University of

'Sl Kent Academic Repository

Seres, Bendegtiz, Horpacsi, Daniel and Thompson, Simon (2024) Is This Really

a Refactoring? Automated Equivalence Checking for Erlang Projects. In: Erlang
2024: Proceedings of the 23rd ACM SIGPLAN International Workshop on Erlang.
. pp. 55-66. ACM ISBN 979-8-4007-1098-8.

Downloaded from
https://kar.kent.ac.uk/107137/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3677995.3678194

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) ‘Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).



https://kar.kent.ac.uk/107137/
https://doi.org/10.1145/3677995.3678194
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Check for
Updates

Is This Really a Refactoring? Automated Equivalence
Checking for Erlang Projects

Bendeguz Seres
Eo6tvos Lorand University
Budapest, Hungary
k2sy12@inf.elte.hu

Abstract

We present an automated approach to checking whether a
change to a repository is a refactoring, that is, it makes no
change to the behaviour of the system. This is implemented
in the EquivcheckEr tool, which detects the places in which
the code has changed, and compares the old and new versions
of all functions that are affected by the change, applying the
functions to randomly generated inputs.

Our tool works for projects written in Erlang, and so needs
to deal with effectful as well as pure functions. We aim only
to report inequivalence when we have concrete evidence to
that effect, avoiding any “false positive” counterexamples.

CCS Concepts: » Software and its engineering — Soft-
ware maintenance tools; Software testing and debug-
ging; Functionality.

Keywords: Equivalence, Checking, Property-based, Testing,
Refactoring, Erlang

ACM Reference Format:

Bendeguz Seres, Daniel Horpacsi, and Simon Thompson. 2024. Is
This Really a Refactoring? Automated Equivalence Checking for
Erlang Projects. In Proceedings of the 23rd ACM SIGPLAN Interna-
tional Workshop on Erlang (Erlang °24), September 2, 2024, Milan,
Italy. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3677995.3678194

1 Introduction

Refactoring is the process by which the code for a project is
changed, but in a way that its observable behaviour should
not change; verifying that is typically done by regression
testing, which depends on the quality and coverage of the
test suite, or by manual code review. In this paper we present
an automated alternative approach. We detect the places in
which the code has changed, and then compare the old and
new versions of all functions that depend on code that has

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Erlang 24, September 2, 2024, Milan, Italy

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1098-8/24/09
https://doi.org/10.1145/3677995.3678194

Daniel Horpacsi
Eo6tvos Lorand University
Budapest, Hungary
daniel-h@elte.hu

55

Simon Thompson
University of Kent
Kent, United Kingdom
s.j.thompson@kent.ac.uk

changed by applying them to randomly generated inputs.
This is implemented in Erlang using PropEr, the property-
based testing tool based on QuickCheck, and delivered in
the EquivcheckEr tool.

The tool is designed to work with projects written in
Erlang, and so needs to deal with functions with side effects
and communication behaviour, as well as pure functions. To
make the tool as accessible as possible to developers, we
align it with the git workflow, allowing arbitrary commits of
projects to be compared, and integrate it with Visual Studio
Code.

In order to be able to report results in all cases, we have
to over-approximate behaviour; this approach is intended to
meet the goal of only reporting an inequivalence when we
have concrete evidence to that effect. Because of that, some
non-refactorings will not be reported, but we expect that
future work will enable us to narrow the gap between the
approximated and real behaviour.

Using testing means that we will never be able to provide
a guarantee that a change is indeed a refactoring; that can
only be done in general by some kind of formal verification.
However, our tool provides a robust and efficient automated
approach that can easily catch unintentional errors and ty-
pos. The tool can also be incorporated into a CI process,
for example by checking each commit that is tagged with a
‘refactoring’ label.

This work is distinctive in taking a pragmatic approach
to the problem: rather than aiming to find a comprehensive
solution to equivalence checking for a small subset of a pro-
gramming language, we target a complete language, Erlang,
so as to make the tool of value to practising programmers.
We aim in future work to extend the precision of the tool, as
well as provide a more ergonomic and scalable experience
to users.

2 Background

The following sections will thoroughly discuss our method of
property-based testing of refactoring correctness; in prepa-
ration for that, we first briefly introduce refactoring and
property-based testing; furthermore, we discuss two basic
concepts this work relies on, program slicing and parse trans-
formations.


https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-1095-4188
https://orcid.org/0000-0003-0261-0091
https://orcid.org/0000-0002-2350-301X
https://doi.org/10.1145/3677995.3678194
https://doi.org/10.1145/3677995.3678194
https://doi.org/10.1145/3677995.3678194
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677995.3678194&domain=pdf&date_stamp=2024-08-28

Erlang ’24, September 2, 2024, Milan, Italy

2.1 Refactoring

“Refactoring is the process of changing a software system in
such a way that it does not alter the external behaviour of the
code yet improves its internal structure. It is a disciplined way
to clean up code that minimizes the chances of introducing
bugs. In essence, when you refactor you are improving the
design of the code after it has been written.” ([3])

Essentially, refactoring is specified as a program trans-
formation that improves the syntactic structure of the code
(making it easier to comprehend) without affecting its (ob-
servable) behaviour. In particular, refactoring never intro-
duces or eliminates features and bugs. Refactoring can be
done manually or with refactoring tools like Wrangler [21].
Tool-assisted refactoring is usually done by the user first
selecting the part of the source they wish to refactor, then
specifying the type of refactoring they want.

For example, consider the following code snippet:

Listing 1. Fibonacci sequence in Erlang
fib (o) -> 1;
Fib(1) -> 1;
Fib(X) -> fib(X-1) + fib(X-2).

This is an implementation of the well-known Fibonacci
sequence. If we want to rename the X variable to, for exam-
ple, Y, we would select the variable in the source, and tell
Wrangler to rename it to Y, which would result in the source
being changed to:

Listing 2. Fibonacci with renamed variables
fib(e) -> 1;
fib (1) -> 1;
Fib(Y) -> fib(Y-1) + fib(Y-2).

In this tiny example, it is apparent that the change does
not affect the behaviour of the program as it consistently
changes the variable names; changing the name of a bound
variable is always possible, provided we do it in a way that
respects capture-avoidance. However, not all refactorings are
local or simple, there are examples of transformations that
are way more complex and involved, where the refactoring
execution has to check numerous side-conditions, such as
avoiding capture or preserving effects. These conditions en-
sure that the refactoring can be done in a way that preserves
behavioural equivalence; should the tool (or the developer
carrying out the changes by hand) miss a condition or a
required modification, the program’s behaviour may get al-
tered and spoiled.

