) within Eq. (1). This lack of symmetry can lead to inaccuracies in estimating both V and S of 

the avian egg when using Eqs. (10) and (11) based on CMJE. Fortunately, the source of this 

bilateral asymmetry is solely attributed to the term of K5 sin
3 

2φ within Eq. (1), in other words, 

when the absolute value of K5 is small, there is an approximation of r (−φ) ≈ r (φ). The fitted results 

in our study reveal that the range of values of parameter K5 is from −0.035 to 0.051(Table S2), 

suggesting that the term K5 sin
3 

2φ exerts a minimal effect on CMJE, especially in the V and S 

calculations using Eqs. (10) and (11). However, we did not compare the actual and predicted values 

of V or S because the study did not obtain actual measurements of the volume and surface area of 

415 C. livia eggs. As a result, the application of polar egg-shape equations for estimating V and S 

remained theoretical. Nevertheless, recent studies (Shi et al., 2023b; Lian et al., 2024) have 

provided reliable evidence supporting the hypothesis that bird eggs are solids of revolution, 

suggesting that the use of polar coordinate equations is promising for these estimations. 

 

The significance of relative curvature measures of nonlinearity for model comparison 
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In the majority of prior studies pertaining to 2D egg-shape modelling, the assessment of the model 

has predominantly centered on the goodness of fit (Biggins et al., 2018, 2022; Shi et al., 2022a, 

2023a). Nevertheless, our findings underscore that such a focus is inadequate. Beyond the fitting for 

the empirical data, a robust nonlinear model should guarantee that each parameter demonstrates 

close-to-linear behavior, thereby ensuring that their least squares estimators are nearly unbiased, 

conform to a normal distribution, and embody estimators with minimal variance (Ratkowsky and 

Reddy, 2017). Therefore, it is imperative to scrutinize thoroughly the nonlinear behavior in the 

egg-shape equations. 

 

The results of our study showed that SGE has better fits to the empirical data compared to CMJE 

(Fig. 3). However, CMJE surpasses SGE in its ability to achieve superior close-to-linear behavior at 

the global level (Fig. 4). One plausible explanation could be that CMJE exhibits a closer alignment 

with linearity in its model structure (see Eq. (3)), specifically, CMJE functions as a linear function 

of parameters K1, K2, K3, K4, and K5. On the contrary, SGE exhibits a nonlinear function of 

parameters a, n1, and n2. 

 

It is worth noting that all of the values of root-mean-square relative intrinsic curvature (or the 

root-mean-square relative parameter-effects curvature) were far less than the corresponding critical 

curvature for the two polar equations scrutinized (Tables S2 and S3, Fig. 4). Moreover, the absolute 

values of percentage bias of the parameters for CMJE and SGE were far below 1% for all of the 415 

C. livia eggs (Tables S2 and S3). This outcome can be attributed in part to the utilization of 

approximately 2000 sample points for each egg during the fitting process, thereby enhancing the 

efficacy of linear approximation within nonlinear regression analysis. To ascertain the influence of 

sample size on the attainment of close-to-linear behavior of nonlinear models, we used the two 

polar equations to fit the geometries of 415 C. livia egg profiles based on varying sample sizes 

ranging from 50 to 2000 (i.e., 50, 100, 200, 300, 400, 500, 750, 1000, 1250, 1500, 1750, and 2000). 

The fitted results are detailed in Tables S4 and S5. We proceeded to calculate the medians of 
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measures of nonlinearity, i.e., δ
N
, δ

T
, and Pb, based on the corresponding each sample size. 

Subsequently, all the median values were interconnected by smooth curves (Fig. 5). For CMJE, 

both the root-mean-square relative curvatures and the absolute value of each parameter's percentage 

bias consistently remained small, exhibiting a notable declining pattern with the increasing of 

sample size (Table S4, Fig. 5A, C). For SGE, as the number of sample points increased, there was a 

reduction in the values of the root-mean-square relative curvatures and the absolute value of each 

parameter's percentage bias (Table S5, Fig. 5B, D). These findings highlight that the nonlinear 

behavior of CMJE and SGE demonstrates a notable correlation with changes in the number of 

samples. The two polar equations mentioned above tend to exhibit better close-to-linear behavior as 

the sample size increase. 

 

CONCLUSIONS 

In summary, two polar equations, i.e., CMJE and SGE, were used to fit the 2D egg-shape profiles of 

415 C. livia eggs. Among them, CMJE exhibited poor goodness of fit for the empirical data 

compared to SGE. CMJE, however, had the better linear approximation performance across the 

pooled data at the global level. In terms of individual parameter level, each parameter within CMJE 

and SGE provided good close-to-linear behavior. One limitation of this study is that it involved 

only a single species, thus neglecting the impact of interspecific variation in egg-shape on the use of 

polar equations for 2D egg-shape modeling across a broad range of bird species. Consequently, 

further investigation is warranted to assess the applicability of polar equations to a diverse array of 

egg shapes. This study offers valuable insights into the criteria guiding the assessment of egg-shape 

models, which were used to describe the geometries of 2D egg profiles. Going beyond description, 

polar descriptions allow for connecting description and the solution of classic boundary value 

problems (e.g., Laplace and Helmholtz) with various boundary conditions via the classical Fourier 

projection methods (Caratelli and Ricci, 2009; Ricci and Gielis, 2022). Our results have the 

potential to serve as the theoretical and practical basis for a large body of additional study in the 
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related fields of poultry science, oomorphology and applied mathematical modeling (Gielis et al., 

2022). 
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Figure Legends 

 

 

Fig. 1 An example C. livia egg image (A) and the extracted 2D egg profile (B). 
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Fig. 2 The observed (dashed curves in black) and predicted (solid curves in red) boundary 

geometries of the representative egg (see Fig. 1) simulated using the two polar equations CMJE and 

SGE. RMSEadj in each panel represents the adjusted root-mean-square error between the observed 

and predicted r values. 
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Fig. 3 Violin plot showing the distribution of the adjusted root-mean-square error values calculated 

based on the two polar equations CMJE and SGE. Horizontal bars within boxes denote medians; 

bottoms and tops of boxes represent 25th and 75th percentiles, and lines extend to the 1.5-fold 

interquartile range. The letter p < 0.001 indicates significant difference among the two groups using 

the two-sided Wilcoxon test at the 0.05 significance level. 

 

Fig. 4 Boxplot of the natural logarithm of δ
N
 in Eq. (8) and the natural logarithm of δ

T
 in Eq. (9) 

compared between the two polar equations CMJE and SGE. Significant differences between the two 

polar equations using the two-sided Wilcoxon test at 0.05 significance level were found for both δ
N
 

and δ
T
 (p < 0.001). The vertical solid line in each box represents the median; the left and right of 

each box represent 25th and 75th percentiles, and whiskers extend to the 1.5-fold interquartile 

range. 
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Fig. 5 The relationship between close-to-linear behavior of egg-shape equations and sample size. 

(A) Changes manifest in both δ
N
 and δ

T
 for CMJE as the sample size increases; (B) changes 

manifest in both δ
N
 and δ

T
 for SGE as the sample size increases; (C) changes manifest in parameters 

K1, K2, K3, K4, and K5 within CMJE as the sample size increases; and (D) changes manifest in 

parameters a, n1, and n2 within SGE as the sample size increases. Each panel displays data points 

corresponding to sample sizes of 50, 100, 200, 300, 400, 500, 750, 1000, 1250, 1500, 1750, and 

2000, respectively. In each panel, each data point represents the median value derived from 415 C. 

livia eggs based on the corresponding sample size. 
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