2.2 Property-Based Testing

There are two different approaches for showing program
properties: formal proof and testing. In general, testing has
the advantage of requiring less expertise and being easier to
automate. While testing is inherently incomplete and cannot
prove the absence of bugs, it can disprove properties and

56

Bendeguz Seres, Daniel Horpacsi, and Simon Thompson

Listing 3. Functor law properties

prop_functor_id() ->
?FORALL (Xs, list(int()),
lists:map(fun(X) -> X end, Xs) =:= Xs).
% Provided that f and g are int() -> int()
prop_functor_composition() ->
?FORALL (Xs, list(int()),
lists:map(fun(X) -> f(g(X)) end,
lists:map(fun f/1,

Xs) =:=

lists:map(fun g/1, Xs))).

show counterexamples. Thus, it can still provide good evi-
dence that the program is likely to behave as expected (i.e.,
it is trustworthy), and this evidence can be made arbitrarily
strong by making the number of test cases higher.

Property-based testing is a technique that combines tra-
ditional unit tests with the ability to generate test data au-
tomatically. There are different (highly compatible) imple-
mentations of property-based testing for Erlang: the most
mature tools are Quviq Quickcheck [1] and PropEr [17]—the
latter is a free, open-source alternative to the former. PropEr
allows its users to state program properties in Erlang source
code, which will then be checked by generating random
data using generators. These generators are provided for the
primitive types, and it is also possible to extend PropEr by
implementing generators for arbitrary types.

Take for example the functor laws [10], which can be
stated with the PropEr properties shown in Listing 3. In this
example, we use the list(int()) generator to randomly
generate lists of integers, and we check the property that the
two resulting lists are equal, using Erlang’s built-in equiva-
lence operator.

PropEr generates 100 test cases by default (if no counterex-
ample is found sooner), but this behaviour can be modified.
When an example is found, for which the property does not
hold, the tool tries to shrink the counterexample, meaning
that it attempts to reduce the counterexample it found to the
most trivial one that still invalidates the given property.

2.3 Slicing

The technique of taking some subset of a program, based
on some property we are interested in, is called program
slicing [22]. It has multiple applications in the context of
static analysis, where it can be used for dependency analysis,
dead code elimination or program optimization, among other
things.

The subset of the program is called the slice, and the prop-
erty is called the slicing criterion. One such criterion, that is
relevant for our purposes, is the one that selects a path from
the call graph of the program. The call graph is a directed
graph, where each node represents a function, and the edges
between nodes indicate a caller/callee relation, where the
edge points from the caller to the callee.



Is This Really a Refactoring? Automated Equivalence Checking for Erlang Projects

Listing 4. Example caller/callee relations

fO ->8g0.
gO) > h(.
h() -> ok.
jO > 10.
i() -> ok.

Listing 5. Parse transformation on message sending
transform_send(T) -> % T is the AST to transform
L = erl_syntax:get_pos(T), % the affected line
Out = {call, L,
{remote,L,{atom,L,io},{atom,L, format}},
[{string,L,"Sent:~p~n"},{cons,L,T,{nil,L}}]1}
{block, L, [Out, TIJ}.

Take as an example the snippet in Listing 4. If we choose
the criterion to be the transitive closure of the relation of
calling h explicitly, or calling a function that is already part of
the closure, then the slice we get contains f, g and h. On the
other hand, the functions i and j are not in this slice, because
they do not call h, or any other function that transitively
calls h. Normally, refactorings will not have an effect that
trickles up all the way to the root of the callgraph, and so it
will not be necessary to check the whole of the code.

2.4 Parse Transformation

Parse transformation is a feature of the Erlang compiler,
which allows the user to apply arbitrary transformations
to the AST (abstract syntax tree) in the compilation phase.
By default, parse transformations can be invoked using the
-compile({parse_transform, Module}) compiler option,
where Module is the module that implements the parse trans-
formation. When the parse_transform option is specified,
the compiler will first parse the source code, then use the
specified module to do the transformation, and it compiles
the newly created AST to bytecode.

An example of a simple parse transformation that modifies
the original code by transforming every message-sending
operation to one that also prints the message to the standard
output, can be seen in Listing 5. This transformation will re-

cursively traverse the whole AST, and apply transform_send/1

on each term in it. If the given term represents a message-
sending operation, it gets replaced by the extended one; in
every other case, the subtree is returned without any modifi-
cation.

Consider the expression displayed in Listing 6. This is a
message-sending operation that can be reshaped with the
transformation defined in Listing 5.

Listing 6. Message sending to be transformed

Pid ! {self(), hello}

57

Erlang ’24, September 2, 2024, Milan, Italy

Applying the transformation on it, we obtain the code
shown in Listing 7: the message is enclosed in a begin-end
block including both the newly added output statement and
the original expression.

Listing 7. Transformed message sending

Pid ! begin
io:format("Sent:~p~n",[{self (), hello}]),
{self (), hello}
end

3 Program Equivalence

Our work investigates the correctness of refactoring instances,
i.e.,, checking semantic equivalence between two program
versions, before and after the refactoring.

Semantic equivalence is a relation between two programs:
two programs are related if they behave in the same way
when executed in the same context (in other words, they
are indistinguishable). It follows from Rice’s theorem [11]
that semantic equivalence is generally undecidable. To get
around this problem, we have two options: either we only
consider cases where semantic equivalence can be decided
and thus formally proved, or we approximate it by running a
large number of tests, trying to prove that the two programs
are not equivalent. Our approach focuses on the latter.

3.1 The Equivalence Relation

We said that “two programs are related if they behave in the
same way when executed in the same context”. Formally,
behaviour is defined by the operational semantics of expres-
sions: (e, E) —* (v,S) denotes that the expression e in an
environment E evaluates to the value v and emits the series
of side effects S.

In [4] the authors formally define equivalence', which
determines when two programs behave the same way. Naive
program equivalence (or simple behavioural equivalence)
says that two expressions (e; and e;) are equivalent if and
only if in every environment E they evaluate to the same
result o (value or exception) and emit the same list of side ef-
fects S (in our definition, this means text sent to the standard
output and process messages sent); see Equation 1.

e = ey € VE0,S: (e}, E) =" (0v,S) < (es, E) =" (v,95)
1)

The environment? in this definition is assumed to contain
the values of the free variables, the definitions of the applied
functions, and an initial mailbox of the running process.
The definition universally quantifies the environment, hence
when checking this definition, we evaluate both programs in

Tt is also shown that the equivalence relation is a congruence, which is
essential in proving compound expressions equivalent.

2This should not be confused with syntactical contexts used in contextual
equivalence.



Erlang ’24, September 2, 2024, Milan, Italy

lots of random environments (i.e., the same context), and if we
find at least one environment in which the two expressions
behave differently, we have disproved their equivalence (in
other words, proved the inequivalence).

The above definition talks about expressions, but from it,
we derive the following ones to check complete programs
for equivalence. We say that two functions are equivalent
if and only if their body expressions are equivalent (with
the parameters being captured in the environment), and by
further generalization, we define two Erlang programs to
be equal if and only if they export the same set of function
signatures and these exported functions (i.e., entry points)
are pairwise equivalent.

3.2 The Equivalence Property

The above program equivalence definition can be turned into
a testable property in a natural way: the universal quantifier
over the environment becomes a forall-property, while the re-
sults can be checked with Erlang’s built-in equality. However,
we tailor the definition for the purpose of property-based
testing. Firstly, we limit the scope of the functions we check
to omit the trivially equivalent functions from testing. Sec-
ondly, we relax the definition by allowing non-terminating
programs and API changes to be checked.

Scope. The equivalence definition requires all functions to
be equivalent in all environments. On the other hand, when
checking complex programs refactored locally, the majority
of all functions are likely to be left intact and thus they
can be omitted from the testing property®. To this end, we
need a principled way to determine the functions potentially
affected by the code changes.

The basis for our equivalence checking is the code diff,
from which we compute the set of functions to test. We use
the source files and the ASTs to identify each function defi-
nition altered by the change: this subset of functions is the
initial scope, which we may need to expand with their callers.
We proceed by computing the call graph, representing the
caller/callee relations between the functions in the program.

When computing the closure of the initial set, we separate
the functions based on whether their signature (name, num-
ber of arguments, types of arguments) has been changed.
Functions with unchanged signatures are directly compared,
but functions with altered signatures are checked via their
callers, so we add them to the test set. Checking all callers
in this case not only provides a way to invoke the changed
functions but also verifies if all callers were refactored cor-
rectly. Should callers also have their signatures changed, we
iteratively expand the set of functions to test. Finally, we
slice the program according to the caller/callee relation as
slicing criterion, which yields exactly those program parts
that were affected in any way by the changes.

3Unchanged functions are syntactically equal, and therefore obviously
equivalent.

58

Bendeguz Seres, Daniel Horpacsi, and Simon Thompson

Example. Consider the functions shown in Listing 8. There
is a function named f (adding its two arguments), and we
have two other functions, g and h calling f. We refactor this
code by renaming f to i, but we forget to accommodate
this change in h, so it still refers to f (see Listing 9). This
change does not affect the behaviour of f (now i), but run-
ning the program after this refactoring would probably lead
to wrong behaviour, which can easily be detected by check-
ing the callers of f. In this simple example, the slice we are
interested in will be the whole callgraph; yet, one can easily
imagine a more complex program, where there are other
functions calling g or h, but not f, in which case we would
not have to consider these functions in our evaluation.

Listing 8. Before renaming
g(X) => f(X,X).
h(X) -> f(X,X+2).
FOX,Y) => X + Y.

Listing 9. After wrong renaming
g(X) -> i(X,X).
h(X) -> f(X,X+2).
P(X,Y) => X + Y.

Over-approximation of Equality. Besides limiting the
scope of the universal quantifier over functions to those that
are modified, the property further relaxes the equivalence
definition to allow more programs to be considered equiva-
lent:

o In the relation, any two programs with different ex-
ported function signatures are non-equivalent. In con-
trast, the property does not require the compared pro-
grams to have the same interfaces (exported functions)
but determines a set of comparable functions and only
requires these to be equivalent.

e The property uses a strict timeout when evaluating
functions, which means time-intensive and divergent
functions may be considered to be equivalent; never-
theless, the effects (standard IO and message passing)
are compared even in these cases.

When it comes to checking the results and the observed
effects, we apply the following strategy. The comparison of
the results (values or exceptions) is based on Erlang’s equality
operator (=: =), which checks the strict equivalence of simple
or compound values as expected. As for the observed effects,
we collect them into a list (in order) and check the lists for
equality the same way as we do it with values *.

Admittedly, the property over-approximates the equiva-
lence relation, that is, it considers more program pairs to be
equal than the formal relation: here, programs are consid-
ered equal unless shown to be unequal. The reason for this

4Process identifiers, function identifiers, and other references are filtered
from the output before comparison, in order to eliminate false positive
alarms stemming from differences in runtime-specific data.



Is This Really a Refactoring? Automated Equivalence Checking for Erlang Projects

is to minimize the false positive rate: we only report two
programs to be non-equivalent (i.e., a refactoring to be incor-
rect) if there is simple and tangible evidence of behavioural
mismatch. This fact is made clear by the project’s GitHub

page [14].

4 Evaluating and Observing Functions

With the conceptual basis for the equivalence property laid
out, we proceed to discuss its core ingredients: the evaluation
of functions and the observation of the effects. We start
by discussing challenges that may arise even when only
using the sequential subset of the language, such as isolation,
random argument generation, divergence and IO. Then we
discuss the handling of functions using concurrency-related
primitives, particularly message passing.

4.1 Isolation

Equivalence can be shown by taking the original and the
refactored functions, evaluating them in the same environ-
ment (or a sufficiently similar environment), and comparing
their effects and return values. We do this by setting up two
Erlang nodes, each responsible for executing parts of the
original or the refactored programs in the same context, but
in an isolated way (see Figure 1).

Each node can only see the modules of the version of the
program it executes (see Section 4.2), and we modify the
programs to set up the environment we can observe them in
(see Section 4.6). After the nodes have executed the functions,
the results are sent to a third node, which compares them,
and on success, it provides subsequent test data. The code
enabling this is shown in Listing 10.

Node responsible
for comparing results
and generating parameters

Results Results
Parameters

Original Program

Refactored Program

f(parameters) f'(parameters)

Node responsible
for the original program

Node responsible
for the refactored program

Figure 1. Nodes used for testing

59

Erlang ’24, September 2, 2024, Milan, Italy

4.2 Multiple Module Versions

When a function is invoked, the BEAM looks for the byte-
code that corresponds to the function’s module, seeking for
modules in the so-called module path. The module path is an
ordered list of directories, where bytecode may reside. The
BEAM will always load the first matching module.

By modifying the module path, we can control how a node
finds the modules (and thus the functions) to run. This is
how we ensure that each node executes the right version of
the tested functions (see Listing 10 for more details on how
the nodes are used). To achieve this, we explicitly set the
right module path via the code module.

This method is also beneficial when checking functions
of modules that exist in multiple applications, or specifically
when checking functions of the standard library. In the latter
case, we have to make sure that the module we ought to test
is loaded before its standard library counterpart. However,
when testing standard library functions, one also has to
bypass the feature called sticky path. The purpose of sticky
paths is to prevent accidental reloading of modules related to
more basic parts of the runtime, such as the standard library,
the kernel, or the compiler. To reload these modules, we have
to explicitly “unstick” them first, bypassing this protection®.

4.3 Generating Arguments

In practice, we just cannot test functions for each and ev-
ery possible Erlang term in their parameters, and it is easy
to see that generating input data in a completely random
fashion would result in most if not all the execution leading
to runtime errors, which would provide little information
when we are considering the equivalence of the functions.
This problem would be trivial in a language with a stricter
typing discipline, like Haskell, but Erlang is a dynamically
typed language.

Furthermore, Erlang functions tend to be partial, meaning
that even well-typed data may not be specific enough; for
example, a function that pattern-matches on a single integer
input, but only does meaningful computation for the input
42, will yield exceptions on all other integers. The ratio of
erroneous and successful function evaluations depends on
the size of the function’s domain, and the number of elements
it can handle from that domain. Clearly, we want to maximize
the number of evaluations that result in normal execution,
giving us values we can compare for equivalence.

Although Erlang is dynamically typed, it supports type
annotations (provided by the user) that can guide argument
generation, and we can also rely on static analysis methods
like success typing. Success typing [9] is a constraint-based
type inference algorithm. It starts with the type of every

SThis can be done on a per-case basis with the code:unstick_dir/1 stan-
dard function, or alternatively, it is also possible to turn off this feature
entirely by using the -nostick flag when starting the runtime.



Erlang ’24, September 2, 2024, Milan, Italy

Bendeguz Seres, Daniel Horpacsi, and Simon Thompson

Listing 10. Property used for establishing function equivalence

% Spawns a process on each node that evaluates the function and sends back the result to this process

-spec prop_same_output(pid(), pid(), atom(), atom(),
prop_same_output (OrigNode, RefacNode, M, F, A)
{Vvall,I101} call_with_node(OrigNode, eval_func,
{Val2,102} call_with_node(RefacNode, eval_func

->

[term()]) -> boolean().
[M, F, Al, 2?TIMEOUT),
, [M, F, Al, ?TIMEOUT),

% Runtime-specific data is removed before comparison

Out1l = {Vall,remove_unique(IO01)},
Out2 = {Val2,remove_unique(I02)},
Outl =:= Out2.

% Evaluates the given function,
-spec eval_func(atom(), atom(),
eval_func(M, F, A) ->
capture_sideeffects (),
% If any exception is thrown during evaluation,
RetVal = try erlang:apply(M, F,
catch error:Error -> Error

[term()]1) -> {term()

end,
I0 = stop_capture(),
{RetVal, I0}.

possible term, then successively narrows it down, based on
constraints from the term’s context.

We use a working implementation of success typing called
Typer [8], which can work on individual source files, al-
though it requires already existing type information gen-
erated by Dialyzer [12]. Dialyzer works by first generating
a so called Persistent Lookup Table (PLT), which contains
the results of its preliminary analysis. The PLT then can be
used later for various kinds of static analysis. TypEr uses the
generated PLT to infer the type of functions.

In cases where success typing fails to find a specific type,
we fall back to the any () type, which is the top type of Erlang,
so it is inhabited by every possible term in the language. By
using any () as the fallback, it is still possible to generate data,
even in the lack of type information, although in most cases
this will result in runtime errors and thus useless evaluations.

4.4 Divergence

Another challenge is comparing non-terminating programs.
Erlang is not a total language, and many Erlang applications
are non-terminating programs, like web or telecommunica-
tion services. While in the case of terminating functions, it
is fairly easy to check their return values and their effects
on the environment when deciding if they are equivalent,
in the case of functions that do not terminate, our only op-
tion is to examine their effects before we eventually stop
their evaluation. In this way, it is possible to prove their
non-equivalence in a finite amount of time, but establishing
their equivalence is theoretically impossible because their
behaviour could differ at any point in time, so we can never
stop the comparison and conclude that they are equal.

’

returning its result and any side-effect made by it

[term()]1}.

it is returned as the result

A) of Vval -> {normal,

60

Val}

Checking the equivalence of non-terminating programs
could be refined based on techniques like bi-simulation, but
for now, we went with this simple and straightforward solu-
tion, that is, we impose a time limit, after which we stop the
evaluation of the functions, and compare the effects, which
is sufficient to disprove the equivalence.

4.5 Standard 10

Now let us consider the handling of side effects. Although
Erlang is considered a functional language, nothing stops
the user from reading from the standard input or writing to
the standard output, to the disk, to some socket, or having
any other kind of uncontrolled side effect. Apart from some
special cases (like guards), IO is allowed anywhere in Er-
lang programs, and there are generally no indications, either
conventional (like function names ending in ‘! for lisps) or
forced by the compiler (like monadic IO in languages like
Haskell), that a given function has side effects. To extend the
notion of equivalence to include side effects, we can keep
track of any effects that a specific function had on its exe-
cution environment, while still taking note of the value it
returned. To check if the two functions are equivalent, we
compare the effects, together with the return value.

We do not perform a static analysis of whether a function
will do IO when evaluated, but treat every function as one
that can potentially have side effects and observe these ef-
fects for the purposes of checking the equivalence. We solve
this problem by implementing our own group leader process,
which is responsible for capturing any output. The group
leader is the process that manages anything I0-related, by



Is This Really a Refactoring? Automated Equivalence Checking for Erlang Projects

Listing 11. Custom group leader sending output requests to
a specified process and ignoring input

capture_group_leader (Pid) ->
receive
{io_request, From, ReplyAs, Request}
when element (1,Request) =:= 'put_chars' ->
From ! {io_reply, ReplyAs, ok},
Pid ! {io, Request},
group_leader (self (), self()),

capture_group_leader (Pid);

{io_request, From, ReplyAs, _3} ->
From ! {io_reply, ReplyAs,
{error, 'input'}},

capture_group_leader (Pid)
end.

receiving and sending messages to other processes. It is pos-
sible to replace this process with our own, overriding the
way IO works.

Each time a process wants to write to an IO device, an
io_request message is sent to the group leader, which will
process this message, and execute the requested operation.
When our modified group leader gets this request, it simply
finds the exact string the process wanted to be written to IO
device, and sends it to the process that evaluates the function,
as shown in Listing 11.

For functions requesting input from standard input, or any
other source, the group leader simply replies with an error
message, stopping the evaluation of the function. We decided
against generating random data for input because strings
have very little structure, their space is infinite, and—without
more thorough static analysis—the chance of generating
relevant data is negligible.

4.6 Concurrency and Communication

Once concurrency and message passing are taken into con-
sideration, examining the behaviour of some isolated part
of a broader system becomes insufficient. Take for example
the case of a function that receives a message and based on
its content, does some computation. Without the context it
depends on, this function will never terminate, because the
process will block the first time it tries to read from its empty
mailbox. Another notable example is an infinitely recursive
function sending messages. Sending a message always suc-
ceeds (even if it will never be received), so we can observe
such a function a finite amount of time and take the sent
messages into consideration when deciding on equivalence.

This subsection describes how we used parse transforma-
tions, introduced in 2.4, to create the necessary context by
populating the running process’s mailbox. Then we explain
how we observe and compare the concurrent behaviour of
processes.

61

Erlang ’24, September 2, 2024, Milan, Italy

Populating the Ether. Parse transformations allow us to
make arbitrary modifications to the program in the com-
pilation phase, ultimately modifying the behaviour of the
program to set up the necessary context by altering the se-
mantics of communication primitives. To mitigate the prob-
lem related to “expected messages”, we implement a parse
transformation that modifies the program to populate its
own mailbox.

Using parse transformations gives us nearly limitless flex-
ibility and freedom to make arbitrary modifications to pro-
grams, it is exactly this expressiveness that makes it easy to
misuse. By itself, the Erlang standard library only provides
very basic tools for implementing parse transformations, so
we decided to use a third-party library called parse_trans
[23] to make the implementation of parse transformations
easier.

For receiving messages, we need the mailbox to already
contain messages, so the process will not block while trying
to read from it. As we did before for function arguments, we
can use PropEr to generate random messages for the process.
Another important thing to realise is that nothing stops a
process from sending messages to itself; we can use this
fact to our advantage, and modify the function to generate
random data with PropEr, send these messages to itself, and
then go on with its original implementation: the receive
expression gets rewritten to self() ! RandomData, receive.

Note that the messages that the process sends to itself
cannot be fully random: when checking two versions of a
function for equivalence, we need to make sure that the two
instances receive the same messages in the same order. Since
PropEr allows for specifying the seed for the generators
explicitly, we can mitigate this issue by passing the same
seed in the generators of the two running instances.

In our current implementation, the messages we populate
the ether with are entirely random, independent of the re-
ceive block that reads them. When the receive block does
pattern matching and guard checking on the incoming mes-
sage, the randomly generated messages will likely cause
stuck execution and thus false negative equivalence. A bet-
ter solution would be to analyse the receive block and only
generate data that conforms to the expected form, an idea
we plan to incorporate in future versions.

Capturing Messages. To handle the checking of outbound
communication, we can reuse our solution used in captur-
ing standard output. In this way, the only thing needed is
to modify the program, so that every time it sends a mes-
sage, it will also print it to the standard output: Pid ! Msg
is replaced by Pid ! (print Msg, Msg). The group leader that
captures the output will take care of this message, so it will
be included when the equivalence is checked. Messages with
a non-existent target are simply ignored by the runtime.
Observed messages may contain data that can vary based
on the runtime context, which we would ideally exclude



Erlang ’24, September 2, 2024, Milan, Italy

when checking equivalence. An example of this is process
identifiers. Processes often send their PIDs, so the receiving
process knows where to send a reply if needed. However,
when we evaluate the two versions of a function, each of
them is given a PID that is unique for the node it runs on.
Although it is possible that the two processes get the same
PID assigned to them by their runtime, we cannot expect
this to happen every time.

If the function is implemented in a way that it sends its PID
to some other processes, then the messages we compare will
likely be different, even though their observable behaviour
would be indistinguishable. We solve this problem by travers-
ing each message sent and replacing any occurrences of PIDs
with the same atom (pid). Similar considerations are to be
made in the case of function references, unique references
and other kinds of context-dependent data to be considered
irrelevant for the purposes of equivalence checking (e.g.,
pseudo-random numbers or timestamps).

5 The EquivcheckEr Tool

The main result of this work is an open-source tool, called
EquivcheckEr [14], which implements the equivalence prop-
erty and allows the user to apply it in various scenarios,
including checking the correctness of code refactoring.

In order to make the tool easy to adopt, we made sure its
usage was sufficiently straightforward from a user’s point
of view. In accordance with this, we made sure that the tool
has a low barrier of entry, and can be used by non-experts.

In particular, the tool is shipped as a script ready-to-use
out of the box, it provides sensible default configurations
(while also allowing the user to change these if needed), and
it can be invoked both from IDEs (integrated with Visual
Studio Code [20]) and from the command line. It is possible to
use EquivcheckEr during the development phase by running
it inside the editor, but it can also be part of automated
software pipelines, increasing software quality standards.

It is also important to mention that EquivcheckEr can work
on any two versions of a program, even if the refactoring
was made by hand or by a tool. Only the source code is used
to determine if the two versions are equivalent, no additional
information about the scope of the change is needed.

In the rest of this section, we overview the main use cases,
the command-line and editor interfaces and the existing
configuration options.

5.1 Installation

We provide self-contained executables for EquivcheckEr on
the project’s GitHub page, under releases. For manual com-
pilation, the project contains configuration for Rebar3 [18],
a build tool for Erlang, so libraries that EquivcheckEr de-
pends on will be automatically downloaded. Further details
can be found on EquivcheckEr’s GitHub page. Currently,
EquivcheckEr only supports UNIX-like systems.

62

Bendeguz Seres, Daniel Horpacsi, and Simon Thompson

Listing 12. Help message

Usage:
Equivalence checker [-jcs] [--json] [--commit]
[--statistics] [<target>]
[<source>]

Arguments:
target target
source source

Optional arguments:
-j, --json json , default: false
-c, --commit commit , default: false
-s, --statistics stats , default: false

5.2 Configuration

EquivcheckEr has its own configuration handling: it tries
to locate the configuration file inside the XDG_CONFIG_HOME
folder, as specified by freedesktop.org [15]—this currently
limits the usage to UNIX-like systems, where the XDG Base
Directory Specification is used. However, currently the only
configuration parameter available is the path of the persis-
tent lookup table (PLT) used when performing type inference.
In fact, in most scenarios, the tool can rely on the default
location of the PLT, but if needed, the user can override this
and specify a custom location where it is loaded from.

5.3 Command-Line Interface

EquivcheckEr is easiest used through its command-line in-
terface. The currently supported options are displayed in the
helper text in Listing 12. In this subsection, we explain the
invocation options in detail.

As one of our main goals was to make the tool user-
friendly, we prioritized integration with other tools used
by most software developers, so new users would not be
expected to change their familiar workflows. Per this, Equiv-
checkEr is aware of existing Git [16] source repositories, but
can handle local folders as well. In particular, the checker
can be invoked in the following ways:

e By default (with the target and source parameters un-
specified), the tool compares the current working folder
to the latest commit (assuming the current folder is
version-controlled).

e When the target is specified, the behaviour depends
on the --commit option: if set, the parameter is inter-
preted as a commit identifier and the tool compares
the current working folder to the specified commit; oth-
erwise, the parameter is interpreted as a path and we
compare the current working folder to the specified
folder.


https://github.com/harp-project/EquivcheckEr/releases
https://github.com/harp-project/EquivcheckEr

Is This Really a Refactoring? Automated Equivalence Checking for Erlang Projects

Listing 13. Statistics

> equivchecker -s

[{"test.erl", {test,k,1},[[511},
{"test.erl", {test,j,1},0[[511},
{"test.erl",{test,1,1},[51}]
Number of functions that failed: 3
Average no.

Results:

tries before counterexample found: 3.5

Listing 14. JSON output

> equivchecker -j

{
"results": [
{
"filename": "test.erl",
"mfa": "{test,k,1}",
"counterexample": [0]
3,
{
"filename": "test.erl",
"mfa": "{test,j,13}",
"counterexample": [0]
3
]
}

e When both the source and target parameters are given,
we compare the two specified commits or the two speci-
fied folders, depending on whether the commit flag is
set.

After running the tool with valid parameters, the output
will contain all the functions that were found to be semanti-
cally different, and it also provides the counterexamples for
each reported case.

Furthermore, there are two options to modify the default
output: json and statistics. When the --statistics flag is
used, the output will also contain information about the
number of failed checks and the average number of tests
needed before finding a counterexample (see Listing 13).
This provides a quantitative summary of the testing process.

When the --json flag is used, EquivcheckEr will format
its output as JSON (see Listing 14). This can be useful in
the case of automation when other programs consume the
output, and it is also used for providing the Visual Studio
Code interface.

This simple CLI provides all necessary features for the
programmer to apply the tool before committing changes,
or can be employed in CI pipelines.

5.4 Visual Studio Code Interface

While we tried to make the command-line interface as simple
and user-friendly as possible, we also created a prototype
integration with the Visual Studio Code IDE. This graphical

63

Erlang ’24, September 2, 2024, Milan, Italy

interface makes it even more convenient to use EquivcheckEr
during the development phase.

VSCode is built with Electron [13], a cross-platform GUI
framework based on web technologies. It can be extended
by developing extensions for it, written in TypeScript [19]. It
has a fairly extensive extension API that gives control over
most aspects of the editor. VSCode also has the Visual Studio
Marketplace, where extensions can be published for other
users. The EquivcheckEr VSCode integration is currently in
an early phase, and not available on the marketplace, but we
intend to make it available once it is ready for use.

After installing the extension, a button for EquivcheckEr
will appear in the status bar, allowing the user to invoke
EquivcheckEr as an external process. For now, invoking the
tool will apply the default behaviour of the CLI tool, which
compares the current state of the working directory to the
latest commit in version control. A notification is displayed
to the user, indicating that the equivalence checking is in
progress. When the checking is finished, the output of the
process, formatted as JSON, is parsed and presented to the
user in a new window as a simple Markdown text buffer. We
believe that this simple usage fits the typical use cases, but
we will add more customizability in future releases.

6 Evaluation

During the project, we tested the tool on a number of
refactorings of different sizes and complexity, ranging from
function renaming to local expression rewriting. Our primary
approach was to create fairly small and simple examples, in-
troduce errors into their refactoring, and see if the tool could
find the error. This has resulted in a rather tight feedback
loop, where we could readily see the effects of implementing
features or fixing bugs.

Once the proof-of-concept was ready, we started experi-
menting with larger, public codebases. On the one hand, we
sought existing refactoring commits, and on the other hand,
we also did some refactorings ourselves to create testing data
for the checker.

One of the earliest but most useful feedback was the time it
took for the checking to finish. Initially, our implementation
was sequential, in the sense that the comparisons of functions
on random inputs were done one after the other. Although
this was not a problem in smaller examples, it did not scale.
Since the checker was written in Erlang, it was apparent that
we needed to find a way to exploit the BEAM’s concurrency
capabilities; we went with the obvious solution and allowed
the (isolated) function behaviour testing to run in parallel.

6.1 Case Study: regexp to re

As part of the evaluation, we wanted to test the tool on
larger codebases, using well-known refactorings. We chose
the reworking of the regexp module in the standard library,



Erlang ’24, September 2, 2024, Milan, Italy

Bendeguz Seres, Daniel Horpacsi, and Simon Thompson

Listing 15. xref_utils, before refactoring

match_list(L, RExpr) ->

{ok, Expr} = regexp:parse(RExpr),

filter (fun(E) -> match(E, Expr) end, L).
match_one(VarL, Con, Col) ->

select_each(VarL, fun(E) -> Con =:= element(Col
match_many (VarL, RExpr, Col) ->

{ok, Expr} = regexp:parse(RExpr),

select_each(VarL, fun(E) -> match(element(Col,

match (I, Expr) when is_integer(I) ->
S = integer_to_list(I),
{match, 1, length(S)} =:= regexp:first_match(S, Expr);
match (A, Expr) when is_atom(A)
S = atom_to_list(A),
{match, 1, length(S)} =:= regexp:first_match(S, Expr).

->

E) end).

E),

Expr)

end).

Listing 16. xref_utils, after refactoring

match_list(L, RExpr)
{ok, Expr} = re:compile(RExpr),
filter (fun(E) -> match(E, Expr) end,

->

L).

Col) ->
fun (E)

match_one(VarL, Con,
select_each(VarL, -> Con =:=

RExpr, Col) ->

Expr} = re:compile(RExpr),

fun(E) -> match(element(Col,

match_many (VarL,

{ok,

select_each(VarL,
match (I, Expr) when is_integer(I) ->

S = integer_to_list(I),

{match, [0,length(S)}] =:= re:run(S, Expr,
match (A, Expr) when is_atom(A) ->

S = atom_to_list(A),

{match, [0,length(S)}] =:= re:run(S, Expr,

containing regular expression-related functions, as our tar-
get. The regexp module was replaced by the re in OTP R13,
while regexp itself was deprecated, and later removed from
the standard library.

This necessitated the replacement of the usage of the mod-
ule regexp by re everywhere it was used in the standard
library. The API of re remained similar, although it had some
easy-to-miss changes, like changing the way indexing works
(starting from 0 instead of 1). Even so, upgrading to the newer
module usually meant a simple refactoring, replacing a func-
tion used from the regexp module with a function having
the same or similar name, but coming from re instead, with
some slight modifications.

An example of such a refactoring, on the xref_utils
module, can be seen in Listings 15 and 16. Note the change
from regexp:parse to re:compile, the change of 1s to 0s

element (Col,

E) end).

E),

64

Expr) end).

[{capture, first}1);

[{capture, first}]).

(related to where indexing starts from) and the way the
usage of the first_match function was made unnecessary
by requiring the user to specify which match is needed by
an argument for re:run.

By running the tool on commits related to these changes,
we were able to identify functions that do in fact behave
differently as a result of this refactoring. However, all of
these functions were internal, not exported from the mod-
ule, and all of them were called in a way that prevented
these differences from manifesting and causing unwanted
behaviour. Most of these problems resulted from discrep-
ancies between the way regexp and re handle erroneous
inputs. While regexp usually gave back some value even for
meaningless input, re threw an error in these cases, making
their behaviour differ.



Is This Really a Refactoring? Automated Equivalence Checking for Erlang Projects

We also found that running the tool on repositories like
OTP, which consists of many applications, can often cause
problems like include files not being found due to relative
path resolutions. However, it is important to mention that
OTP is somewhat of an outlier in this regard, not resembling
the average Erlang project in size or complexity.

We also found that running the tool on projects as large as
OTP necessitates the use of on-demand compilation, without
which it is necessary to compile the whole codebase twice
before the checking could start, once for each version. We
will incorporate this feature in future releases. Yet, despite
the above-mentioned limitations, we think the results show
that our approach is feasible and has practical value.

6.2 Performance

The main factors that determine the runtime of the tool in
a particular example are (1) the number of functions that
were affected by the change, (2) the time that it takes to
evaluate them, and (3) the number of runs needed before a
counterexample is found. Smaller examples usually take a
few seconds, making the tool convenient to use as part of a
regular development workflow, in our opinion.

It is part of the design of the tool that there are limits on
how long we allow a function to run, and how many test
cases are generated: function evaluation is stopped after 1
second, and a maximum of 100 test cases are explored. These
limits are not configurable for now, but it is our intention
to make them so in the future, so users can make their own
cost/benefit analysis, deciding how much time they are will-
ing to sacrifice for more reliable results.

It is also important to mention that providing type infor-
mation in the source files can speed up the process, due to the
more precise data generated, meaning that fewer function
evaluations are needed before a counterexample is found.

While evaluating the tool on the regexp case study in Sec-
tion 6.1, we found that the running time stayed consistently
around 10 seconds. However, we had to modify the tool to
only compile modules affected by the change, due to the lack
of the aforementioned on-demand compilation capability.
Without this modification, the whole repository would have
had to be compiled, increasing the runtime significantly.

7 Related Work

There is considerable literature based on program equiva-
lence checking. Generally, it differs from the work reported
here in two ways. First, it tends to address programs in
tractable (sub-)languages of existing programming languages,
rather than complete languages; secondly, the tests aim to
check arbitrary programs for equivalence, whereas here we
focus particularly on systems before and after refactoring,
rather than arbitrary pairs of systems. The case of refactor-
ings is special in that the two systems share much of their

65

Erlang ’24, September 2, 2024, Milan, Italy

structure, and we exploit this to allow checking to be re-
stricted to the parts of a program that are affected by the
changes.

One way of checking function equivalence is to use test-
ing, and a recent example of that is given by the PEQtest
system [6], which checks a refactoring by deriving a test pro-
gram from the original program by replacing each code seg-
ment being refactored with program code that encodes the
equivalence of the original and its refactored code segment;
the programs checked by PEQtest belong to a (relatively)
small subset of C, in contrast to our work that aims to check
programs written in a complete programming language. The
PEQtest work builds on earlier work on context-aware, lo-
calised equivalence verification in PEQCheck [5] that checks
C programs extended with the OpenMP library.

Property-based testing has been used to test refactorings
for Erlang [7] by generating random refactoring commands
for existing Erlang open-source code, and then checking
whether they conform to a set of properties required of the
refactoring. This work was extended to checking refactor-
ing tools working on synthesised programs and comparing
results of refactorings in two Erlang refactoring tools [2].

8 Conclusions

We have demonstrated the potential of using automated,
property-based testing to compare arbitrary revisions of
projects written in Erlang, reporting discrepancies only when
there is concrete evidence. This requires handling of side
effects and communication as well as pure functional be-
haviour, and we have taken a relatively simplistic approach
to this. Future work will allow us to model behaviour more
faithfully, and so to report more results. We encourage the
engagement of the Erlang community in giving feedback
and suggesting improvements to the tool.

In the near term, we aim to make ergonomic improve-
ments to the system, packaging it for the VSCode market-
place, and for other distribution media such as nix, improving
the user interface, and delivering an on-demand compilation
of projects, which should result in a much better perfor-
mance on larger projects. To improve the approximation
of the systems under test, we aim to support type-correct
mailbox generation, by examining the structure of receive
statements, and to deal with standard input in a more sophis-
ticated way, guided by the program context.

Acknowledgements

We are very grateful to the Erlang Ecosystem Foundation for
their support of this work. Project no. TKP2021-NVA-29 has
been implemented with the support provided by the Ministry
of Culture and Innovation of Hungary from the National
Research, Development and Innovation Fund, financed under
the TKP2021-NVA funding scheme.



Erlang ’24, September 2, 2024, Milan, Italy

References

(1]

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006.
Testing telecoms software with quviq QuickCheck. In Proceedings of
the 2006 ACM SIGPLAN Workshop on Erlang (Portland, Oregon, USA)
(ERLANG ’06). Association for Computing Machinery, New York, NY,
USA, 2-10. https://doi.org/10.1145/1159789.1159792

Daniel Drienyovszky, Daniel Horpacsi, and Simon Thompson. 2010.
Quickchecking refactoring tools. In Proceedings of the 9th ACM SIG-
PLAN Workshop on Erlang (Baltimore, Maryland, USA) (Erlang ’10).
Association for Computing Machinery, New York, NY, USA, 75-80.
https://doi.org/10.1145/1863509.1863521

Martin Fowler and Kent Beck. 1999. Refactoring: Improving the Design
of Existing Code. Addison-Wesley Longman Publishing Co., Inc., USA.
Daniel Horpacsi, Péter Bereczky, and Simon Thompson. 2023. Program
equivalence in an untyped, call-by-value functional language with un-
curried functions. Journal of Logical and Algebraic Methods in Program-
ming 132 (2023), 100857. https://doi.org/10.1016/j.jlamp.2023.100857
Marie-Christine Jakobs. 2021. PEQCHECK: Localized and Context-
aware Checking of Functional Equivalence. In 2021 IEEE/ACM 9th
International Conference on Formal Methods in Software Engineering
(FormaliSE). IEEE, Madrid, Spain, 130-140. https://doi.org/10.1109/
FormaliSE52586.2021.00019

Marie-Christine Jakobs and Maik Wiesner. 2022. PEQtest: Testing
Functional Equivalence. In Fundamental Approaches to Software En-
gineering, Einar Broch Johnsen and Manuel Wimmer (Eds.). Springer
International Publishing, Cham, 184-204.

Huiqing Li and Simon Thompson. 2008. Testing Erlang Refactorings
with QuickCheck. In Implementation and Application of Functional Lan-
guages, Olaf Chitil, Zoltan Horvath, and Viktéria Zsok (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 19-36.

Tobias Lindahl and Konstantinos Sagonas. 2005. TYPER: A Type An-
notator of Erlang Code. In Proceedings of the 2005 ACM SIGPLAN
workshop on Erlang. ACM, New York. https://dl.acm.org/doi/abs/10.
1145/1088361.1088366

Received 2024-05-30; accepted 2024-06-27

66

(9]

[10]

(1]

[12]
[13]

[14]

[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

[23]

Bendeguz Seres, Daniel Horpacsi, and Simon Thompson

Tobias Lindahl and Konstantinos Sagonas. 2006. Practical type infer-
ence based on success typings. In PPDP ’06: Proceedings of the 8th
ACM SIGPLAN international conference on Principles and practice of
declarative programming. ACM, New York. https://dl.acm.org/doi/
abs/10.1145/1140335.1140356
Encyclopedia Of Mathematics. 2020.
encyclopediaofmath.org/index.php?title=Functor

H. Gordon Rice. 1953. Classes of recursively enumerable sets and
their decision problems. Trans. Amer. Math. Soc. 74 (1953), 358-366.
https://api.semanticscholar.org/CorpusID:120980829

The Dialyzer team. 2006-2024. Dialyzer Reference. https://www.erlang.
org/doc/man/dialyzer.html. Last accessed: 05-05-2024.

The Electron team. 2013-2024. Electron Home Page. https://www.
electronjs.org/. Last accessed: 05-05-2024.

The EquivcheckEr team. 2024. EquivcheckEr Source Repository.
https://github.com/harp-project/EquivcheckEr. Last accessed: 05-
05-2024.

The Freedesktop team. 2006-2024. freedesktop.org Home Page. https:
/lwww.freedesktop.org/wiki/. Last accessed: 05-05-2024.

The Git team. 2005-2024. Git Home Page. https://git-scm.com/. Last
accessed: 05-05-2024.

The PropEr team. 2011-2024. PropEr Home Page. https://proper-
testing.github.io/. Last accessed: 05-05-2024.

The Rebar team. 2016-2024. Rebar3 Home Page. https://www.rebar3.
org/. Last accessed: 05-05-2024.

The Typescript team. 2012-2024. TypeScript Home Page.
//www.typescriptlang.org/. Last accessed: 05-05-2024.

The VSCode team. 2015-2024. Visual Studio Code Editor Home Page.
https://code.visualstudio.com/. Last accessed: 05-05-2024.

The Wrangler team. 2005-2024. Wrangler Home Page. https://
refactoringtools.github.io/wrangler/. Last accessed: 05-05-2024.
Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software
Engineering SE-10, 4 (1984), 352-357. https://doi.org/10.1109/TSE.1984.
5010248

Ulf Wiger. 2018-2024. Parse transform utilities. https://github.com/
uwiger/parse_trans. Last accessed: 05-05-2024.

Functor. https://

https:


https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/1863509.1863521
https://doi.org/10.1016/j.jlamp.2023.100857
https://doi.org/10.1109/FormaliSE52586.2021.00019
https://doi.org/10.1109/FormaliSE52586.2021.00019
https://dl.acm.org/doi/abs/10.1145/1088361.1088366
https://dl.acm.org/doi/abs/10.1145/1088361.1088366
https://dl.acm.org/doi/abs/10.1145/1140335.1140356
https://dl.acm.org/doi/abs/10.1145/1140335.1140356
https://encyclopediaofmath.org/index.php?title=Functor
https://encyclopediaofmath.org/index.php?title=Functor
https://api.semanticscholar.org/CorpusID:120980829
https://www.erlang.org/doc/man/dialyzer.html
https://www.erlang.org/doc/man/dialyzer.html
https://www.electronjs.org/
https://www.electronjs.org/
https://github.com/harp-project/EquivcheckEr
https://www.freedesktop.org/wiki/
https://www.freedesktop.org/wiki/
https://git-scm.com/
https://proper-testing.github.io/
https://proper-testing.github.io/
https://www.rebar3.org/
https://www.rebar3.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://code.visualstudio.com/
https://refactoringtools.github.io/wrangler/
https://refactoringtools.github.io/wrangler/
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://github.com/uwiger/parse_trans
https://github.com/uwiger/parse_trans

